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ABSTRACT

Yule-Simon processes are one of the most commonly occur-
ring processes in Nature. These processes generate power
laws using a preferential attachment mechanism which can
describe a variety of data distributions such as word frequen-
cies, scientific citations, journal publications, income, node
connections in complex networks, biological genera, and
bosons in quantum states. Much of the work in this area has
focused on modeling the properties of observable quantities
such as these. In this work we focus on learning the proper-
ties of unobservable Yule-Simon processes which control the
dynamics of sequential sensor measurements. This is moti-
vated by the fact that Yule-Simon processes have a varying
memory length which offer a more general framework for
data modeling than hidden Markov models. In this paper we
present an approximate online learning procedure based on
multiple hypothesis pruning which is shown to reach 0.5dB
of the posterior Cramer-Rao lower bound.

Index Terms— Bayesian filtering, regime switching,
time series, state estimation, power law.

1. INTRODUCTION

In this work we present a real-time learning procedure for se-
quentially arriving sensor measurements whose properties are
controlled by a hidden Yule-Simon process. Yule-Simon pro-
cesses have a varying memory length and therefore offer a
more general framework for data modeling than Markov pro-
cesses which have trouble modeling waiting times within a
given state [1]. In particular, Yule-Simon processes have a
preferential attachment mechanism [2], where the probability
of state transition is inversely proportional to the time within
the current state. A common example of this appears in fi-
nance where price volatility increases the probability of future
price volatility, a phenomenon known as volatility clustering
[3].

The Yule-Simon model was first proposed by Yule in 1925
[4] to explain the power law distribution observed in biologi-
cal genera. The same result was developed by Simon in 1955
using a different mathematical approach to explain word fre-
quency distributions in texts [5]. The Yule-Simon model has
since been applied and/or rediscovered in a variety of other
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areas to develop scientific models in network theory [6], as-
trophysics [7], and quantum mechanics [8]. The history of
the Yule-Simon model and several closely related processes,
such as branching processes [9] are surveyed exhaustively in
[10].

Prior studies more aligned with this work have focused
primarily on inference problems for observable Yule-Simon
processes. Garcia proposes a fixed point algorithm based on
maximum likelihood in [11], Roberts describes an expec-
tation maximization approach in [12], and Leisen provides
Markov Chain Monte Carlo (MCMC) sampling methods for
Bayesian inference in [13, 14]. However, the literature in
this area is surprisingly sparse. This work differs from these
studies by focusing on the inference problem for unobserv-
able Yule-Simon processes and extends prior work on batch
inference using MCMC techniques in [15].

2. PRELIMINARIES

The Yule-Simon probability distribution is based on the
Geometric-Exponential model given by,

w|α ∼ Exponential(α), (1)

k|w ∼ Geometric(e−w). (2)

The Yule-Simon probability distribution is then defined as the
marginal distribution of k,

p(k|α) =
∫ ∞
0

p(k|w)p(w|α)dw = αB(k, α+ 1), (3)

where B(x, y) is the beta function. Examples of the Yule-
Simon distribution with different values of α are shown in
Fig. 1 for both linear and logarithmic scales. The contrast be-
tween these plots is rather dramatic and helps to give a sense
of how “heavy” the tails are. As k becomes large, the Yule-
Simon distribution approaches

p(k|α) ∝ k−(α+1), (4)

where the α parameter can be interpreted as the power law
exponent which controls the tail behavior.

The Yule-Simon distribution can also be viewed as a
stochastic process where a sequence of i.i.d. values of k are
generated sequentially. Thus, rather than drawing each k
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Fig. 1. Yule-Simon distribution examples.

from the Geometric distribution conditioned on w, we can
use the definition of the Yule-Simon distribution directly. In
particular, we can view this as a special type of sequential
Polya urn scheme [16].

To see how this works, assume we have an urn with one
white ball and α black balls. The process proceeds by se-
quentially drawing balls from the urn until the first black ball
is drawn. Each time a white ball is drawn, it is replaced in
the urn and an additional white ball is added. The number
of draws required to observe the first black ball is a Yule-
Simon random variable. We can generate a sequence of i.i.d.
Yule-Simon random variables by simulating this process and
resetting the urn to its initial state each time a black ball is ob-
served. The state transition diagram of the Yule-Simon pro-
cess is shown in Fig. 2, where the state variable is the number
of white balls in the urn.

3. GENERATIVE MODEL

The sequential Yule-Simon process can be formulated as a
generative model where we do not observe the Yule-Simon
process directly. Instead, we observe another process which
is being controlled by the Yule-Simon process. Specifically,
the properties of the observable process change each time the
Yule-Simon process is reset to its initial state.

For this formulation, it is convenient to define a Yule-
Simon counting process which can be written as a Bernoulli
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Fig. 2. The Yule-Simon state transition diagram.

process with memory,

st ∼ Bernoulli(α(nt + α)−1), (5)
xt = xt−1 + st, (6)

nt = (nt−1 + 1)1−st , (7)

where the xt counts how many times the process has reset
itself (i.e., number of black balls drawn) and nt counts how
many white balls have been drawn in a row. The complete
generative model can be written as follows:

st ∼ Bernoulli(α(nt + α)−1) (8)
xt = xt−1 + st, (9)

nt = (nt−1 + 1)1−st , (10)
θk ∼ π(θ), (11)
zt ∼ p(z|θxt

). (12)

The observable process is based on a measurement distribu-
tion p(z|θ) where the parameter θ controls the properties of
the observations z. The process proceeds by first randomly
drawing an infinite set of parameters {θk}∞k=1 from the prior
π(θ). The state of the Yule-Simon counting process xt is then
updated on each discrete time sample t and used to index into
the infinite set of parameters to sample the measurement zt
from p(z|θxt

).

4. INFERENCE ALGORITHM

4.1. Full Bayesian Solution

The full Bayesian solution is based on a simple idea: compute
the posterior distribution over all possible state trajectories,
and then select the one with the highest probability:

x̂T = argmax
xT

p(xT |zT ), (13)

where xT and zT denote the set all values of xt and zt from 1
to T . However, the problem with this approach is the number
of possible state trajectories is 2T which becomes intractable
very quickly. Therefore, we turn to an approximate inference
strategy based on multiple hypothesis pruning.

4.2. Multiple Hypothesis Solution

The multiple hypothesis solution approximates the full solu-
tion by setting a maximum number of active branches m and
pruning branches with low probability using a predict/update
recursion. We begin by defining a set of vectors specific to a
computer based implementation: pt,qt,φt, and nt.

The pt vector denotes the set of m active path probabil-
ities and qt represents the set of 2m predicted path proba-
bilities (recall the number of possible state trajectories dou-
bles on each measurement). The symbol φt stands for the
hyper-parameters of the distributions of θ for each of the 2m
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predicted paths. Moving forward, we will assume that the
distribution of θ is conjugate to the distribution of z. In doing
so we can maintain the posterior distributions of θ for each of
the active and predicted paths as more data are received which
will be required to compute the state posterior marginals. Fi-
nally, the vector nt denotes the number of samples received
since the last partition reset (i.e., the number of white balls
drawn in a row from the Yule-Simon urn) for each of the 2m
predicted paths.

4.3. Initialization

We begin by first specifyingm, α, and φ0 and then initializing
pt, qt, φt, and nt to their respective sizes (m, 2m, 2m, and
2m respectively) with all zero values. Next we observe the
first measurement and set the initial state:

p1[1] = n1[1] = 1, φ1[1] = h(z1, φ0). (14)

The Yule-Simon process always starts in state 1 with proba-
bility 1 based on a single measurement, which is why p1[1] =
n1[1] = 1. The function h refers to the update equation for
the θ posterior hyper-parameters, which will depend on the
choice of measurement and prior distributions. We give an
example of this in the analysis section for the Gaussian pro-
cess model. Here we use φ0 as an initial guess.

4.4. Prediction

The prediction step computes the splitting probabilities for all
active branches:

qt[k] =
nt−1[k]

(nt−1[k] + α)
pt−1[k], (15)

qt[k +m] =
α

(nt−1[k] + α)
pt−1[k]. (16)

This can be done in a for loop from k = 1 to m.

4.5. Update

The update step computes the posterior probabilities for each
branch with the corresponding θ hyper parameters given the
most recent measurement. The θ hyper parameters are up-
dated as follows:

φt[I] = h(zt,φt−1[I]), (17)

where I = qt > 0 is a logical mask used to only update active
branches. The predicted path probabilities are then updated
with the marginal likelihoods in another for loop from k = 1
to m:

qt[k] = F (zt, φt[k])qt[k], (18)
qt[k +m] = F (zt, φt[k +m])qt[k +m], (19)

where

F (zt, φt[k]) =

∫
p(zt|θ)p(θ|φt[k])dθ, (20)

and then normalized upon completion, or

qt[j] =
qt[j]∑2m
k=1 qt[k]

(21)

for j = 1 to 2m. Finally, before proceeding to the hypothesis
pruning step, we update the state counters by

nt[I] = nt−1[I] + 1. (22)

4.6. Hypothesis Pruning

Hypothesis pruning proceeds by sorting qt in descending or-
der and reordering φt and nt accordingly:

qt = qt[J ], φt = φt[J ], nt = nt[J ], (23)

where J = argsort(qt). The posterior branch probabilities
are then updated with the first m values of qt according to

pt = qt[1 : m] (24)

and re-normalized. The discarded branches are then reinitial-
ized in preparation for the next iteration, that is,

φt[m+ 1 : 2m] = φ0, (25)
nt[m+ 1 : 2m] = 0. (26)

4.7. Parameter Estimation

After the predict and update steps, posterior estimates of θ
can be made based on the most likely trajectory. This consists
of taking the expected value of θ given φt[1].

5. ANALYSIS

5.1. Gaussian Process Case Study

As a case study, we consider a zero mean Gaussian process
model given by:

st ∼ Bernoulli(α(nt + α)−1), (27)
xt = xt−1 + st, (28)

nt = (nt−1 + 1)1−st , (29)
λk ∼ Gamma(λ|a, b), (30)

zt ∼ Normal(z|0, λ−1xt
). (31)

Here θ = λ, which is the precision (or inverse variance) of
the Normal distribution, the hyper parameters are given by
φ = [a, b], and the function h is simply:

h(zt, [a, b]) =

[
1 0
0 1

] [
a
b

]
+ 0.5

[
1
z2t

]
. (32)

To get an idea of what this process looks like, several sample
realizations are shown in Fig. 3 for the case of a = b = α =
1.
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Fig. 3. Examples of Yule-Simon Gaussian process realizations used for performance evaluation.

5.2. Evaluation Strategy

A scalar linear Gaussian state space model is given by the
following process and measurement equations:

µt = Fµt−1 + vt, vt ∼ Normal(0, Qt), (33)
yt = Hµt + wt, wt ∼ Normal(0, Rt). (34)

The posterior Cramer Rao Lower Bound (CRLB) [17] of the
mean square error for the state variable µt is given by the
variance update equation for the Kalman filtering algorithm
[18]. The implication of this being the Kalman filter is the
optimal estimation algorithm for the linear Gaussian system
when Qt and Rt are known for all t. To evaluate the multiple
hypothesis inference algorithm, we note that the Yule-Simon
Gaussian process can be interpreted as a trivial case of the
linear Gaussian model where F = H = 1 and Qt = µt = 0:

µt = µt−1, (35)
yt = µt + zt. (36)

Therefore, the strategy is to simulate sample realizations, run
the multiple hypothesis algorithm, and then use the inferred
values of Rt = λ−1xt

to run the Kalman filtering algorithm.
The results are then compared to the posterior CRLB which
is computed with the true values of Rt.

5.3. Simulation Results

For evaluation, we generated 1000 realizations of the Yule-
Simon Gaussian process with a duration of 2000 samples each

0 500 1000 1500 2000
Time Sample

10 -4

10 -3

10 -2

10 -1

100

101

M
ea

n 
S

qu
ar

e 
E

rr
or

log2m = 10

CRLB

0 500 1000 1500 2000
Time Sample

0

0.5

1

1.5

2

E
rr

or
 G

ai
n 

(d
B

)

Fig. 4. MSE (left) and error gain (right) for log2m = 10.

log2m Error Gain
2 1.19 dB
4 0.66 dB
6 0.56 dB
8 0.53 dB

10 0.50 dB

Table 1. Average error gain results.

with a = b = α = 1. We then ran the multiple hypothesis
inference algorithm with log2m = 2, 4, 6, 8, and 10 on each
realization and used the inferred values of λ to run the Kalman
filtering algorithm as described above. The squared error be-
tween each Kalman filter update and the true mean (in this
case 0) was computed for each time sample and then aver-
aged across all 1000 realizations. The hyperparameters a, b,
and α were assumed to be known. In addition, we computed
the posterior CRLB with the true values of λ for each time
sample and averaged the results across all 1000 realizations.

To analyze the results we defined the error gain as the
following metric:

G = 10 log10(MSE/CRLB). (37)

The average error gain as a function of log2m (t > 500) is
given in Table 1. Results for the best case of log2m = 10 are
given in Fig. 4.

5.4. Source Code

https://github.com/AsherHensley/ICASSP_
2022_Supplemental_Material

6. CONCLUSION AND FUTURE WORK

The simulation results suggest the multiple hypothesis solu-
tion converges to the CRLB in the limit as log2m approaches
∞. Future work will focus on showing this analytically, in-
vestigating sensitivity to mismatched hyperparameters, and
developing additional measurement models.
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