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Abstract
Missed doses, late doses, and other dosing irregularities are major barriers to effective pharmacotherapy, especially for the

treatment of chronic conditions. What should a patient do if they did not take their last dose at the prescribed time? Should

they take it late or skip it? In this paper, we investigate the pharmacokinetic effects of taking a late dose. We consider a

single compartment model with linear absorption and elimination for a patient instructed to take doses at regular time

intervals. We suppose that the patient forgets to take a dose and then realizes some time later and must decide what

remedial steps to take. Using mathematical analysis, we derive several metrics which quantify the effects of taking the dose

late. The metrics involve the difference between the drug concentration time courses for the case that the dose is taken late

and the case that the dose is taken on time. In particular, the metrics are the integral of the absolute difference over all time,

the maximum of the difference, and the maximum of the integral of the difference over any single dosing interval. We

apply these general mathematical formulas to levothyroxine, atorvastatin, and immediate release and extended release

formulations of lamotrigine. We further show how population variability can be immediately incorporated into these

results. Finally, we use this analysis to propose general principles and strategies for dealing with dosing irregularities.
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Introduction

Managing acute and chronic diseases often requires

patients to take medication at a specified sequence of

dosing times. Deviations from prescribed dosing regimens

constitute major obstacles to treatment efficacy [1]. Such

deviations include not taking some doses (i.e. missed

doses) and taking doses at times later than the prescribing

dosing times (i.e. late doses). Such medication nonadher-

ence is especially problematic in long-term pharma-

cotherapy for chronic conditions, which typically involves

at least one medication dosed one or more times per day

[2, 3]. It has been estimated that up to 42% of patients

suffering from chronic disease do not take medication as

prescribed [4], and the most commonly cited cause of

nonadherence is patient forgetfulness [5, 6].

What should a patient do if they realize that they forgot

to take their last scheduled dose of medication? Should

they take it as soon as possible? Should they skip it? How

does this depend on how ‘‘late’’ the dose is? These are

some of the most common questions asked by patients, but

they generally do not receive adequate instructions

regarding late or missed doses [7, 8]. Indeed, a recent

analysis of just over 1500 prescription only medicines

found that less than half came with any such instructions

[9]. Further, definitions of a ‘‘late dose’’ versus a ‘‘missed

dose,’’ as well as the appropriate remedial steps a patient

should take after such a dosing lapse, vary significantly

among both patients and clinicians [10].

Answering these questions and developing appropriate

remedial strategies is made difficult by the many compet-

ing factors in the problem, such as the drug absorption rate,

the drug half-life, the therapeutic range of the drug, how

late the dose is, and when the next dose is scheduled to be

taken. Furthermore, investigating these questions in clini-

cal trials is problematic since trials which force irregular

dosing may be unethical [11–13].
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The purpose of this paper is to compare the pharma-

cokinetic effects of taking late doses versus skipping doses.

We employ the standard pharmacokinetic single compart-

ment model with linear absorption at rate ka and linear

elimination at rate ke [14, 15]. We suppose that the patient

is instructed to take doses at regular time intervals of length

s. We further suppose that at some point the patient is faced

with the decision of either (i) taking a late dose that is

delayed by a given time d or (ii) skipping this dose entirely.

This scenario is motivated by a patient who forgets to take

a dose and then realizes that they forgot after time d has

elapsed. At this point, of course the patient cannot change

their prior behavior, and thus they choose option (i) or (ii)

(or perhaps taking the dose at even later time, which is

included in our analysis).

We use mathematical analysis to study the effects of

options (i) and (ii). We derive a formula which measures

how taking a late dose causes the drug concentration in the

body to deviate from the case that the patient took this dose

on time. Comparing this deviation to the deviation caused

by skipping the dose then offers insights into the effects of

options (i) and (ii). In addition, since taking a late dose may

cause the drug concentration to rise above the therapeutic

range, we derive formulas which give the maximum drug

concentration and maximum drug exposure caused by

taking a late dose.

We emphasize that these formulas are given as explicit

functions of the absorption rate ka, the elimination rate ke,

the dosing interval s, and the delay d. In particular, these

metrics allow us to quickly investigate how the effects of a

late dose depend on the various parameters in the problem.

Furthermore, in contrast to numerical simulations of

specific examples, our metrics can be immediately applied

to any drug whose pharmacokinetics can be described by a

single compartment linear model, assuming merely that the

parameters ka, ke, and s can be estimated (our results are

expressed relative to a perfectly adherent patient so that

parameters such as dose size, bioavailability, and volume

of distribution do not factor in). To illustrate, we apply our

metrics to levothyroxine, atorvastatin, immediate release

(IR) lamotrigine, and extended release (XR) lamotrigine.

We further show how our results immediately extend to a

population pharmacokinetic model in which ka and ke vary

among individual patients in a population according to

given probability distributions. We have also created a

simple web-based app [16] to allow pharmacometricians to

use our metrics to study the consequences of late doses for

other drugs and dosing scenarios.

The rest of the paper is organized as follows. We present

and analyze the pharmacokinetic model in Methods

(Sect. 2), and we present the results of analyzing this

model in Results (Sect. 3). In the Discussion (Sect. 4), we

discuss our results in the context of IR and XR drugs,

delineate other salient pharmacological implications of this

study, and offer some intuition behind our results. We also

compare and contrast our approach to related work and

describe the limitations of our model and analysis. Details

of the mathematical analysis are collected in the Appendix.

Methods

Below, we first introduce the standard pharmacokinetic

model of oral administration in a single compartment with

first order (i.e. linear) absorption and elimination [14, 15]

in a way that will facilitate our analysis. We then derive the

metrics which we use in Methods to analyze late doses.

Pharmacokinetic model

Let c(t) denote the drug concentration in the body at time

t 2 R. Assume c satisfies the following ordinary differen-

tial equation,

dc

dt
¼ ka

g

V
� kec; ð1Þ

where ka is the absorption rate, ke is the elimination rate, V

is the volume of distribution, and g is the amount of the

drug at the absorption site. Assume

dg

dt
¼ �kagþ IðtÞ; ð2Þ

where I(t) is the drug input.

Without loss of generality, suppose the patient takes a

dose of size Dfn � 0 at time tn 2 R for n 2 Z, where

ffngn2Z is a nonnegative sequence and ftngn2Z is an

increasing sequence of times (it is convenient to allow the

index n 2 Z to vary over positive and negative integers).

For example, fn ¼ 1 means that the patient takes a dose of

size D at time tn 2 R, whereas fn ¼ 0 means that the patient

does not take a dose at time tn 2 R. Using this notation, the

drug input is

IðtÞ ¼ DF
X

n2Z
fnddiracðt � tnÞ; t 2 R; ð3Þ

where F 2 ð0; 1� denotes the bioavailability fraction and

ddirac denotes the Dirac delta function. The superposition

principle implies that the drug concentration time course

fcðtÞgt2R satisfying (1) is then

cðtÞ ¼
X

n2Z
fnc0ðt � tnÞ; ð4Þ

where c0ðtÞ denotes the concentration after time t 2 R has

elapsed since a single dose of size D,
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c0ðtÞ :¼
DF

V

ka
ka � ke

ðe�ket � e�katÞ if t� 0;

0 if t\0:

8
<

: ð5Þ

We assume ka 6¼ ke throughout this paper (our analysis is

valid for both ka [ ke and ke [ ka).

We note that the formulation above is flexible to model

the case that the patient has been taking the drug for a time

long enough so that steady-state has been reached or the

case that the patient takes the drug over a finite time period.

For the latter, one merely sets fn ¼ 0 for n�N0 and/or

n�N1, where N0\N1 are any finite indices.

Perfect adherence

Suppose the patient is instructed to take a dose of size

D[ 0 every s[ 0 units of time. In the case of perfect

adherence over a long time, we have that

fn ¼ 1; tn ¼ ns; n 2 Z;

and the corresponding drug concentration time course for

perfect adherence is

cperfðtÞ ¼
X

n2Z
c0ðt � nsÞ: ð6Þ

We denote the long-term average drug concentration for

perfect adherence by

hcperfi :¼ lim
T!1

1

T

Z T

0

cperfðtÞ dt ¼ 1

s

Z 1

0

c0ðtÞ dt

¼ DF

V

1

kes
:

ð7Þ

The second equality in (7) reflects the well-known fact that

for perfect adherence, the steady state ‘‘area under the

curve’’ over one dosing interval is the long-term ‘‘area

under the curve’’ for a single dose [14]. The final equality

in (7) follows from merely integrating (5).

Analyzing a late dose

To analyze the effects of a dose delayed by time d� 0,

define the difference

dðt; dÞ :¼ c0ðt � dÞ � c0ðtÞ; t 2 R: ð8Þ

To see the utility of the function dðt; dÞ, suppose the patient
is instructed to take a dose of size D at (without loss of

generality) time t ¼ t0 ¼ 0. Let fcðtÞgt2R denote the drug

concentration time course in the case that the patient takes

this dose as directed,

cðtÞ ¼
X

n��1

fnc0ðt � tnÞ þ c0ðtÞ þ
X

n� 1

fnc0ðt � tnÞ; ð9Þ

where ffngn2Z is an arbitrary nonnegative sequence and

ftngn2Z is any increasing sequence with t0 ¼ 0 (note that

(9) is the same as (4), except (9) fixes t0 ¼ 0 and f0 ¼ 1).

Letting fcdðtÞgt2R denote the same time course, except that

the patient delays the dose scheduled for time t ¼ 0 and

instead takes it at time d� 0, we have that

cdðtÞ ¼
X

n��1

fnc0ðt � tnÞ þ c0ðt � dÞ þ
X

n� 1

fnc0ðt � tnÞ:

Therefore,

dðt; dÞ ¼ cdðtÞ � cðtÞ; t 2 R: ð10Þ

Summarizing, dðt; dÞ is the difference in drug concentra-

tion between the case that the patient delays a dose by time

d and the case that the patient takes this dose as directed.

Further, dðt; dÞ is independent of the patient’s behavior

before and after this dose.

Skipping versus taking a late dose

The following metric

q :¼ 1

shcperfi

Z 1

�1

��cdðtÞ � cðtÞ
�� dt ð11Þ

measures how taking the late dose causes the patient’s drug

concentration to deviate from the case that they took the

dose on time. It is instructive to decompose q into the

following sum,

q ¼ q� þ qþ; ð12Þ

where q� is the area between cd and c when cd is below c,

q� :¼ 1

shcperfi

Z 1

�1
maxfcðtÞ � cdðtÞ; 0g dt; ð13Þ

and qþ is the area between cd and c when cd is above c,

qþ :¼ 1

shcperfi

Z 1

�1
maxfcdðtÞ � cðtÞ; 0g dt: ð14Þ

That is, if the patient takes a late dose, q� is the deviation

‘‘below,’’ qþ is the deviation ‘‘above,’’ and q ¼ q� þ qþ is

the ‘‘total’’ deviation. See the left panel of Fig. 1 for an

illustration in the case that the patient has perfect adher-

ence for a long time before and after this late dose.

Let fcskipðtÞgt� 0 denote the same time course as cdðtÞ,
except in the case that the patient skips this late dose.

Define

qskip :¼ 1

shcperfi

Z 1

�1

��cskipðtÞ � cðtÞ
�� dt ð15Þ

to measure how skipping the dose causes the patient’s drug

concentration to deviate from the case that they took the

dose on time. We note that cskip is always less than c, and
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thus qskip is always a deviation ‘‘below.’’ See the right

panel of Fig. 1 for an illustration.

We emphasize that the statistics q, q�, qþ, and qskip are
independent of the patient’s adherence before and after this

single late dose. Further, q, q�, qþ, and qskip are dimen-

sionless, since they are normalized by the dosing interval s
and the long-term average drug concentration for perfect

adherence hcperfi in (7) (i.e. these statistics are independent

of the units used to measure concentration, time, etc).

We are interested in understanding the scenarios in

which q\qskip versus q[ qskip. We show in the Appendix

that the deviation in (15) for skipping the late dose is

always unity,

qskip ¼ 1: ð16Þ

We further show in the Appendix that if the patient takes

the late dose, then the deviation above and the deviation

below are always equal and are given by the following

exact formula,

q� ¼ qþ ¼ f ðkad; kedÞ; ð17Þ

where f is the following function,

f ðx; yÞ :¼ ðex � 1Þy=ðy�xÞðey � 1Þx=ðx�yÞ: ð18Þ

Hence, (12) implies that the total deviation is

q ¼ 2f ðkad; kedÞ: ð19Þ

The formula (19) shows that q depends only on the two

dimensionless parameters kad and ked, which compare the

rates of absorption and elimination to the delay. Further-

more, q is a symmetric function of kad and ked since f is a

symmetric function of x and y (meaning f ðx; yÞ ¼ f ðy; xÞ).
Formula (19) also implies that 0\q\2 since 0\f\1.

Further, we show in the Appendix that for any value of ka,

ke, and d,

o

oka
q[ 0;

o

oke
q[ 0;

o

od
q[ 0: ð20Þ

That is, q is an increasing function of ka, ke, and d.

Furthermore, (20) implies the following relatively sim-

ple upper bound for q,

q\min
n

lim
ka!1

q; lim
ke!1

q
o

¼ min
n
2ð1� e�kedÞ; 2ð1� e�kadÞ

o
:

ð21Þ

The upper bound in (21) and the value in (16) imply that if

minfkad; kedg\ ln 2 � 0:69; ð22Þ

then q\qskip. That is, (22) is a sufficient (but not neces-

sary) condition to ensure that q\qskip. If we define the

respective absorption and elimination half-lives,

ta;half ¼
ln 2

ka
; te;half ¼

ln 2

ke
;

then the sufficient condition in (22) has the following

convenient and rather intuitive form,

d\maxfta;half ; te;halfg: ð23Þ

In words, (23) means that if the delay is less than the

absorption and/or elimination half-life, then taking the late

dose causes less deviation than skipping the late dose (i.e.

q\qskip).

Maximum increase in concentration
and exposure

Define

m :¼ 1

hcperfimax
t2R

�
cdðtÞ � cðtÞ

�
; ð24Þ

which measures how taking a late dose causes the drug

concentration to rise above the drug concentration for the

case that the dose is taken on time. Similarly, define

c :¼ 1

hcperfimax
t2R

1

s

Z tþs

t

�
cdðsÞ � cðsÞ

�
ds; ð25Þ

which measures how taking a late dose causes the drug

exposure over a single dosing interval to exceed the

exposure for taking the dose on time. Note that m and c are
dimensionless since they are defined relative to the average

concentration for perfect adherence (hcperfi in (7)).

time

dr
ug

co
nc
en
tr
at
io
n

take late dose: ρ = ρ− + ρ+

ρ−
ρ+
perfect
take

time
dr
ug

co
nc
en
tr
at
io
n

skip late dose: ρskip

ρskip

perfect
skip

Fig. 1 Taking a late dose (left panel) versus skipping a late dose (right

panel). The black curve in each panel is the drug concentration time

course in the case of perfect adherence (denoted cperf ). The thick blue

curve in the left panel is the drug concentration time course in the case

that the patient takes a late dose (denoted cd), and the dashed red curve in
the right panel is the same time course except in the case that the patient

skips the late dose (denoted cskip). In the left panel, q� is the area

between cd and cperf when cd\cperf (pink region) and qþ is the area

between cd and cperf when cd [ cperf (green region). In the right panel,

cskip � cperf for all time and qskip is the area between these two curves

(pink region). Though the plot illustrates the case of perfect adherence

before and after the late dose, the value of q is independent of the

adherence before and after the late dose (Color figure online)
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In the Appendix, we derive the following exact formulas

for m and c,

m ¼ gðkas; kesÞf ðkad; kedÞ; ð26Þ

c ¼ f ðkas; kesÞf ðkad; kedÞ; ð27Þ

where f is defined in (18) and

gðx; yÞ :¼ xy=ðy�xÞyx=ðx�yÞ: ð28Þ

We again emphasize that, like q, the metrics m and c are

independent of the patient’s adherence before and after the

late dose. In the Appendix, we derive another metric which

yields more detailed information about the maximum

concentration in the case that the patient has perfect

adherence before and after the late dose.

Results

Consider a patient who is prescribed to take a dose of

medication at intervals of time s. Suppose the patient

realizes after time d[ 0 has elapsed since their last pre-

scribed dose was scheduled to be taken that they did not

take this last prescribed dose. Should the patient take this

late dose or skip it?

We now use the metrics derived in Methods to address

this question. In Sect. 3.1, we briefly summarize these

three metrics. In Sect. 3.2, we outline some general

implications of these metrics and illustrate these points for

four specific drugs. In Sect. 3.3, we apply the metrics to a

more detailed study of these four specific drugs. In

Sect. 3.4, we show how this analysis extends to population

pharmacokinetic models.

Metrics to quantify the pharmacokinetic effects
of a late dose

In Methods, we derived three metrics to quantify the

pharmacokinetic effects of taking versus skipping a late

dose of medication. The purpose of this section is to briefly

summarize these metrics and setup the analysis below.

The three metrics are

q :¼ 1

shcperfi

Z 1

�1

��cdðtÞ � cðtÞ
�� dt; ð29Þ

m :¼ 1

hcperfimax
t2R

�
cdðtÞ � cðtÞ

�
; ð30Þ

c :¼ 1

hcperfimax
t2R

1

s

Z tþs

t

�
cdðsÞ � cðsÞ

�
ds; ð31Þ

where hcperfi is the average drug concentration in a patient

with perfect adherence (see (7)). The drug concentration

time courses, cdðtÞ and c(t), are identical, except that cdðtÞ

has a dose delayed by time d[ 0 and c(t) has that par-

ticular dose taken at the prescribed time (no assumptions

are made on the patient’s adherence before or after this

particular dose). In words, q measures how taking a late

dose causes the drug concentration time course to deviate

from the case that that particular dose was taken on time.

We note that if the patient were to skip a dose rather than

take it late, then we found that the corresponding metric is

qskip ¼ 1 (see (15)-(16)). The metrics m and c measure how

taking a late dose causes the concentration and exposure to

increase compared to the case that that particular dose was

taken on time.

We obtained explicit mathematical formulas for q, m,
and c in Methods (see (19), (26), and (27)). These formulas

depend only on the absorption rate ka, the elimination rate

ke, the prescribed dosing interval s, and the delay d. We

emphasize that the metrics are dimensionless since they are

normalized by hcperfi. In particular, the metrics do not

depend on parameters such as the dose size, bioavailability

fraction, volume of distribution, etc. We further emphasize

that the metrics are independent of the patient’s adherence

before and after the late dose (see Sect. 2.3).

The effects of a late dose depend on absorption,
elimination, and dosing interval

In Fig. 2, we plot a heat map of the metric q in (29) using

the formula (19). Since qskip ¼ 1 for any choice of

parameters, the blue region in Fig. 2 is where q\qskip and
the red region is where q[ qskip. That is, the blue region is

where the deviation caused by taking a late dose is less than

the deviation caused by skipping a dose.

10−2 10−1 100 101 102
10−2

10−1

100

101

102

L
L

L

A
A

A

I
I
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X
X

X

ked

k
ad

ρ

0

0.5

1

1.5

2

Fig. 2 Heat map of the deviation q 2 ð0; 2Þ in (11) caused by taking a

dose delayed by time d[ 0. In the blue region, q\qskip, meaning the

deviation caused by taking the late dose is less than the deviation

caused by skipping the late dose. In the red region, q[qskip. The
circles mark levothyroxine (L), atorvastatin (A), and lamotrigine in IR

(I) and XR (X) formulations for different values of the delay d. See
the text for details
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Figure 2 shows that q increases if ka, ke, and/or d

increases. Indeed, we show in the Appendix that for any

value of ka, ke, and d,

o

oka
q[ 0;

o

oke
q[ 0;

o

od
q[ 0:

ð32Þ

In words, (32) means that faster absorption, faster elimi-

nation, and/or longer delays always increase the deviation

caused by taking a late dose. We note that q is independent

of the dosing interval s.
In Fig. 2, the letters correspond to different drugs, where

‘‘L’’ marks levothyroxine, ‘‘A’’ marks atorvastatin, and ‘‘I’’

and ‘‘X’’ mark lamotrigine in the IR and XR formulations,

respectively. For each drug, the three circles correspond to

delays equal to d ¼ s=4, d ¼ s=2, and d ¼ s, where s is the
prescribed dosing interval for that particular drug (the

circles move up and to the right as the delay increases). The

values of ka, ke, and s for these four drugs are given in

Table 1.

Figure 2 shows that the deviation q depends critically on

both the size of the delay, d, and the drug kinetics, ka and

ke. In particular, notice that all four drugs in Fig. 2 have

deviations q � 1 if d ¼ s=4. However, if d ¼ s, then q �
1 for levothyroxine, q[ 1 for atorvastatin, and q\1 for

the IR and XR versions of lamotrigine. A detailed analysis

of these particular drugs and the concentration time courses

obtained by taking or skipping a late dose is given in

Sect. 3.3 below.

Therefore, recommendations for taking or skipping a

late dose should depend on the kinetics of the specific drug.

To illustrate, a simple ‘‘halfway’’ rule which is sometimes

recommended for late doses is to (a) take the late dose if it

is delayed by less than half of the prescribed dosing

interval and (b) skip the late dose if it is delayed by more

than half of the dosing interval [10]. To compare this rule

to our analysis, in Fig. 3 we show contour plots of q as a

function of kes and d=s for different values of kas. The
green dashed line in these plots is at d=s ¼ 1=2, and thus

the ‘‘halfway’’ rule recommends taking (skipping) the

delayed if the parameters lie below (above) this green

dashed line. However, there are blue regions above this

line, which indicates that the ‘‘halfway’’ rule suggests

skipping doses in scenarios when taking the dose would

result in a smaller deviation. Conversely, there are red

regions below this line, which indicates that the ‘‘halfway’’

rule suggests taking doses in scenarios when skipping the

dose would result in a smaller deviation.

We do not make the blanket assertion that a late dose

should always be taken if q\1 and always skipped if

q[ 1. Indeed, our metrics m and c measure the increase in

concentration and exposure caused by a taking a late dose,

and such increases could be harmful for some drugs and

acceptable for others. Of course, no single statistic

depending on only a few pharmacokinetic parameters

could serve as a definitive guide for skipping or taking late

doses for all medications. However, the simple test of

whether q\1 or q[ 1 can serve as a general principle to

guide the development of appropriate ways to handle a late

dose. Furthermore, situations in which q � 1 strongly

suggest that a late dose should be taken, and conversely,

taking a late dose should be strongly cautioned against if

q 	 1. In addition, comparing the values q for different

drugs can be used to determine which drug is more ‘‘for-

giving’’ of late doses (see Sect. 3.3 below) [21–28].

This analysis shows that, in many circumstances, a

patient can minimize their deviation by taking rather than

skipping a late dose. However, as mentioned above, one

concern about taking a late dose is that it could cause the

drug concentration or exposure to rise too high. The met-

rics m and c in (30)–(31) address this concern by measuring

the respective largest increase in concentration and expo-

sure caused by taking a late dose. In Fig. 4, we produce

contour plots of m and c as functions of kes and kas for

d ¼ s using (26)-(27). Since we set d ¼ s in Fig. 4, these

plots correspond to the extreme case that a double dose is

taken. Nevertheless, these plots show that the maximum

increase in concentration or exposure is quite small for

many parameter values. Hence, these plots show when a

double dose could be taken without causing a significant

increase in drug concentration or exposure. Analogous to

Fig. 2, the circle markers in Fig. 4 correspond to the drugs

in Table 1 with d ¼ s.
Furthermore, the red dashed curve in Fig. 4 separates

the region in which q\1 (to the left of the red dashed

curve) from the region in which q[ 1 (to the right of the

red dashed curve). We note that the red curve in which

q ¼ 1 corresponds to roughly m � 0:3 and exactly to

c ¼ 0:25. Hence, if the patient takes a dose delayed by

d ¼ s (i.e. they take a double dose) only if q\1, then they

could at most have an increase in concentration of

approximately 0:3hcperfi and an increase in exposure over

Table 1 Parameter values for some specific drugs. Parameter values

for each drug were taken from the reference indicated in the table

Drug ka (1=hrÞ ke (1=hrÞ s (hrÞ Ref.

Levothyroxine 2.2 0.003 24 [17, 18]

Atorvastatin 1 0.05 24 [19]

Lamotrigine IR 3 0.03 12 [20]

Lamotrigine XR 0.07 0.03 24 [20]
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any time interval of length s of 0:25hcperfis (these increases
are compared to the case that the late dose was taken on

time).

Finally, we note that Fig. 4 indicates that m and c
increase if ka or ke increases. Indeed, we verify in the

Appendix the more general result that

o

ox
m[ 0;

o

ox
c[ 0; for any x 2 fka; ke; d; sg: ð33Þ

That is, m and c are increasing functions of the absorption

rate ka, elimination rate ke, delay d, and dosing interval s.

Application to four common medications

We now apply the analysis above to some specific drugs.

We note that we have created a simple web-based app [16]

to allow pharmacometricians to use our metrics to study the

consequences of late doses for other drugs and dosing

scenarios. We consider levothyroxine, atorvastatin, and IR

and XR formulations of lamotrigine. The absorption rate

ka, elimination rate ke, and dosing interval s for each of

these drugs is given in Table 1. In Fig. 5, we plot q (left

panel) and m (right panel) as functions of the delay d for

each of these four drugs. Plots of c are similar to those of m
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Fig. 3 Contour plots of q 2
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interval s. See the text for

details (Color figure online)
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and are omitted. We now discuss each of these drugs in

turn.

A daily dose of levothyroxine taken for the rest of a

patient’s life is the standard treatment for hypothyroidism,

and levothyroxine is one of the most commonly prescribed

drugs in the US [29] (common brand names are Synthroid,

Tirosint, Levoxyl, Unithroid, and Levo-T). Owing to its

very slow elimination rate of ke ¼ 0:003 hr�1 [17], Fig. 5

shows that the deviation from a late dose, q, and the

maximum relative increase in drug concentration, m, both
rise very slowly as a function of the delay d. Indeed, even

when the delay equals the dosing interval, d ¼ s ¼ 24 hr,

we have

q � 0:14; m � 0:005; c � 0:005: ð34Þ

The values in (34) suggest that late doses of levothy-

roxine should be taken rather than skipped, even if that

means taking a double dose. This is illustrated in the top

left panel of Fig. 6, where we show the drug concentration

time course for perfect adherence (thin black curve), a late

dose (thick blue curve), and a skipped dose (dashed red

curve). This suggestion (i) contradicts some existing rec-

ommendations to skip any dose of levothyroxine that is

delayed by more than 12 hours [30–33] and (ii) agrees with

recommendations of the American Thyroid Association

[34].

Atorvastatin (brand name Lipitor) is another one of the

most common prescription drugs in the US [35]. Atorvas-

tatin is typically administered once daily to treat hyper-

lipidemia [35]. Compared to levothyroxine, Fig. 5 shows

that q and m rise much faster for atorvastatin as the delay d

increases. Indeed, q surpasses qskip ¼ 1 for a delay d of

slightly more than half of the dosing interval s ¼ 24 hr

(specifically, q ¼ 1 if d � 14:5 hr). For a delay equal to the

dosing interval, d ¼ s ¼ 24 hr, we have

q � 1:36; m � 0:69; c � 0:47: ð35Þ

The values in (35) accord with common recommendations

to avoid double doses of atorvastatin [36]. For a dose

delayed by half the dosing interval, d ¼ s=2 ¼ 12 hr, we

have

q � 0:86; m � 0:44; c � 0:29: ð36Þ

The values in (36) accord with the recommendations of

some that late doses of altorvastatin can be taken as long as

the delay is not more than 12 hours (half of the dosing

interval) [37]. Time courses for atorvastatin which compare

delaying a dose by 12 hours versus skipping a dose are

shown in the upper right panel of Fig. 6.

Finally, we consider the antiepileptic drug lamotrigine

in its IR and XR formulations. These formulations have

identical elimination rates, but the XR formulation has a

markedly slower absorption rate and is administered once

daily rather than twice daily like its IR counterpart (see

Table 1). Figure 5 shows that both formulations have fairly

small values of q and m for a delay d not more than the

dosing interval. Indeed, for the IR version with a delay of

d ¼ s ¼ 12 hr, we have

q � 0:60; m � 0:10; c � 0:09: ð37Þ

For the XR version with a delay of d ¼ s ¼ 24 hr, we have

that

q � 0:73; m � 0:14; c � 0:13: ð38Þ

The values in (37)-(38) suggest that late doses of lamot-

rigine IR and XR should be taken, even if that means

taking a double dose. This accords with recommendations

of Chen et al. [20] but contradicts some existing recom-

mendations [36].
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Fig. 5 Left: Plot of deviation

caused by taking a late dose (q
in (11) and (19)) for the four

different drugs in Table 1.

Right: Plot of maximum relative

concentration increase (m in (24)

and (26)) for the four different

drugs in Table 1
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Population pharmacokinetics

In the analysis above, for each drug we considered fixed

values of the pharmacokinetic parameters. Hence, the

results can be considered as concerning a single patient.

However, these results can be immediately extended to a

population of patients or ‘‘subjects’’ whose pharmacoki-

netic parameters vary according to any given probability

distribution. The purposes of this section are to (i) demon-

strate how to make this extension and (ii) investigate how

such ‘‘between subject variability’’ modifies our results

under typical pharmacological assumptions [38].

Consider a population of N patients indexed

i ¼ 1; 2; . . .;N. Following pharmacological convention, we

assume that the absorption and elimination rates of each

individual patient in the population are drawn from a log-

normal distribution [38]. That is, if k
ðiÞ
a and k

ðiÞ
e denote the

absorption and elimination rates of the ith patient in the

pop

kðiÞa ¼ ka
expðr2a=2Þ

expðraZðiÞ
a Þ;

kðiÞe ¼ ke
expðr2e=2Þ

expðreZðiÞ
e Þ;

ð39Þ

where ka, ke denote average absorption and elimination

rates, ra, re are positive parameters describing the vari-

ability in parameters, and Z
ðiÞ
a , Z

ðiÞ
e are (possibly dependent)

standard normal random variables.

If the ith patient delays a dose by time d, then using the

values k
ðiÞ
a and k

ðiÞ
e in the formulas for the metrics derived

above (q, q�, qþ, m, c) makes these statistics specific to this

ith patient. Simply computing these statistics for k
ðiÞ
a and

k
ðiÞ
e as i varies from 1 to N then reveals how these statistics

vary across the population.

In Fig. 7, we plot probability densities of q in (11) for

N ¼ 106 independent realizations of the pharmacokinetic

parameters in (39), where the four panels correspond to

taking ka and ke according to the four drugs in Table 1. We

set d ¼ s or d ¼ s=2 depending on the drug. In each panel,

the three curves are for setting the coefficient of variation

of k
ðiÞ
a and k

ðiÞ
e equal to 10%, 20%, and 30% (the coefficient

of variation of a random variable is equal to the ratio of its

standard deviation to its mean). Denoting these coefficients

of variation by CVðkaÞ and CVðkeÞ, the value of ra is

defined by

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ ðCVðkaÞÞ2Þ

q
� CVðkaÞ;
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and analogously for re. We also take Z
ðiÞ
a and Z

ðiÞ
e to be

independent, though we found very similar results (not

shown) when taking Z
ðiÞ
a and Z

ðiÞ
e to be positively or neg-

atively correlated.

The red vertical dashed lines in Fig. 7 are for ra ¼ re ¼
0 (i.e. when k

ðiÞ
a ¼ ka and k

ðiÞ
e ¼ ke for all i ¼ 1; . . .;N).

Naturally, the distribution of q spreads out as the vari-

ability in ka and ke increases. For the top left and bottom

two panels in Fig. 7, the values of q for the vast majority of

the population are below the value qskip ¼ 1 (marked by

the black vertical dashed line), even in the highly variable

case of CVðkeÞ ¼ CVðkeÞ ¼ 30%. However, for a delay

equal to half the dosing interval for atorvastatin in the

upper right panel, we see that a sizable fraction of the

population has q values larger than qskip ¼ 1.

Discussion

In this paper, we used mathematical analysis to study the

pharmacokinetic effects of taking a late dose of medica-

tion. We derived several mathematical formulas which

quantify the pharmacokinetic effects of taking a late dose.

This analysis can be applied to any medication that can be

described by a single compartment linear model, requiring

only that the absorption rate ka, elimination rate ke, and

dosing interval s can be estimated. We applied our results

to four common medications and also considered the

effects of between subject variability in a population of

patients. We have also created a simple web-based app [16]

to allow pharmacometricians to use our metrics to study the

consequences of late doses for other drugs and dosing

scenarios.

One immediate implication of this work regards IR and

XR drug formulations (we use XR interchangeably with

slow release, sustained release, and controlled release

[39]). Recall that XR drugs are identical to IR drugs, except

that an XR formulation has a much slower absorption rate

ka and is sometimes prescribed with a larger dosing interval

s. The results in (32) and (33) show that the perturbations

caused by a late dose decrease if ka decreases and/or if s
decreases. Therefore, if a patient switches from an IR drug

to its XR counterpart without increasing the dosing inter-

val, then the pharmacokinetic effects of dosing irregulari-

ties are necessarily blunted. Hence, this analysis suggests

that prescribing XR drugs dosed at the same frequencies as

IR drugs is a promising strategy to ameliorate some aspects

Fig. 7 Distributions of q across

a population with log-normally

distributed pharmacokinetic

parameters. See the text for

details
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of patient nonadherence. On the other hand, this analysis

shows that switching from IR to XR formulations and

increasing the dosing interval could ameliorate or could

exacerbate the effects of dosing irregularities, depending

on the changes in ka and s, and also the value of ke.

There are several additional salient pharmacological

implications of this work. First, this analysis highlights the

importance of pharmacokinetic rates for determining

appropriate remedial actions regarding a late dose. General

rules which only involve the delay d and the dosing interval

s, such as ‘‘never take a double dose’’ or the ‘‘halfway’’

rule considered in Sect. 2.4, are not broadly applicable.

Similarly, this work underscores the need for precise, drug-

specific guidance regarding late doses. The appropriate

remedial action for one drug may or may not be appropriate

for another drug, and the appropriate action for a short

delay (say, d\s=4) may differ from that of a long delay

(say, d[ 3s=4). Furthermore, this work demonstrates how

the timing of doses can be quite unimportant for drugs with

slow pharmacokinetic rates. For example, due to the very

slow elimination rate of levothyroxine, perturbing the

timing of doses (for instance, by delaying a dose 24 hours)

causes only mild changes in the drug concentration time

course compared to perfect adherence.

The fact that slow absorption and/or elimination rates

dampen the pharmacokinetic effects of dosing irregularities

can be understood intuitively in terms of simple concepts in

dimensional analysis [40]. The timescales in the problem

are the timescale of absorption 1=ka, the timescale of

elimination 1=ke, the scheduled time between doses s, and
the delay d. If the timescale of absorption and/or elimina-

tion is much longer than the scheduled time between doses,

maxf1=ka; 1=keg 	 s; ð40Þ

then any delay d that is not much larger than s can only

slightly affect the drug concentration time course.

Levothyroxine satisfies (40), since using the parameter

values in Table 1 yields

maxf1=ka; 1=keg � 2weeks 	 s ¼ 1 day: ð41Þ

In fact, the values in (41) explain why the American

Thyroid Association has advocated taking up to a week’s

worth of levothyroxine at one time [34]. In contrast, using

the parameter values for atorvastatin in Table 1 yields

maxf1=ka; 1=keg � 20 hours\s ¼ 24 hours;

which is compatible with our results indicating that

delaying a dose of atorvastatin by 24 hours is likely

inappropriate.

Many previous studies have used pharmacokinetic

modeling to investigate the effects of a late dose and to test

different remedial strategies [12, 20, 41–50]. The recent

review paper [13] helpfully summarizes prior work in this

area. The vast majority of prior work has used numerical

simulations of computational models of specific examples

of drugs and delay times, rather than the general mathe-

matical analysis in the present work. A strength of

numerical simulations is that they can be used on certain

pharmacokinetic models which are too complicated for

mathematical analysis. For example, numerical simulations

are especially useful for analyzing nonlinear pharmacoki-

netic models, such as the study of valproic acid in [43]. In

contrast, a strength of mathematical analysis is that it can

reveal general principles which are broadly applicable

across a range of drugs, dosing regimens, and late dosing

scenarios.

Analysis of nonadherence is often complicated by the

various patterns of nonadherence observed in actual

patients. Indeed, missed doses, late doses, extra doses,

extended ‘‘drug holidays,’’ and other irregularities have

been observed in electronically compiled dosing histories

[51]. This has led to the development of various statistical

models of adherence for use in computational analyses

[26, 52]. However, our results are independent of the pat-

tern of nonadherence before and after a given late dose. In

particular, the values of our metrics q, m, and c are

unchanged if (a) the patient has perfect adherence before

and after the late dose and (b) the patient has any pattern of

nonadherence before and/or after the particular late dose in

question. This is because our metrics are defined in terms

of the difference in concentrations,

cdðtÞ � cðtÞ;

where cdðtÞ is the drug concentration time course in the

case that the dose in question is taken time d[ 0 after it

was scheduled to be taken and c(t) is the drug concentration

time course in the case that the dose in question is taken at

the scheduled time. The key point is that by considering the

concentration difference cdðtÞ � cðtÞ, the patient’s adher-

ence before and after the dose in question ‘‘cancel out,’’

and thus does not affect the concentration difference

cdðtÞ � cðtÞ and thus does not affect the metrics q, m, and c
(see Sect. 2.3 for details).

Naturally, this theoretical study neglects certain phar-

macological details and incorporates various simplifying

assumptions. For one, we have used a one-compartment

linear pharmacokinetic model, but the pharmacokinetics of

some drugs are much better described by a more compli-

cated model that includes more compartments or nonlinear

kinetics. We have also ignored dosing restrictions, such as

taking medications with or without food. For instance, the

results in (32) and (33) show that the perturbations caused

by a late dose always increase if the delay d increases.

Hence, this mathematical result suggests that a late dose

Journal of Pharmacokinetics and Pharmacodynamics

123



should be taken as soon as possible, rather than, for

instance, waiting to combine the dose with the next

scheduled dose. However, this recommendation may need

to be modified if, for example, the drug must be taken on

an empty stomach. Another limitation is that we have not

considered the possibility that the patient alters their future

doses in order to deal with the late dose. For example, the

patient could perhaps take a late dose and then delay the

next scheduled dose. We have also not considered the

possibility that rather than skipping or taking the late dose,

the patient instead takes a fraction of the late dose. One can

imagine that in some scenarios, taking half of a dose late

may be preferable to both skipping and taking a full dose

late.

A further limitation is that we have focused on phar-

macokinetics rather than pharmacodynamics. This is in line

with many previous theoretical investigations of nonad-

herence [12, 20, 41–47, 49, 50]. However, the importance

of both pharmacokinetics and pharmacodynamics was

recently emphasized in [53].

One of the simplest pharmacodynamic models is the so-

called direct effect model [54], which models the effect

E(t) of the drug at time t by the following function of the

drug concentration c(t),

EðtÞ ¼ EmaxcðtÞ
EC50 þ cðtÞ : ð42Þ

Here, Emax denotes the maximum possible effect of the

drug and EC50 denotes the drug concentration which elicits

one half of the maximum effect. The saturating nature of

the concentration-effect relation in (42) implies that fluc-

tuations in concentration cause the greatest effect fluctua-

tions when

cðtÞ � EC50: ð43Þ

Mathematically, this stems from the fact that the second

derivative of (42) with respect to c is negative. Indeed, the

opposite scenario cðtÞ 	 EC50 implies EðtÞ � Emax and

only major lapses in adherence modify the drug effect.

Hence, adherence is most critical to treatment efficacy in

the case of (43). In this regime, the drug effect is far from

maximal and the nonlinear concentration-effect relation in

(42) is well-approximated by the linear concentration-ef-

fect relation,

EðtÞ ¼ Emax

EC50

cðtÞ: ð44Þ

Assuming (44), our pharmacokinetic results immediately

yield identical pharmacodynamic results. In particular, the

values of the metrics q, m, and c are unchanged if the

concentrations in their definitions in (29)-(31) are replaced

by the corresponding drug effects (i.e. the concentration for

an on-time dose c(t) is replaced by the effect for an on-time

dose EðtÞ ¼ Emax

EC50
cðtÞ, the concentration for a late dose

cdðtÞ is replaced by the effect for a late dose

EdðtÞ ¼ Emax

EC50
cdðtÞ, and the average concentration for per-

fect adherence hcperfi is replaced by the average effect for

perfect adherence hEperfi ¼ Emax

EC50
hcperfi). Summarizing, our

pharmacokinetic analysis is identical to a pharmacody-

namic analysis in the case of a linear concentration-effect

relation, which is a case in which adherence is especially

critical to treatment efficacy. Investigating how more

detailed pharmacodynamic considerations inform proper

handling of late doses is an important area for future

research.

Finally, as described in Sect. 2.4, the bare analysis in

this paper is not intended to definitively tell a patient or

clinician if a late dose of medication should be taken or

skipped. Rather, our analysis should be combined with

drug-specific information. For example, our analysis can

predict whether or not taking a late dose will cause the drug

concentration to rise above, say, 20% of the long-term

average drug concentration for perfect adherence. How-

ever, our analysis of course does not say whether or not this

20% increase is clinically acceptable, as this depends on

the particular drug. Nevertheless, the metrics derived in

this paper can be used in conjunction with drug-specific

information (such as the therapeutic range) to develop

drug-specific remedial strategies to handle late doses.

Appendix

In this Appendix, we collect details of the mathematical

analysis. We also present a fourth metric in Sect. 5.3 for

studying the effects of a late dose.

Derivation of mathematical formulas

To calculate qskip in (15), we note that

jcskipðtÞ � cðtÞj ¼ c0ðtÞ; ð45Þ

where c0ðtÞ is defined in (5). Integrating (45) yields (16).

To calculate q� and qþ defined in (13)-(14), we first use

that (10) and (8) imply that q� and qþ can be written in

terms of dðt; dÞ in (8) as

q� ¼ �1

shcperfi

Z s0

0

dðt; dÞ dt; qþ ¼ 1

shcperfi

Z 1

s0

dðt; dÞ dt;

ð46Þ

where s0 [ d[ 0 is such that dðt; dÞ\0 for all t 2 ð0; s0Þ
and dðt; dÞ[ 0 for all t[ s0. Solving for s0 yields
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s0 ¼
1

ka � ke
ln
� ekad � 1

eked � 1

�
[ d[ 0: ð47Þ

Integrating (46) using (8) and (47) yields (17), which then

yields (19) by (12).

To calculate m defined in (24), we first use (10) to obtain

that m can be written in terms of d as

m ¼ 1

hcperfimax
t2R

dðt; dÞ: ð48Þ

A simple calculus exercise yields that dðt; dÞ is maximized

at t ¼ s1, where

s1 ¼
1

ka � ke
log
h ðekad � 1Þka
ðeked � 1Þke

i
: ð49Þ

Plugging (49) into (48) yields the formula for m in (26).

To calculate c in (25), we first use (10) to obtain that c
can be written in terms of d as

c ¼ 1

hcperfimax
t2R

1

s

Z tþs

t

dðs; dÞ ds: ð50Þ

Integrating (50) and performing a simple calculus exercise

yields that the maximum in (50) occurs at t ¼ s2, where

s2 ¼
1

ka � ke
log
� ðekas � 1Þðekad � 1Þ
ðekes � 1Þðeked � 1Þ

�
� s: ð51Þ

Plugging (51) into (50) yields the formula for c in (27).

Monotonicity

We now prove (32) and (33). Applying the chain rule to

(19) yields

o

oka
q ¼ 2fxðkad; kedÞd;

o

oke
q ¼ 2fyðkad; kedÞd;

o

od
q ¼ 2fxðkad; kedÞka þ 2fxðkad; kedÞke;

ð52Þ

where fx and fy denote the partial derivatives of f in (18)

with respect to x and y, respectively. Specifically,

and the formula for fyðx; yÞ is obtained from (53) upon

swapping x and y. Though (53) is a complicated expres-

sion, it is easy to plot as a function of x[ 0 and y[ 0 to

obtain that

fxðx; yÞ[ 0; fyðx; yÞ[ 0: ð54Þ

Hence, (54) and the expressions in (52) yield (32).

The sign of the partial derivatives of c in (33) follow

immediately from (27), the chain rule, and (54).

To obtain the sign of the partial derivatives of m in (33),

we first note that the partial derivative of g in (28) with

respect to x is

gxðx; yÞ ¼
� yðx logðxÞ þ y� x logðyÞ � xÞ

ðx� yÞ2
� y

x

� � x
x�y

; ð55Þ

and the formula for gyðx; yÞ is obtained from (55) upon

swapping x and y. Though (55) is a complicated expres-

sion, it is easy to plot as a function of x[ 0 and y[ 0 to

obtain that

gxðx; yÞ[ 0; gyðx; yÞ[ 0: ð56Þ

Hence, the sign of the partial derivatives of m in (33) follow

immediately from using (26), the chain rule, and (54) and

(56).

Maximum concentration

In the main text of the paper, the metric m measures the

maximum amount that cdðtÞ can rise above c(t). To obtain

the value for the maximum of cdðtÞ rather than how the

cdðtÞ rises above c(t), we must make assumptions about the

patient’s adherence before and after the late dose. For

simplicity, we assume that the patient has perfect adher-

ence for a long time before and after the late dose. Letting

fcperf;dðtÞgt2R denote this concentration time course, we

prove below that

max
t2R

cperf;dðtÞ ¼ max
j2fj
;j
þ1g

�
dðjsþ tj; dÞ þ cperfðtjÞ

�
; ð57Þ

where d is defined in (8) and

fxðx; yÞ ¼
yðey�1

ex�1
Þ

x
x�y exðy� xÞ � ex � 1ð Þ log ey � 1ð Þ þ ex � 1ð Þ log ex � 1ð Þð Þ

ðx� yÞ2
; ð53Þ
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In (58), we use the floor function notation, in which bxc
denotes the largest integer less than or equal to x.

While the complicated formulas in (57)-(59) do not offer

much intuition, they can be easily plotted to investigate

how the maximum concentration depends on the various

parameters. In Fig. 8, we plot

h :¼ maxt2R cperf;dðtÞ � hcperfi
hcperfi ; ð60Þ

which is a dimensionless measure of how far cperf;dðtÞ rises
above hcperfi, relative to hcperfi. The top left panel in Fig. 8

is for no delay (d ¼ 0) to show how the concentration time

courses rises above the average hcperfi for perfect adher-

ence. In this case of no delay, h has a simpler formula

which we denote by hperf ,

hperf ¼ lim
d!0

h ¼ kakes
ka � ke

 keðekas�1Þ
kaðekes�1Þ

� � ke
ka�ke

ekes � 1

�
keðekas�1Þ
kaðekes�1Þ

� � ka
ka�ke

ekas � 1

!
� 1:

ð61Þ

The bottom right panel shows that even in the extreme case

of a double dose (d ¼ s), the drug concentration rises only

slightly above the average if the absorption and/or elimi-

nation rate is sufficiently slow compared to 1=s. Con-

versely, this plot shows that the drug concentration can rise

far above the average if both the absorption and elimination

rate is sufficiently fast compared to 1=s. Analogous to

Figs. 2 and 4, the letter markers in Fig. 8 are for the drugs

in Table 1.

To obtain the formula for maxt2R cperf;dðtÞ in (57), we

first note that

j
 ¼
j 1

kas� kes
log
� ðekas � 1Þðekad � 1Þ
ðekes � 1Þðeked � 1Þ

�
� 1
k
; ð58Þ

tj ¼
1

ka � ke
log
� kaðekes � 1Þ½ðekas � 1Þðekad � 1Þ þ eðjþ1Þkas�ejðke�kaÞs

keðekas � 1Þ½ðekes � 1Þðeked � 1Þ þ eðjþ1Þkes�

�
: ð59Þ
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Fig. 8 Maximum relative

increase in concentration h in

(60) for different values of the

delay d 2 ½0; s�. Note that the

top left panel is for d ¼ 0 (see

(61)). The letters L, A, I and X

correspond to different drugs.

See the text for details
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cperf;dðtÞ ¼ cperfðtÞ þ cperf;dðtÞ � cperfðtÞ ¼ cperfðtÞ þ dðt; dÞ;
ð62Þ

where cperfðtÞ is defined in (6). Now, dðt; dÞ is strictly

increasing for t 2 ðs0; s1Þ and strictly decreasing for

t 2 ðs1;1Þ. It therefore follows that s2 2 ðs0; s1Þ is such

that dðt1; dÞ[ dðt0; dÞ if t1 2 ðs2; s2 þ sÞ and

t0 62 ðs2; s2 þ sÞ. Since cperfðtÞ is periodic with period s, it
follows from (62) that the maximum of cperf;dðtÞ must occur

at some t 2 ½s2; s2 þ s�. Now, since j
 in (58) satisfies

j
 ¼ bs2=sc, it follows that the maximum of cperf;dðtÞ must

occur at some t 2 ½j
s; ðj
 þ 2Þs� since

½s2; s2 þ s� � ½j
s; ðj
 þ 2Þs�. If t ¼ jsþ s for some fixed

integer j 2 Z and some time s 2 ½0; s�, then it follows

immediately from (6) that

cperfðjsþ sÞ ¼ DF

V

ka
ka � ke�
e�kes=ð1� e�kesÞ � e�kas=ð1� e�kasÞ

	
:

ð63Þ

Hence, (62) implies cperf;dðjsþ sÞ ¼ Cd
j ðsÞ where Cd

j ðsÞ is
defined to be

Cd
j ðsÞ :¼

DF

V

ka
ka � ke�

e�kes=ð1� e�kesÞ � e�kas=ð1� e�kasÞ
	

þ dðjsþ s; dÞ:

ð64Þ

Differentiating (64) with respect to s shows that d
ds
Cd
j ðsÞ ¼

0 if s ¼ tj where tj is defined in (59). Hence, we have

obtained (57).

To obtain maxt2R cperfðtÞ, we merely differentiate (63)

with respect to s to find the maximum. Plugging the

resulting expression into the definition of h in (60) yields

the formula for hperf in (61).
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