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Abstract

Missed doses, late doses, and other dosing irregularities are major barriers to effective pharmacotherapy, especially for the
treatment of chronic conditions. What should a patient do if they did not take their last dose at the prescribed time? Should
they take it late or skip it? In this paper, we investigate the pharmacokinetic effects of taking a late dose. We consider a
single compartment model with linear absorption and elimination for a patient instructed to take doses at regular time
intervals. We suppose that the patient forgets to take a dose and then realizes some time later and must decide what
remedial steps to take. Using mathematical analysis, we derive several metrics which quantify the effects of taking the dose
late. The metrics involve the difference between the drug concentration time courses for the case that the dose is taken late
and the case that the dose is taken on time. In particular, the metrics are the integral of the absolute difference over all time,
the maximum of the difference, and the maximum of the integral of the difference over any single dosing interval. We
apply these general mathematical formulas to levothyroxine, atorvastatin, and immediate release and extended release
formulations of lamotrigine. We further show how population variability can be immediately incorporated into these
results. Finally, we use this analysis to propose general principles and strategies for dealing with dosing irregularities.
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Introduction

Managing acute and chronic diseases often requires
patients to take medication at a specified sequence of
dosing times. Deviations from prescribed dosing regimens
constitute major obstacles to treatment efficacy [1]. Such
deviations include not taking some doses (i.e. missed
doses) and taking doses at times later than the prescribing
dosing times (i.e. late doses). Such medication nonadher-
ence is especially problematic in long-term pharma-
cotherapy for chronic conditions, which typically involves
at least one medication dosed one or more times per day
[2, 3]. It has been estimated that up to 42% of patients
suffering from chronic disease do not take medication as
prescribed [4], and the most commonly cited cause of
nonadherence is patient forgetfulness [5, 6].
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What should a patient do if they realize that they forgot
to take their last scheduled dose of medication? Should
they take it as soon as possible? Should they skip it? How
does this depend on how “late” the dose is? These are
some of the most common questions asked by patients, but
they generally do not receive adequate instructions
regarding late or missed doses [7, 8]. Indeed, a recent
analysis of just over 1500 prescription only medicines
found that less than half came with any such instructions
[9]. Further, definitions of a “late dose” versus a “missed
dose,” as well as the appropriate remedial steps a patient
should take after such a dosing lapse, vary significantly
among both patients and clinicians [10].

Answering these questions and developing appropriate
remedial strategies is made difficult by the many compet-
ing factors in the problem, such as the drug absorption rate,
the drug half-life, the therapeutic range of the drug, how
late the dose is, and when the next dose is scheduled to be
taken. Furthermore, investigating these questions in clini-
cal trials is problematic since trials which force irregular
dosing may be unethical [11-13].
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The purpose of this paper is to compare the pharma-
cokinetic effects of taking late doses versus skipping doses.
We employ the standard pharmacokinetic single compart-
ment model with linear absorption at rate k, and linear
elimination at rate k. [14, 15]. We suppose that the patient
is instructed to take doses at regular time intervals of length
7. We further suppose that at some point the patient is faced
with the decision of either (i) taking a late dose that is
delayed by a given time d or (ii) skipping this dose entirely.
This scenario is motivated by a patient who forgets to take
a dose and then realizes that they forgot after time d has
elapsed. At this point, of course the patient cannot change
their prior behavior, and thus they choose option (i) or (ii)
(or perhaps taking the dose at even later time, which is
included in our analysis).

We use mathematical analysis to study the effects of
options (i) and (ii). We derive a formula which measures
how taking a late dose causes the drug concentration in the
body to deviate from the case that the patient took this dose
on time. Comparing this deviation to the deviation caused
by skipping the dose then offers insights into the effects of
options (i) and (ii). In addition, since taking a late dose may
cause the drug concentration to rise above the therapeutic
range, we derive formulas which give the maximum drug
concentration and maximum drug exposure caused by
taking a late dose.

We emphasize that these formulas are given as explicit
functions of the absorption rate k,, the elimination rate k.,
the dosing interval 7, and the delay d. In particular, these
metrics allow us to quickly investigate how the effects of a
late dose depend on the various parameters in the problem.
Furthermore, in contrast to numerical simulations of
specific examples, our metrics can be immediately applied
to any drug whose pharmacokinetics can be described by a
single compartment linear model, assuming merely that the
parameters k,, k., and T can be estimated (our results are
expressed relative to a perfectly adherent patient so that
parameters such as dose size, bioavailability, and volume
of distribution do not factor in). To illustrate, we apply our
metrics to levothyroxine, atorvastatin, immediate release
(IR) lamotrigine, and extended release (XR) lamotrigine.
We further show how our results immediately extend to a
population pharmacokinetic model in which k, and k. vary
among individual patients in a population according to
given probability distributions. We have also created a
simple web-based app [16] to allow pharmacometricians to
use our metrics to study the consequences of late doses for
other drugs and dosing scenarios.

The rest of the paper is organized as follows. We present
and analyze the pharmacokinetic model in Methods
(Sect. 2), and we present the results of analyzing this
model in Results (Sect. 3). In the Discussion (Sect. 4), we
discuss our results in the context of IR and XR drugs,
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delineate other salient pharmacological implications of this
study, and offer some intuition behind our results. We also
compare and contrast our approach to related work and
describe the limitations of our model and analysis. Details
of the mathematical analysis are collected in the Appendix.

Methods

Below, we first introduce the standard pharmacokinetic
model of oral administration in a single compartment with
first order (i.e. linear) absorption and elimination [14, 15]
in a way that will facilitate our analysis. We then derive the
metrics which we use in Methods to analyze late doses.

Pharmacokinetic model

Let c(f) denote the drug concentration in the body at time
t € R. Assume c satisfies the following ordinary differen-
tial equation,

de g
a:kav—keca (1)
where k, is the absorption rate, k. is the elimination rate, V
is the volume of distribution, and g is the amount of the
drug at the absorption site. Assume

dg

a: _kag+[(t)a (2)

where I(¢) is the drug input.

Without loss of generality, suppose the patient takes a
dose of size Df, >0 at time ¢, € R for n € Z, where
{fi},cz is a nonnegative sequence and {z,},., is an
increasing sequence of times (it is convenient to allow the
index n € Z to vary over positive and negative integers).
For example, f, = 1 means that the patient takes a dose of
size D at time ¢, € R, whereas f;, = 0 means that the patient
does not take a dose at time #, € R. Using this notation, the
drug input is

I(t) = DF Zf,,édimc(t —1,), t€R, 3)
neZ

where F € (0,1] denotes the bioavailability fraction and

Odirac denotes the Dirac delta function. The superposition

principle implies that the drug concentration time course

{c(t)},cg satisfying (1) is then

c(t) =Y fucolt = ), (4)

neZ

where cy(f) denotes the concentration after time ¢ € R has
elapsed since a single dose of size D,
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DF  k,

—k.t .
.l — Ry if >0,
co(t):=q V ka— ) -

—ket
e
0 if 1<0.

(5)

We assume k, # k. throughout this paper (our analysis is
valid for both k, > k. and k. > k,).

We note that the formulation above is flexible to model
the case that the patient has been taking the drug for a time
long enough so that steady-state has been reached or the
case that the patient takes the drug over a finite time period.
For the latter, one merely sets f, =0 for n <N, and/or
n > N, where Ny <N, are any finite indices.

Perfect adherence

Suppose the patient is instructed to take a dose of size
D > 0 every t > 0 units of time. In the case of perfect
adherence over a long time, we have that

fnzla

and the corresponding drug concentration time course for
perfect adherence is

Pt (1) = Z co(t — nr). (6)

neZ

t,=nt, nel’z,

We denote the long-term average drug concentration for
perfect adherence by

T 1 00
(cPerty .= Thm T P (r) dr = f/ co(1) dt
—00 T
0 0 (7)
_DF 1
v k T

The second equality in (7) reflects the well-known fact that
for perfect adherence, the steady state “area under the
curve” over one dosing interval is the long-term “area
under the curve” for a single dose [14]. The final equality
in (7) follows from merely integrating (5).

Analyzing a late dose

To analyze the effects of a dose delayed by time d >0,
define the difference

8(t,d) == co(t —d) — co(r), 1€R. (8)

To see the utility of the function J(¢, d), suppose the patient
is instructed to take a dose of size D at (without loss of
generality) time 1 = #o = 0. Let {c(¢)},cp denote the drug
concentration time course in the case that the patient takes
this dose as directed,

= > facolt = ta) +co(t) + D faco(t — ta), 9)

n<—1 n>1

where {f,},c, is an arbitrary nonnegative sequence and

{t.},c7 1s any increasing sequence with fy = 0 (note that
(9) is the same as (4), except (9) fixes fo = 0 and fp = 1).
Letting {c(f)},.r denote the same time course, except that
the patient delays the dose scheduled for time ¢ = 0 and
instead takes it at time d > 0, we have that

= > faco(t —ta) +colt —d) + > _faco(t —

n<-—1 n>1
Therefore,
o(t,d) = cd(t) — (1),

Summarizing, §(¢,d) is the difference in drug concentra-
tion between the case that the patient delays a dose by time
d and the case that the patient takes this dose as directed.
Further, 0(f,d) is independent of the patient’s behavior
before and after this dose.

teR. (10)

Skipping versus taking a late dose

The following metric

! >/OC |c(£) — c(1)| dt (11)

pi= T<Cperf

measures how taking the late dose causes the patient’s drug
concentration to deviate from the case that they took the
dose on time. It is instructive to decompose p into the
following sum,

p=p_+py, (12)

where p_ is the area between ¢? and ¢ when ¢? is below c,

1 o d
b= /_  max{e(t) — /(o). o} ar, (13)
and p, is the area between ¢ and ¢ when ¢? is above c,

1 (o)
P = gy | maxde(0) (0.0} (1)

That is, if the patient takes a late dose, p_ is the deviation
“below,” p, is the deviation “above,” and p = p_ + p, is
the “total” deviation. See the left panel of Fig. 1 for an
illustration in the case that the patient has perfect adher-
ence for a long time before and after this late dose.

Let {c¢*P(1)},., denote the same time course as c¢?(t),
except in the case that the patient skips this late dose.
Define

i ! i
pSkp = T<CPerf>/ |CSkp |dt (15)

to measure how skipping the dose causes the patient’s drug
concentration to deviate from the case that they took the

dose on time. We note that ¢**P is always less than ¢, and
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skip late dose: p*kiP

take late dose: p = p_ + py
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Fig. 1 Taking a late dose (left panel) versus skipping a late dose (right
panel). The black curve in each panel is the drug concentration time
course in the case of perfect adherence (denoted cP). The thick blue
curve in the left panel is the drug concentration time course in the case
that the patient takes a late dose (denoted ¢?), and the dashed red curve in
the right panel is the same time course except in the case that the patient
skips the late dose (denoted c**P). In the left panel, p_ is the area
between ¢ and ¢P when ¢? <P (pink region) and p, is the area
between ¢? and cP*f when ¢? > cP*f (green region). In the right panel,
kP < cPerf for all time and p**P is the area between these two curves
(pink region). Though the plot illustrates the case of perfect adherence
before and after the late dose, the value of p is independent of the
adherence before and after the late dose (Color figure online)

thus p*P is always a deviation “below.” See the right
panel of Fig. 1 for an illustration.

We emphasize that the statistics p, p_, p, and p™P are
independent of the patient’s adherence before and after this
single late dose. Further, p, p_, p,, and pSkip are dimen-
sionless, since they are normalized by the dosing interval t
and the long-term average drug concentration for perfect
adherence (cPerf> in (7) (i.e. these statistics are independent
of the units used to measure concentration, time, etc).

We are interested in understanding the scenarios in
which p < p**P versus p > p**P. We show in the Appendix
that the deviation in (15) for skipping the late dose is
always unity,

PP = 1. (16)

We further show in the Appendix that if the patient takes
the late dose, then the deviation above and the deviation
below are always equal and are given by the following
exact formula,

p_ = py =f(kad, ked), (17)
where f is the following function,

fley) = (¢ = )@ =170, (18)
Hence, (12) implies that the total deviation is

p =2f (kd, ked). (19)

The formula (19) shows that p depends only on the two
dimensionless parameters k,d and k.d, which compare the
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rates of absorption and elimination to the delay. Further-
more, p is a symmetric function of k,d and k.d since fis a
symmetric function of x and y (meaning f(x,y) = f(y,x)).
Formula (19) also implies that 0 <p <2 since 0<f<1.
Further, we show in the Appendix that for any value of k,,
ke, and d,
a%ﬁp>0, a%ep>07 %p>0. (20)
That is, p is an increasing function of k,, k., and d.
Furthermore, (20) implies the following relatively sim-
ple upper bound for p,

p< min{ lim p, lim p}
ky—00 ke—00
(21)
— min {2(1 —ehedy (1 — e*kad)}.

The upper bound in (21) and the value in (16) imply that if
min{k,d, ked} <1n2 =~ 0.69, (22)

then p < pXiP. That is, (22) is a sufficient (but not neces-
sary) condition to ensure that p<p™iP. If we define the
respective absorption and elimination half-lives,

In2 In2

Tahalf = —5—, lehalf =5,
’ k, ’ ke

then the sufficient condition in (22) has the following
convenient and rather intuitive form,

d < max{t, nait, fe half } (23)

In words, (23) means that if the delay is less than the
absorption and/or elimination half-life, then taking the late
dose causes less deviation than skipping the late dose (i.e.

P <pskip)'

Maximum increase in concentration
and exposure

Define

1
d
Vi=-———max | c"(f) — c(t 24
ey max (¢4 = <)), (24)
which measures how taking a late dose causes the drug
concentration to rise above the drug concentration for the
case that the dose is taken on time. Similarly, define

1 1 t+71 4
Y 1= ———max— c“(s) —c(s) ) ds 25
Y <Cperf> cR T/t ( ( ) ( )) ’ ( )
which measures how taking a late dose causes the drug
exposure over a single dosing interval to exceed the
exposure for taking the dose on time. Note that v and 7y are
dimensionless since they are defined relative to the average

concentration for perfect adherence ((cP*™) in (7)).



Journal of Pharmacokinetics and Pharmacodynamics

In the Appendix, we derive the following exact formulas
for v and 7,

v = g(kat, ke1)f (kad, ked), (26)
7 = (kaT, keT)f (kad, Kedl), (27)
where f is defined in (18) and

glx,y) i= 21Oy, (28)

We again emphasize that, like p, the metrics v and y are
independent of the patient’s adherence before and after the
late dose. In the Appendix, we derive another metric which
yields more detailed information about the maximum
concentration in the case that the patient has perfect
adherence before and after the late dose.

Results

Consider a patient who is prescribed to take a dose of
medication at intervals of time 7. Suppose the patient
realizes after time d > 0 has elapsed since their last pre-
scribed dose was scheduled to be taken that they did not
take this last prescribed dose. Should the patient take this
late dose or skip it?

We now use the metrics derived in Methods to address
this question. In Sect. 3.1, we briefly summarize these
three metrics. In Sect. 3.2, we outline some general
implications of these metrics and illustrate these points for
four specific drugs. In Sect. 3.3, we apply the metrics to a
more detailed study of these four specific drugs. In
Sect. 3.4, we show how this analysis extends to population
pharmacokinetic models.

Metrics to quantify the pharmacokinetic effects
of a late dose

In Methods, we derived three metrics to quantify the

pharmacokinetic effects of taking versus skipping a late

dose of medication. The purpose of this section is to briefly

summarize these metrics and setup the analysis below.
The three metrics are

p = ﬁ/m (1) = c(1)] dt, (29)
v = ﬁr&eﬂax (Cd(t) - C(t)), (30)
= @rtne%x%/t ) (cd(s) - c(s)) ds, (31)

where (cPT) is the average drug concentration in a patient
with perfect adherence (see (7)). The drug concentration
time courses, ¢?(¢) and c(t), are identical, except that c¢?(t)

has a dose delayed by time d > 0 and c(¢) has that par-
ticular dose taken at the prescribed time (no assumptions
are made on the patient’s adherence before or after this
particular dose). In words, p measures how taking a late
dose causes the drug concentration time course to deviate
from the case that that particular dose was taken on time.
We note that if the patient were to skip a dose rather than
take it late, then we found that the corresponding metric is
P = 1 (see (15)-(16)). The metrics v and y measure how
taking a late dose causes the concentration and exposure to
increase compared to the case that that particular dose was
taken on time.

We obtained explicit mathematical formulas for p, v,
and y in Methods (see (19), (26), and (27)). These formulas
depend only on the absorption rate k,, the elimination rate
ke, the prescribed dosing interval 7, and the delay d. We
emphasize that the metrics are dimensionless since they are
normalized by (cP™). In particular, the metrics do not
depend on parameters such as the dose size, bioavailability
fraction, volume of distribution, etc. We further emphasize
that the metrics are independent of the patient’s adherence
before and after the late dose (see Sect. 2.3).

The effects of a late dose depend on absorption,
elimination, and dosing interval

In Fig. 2, we plot a heat map of the metric p in (29) using
the formula (19). Since p™P =1 for any choice of
parameters, the blue region in Fig. 2 is where p < p**? and
the red region is where p > p**P, That is, the blue region is
where the deviation caused by taking a late dose is less than
the deviation caused by skipping a dose.

2

10! 15
=100 1

107! 0.5
1072 0

1071 10° 10t 102
ked

Fig. 2 Heat map of the deviation p € (0,2) in (11) caused by taking a
dose delayed by time d > 0. In the blue region, p < p*P, meaning the
deviation caused by taking the late dose is less than the deviation
caused by skipping the late dose. In the red region, p > p™P. The
circles mark levothyroxine (L), atorvastatin (A), and lamotrigine in IR
(I) and XR (X) formulations for different values of the delay d. See
the text for details
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Figure 2 shows that p increases if k,, k., and/or d
increases. Indeed, we show in the Appendix that for any
value of k,, k., and d,

0 0
—p>0, —p>0,
Gaka Oke (32)
RF p>0.
In words, (32) means that faster absorption, faster elimi-
nation, and/or longer delays always increase the deviation
caused by taking a late dose. We note that p is independent
of the dosing interval t.

In Fig. 2, the letters correspond to different drugs, where
“L” marks levothyroxine, “A” marks atorvastatin, and “I”
and “X” mark lamotrigine in the IR and XR formulations,
respectively. For each drug, the three circles correspond to
delays equal to d = t/4,d = 1/2, and d = 1, where 7 is the
prescribed dosing interval for that particular drug (the
circles move up and to the right as the delay increases). The
values of k,, k., and t for these four drugs are given in
Table 1.

Figure 2 shows that the deviation p depends critically on
both the size of the delay, d, and the drug kinetics, k, and
ke. In particular, notice that all four drugs in Fig. 2 have
deviations p < 1 if d = 7/4. However, if d = 1, then p <
1 for levothyroxine, p > 1 for atorvastatin, and p <1 for
the IR and XR versions of lamotrigine. A detailed analysis
of these particular drugs and the concentration time courses
obtained by taking or skipping a late dose is given in
Sect. 3.3 below.

Therefore, recommendations for taking or skipping a
late dose should depend on the kinetics of the specific drug.
To illustrate, a simple “halfway” rule which is sometimes
recommended for late doses is to (a) take the late dose if it
is delayed by less than half of the prescribed dosing
interval and (b) skip the late dose if it is delayed by more
than half of the dosing interval [10]. To compare this rule
to our analysis, in Fig. 3 we show contour plots of p as a
function of k.t and d/t for different values of k,t. The
green dashed line in these plots is at d/t = 1/2, and thus
the “halfway” rule recommends taking (skipping) the

Table 1 Parameter values for some specific drugs. Parameter values
for each drug were taken from the reference indicated in the table

Drug k, (1/hr) ke (1/hr) 7 (hr) Ref.
Levothyroxine 2.2 0.003 24 [17, 18]
Atorvastatin 1 0.05 24 [19]
Lamotrigine IR 3 0.03 12 [20]
Lamotrigine XR 0.07 0.03 24 [20]
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delayed if the parameters lie below (above) this green
dashed line. However, there are blue regions above this
line, which indicates that the “halfway” rule suggests
skipping doses in scenarios when taking the dose would
result in a smaller deviation. Conversely, there are red
regions below this line, which indicates that the “halfway”
rule suggests taking doses in scenarios when skipping the
dose would result in a smaller deviation.

We do not make the blanket assertion that a late dose
should always be taken if p<1 and always skipped if
p > 1. Indeed, our metrics v and 7y measure the increase in
concentration and exposure caused by a taking a late dose,
and such increases could be harmful for some drugs and
acceptable for others. Of course, no single statistic
depending on only a few pharmacokinetic parameters
could serve as a definitive guide for skipping or taking late
doses for all medications. However, the simple test of
whether p <1 or p > 1 can serve as a general principle to
guide the development of appropriate ways to handle a late
dose. Furthermore, situations in which p < 1 strongly
suggest that a late dose should be taken, and conversely,
taking a late dose should be strongly cautioned against if
p > 1. In addition, comparing the values p for different
drugs can be used to determine which drug is more “for-
giving” of late doses (see Sect. 3.3 below) [21-28].

This analysis shows that, in many circumstances, a
patient can minimize their deviation by taking rather than
skipping a late dose. However, as mentioned above, one
concern about taking a late dose is that it could cause the
drug concentration or exposure to rise too high. The met-
rics v and y in (30)—(31) address this concern by measuring
the respective largest increase in concentration and expo-
sure caused by taking a late dose. In Fig. 4, we produce
contour plots of v and 7y as functions of k.7 and k,t for
d = 7 using (26)-(27). Since we set d = t in Fig. 4, these
plots correspond to the extreme case that a double dose is
taken. Nevertheless, these plots show that the maximum
increase in concentration or exposure is quite small for
many parameter values. Hence, these plots show when a
double dose could be taken without causing a significant
increase in drug concentration or exposure. Analogous to
Fig. 2, the circle markers in Fig. 4 correspond to the drugs
in Table 1 with d = 7.

Furthermore, the red dashed curve in Fig. 4 separates
the region in which p<1 (to the left of the red dashed
curve) from the region in which p > 1 (to the right of the
red dashed curve). We note that the red curve in which
p =1 corresponds to roughly v~ (0.3 and exactly to
y = 0.25. Hence, if the patient takes a dose delayed by
d = 7 (i.e. they take a double dose) only if p <1, then they
could at most have an increase in concentration of
approximately 0.3(cP®") and an increase in exposure over
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Fig. 3 Contour plots of p € p with k,7 =1 p with k,7 =3
(0,2) in (11). The horizontal 1 . 2 1 : 2
green dashed line marks a delay
d equal to one half of the dosing — 08 .
interval 7. See the text for E 15z 1.5
details (Color figure online) g 06 3
[ . [}
&2 1 = 1
= =
® 0.4 g
= =
< 02 05 = 0.5
0 0
1072 107t 10° 102
ket
p with k,7 =10
1 2 2
7 08 15 = 15
g 3
o 0.6 g
= 1 = 1
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Fig. 4 The left panel plots the vwithd=r
maximum relative increase in 1071 : ; 10 102y 1
drug concentration v in (24).
The right panel plots the 8 0.8
maximum relative increase in 10" 10"
drug exposure 7y in (25). In both 6 06
plots, the red dashed curve [ ol . 0 '
ski <& 10 < 1077
marks where p = p¥'P. The 4 04
letters L, A, I and X correspond '
to the drugs in Table 1. See the 10t 001 0.01 10-1} 0.01 -=------ 0.01
text for details 2 02
1072 L L L L 1 0 1 -2 I L L 1 0
1072 107 10° 10! 102 Y07 107 10 10! 102

keT

any time interval of length 7 of 0.25(cP™)7 (these increases
are compared to the case that the late dose was taken on
time).

Finally, we note that Fig. 4 indicates that v and 7y
increase if k, or k. increases. Indeed, we verify in the
Appendix the more general result that

0 0
6_xv>0’ a—xy>0, for any x € {k,, ke,d,1}.
That is, v and y are increasing functions of the absorption

rate k,, elimination rate k., delay d, and dosing interval t.

(33)

keT

Application to four common medications

We now apply the analysis above to some specific drugs.
We note that we have created a simple web-based app [16]
to allow pharmacometricians to use our metrics to study the
consequences of late doses for other drugs and dosing
scenarios. We consider levothyroxine, atorvastatin, and IR
and XR formulations of lamotrigine. The absorption rate
ka, elimination rate k., and dosing interval 7t for each of
these drugs is given in Table 1. In Fig. 5, we plot p (left
panel) and v (right panel) as functions of the delay d for
each of these four drugs. Plots of y are similar to those of v

@ Springer
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Fig. 5 Left: Plot of deviation 0.7 R
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and are omitted. We now discuss each of these drugs in p~136, v~0.69, y=~047. (35)

turn.

A daily dose of levothyroxine taken for the rest of a
patient’s life is the standard treatment for hypothyroidism,
and levothyroxine is one of the most commonly prescribed
drugs in the US [29] (common brand names are Synthroid,
Tirosint, Levoxyl, Unithroid, and Levo-T). Owing to its
very slow elimination rate of k. = 0.003 hr! [17], Fig. 5
shows that the deviation from a late dose, p, and the
maximum relative increase in drug concentration, v, both
rise very slowly as a function of the delay d. Indeed, even
when the delay equals the dosing interval, d = t = 24 hr,
we have

p~0.14, va 0005, 7= 0.005. (34)

The values in (34) suggest that late doses of levothy-
roxine should be taken rather than skipped, even if that
means taking a double dose. This is illustrated in the top
left panel of Fig. 6, where we show the drug concentration
time course for perfect adherence (thin black curve), a late
dose (thick blue curve), and a skipped dose (dashed red
curve). This suggestion (i) contradicts some existing rec-
ommendations to skip any dose of levothyroxine that is
delayed by more than 12 hours [30-33] and (ii) agrees with
recommendations of the American Thyroid Association
[34].

Atorvastatin (brand name Lipitor) is another one of the
most common prescription drugs in the US [35]. Atorvas-
tatin is typically administered once daily to treat hyper-
lipidemia [35]. Compared to levothyroxine, Fig. 5 shows
that p and v rise much faster for atorvastatin as the delay d
increases. Indeed, p surpasses p™P =1 for a delay d of
slightly more than half of the dosing interval T = 24 hr
(specifically, p = 1 if d = 14.5 hr). For a delay equal to the
dosing interval, d = T = 24 hr, we have
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The values in (35) accord with common recommendations
to avoid double doses of atorvastatin [36]. For a dose
delayed by half the dosing interval, d = 7/2 = 12 hr, we
have

p~086, v=~044, y=0.29. (36)

The values in (36) accord with the recommendations of
some that late doses of altorvastatin can be taken as long as
the delay is not more than 12 hours (half of the dosing
interval) [37]. Time courses for atorvastatin which compare
delaying a dose by 12 hours versus skipping a dose are
shown in the upper right panel of Fig. 6.

Finally, we consider the antiepileptic drug lamotrigine
in its IR and XR formulations. These formulations have
identical elimination rates, but the XR formulation has a
markedly slower absorption rate and is administered once
daily rather than twice daily like its IR counterpart (see
Table 1). Figure 5 shows that both formulations have fairly
small values of p and v for a delay d not more than the
dosing interval. Indeed, for the IR version with a delay of
d =1 = 12hr, we have

p~0.60, va0.10, 7~ 0.09. (37)

For the XR version with a delay of d = t = 24 hr, we have
that

p~0.73, va0.14, y=0.13. (38)

The values in (37)-(38) suggest that late doses of lamot-
rigine IR and XR should be taken, even if that means
taking a double dose. This accords with recommendations
of Chen et al. [20] but contradicts some existing recom-
mendations [36].
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Population pharmacokinetics

In the analysis above, for each drug we considered fixed
values of the pharmacokinetic parameters. Hence, the
results can be considered as concerning a single patient.
However, these results can be immediately extended to a
population of patients or “subjects” whose pharmacoki-
netic parameters vary according to any given probability
distribution. The purposes of this section are to (i) demon-
strate how to make this extension and (ii) investigate how
such “between subject variability” modifies our results
under typical pharmacological assumptions [38].

Consider a population of N patients indexed
i=1,2,...,N. Following pharmacological convention, we
assume that the absorption and elimination rates of each
individual patient in the population are drawn from a log-

normal distribution [38]. That is, if k;@ and k((.,i) denote the
absorption and elimination rates of the ith patient in the
pop

where k,, k. denote average absorption and elimination
rates, 0,, 0. are positive parameters describing the vari-
ability in parameters, and Zéi), Ze@ are (possibly dependent)
standard normal random variables.

If the ith patient delays a dose by time d, then using the

values kgi) and kéi) in the formulas for the metrics derived
above (p, p_, p,, v, 7) makes these statistics specific to this
(i)

ith patient. Simply computing these statistics for k,’ and

k((f) as i varies from 1 to N then reveals how these statistics
vary across the population.

In Fig. 7, we plot probability densities of p in (11) for
N = 10° independent realizations of the pharmacokinetic
parameters in (39), where the four panels correspond to
taking k, and k. according to the four drugs in Table 1. We
set d = 7 or d = t/2 depending on the drug. In each panel,
the three curves are for setting the coefficient of variation

of k;@ and kéi) equal to 10%, 20%, and 30% (the coefficient
of variation of a random variable is equal to the ratio of its
standard deviation to its mean). Denoting these coefficients
of variation by CV(k,) and CV(k.), the value of g, is
defined by

o2 = /In(1 + (CV(k)?)

~
~

CV(ka),
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Fig. 7 Distributions of p across
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Levothyroxine, d = 7 = 24 hr

Atorvastatin, d = 7/2 = 12hr

distributed pharmacokinetic | CV(ky) = CV(ke) =0 il
parameters. See the text for |k CV(k,) = CV(ke) = 10% r P
details B i | —CV(k) = CV(k,) = 20% z | H
Z | E | —CV(k)=CV(k)=30% 2 HE-
o) : pskip <5 | :
e : & il o
= : Ef :
< L] < L
Q . Q H
o . o+ .
— M — -
o . o
0 02 04 06 08 1 12 0 02 04 06 08 1 12
p P
Lamotrigine IR, d =7 =12hr Lamotrigine XR, d =7 = 24 hr
(5] . . [} H -
o] H . e} H .
z : : z : :
= : = :
< . < .
e . o] H
o . (] .
— - - — L[]
At : : At :
0 02 04 06 08 1 12 0 02 04 06 08 1 12
p P

and analogously for g.. We also take Z;gi) and Zé” to be
independent, though we found very similar results (not
shown) when taking Zz@ and Zéi) to be positively or neg-
atively correlated.

The red vertical dashed lines in Fig. 7 are for o, = o,
0 (i.e. when k) =%, and k) =%, for all i=1,...,N).
Naturally, the distribution of p spreads out as the vari-
ability in k, and k. increases. For the top left and bottom
two panels in Fig. 7, the values of p for the vast majority of
the population are below the value p™iP = 1 (marked by
the black vertical dashed line), even in the highly variable
case of CV(k.) = CV(k.) = 30%. However, for a delay
equal to half the dosing interval for atorvastatin in the
upper right panel, we see that a sizable fraction of the
population has p values larger than p™iP = 1.

Discussion

In this paper, we used mathematical analysis to study the
pharmacokinetic effects of taking a late dose of medica-
tion. We derived several mathematical formulas which
quantify the pharmacokinetic effects of taking a late dose.

@ Springer

This analysis can be applied to any medication that can be
described by a single compartment linear model, requiring
only that the absorption rate k,, elimination rate k., and
dosing interval 7 can be estimated. We applied our results
to four common medications and also considered the
effects of between subject variability in a population of
patients. We have also created a simple web-based app [16]
to allow pharmacometricians to use our metrics to study the
consequences of late doses for other drugs and dosing
scenarios.

One immediate implication of this work regards IR and
XR drug formulations (we use XR interchangeably with
slow release, sustained release, and controlled release
[39]). Recall that XR drugs are identical to IR drugs, except
that an XR formulation has a much slower absorption rate
k, and is sometimes prescribed with a larger dosing interval
7. The results in (32) and (33) show that the perturbations
caused by a late dose decrease if k, decreases and/or if ©
decreases. Therefore, if a patient switches from an IR drug
to its XR counterpart without increasing the dosing inter-
val, then the pharmacokinetic effects of dosing irregulari-
ties are necessarily blunted. Hence, this analysis suggests
that prescribing XR drugs dosed at the same frequencies as
IR drugs is a promising strategy to ameliorate some aspects
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of patient nonadherence. On the other hand, this analysis
shows that switching from IR to XR formulations and
increasing the dosing interval could ameliorate or could
exacerbate the effects of dosing irregularities, depending
on the changes in k, and 7, and also the value of k..

There are several additional salient pharmacological
implications of this work. First, this analysis highlights the
importance of pharmacokinetic rates for determining
appropriate remedial actions regarding a late dose. General
rules which only involve the delay d and the dosing interval
7, such as “never take a double dose” or the “halfway”
rule considered in Sect. 2.4, are not broadly applicable.
Similarly, this work underscores the need for precise, drug-
specific guidance regarding late doses. The appropriate
remedial action for one drug may or may not be appropriate
for another drug, and the appropriate action for a short
delay (say, d <t/4) may differ from that of a long delay
(say, d > 31/4). Furthermore, this work demonstrates how
the timing of doses can be quite unimportant for drugs with
slow pharmacokinetic rates. For example, due to the very
slow elimination rate of levothyroxine, perturbing the
timing of doses (for instance, by delaying a dose 24 hours)
causes only mild changes in the drug concentration time
course compared to perfect adherence.

The fact that slow absorption and/or elimination rates
dampen the pharmacokinetic effects of dosing irregularities
can be understood intuitively in terms of simple concepts in
dimensional analysis [40]. The timescales in the problem
are the timescale of absorption 1/k,, the timescale of
elimination 1/ke, the scheduled time between doses 7, and
the delay d. If the timescale of absorption and/or elimina-
tion is much longer than the scheduled time between doses,

max{1/ky, 1/ke} > 1, (40)

then any delay d that is not much larger than t can only
slightly affect the drug concentration time course.
Levothyroxine satisfies (40), since using the parameter
values in Table 1 yields

max{1/k,, 1/ke} ~ 2 weeks > t = 1day. (41)

In fact, the values in (41) explain why the American
Thyroid Association has advocated taking up to a week’s
worth of levothyroxine at one time [34]. In contrast, using
the parameter values for atorvastatin in Table 1 yields

max{1/k,, 1/k.} ~ 20 hours <t = 24 hours,

which is compatible with our results indicating that
delaying a dose of atorvastatin by 24 hours is likely
inappropriate.

Many previous studies have used pharmacokinetic
modeling to investigate the effects of a late dose and to test
different remedial strategies [12, 20, 41-50]. The recent

review paper [13] helpfully summarizes prior work in this
area. The vast majority of prior work has used numerical
simulations of computational models of specific examples
of drugs and delay times, rather than the general mathe-
matical analysis in the present work. A strength of
numerical simulations is that they can be used on certain
pharmacokinetic models which are too complicated for
mathematical analysis. For example, numerical simulations
are especially useful for analyzing nonlinear pharmacoki-
netic models, such as the study of valproic acid in [43]. In
contrast, a strength of mathematical analysis is that it can
reveal general principles which are broadly applicable
across a range of drugs, dosing regimens, and late dosing
scenarios.

Analysis of nonadherence is often complicated by the
various patterns of nonadherence observed in actual
patients. Indeed, missed doses, late doses, extra doses,
extended “drug holidays,” and other irregularities have
been observed in electronically compiled dosing histories
[51]. This has led to the development of various statistical
models of adherence for use in computational analyses
[26, 52]. However, our results are independent of the pat-
tern of nonadherence before and after a given late dose. In
particular, the values of our metrics p, v, and y are
unchanged if (a) the patient has perfect adherence before
and after the late dose and (b) the patient has any pattern of
nonadherence before and/or after the particular late dose in
question. This is because our metrics are defined in terms
of the difference in concentrations,

cd<t) - C(f),

where ¢?(t) is the drug concentration time course in the
case that the dose in question is taken time d > 0 after it
was scheduled to be taken and c(7) is the drug concentration
time course in the case that the dose in question is taken at
the scheduled time. The key point is that by considering the
concentration difference ¢?(t) — c(t), the patient’s adher-
ence before and after the dose in question “cancel out,”
and thus does not affect the concentration difference
¢?(t) — c(t) and thus does not affect the metrics p, v, and y
(see Sect. 2.3 for details).

Naturally, this theoretical study neglects certain phar-
macological details and incorporates various simplifying
assumptions. For one, we have used a one-compartment
linear pharmacokinetic model, but the pharmacokinetics of
some drugs are much better described by a more compli-
cated model that includes more compartments or nonlinear
kinetics. We have also ignored dosing restrictions, such as
taking medications with or without food. For instance, the
results in (32) and (33) show that the perturbations caused
by a late dose always increase if the delay d increases.
Hence, this mathematical result suggests that a late dose
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should be taken as soon as possible, rather than, for
instance, waiting to combine the dose with the next
scheduled dose. However, this recommendation may need
to be modified if, for example, the drug must be taken on
an empty stomach. Another limitation is that we have not
considered the possibility that the patient alters their future
doses in order to deal with the late dose. For example, the
patient could perhaps take a late dose and then delay the
next scheduled dose. We have also not considered the
possibility that rather than skipping or taking the late dose,
the patient instead takes a fraction of the late dose. One can
imagine that in some scenarios, taking half of a dose late
may be preferable to both skipping and taking a full dose
late.

A further limitation is that we have focused on phar-
macokinetics rather than pharmacodynamics. This is in line
with many previous theoretical investigations of nonad-
herence [12, 20, 41-47, 49, 50]. However, the importance
of both pharmacokinetics and pharmacodynamics was
recently emphasized in [53].

One of the simplest pharmacodynamic models is the so-
called direct effect model [54], which models the effect
E(?) of the drug at time ¢ by the following function of the
drug concentration c(f),

E(r) = Emaxc(?)

ECso +c(t) (42)

Here, E..x denotes the maximum possible effect of the
drug and ECs( denotes the drug concentration which elicits
one half of the maximum effect. The saturating nature of
the concentration-effect relation in (42) implies that fluc-
tuations in concentration cause the greatest effect fluctua-
tions when

C(t) < ECs. (43)

Mathematically, this stems from the fact that the second
derivative of (42) with respect to c is negative. Indeed, the
opposite scenario ¢(¢) > ECso implies E() = En.x and
only major lapses in adherence modify the drug effect.

Hence, adherence is most critical to treatment efficacy in
the case of (43). In this regime, the drug effect is far from
maximal and the nonlinear concentration-effect relation in
(42) is well-approximated by the linear concentration-ef-
fect relation,

EmaX
ECs

E(t) = c(t). (44)
Assuming (44), our pharmacokinetic results immediately
yield identical pharmacodynamic results. In particular, the
values of the metrics p, v, and y are unchanged if the
concentrations in their definitions in (29)-(31) are replaced
by the corresponding drug effects (i.e. the concentration for
an on-time dose c(¥) is replaced by the effect for an on-time
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dose E(t) :Ff%c(t), the concentration for a late dose
50

cl(t) is replaced by the effect for a late dose

E“(1)

fect adherence (cP™) is replaced by the average effect for

perfect adherence (EP')

= %cd(t), and the average concentration for per-
50

— _Einax rf -
= g (cP*™})). Summarizing, our

pharmacokinetic analysis is identical to a pharmacody-
namic analysis in the case of a linear concentration-effect
relation, which is a case in which adherence is especially
critical to treatment efficacy. Investigating how more
detailed pharmacodynamic considerations inform proper
handling of late doses is an important area for future
research.

Finally, as described in Sect. 2.4, the bare analysis in
this paper is not intended to definitively tell a patient or
clinician if a late dose of medication should be taken or
skipped. Rather, our analysis should be combined with
drug-specific information. For example, our analysis can
predict whether or not taking a late dose will cause the drug
concentration to rise above, say, 20% of the long-term
average drug concentration for perfect adherence. How-
ever, our analysis of course does not say whether or not this
20% increase is clinically acceptable, as this depends on
the particular drug. Nevertheless, the metrics derived in
this paper can be used in conjunction with drug-specific
information (such as the therapeutic range) to develop
drug-specific remedial strategies to handle late doses.

Appendix

In this Appendix, we collect details of the mathematical
analysis. We also present a fourth metric in Sect. 5.3 for
studying the effects of a late dose.

Derivation of mathematical formulas

To calculate p**P in (15), we note that
P (1) — c(1)] = co(2), (45)

where ¢y (¢) is defined in (5). Integrating (45) yields (16).
To calculate p_ and p, defined in (13)-(14), we first use
that (10) and (8) imply that p_ and p, can be written in

terms of (3(t d) in (8) as
1 oo
ey / ot,d)dt, p,. = (cPerf>/X0 o(t,d)dt
(40)

where so > d > 0 is such that 6(r,d) <0 for all ¢ € (0, s)
and 6(t,d) > 0 for all t > s¢. Solving for sy yields
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ehd — 1

! 1
”:ky—@“<
Integrating (46) using (8) and (47) yields (17), which then
yields (19) by (12).

To calculate v defined in (24), we first use (10) to obtain
that v can be written in terms of § as

47
ekcd_1)>d>0. (47)

1
v = W%%Rx o(t,d). (48)

A simple calculus exercise yields that (¢, d) is maximized
at t = 57, where

(49)

4 — 1k,
N ( )}

ko — ke B L{ekd — D)k,
Plugging (49) into (48) yields the formula for v in (26).

To calculate y in (25), we first use (10) to obtain that y
can be written in terms of § as

1 1 t+7
Y= W%%Rx;/t o(s,d) ds. (50)

Integrating (50) and performing a simple calculus exercise
yields that the maximum in (50) occurs at t = s,, where

1 (ekar_l)(ekad_l)
:ka—kelog((eker_1)(gked_1)) - T (51)

$2
Plugging (51) into (50) yields the formula for y in (27).
Monotonicity

We now prove (32) and (33). Applying the chain rule to
(19) yields

O i (kdkd)d, - p = 2f (kd, ked)d,
ok, Ok, ’ (52)

0
@p = 2fx(kad7 ked)ka + Zf;c(kad; ked)km

where f; and f, denote the partial derivatives of f in (18)
with respect to x and y, respectively. Specifically,

x

YE=DT ey = x) — (" = 1) log(e” — 1) + (¢" — 1) log(e" — 1))

and the formula for f(x,y) is obtained from (53) upon
swapping x and y. Though (53) is a complicated expres-
sion, it is easy to plot as a function of x > 0 and y > 0 to
obtain that

f;C(x7y) > Oa fy(X,y) > 0. (54)

Hence, (54) and the expressions in (52) yield (32).

The sign of the partial derivatives of y in (33) follow
immediately from (27), the chain rule, and (54).

To obtain the sign of the partial derivatives of v in (33),
we first note that the partial derivative of g in (28) with
respect to x is

2(x,y) = <}’(xlog(x) ‘é‘xy_—y))czlog()’) —x) ) (X)f}_7 )

and the formula for g,(x,y) is obtained from (55) upon
swapping x and y. Though (55) is a complicated expres-
sion, it is easy to plot as a function of x > 0 and y > 0 to
obtain that

gy(x,y) > 0. (56)

Hence, the sign of the partial derivatives of v in (33) follow
immediately from using (26), the chain rule, and (54) and
(56).

gx(x,y) >0,

Maximum concentration

In the main text of the paper, the metric v measures the
maximum amount that ¢?(¢) can rise above c(#). To obtain
the value for the maximum of ¢?(¢) rather than how the
c?(t) rises above c(f), we must make assumptions about the
patient’s adherence before and after the late dose. For
simplicity, we assume that the patient has perfect adher-
ence for a long time before and after the late dose. Letting
{cPe4(1)},cr denote this concentration time course, we
prove below that

perf,d — . ) perf /.
max ¢ (1) o fax (00t +1,d) + (1)), (57)

where ¢ is defined in (8) and

(x—y)?

)
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kaT

, 1 (efm — 1) (eld — 1)
* 1
J {kar — ket o8 ( (eker
k

1
— 1) (e =)

)]

1
f= 1 (
! ka - ke o8

ka(e T 1)[(ekar _ 1)<ekad _ 1) 4 e(j+l)kar]ej(ke—ka)r)
ke(ekur _ 1)[(ekcr _ 1)(ekcd _ 1) + e(jJrl)kct]

In (58), we use the floor function notation, in which |x|
denotes the largest integer less than or equal to x.

While the complicated formulas in (57)-(59) do not offer
much intuition, they can be easily plotted to investigate
how the maximum concentration depends on the various
parameters. In Fig. 8, we plot

_ max;cp Cperf,d(t) _ <cperf>

0= = , (60)

which is a dimensionless measure of how far c?4(¢) rises
above (cP), relative to (cP*T). The top left panel in Fig. 8
is for no delay (d = 0) to show how the concentration time
courses rises above the average (cP") for perfect adher-
ence. In this case of no delay, 0 has a simpler formula
which we denote by gpert

Fig. 8 Maximum relative

6 = 6P with d =0

ki

kok (kC(EkM))kafke
perf __ 1 _ fa el ka(eke—1)
N Sy (

(ke(ekafﬂ))kakﬁ
eke'E7
K@) L

ekt — 1

ekt — 1
(61)

The bottom right panel shows that even in the extreme case
of a double dose (d = 1), the drug concentration rises only
slightly above the average if the absorption and/or elimi-
nation rate is sufficiently slow compared to 1/7. Con-
versely, this plot shows that the drug concentration can rise
far above the average if both the absorption and elimination
rate is sufficiently fast compared to 1/7. Analogous to
Figs. 2 and 4, the letter markers in Fig. 8 are for the drugs
in Table 1.

To obtain the formula for max,cg c™4(¢) in (57), we
first note that

6 with d = 7/2

increase in concentration 0 in 102 & | 50 102 50
(60) for different values of the L g \ L g \ \ ‘
delay d € [0, 1]. Note that the 1 A 40 ] \A\ 40
top left panel is for d = 0 (see 100 % 2, L ® 0 2 2 2L @
(61)). The letters L, A, I and X \\ 30 \ &\\ 30
correspond to different drugs. S0 X 0.5 o 5 g \ X\ =
See the text for details = %, % =< 2 0 S
20 < { 20
\m " \(J_ 1-
-1 —1
10 %, 0 10 %, 0
— 0.01
1072 . 0 1072 . 0
102 107" 10° 100 107 102 107" 10 10" 107
ket ket
6 with d = 37/4 0 with d =7
10? 50 102 50
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Cperf.d(t) — cperf(t) 4 Cperf,d(t) _ Cperf(t) — Cperf(t) 4 5(1‘7 d),
(62)

where cP(7) is defined in (6). Now, &(t,d) is strictly
increasing for ¢ € (sg,s1) and strictly decreasing for
t € (s1,00). It therefore follows that s, € (so,s;) is such
that 5(1‘1,(1) > (3(2‘0,d) if h e (SQ,SQ + ‘C) and
to & (s2,52 + 7). Since P () is periodic with period 7, it
follows from (62) that the maximum of cP*4(¢) must occur
at some 7 € [s2,52 + 7]. Now, since j* in (58) satisfies
j* = |s2/7], it follows that the maximum of ¢P*4(z) must
occur at some t € [j*t, (" +2)7] since
[s2,82 4+ 1] C [f*1, (* + 2)7]. If t =jr+ s for some fixed
integer j € Z and some time s € [0,7], then it follows
immediately from (6) that

DF_k,
V ky — ke
[efkcs/(l o e*kcf)

cpert (t+s) =

—e ks /(1 = eik“‘r)].
(63)

Hence, (62) implies c”™4(jz +s) = C¥(s) where C{(s) is

defined to be

DF  k,

V ky — ke

[efkes/(l _ gfker) _

+0(jt + s5,d).

C;l(s) =

eik“s/(l _ e*kaf)} (64)

Differentiating (64) with respect to s shows that % Cl(s) =
0 if s =1 where #; is defined in (59). Hence, we have
obtained (57).

To obtain max;cr c”(¢), we merely differentiate (63)
with respect to s to find the maximum. Plugging the

resulting expression into the definition of 6 in (60) yields
the formula for 0" in (61).
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