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Abstract: We study the ground-state properties of 6
Y Y He double hyperon for 6

⇤⇤He and 6
⌦⌦He nuclei in a three-body

model (Y +Y +↵). We solve two coupled Faddeev equations corresponding to three-body configurations (↵Y,Y ) and

(Y Y,↵) in configuration space with the hyperspherical harmonics expansion method by employing the most recent

hyperon-hyperon interactions obtained from lattice QCD simulations. Our numerical analysis for 6
⇤⇤He, using three

⇤⇤ lattice interaction models, leads to a ground state binding energy in the domain (�7.468,�7.804) MeV and the

separations hr⇤�⇤i and hr↵�⇤i in the domains (3.555,3.629) fm and (2.867,2.902) fm, correspondingly. The binding

energy of double-⌦ hypernucleus 6
⌦⌦He leads to �67.21 MeV and consequently to smaller separations hr⌦�⌦i=1.521

fm and hr↵�⌦i=1.293 fm. Besides the geometrical properties, we study the structure of ground-state wave functions

and show that the main contributions are from the s�wave channels. Our results are consistent with the existing

theoretical and experimental data.
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1 Introduction

While hyperons, baryons with a strangeness content,
play an important role in compact star mergers and core-
collapse events [1], there are limited experimental data
on doubly strange hypernuclear systems, and the sys-
tems containing higher strangeness are almost unknown.
While di↵erent phenomenological models have been de-
veloped for the nucleon-hyperon (NY ) and hyperon-
hyperon (Y Y ) interactions, recent developments in com-
putational technologies and theoretical progress in Lat-
tice QCD methods facilitated the derivation of ⌦N , ⌦⌦,
⇤⇤, and N⌅ interactions [2–4], close to the physical pion
masses m⇡ ' 146 MeV and Kaon masses mk ' 525 MeV,
by the HAL QCD Collaboration [5, 6] where their phys-
ical values are m⇡ ' 135 MeV and mk ' 497 MeV. Of
course, the N⌦ and di-⌦ interaction were suggested and
predicted before the lattice QCD simulation in [7, 8].

The potentials are obtained on a large space-time vol-
ume L

4 =(8.1 fm)4 with a lattice spacing a=0.0846 fm.
While there are sophisticated calculations to study 6

⇤⇤He
hypernucleus [9–18], in this work, we examine the HAL
QCD ⇤⇤ interactions, which are the most consistent po-
tential with the LHC ALICE data [19, 20], to study the
ground state properties of the 6

⇤⇤He hypernucleus. Simi-

larly, we explore the ⌦⌦↵ system with lattice QCD-based
interactions.

Because of following motivation we become curious
to explore possible implications of the attractive nature
of the ⌦N and ⌦⌦ interactions on few-body ⌦⌦↵ sys-
tems on the basis of first-principle lattice QCD-based
interactions. In few-body systems the presence of ad-
ditional nucleons may increase the binding. There are
straightforward examples in nature. Although there are
no dibaryon bound states with strangeness = �1 (⇤-
nucleon system), hypertriton 3

⇤H, consisting of a neu-
tron, a proton, and a ⇤-particle, is bound with a sepa-
ration energy of 0.41± 0.12 MeV [21, 22]. In the case
of strangeness = �2, in systems containing ⌅-particles,
an enhancement in the binding energy per baryon is
observed by increasing the number of nucleons [23–25].
The Extended-Soft-Core (ESC08c) model of Nijmegen
interaction [26] supports the bound states of ⌅N and
⌅NN (T = 1/2, J

⇡ = 3/2+) with energies �1.56 and
�17.2 MeV, respectively [23, 24, 27]. Recently Garcilazo
et al. have implemented ⌦N and ⌦⌦ interactions de-
rived by the HAL QCD Collaboration [2, 3, 28] to study
three-body systems containing more strangeness num-
ber, i.e. ⌦NN and ⌦⌦N with strangeness = �3 and
�6 [26]. As a result, they obtained ⌦d (0, 5/2+) bind-
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ing energy of about �20 MeV and two resonance states
⌦nn (1, 3/2+) and ⌦⌦N (1/2, 1/2+), with resonance
energies of 1 and 4.6 MeV, correspondingly. Besides the
⌦-deuteron bound state, ⌦⌦↵ bound state would be an
interesting system to benchmark the ⌦↵ and ⌦⌦ inter-
actions in a three-body system.

As the femtoscopic analysis of two-particle correla-
tion functions in heavy-ion collisions provides informa-
tion on hadron-hadron interactions at low energies[29,
30], investigating the 6

⌦⌦He system can also be interest-
ing for this purpose. The correlation function in multi-
strange systems such as ⇤⇤ [31, 32] and p⌦ [20, 33, 34]
have been measured recently in high-energy nuclear col-
lisions, and as the next step in the femtoscopic analy-
ses, the hadron-deuteron correlation functions would be
promising. Actually, experimental investigations of cor-
relations for pd, dd and even for light nuclei have been
already performed [35–37], and for K

�
d is in advance

[38, 39], and ⇤d correlation function is on the agenda
[40, 41]. A method to probe the momentum correla-
tion functions of ⌦⌦ is proposed in Ref. [42]. And very
recently, the production of ⌦NN and ⌦⌦N in ultra-
relativistic heavy-ion collisions using the Lattice QCD
⌦N , ⌦⌦ potentials studied in Ref. [43]. Since the di-
Omega appears with the binding energy about 1.6 MeV
in 1

S0 channel [2], there is a possibility that our results
could help the future study of ⌦⌦� ↵ (like d� ↵[44])
two-particle momentum correlation functions, and can
be measured in high energy heavy-ion collisions. We ex-
plore this hypothetical system for the first time, and to
the best of our knowledge, there is no other study on this
system.

In the present work, we study the ground state prop-
erties of 6

⇤⇤He and 6
⌦⌦He hypernuclei as a three-body

(↵+Y +Y ) bound state. To do so, we solve two coupled
Faddeev equations in configuration space with the hyper-
spherical harmonics expansion method to calculate the
ground state binding energy and the geometrical struc-
tures of these hypernuclei. In our study, we use the HAL
QCD ⇤⇤ and ⌦⌦ interactions, Isle-type Gaussian poten-
tial is employed for ↵⇤ interactions and a Woods-Saxon
type potential is used for ↵⌦ interaction.

In 2001, the KEK emulsion/scintillating-fiber hybrid
experiment [45], known as the Nagara event, reported
a uniquely identified double-⇤ hypernucleus 6

⇤⇤He with
binding energy of �7.25 ± 0.19 MeV. The re-analysis
of the Nagara event using the new ⌅ mass of 1321.71
MeV [46], revised the binding energy to �6.91±0.16 MeV
[47, 48], considerably shallower than the earlier mea-
sured value �10.9±0.8 MeV [49]. In the recent J-PARC
E07 experiment emulsion analysis, several hypernuclear
events have been observed. For example, the Be double
⇤ hypernucleus has been identified as an event called the
“MINO event” [50], and a new ⌅-nuclear deeply bound

state has been reported [51]. Furthermore, the high
precision spectra for light to heavy multi-strange hyper-
nuclei are planned in the future to be measured at JLab
and with the new high-intensity high-resolution line at
[51, 52].

Hiyama et al. performed a three-body calculation for
⇤+⇤+4He, with the Gaussian expansion method, using
properly tuned ⇤⇤ Nijmegen interactions to reproduce
the Nagara event data [9, 10]. Nemura et al. studied
⇤⇤ hypernuclei with the stochastic variational method
using e↵ective phenomenological ⇤N and ⇤⇤ potentials
[11, 12]. Moreover, Filikhin et al. have studied 6

⇤⇤He by
solving the di↵erential Faddeev equations (DFE) in con-
figuration space using di↵erent models of Nijmegen Y Y

interactions [13–16]. Recently double-strangeness hyper-
nuclei are studied in an e↵ective field theory approach
using the stochastic variational method at leading or-
der [17] and with the Jacobi no-core shell model at the
next-to-leading order [18]. The cluster structure of light
hypernuclei [53, 54] has been studied with di↵erent meth-
ods, including the generator coordinate method [55], the
orthogonality condition model [56], the Gaussian ex-
pansion method [57, 58], and Tohsaki-Horiuchi-Schuck-
Röpke wave function approach [59].

The Faddeev-Yakubovsky (FY) equations are exten-
sively used to study the structure of three- and four-body
bound states, with identical and non-identical particles,
in di↵erent sectors of physics [60–65]. FY equations
are solved with di↵erent techniques, like direct projec-
tion in momentum space [66], hyperspherical harmonics
(HH) [67], adiabatic hyperspherical [68], and variational
methods [69, 70]. The HH method has been implemented
to study the complex structure of 6He and 11Li halo nu-
clei in a three-body picture [67, 71], and in this work,
we apply this method to study the ground state proper-
ties of double hyperon nuclei in a three-body picture as
Y +Y +↵.

In Sec. 2, we briefly review the HH formalism for
Y + Y +↵ three-body bound state. In Sec. 3, we in-
troduce Y Y and ↵Y two-body potentials used to study
the structure of double-hyperon nuclei. Our numerical
results for the ground state binding energies and geo-
metrical properties of 6

⇤⇤He and 6
⌦⌦He hypernuclei are

presented and discussed in Sec. 4. A summary and out-
look is provided in Sec. 5.

2 Three-body Faddeev equations in hy-
perspherical coordinates

The total wave function  jµ of the three-body system
(Y Y ↵) for a given total angular momentum j by projec-
tion µ, composed of two Y particles and one ↵ particle,
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is given as a sum of three Faddeev components  jµ
i

 jµ =
3X

i=1

 
jµ
i (xi,yi) . (1)

Each component  jµ
i is expressed in terms of two Ja-

cobi coordinates (xi,yi), and can be obtained from the
solution of coupled Faddeev equations

(H0�E) jµ
i +Vjk

⇣
 

jµ
i + jµ

j + jµ
k

⌘
=0, (2)

where H0 is the free Hamiltonian, E is 3B binding en-
ergy, and Vjk is the two body interaction (both the
Coulomb and nuclear interactions) between the corre-
sponding pair. The indexes i, j,k run through (1,2,3) in
circular order. To solve the coupled Faddeev equations
(2) in configuration space, one needs two di↵erent sets
of Jacobi coordinates (x1,y1) and (x3,y3), shown in Fig.
1, defined by

xi =
p
Ajk rjk =

p
Ajk (rj�rk),

yi =
p
A(jk)i r(jk)i =

p
A(jk)i (ri�

Ajrj+Akrk
Aj+Ak

),(3)

where ri is the position vector of particle i, rjk is the rel-
ative distance between the pair particles (jk), and r(jk)i
is the distance between the spectator particle i and the
center of mass of pair (jk). The reduced masses are

Ajk =
AjAk

Aj+Ak
and A(jk)i =

(Aj+Ak)Ai

Ai+Aj+Ak
, where Ai = mi

m
,

m=1 a.m.u., and mi is the mass of particle i in a.m.u.! !"#$"%&'()*+,()$- !"#$%&"'()*%+,*+-"./0123.(3$ +--. "
456!7&8 &8/9: ;<=>!</; &:??7>@&

/
01(/

Fig. 1: Two sets of Jacobi coordinates (Y ↵,Y ) and
(Y Y,↵) for a description of the Y Y ↵ three-body system.

The projection of coupled Faddeev equations onto
the Jacobi coordinates (xi,yi) leads to two-dimensional
partial di↵erential equations that can be transformed
into two sets of coupled one-dimensional equations us-
ing the hyperspherical coordinates (⇢i,⌦i). The hyper-
radius is defined by ⇢2i = x

2
i + y

2
i , and the angular part

⌦i ⌘ {✓i, x̂i, ŷi} denotes a set of hyperspherical angles,
with hyperangle ✓i = arctan(xi/yi), and others angles
associated with the unit vectors x̂i and ŷi. The projec-
tion of Faddeev components  Y and  ↵, hereafter shown
as  Q, for a given total angular momentum j and its
projection µ onto the spherical coordinates is given by
[72, 73],

 
jµ
Q (⇢i,⌦i)= ⇢

�5/2
i

X

�

Rj
�(⇢i)Y

jµ
� (⌦i), (4)

Yjµ
� (⌦i) is written in terms of hyperspherical harmonics

⌥
lxi lyi
Kl (⌦i), which is eigenstates of the hypermomentum

harmonics operator K̂ as

Yjµ
� (⌦)=

⇢h
⌥

lxly
Kl (⌦)⌦�Sx

i

jab

⌦I

�

jµ

, (5)

⌥
lxly
Klml

(⌦)='
lxly
K (✓)

⇥
Ylx (x̂)⌦Yly (ŷ)

⇤
lml

, (6)

'
lxly
K (✓)=N

lxly
K (sin✓)lx (cos✓)ly P lx+1/2,ly+1/2

n (cos2✓) ,
(7)

where P
a,b
n is the Jacobi polynomial by order n =�

K� lx� ly

�
/2 and N

lxly
K is a normalizing coe�cient.

The � ⌘ {K,lx, ly, l,Sx, jab} represents a set of quan-
tum numbers of a specific channel coupled to j. K is
the hyperangular quantum number, lx and ly are the or-
bital angular momenta of the Jacobi coordinates x and
y, l = lx + ly is total orbital angular momentum, Sx is
the total spin of the pair particles associated with the
coordinate x, and jab = l+ Sx. I denotes the spin of
the third particle and the total angular momentum j is
j = jab+ I. In Eq. (5), �Sx is the spin wave function of
two-body subsystem, and I is the spin function of the
third particle. Applying this expansion in the Faddeev
equations, and performing the hyperangular integration,
one obtains a set of coupled di↵erential equations for the
wave functions Rj

� (⇢) of Eq. (4) as

2

4� ~2

2m

 
d
2

d⇢2
�
�
K+3/2

��
K+5/2

�

⇢2

!
�E

3

5Rj
� (⇢)

+
X

�0

V
jµ
��0 (⇢)Rj

�0 (⇢)= 0, (8)

The coupling potentials are the hyperangular in-
tegrations of the two-body interaction V

jµ
��0 (⇢i) =⌧

Yjµ
� (⌦i)

���V̂ij

���Yjµ
�0

�
⌦j

��
and the V̂ij are the two-body

potentials between particles i and j, which will be intro-
duced in Section 3.

In order to solve these coupled equations the hyperra-
dial wave functions Rj

�(⇢) are expanded in a finite basis
set of imax hyperradial excitations as

Rj
�(⇢)=

imaxX

i=0

C
j
i�Ri�(⇢), (9)

where the coe�cients C
j
i� can be obtained by diagonal-

izing the three-body Hamiltonian for i=0, ..., imax basis
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functions. The hyperradial functions Ri�(⇢) can be writ-
ten in terms of Laguerre polynomials.

By having three-body wave function  jµ in the hy-
perspherical coordinates, one can study the geometri-
cal structure of Y Y ↵ systems by calculating the matter
radius rmat =

p
hr2i, and the correlation densities, the

probability to have definite distances between the parti-
cles in the three-body system

P (rjk, r(jk)i)=
r
2
jkr

2
(jk)i

2j+1

X

µ

Z
dx̂idŷi

�� jµ(xi,yi)
��2 . (10)

3 Two-body potentials

In this section, we present the two-body interactions
that we use in our calculations for the bound state of
⇤⇤↵ and ⌦⌦↵ three-body systems.

3.1 ⇤⇤↵ System

For ⇤⇤ interaction, we use HAL QCD potentials in
1
S0 channel with isospin T =0 [4]

V⇤⇤(r)=
2X

i=1

↵i exp(�r
2
/�

2
i ) (11)

+�2

�
1�exp(�r

2
/⇢

2
2)
�2
✓
exp(�m⇡r)

r

◆2

.

The e↵ective ⇤⇤ interaction is handled by the
coupled-channel formalism [74] at three imaginary-time
distances of t/a= 11,12,13, where the potential param-
eters are fitted to �

2
/d.o.f = 1.30(40), 0.76(18), and

0.74(30), respectively. The t-dependence is insignificant
within the statistical errors. The fitted potential param-
eters to Eq. (11) are given in Table 1, where the pion
mass is m⇡ =146 MeV.

The low-energy data derived with this interaction in-
dicate no bound or resonant di-hyperon exists around
the ⇤⇤ threshold in (2+1)-flavor QCD at nearly physi-
cal quark masses, and predict a scattering length a

(⇤⇤)
0 =

�0.81 ± 0.23+0.00
�0.13 fm and an e↵ective range r

(⇤⇤)
e↵ =

5.47± 0.78+0.09
�0.55 fm. The central values and the statis-

tical errors are extracted from phase shifts at t/a = 12,
and the systematic errors are estimated from the central
values at t/a = 11 and 13[4]. The systematic errors are
estimated by the di↵erence between the results obtained
by the fit range, and the statistical errors are estimated
by the jackknife sampling of the lattice QCD configura-
tions. The source of systematic error is the contamina-
tion from inelastic states.

Table 1: The fitted parameters of V⇤⇤(r) potential, shown in Eq. (11), taken from Ref. [4]. The statistical errors in
fitted parameters are not taken into account in our calculations.

t/a ↵1 (MeV) �1 (fm) ↵2 (MeV) �2 (fm) �2 (MeV · fm2) ⇢2 (fm)

11 1466.4 0.160 407.1 0.366 �170.3 0.918

12 1486.7 0.156 418.2 0.367 �160.0 0.929

13 1338.0 0.143 560.7 0.322 �176.2 1.033

For the ⇤↵ interaction we use the Isle-type Gaussian
potential [14]

V⇤↵(r)= 450.4exp(�(r/1.25)2)�404.9exp(�(r/1.41)2).
(12)

This potential reproduces the experimental data for the
lifetime and binding energy of the 5

⇤He hypernucleus
with ⌧ =3.02+0.10

�0.09⇥10�10 s and EB =�3.1 MeV [75].

3.2 ⌦⌦↵ System

The HAL QCD ⌦⌦ potential in 1
S0 channel is fitted

to an analytical function as [2]

V⌦⌦(r)=
3X

j=1

cje
�(r/dj)

2

, (13)

where the potential parameters, without considering the
statistical errors, are (c1, c2, c3) = (914, 305, �112)
MeV and (d1, d2, d3) = (0.143, 0.305, 0.949) fm. Us-
ing a single-folding potential method, an ⌦↵ interaction
has been recently extracted from a separable HAL QCD

⌦N potential. This potential supports an ⌦↵ bound
state with the binding energy of about �22 MeV and
is parameterized in the form of the Woods-Saxon type
potential [76]

V⌦↵(r)=�61

 
1+exp

✓
r�1.7

0.47

◆!�1

. (14)

All two-body interactions for Y Y (⇤⇤ and ⌦⌦) and
also Y ↵ (⇤↵ and ⌦↵) subsystems are shown in Fig. 2.
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Fig. 2: Left panel: the Y Y potentials for three models
of HAL QCD ⇤⇤ potential of Eq. (11) with the param-
eters given in Table 1 at the imaginary-time distances
t/a = 11,12,13 (shown as model i, ii, iii); and the HAL
QCD ⌦⌦ potential of Eq. (13). Right panel: the Y ↵ po-
tentials for the Isle-type ⇤↵ potential given in Eq. (12);
and the Woods-Saxon type ⌦↵ potential given in Eq.
(14).

In our calculations we consider the Coulomb inter-
action in the ⌦⌦↵ system using a hard-sphere model as
[77]

VCoul (r)=Z
2
e
2⇥

8
<

:

1
rCoul

⇣
3
2
� r2

2r2Coul

⌘
, r rCoul

1
r
, r > rCoul

(15)

with a Coulomb radius rCoul =1.47 fm.

4 Results and discussion

To calculate the ground state binding energy and
the geometrical properties of ⇤⇤↵ and ⌦⌦↵, we solve
the coupled Faddeev equations (2) by implementing
the FaCE computational toolkit [78] using the two-
body interactions discussed in Sec. 3. To dis-
cretize the continuous hyperradius coordinate ⇢i, we use
the Gauss–Laguerre quadrature with 100 grid points,
and the hyperangular integrations are performed using

Gauss-Jacobi quadrature with 60 grid points. The hy-
perradius cuto↵s are selected high enough to achieve
the cuto↵-independent binding energies, converging with
four significant figures. In our calculations, the mass of
particles are mN=939 MeV, m⇤=1127.42 MeV, m⌦ =
1672.45, and m↵=3727.38 MeV. Table 2 shows the con-
vergence of three-body ground state binding energy E3

and nuclear matter radius rmat as a function of maxi-
mum values of hyperangular quantum number Kmax and
hyperradial excitations imax. The spin and isospin of
⇤⇤↵ and ⌦⌦↵ systems are equal to zero. The number
of strange quark content for ⇤⇤↵ and ⌦⌦↵ is equal to 2
and 6, respectively. The Coulomb interaction of Eq. (15)
is considered in ⌦⌦↵ systems leading to an increase of
about 6 MeV in 3B binding energy.

Since ⌦↵ interaction is completely attractive, faster
convergence is reached in the calculation of ground state
binding energy and nuclear matter radius of ⌦⌦↵ to
�67.21 MeV and 1.326 fm. For ⇤⇤↵ system a conver-
gence can be reached at larger values of Kmax and imax.
For ⇤⇤↵, the ground state binding energy and nuclear
matter radius converge to �7.468 MeV and 1.955 fm.
The listed results for ⇤⇤↵ are obtained for ⇤⇤ inter-
action with imaginary-time distance t/a = 12, whereas
for t/a = 11 and t/a = 13, the calculated ground state
binding energies are �7.605 MeV and �7.804 MeV, cor-
respondingly.

Table 2: The convergence of three-body ground state binding energy E3 and nuclear matter radius rmat calculated for
⇤⇤↵ and ⌦⌦↵ systems as a function of maximum hyperradial excitations imax (with Kmax = 80) and hyperangular
quantum number Kmax (with imax =25).
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⇤⇤↵ ⌦⌦↵

imax E3 (MeV) rmat (fm) E3 (MeV) rmat (fm)

5 �7.442 1.930 �67.19 1.327

10 �7.467 1.954 �67.21 1.326

15 �7.468 1.955 �67.21 1.326

20 �7.468 1.955 �67.21 1.326

25 �7.468 1.955 �67.21 1.326

Kmax E3 (MeV) rmat (fm) E3 (MeV) rmat (fm)

5 �6.897 1.953 �66.58 1.327

10 �7.321 1.948 �67.04 1.326

15 �7.404 1.951 �67.14 1.326

20 �7.446 1.953 �67.19 1.326

25 �7.456 1.954 �67.20 1.326

30 �7.463 1.955 �67.21 1.326

35 �7.465 1.955 �67.21 1.326

40 �7.466 1.955 �67.21 1.326

45 �7.467 1.955 �67.21 1.326

50 �7.467 1.955 �67.21 1.326

55 �7.467 1.955 �67.21 1.326

60 �7.468 1.955 �67.21 1.326

65 �7.468 1.955 �67.21 1.326

70 �7.468 1.955 �67.21 1.326

75 �7.468 1.955 �67.21 1.326

80 �7.468 1.955 �67.21 1.326

In Table 3, beside the converged 3B binding energies
for ⇤⇤↵ and ⌦⌦↵ systems, we list the binding energy of
two-body Y Y and Y ↵ subsystems. Furthermore, the 3B
binding energies in which the 2B interactions between
identical hyperons are set to zero, i.e., VY Y =0, are also
listed. Our numerical results show that the relative per-
centage di↵erence (B3(VY Y = 0)�2B2(VY ↵))/B3(VY Y =
0)⇥100 varies between 4 to 6%. As one can see in Ta-
ble 3, the ⌦⌦↵ has a deeper bound state by having two
bound subsystems. Our numerical analysis shows that
the uncertainties in the HAL QCD ⌦⌦ (⇤⇤) potential
parameters impact the 6

⌦⌦He ( 6
⇤⇤He) ground state bind-

ing energy for about 4 (0.1) MeV and the rmat for less
than 0.01 (0.007) fm. While the employed ⌦↵ potential
in our calculations is derived based on the dominant 5

S2

channel of N⌦ interactions [3, 79], the contribution of
the 3

S1 channel can be reasonably ignored. While the
implemented two-body interactions in our calculations
are restricted to only one angular momentum channel,

we should point out that to the best of our knowledge, no
lattice two-body interactions developed to higher chan-
nels. This restriction in the interactions should explain
the deep binding of the ⌦ particles to the ↵ as possi-
ble contributions of repulsive channels are not taken into
account, even though their contributions appear to be
small [79].

In Table 4 we compare our numerical results with
other theoretical results such as gaussian expansion
method (GEM), stochastic variational method (SVM),
di↵erential Faddeev equations (DFE), quark-cluster-
model (QCM) by di↵erent Y Y interaction models like
Nijmegen model D (ND), simulating Nijmegen hard-core
model F (NFs), modified simulating Nijmegen hard-core
model D (mNDs), simulating Nijmegen hard-core model
D (NDs), spin-flavor SU6 quark-model (fss2), Nijmegen
soft-core model (NSC97e), G-matrix interaction based
on the bare ND interaction (ND(G)), Nijmegen extended
soft-Core (ESC00) and finally experimental data (Exp).

Table 3: Three-body ground state binding energies E3 in MeV for Y Y ↵ systems. The last column shows our results
for 3B binding energies with zero interaction in Y Y subsystems. Two-body binding energies E2 for Y Y and Y ↵

subsystems are also shown in MeV.
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Y Y ↵ System E2 (Y Y ) E2 (Y ↵) E3 E3 (VY Y =0)

⇤⇤↵ (t/a=12) Not Bound �3.146 �7.468 �6.463

⌦⌦↵ �1.408 �22.01 �67.21 �48.96

Table 4: A comparison between our results for three-
body ground state binding energy E3 of ⇤⇤↵ system and
other theoretical and experimental data.

Ref. Y Y Model E3 (MeV)

present HAL QCD (t/a=11) �7.605

present HAL QCD (t/a=12) �7.468

present HAL QCD (t/a=13) �7.804

[10] (GEM) ND �7.25

[12] (SVM) NFs �7.52

[12] (SVM) mNDs �7.53

[12] (SVM) NDs �7.93

[80] (DFE) fss2 �7.653

[14] (DFE) NSC97e �6.82

[14] (DFE) ND �9.10

[14] (DFE) ND(G) �10.1

[14] (DFE) ESC00 �10.7

[81] (QCM) ND �9.7

[81] (QCM) ND(G) �9.4

[82] (GEM) ND �9.34

[83](G-matrix) ND(G) �9.23

[47, 48] (Exp.) – �6.91±0.16

[45] (Exp.) – �7.25±0.19

[49] (Exp.) – �10.9±0.8

By having 3B wave functions of Y Y ↵ systems in
terms of the HH basis, we calculate the geometrical quan-
tities, i.e., the r.m.s. distances between the particles
and the r.m.s. matter radius, presented in Table 5. In
our calculations, we consider the ↵ matter radius of 1.47
fm. For comparison, we also present the DFE results
of Ref. [14]. Since the studied 3B systems consist of
two identical hyperons and one alpha particle, interact-
ing by scalar potentials, three particles form a ground
state where the most probable positions of the particles
have the shape of an isosceles triangle. As it is shown in
Table 5, our numerical results for the expectation values
of the Jacobi coordinates in (Y Y,↵) and (Y ↵,Y ) config-
urations satisfy the following Pythagorean theorem with
high accuracy

�= hr(Y Y )↵i2+
1

4
hrY Y i2�hrY ↵i2 =0. (16)

Table 5: The expectation values of Jacobi coordinates in ⇤⇤↵ and ⌦⌦↵ systems. hrY Y i is the separation between
identical hyperons, hrY ↵i is the separation between Y ↵ pairs, hr(Y Y )↵i is the separation between the center of mass
of Y Y pair and the spectator ↵ particle. h⇢2i1/2 is r.m.s. matter radius of the three-body system containing only
point particles, and rmat is the r.m.s. matter radius. The numbers in parentheses are from the DFE calculations by
using the Nijmegen model D (ND) Y Y interaction [14]. � shows the accuracy of satisfaction of the Pythagorean
theorem in Eq. (16).

(Y Y ↵) System hrY Y i (fm) hrY ↵i (fm) hr(Y Y )↵i (fm) |�| (fm2) h⇢2i1/2 (fm) rmat (fm)

⇤⇤↵ (t/a=11) 3.598 (3.36) 2.902 (2.70) 2.276 (2.11) 0.005 (0.015) 3.943 1.944

⇤⇤↵ (t/a=12) 3.629 2.926 2.295 0.002 3.976 1.955

⇤⇤↵ (t/a=13) 3.555 2.867 2.248 0.007 3.895 1.929

⌦⌦↵ 1.521 1.293 1.047 0.003 2.037 1.326

Table 6: The contributions of di↵erent partial wave chan-
nels W to the total norm of 3B ground state wave func-
tions of ⇤⇤↵ and ⌦⌦↵ systems. For each system, the
upper panel shows the contributions in (Y ↵�Y ) Jacobi
coordinates, and the lower panel shows the contributions
in (Y Y �↵) Jacobi coordinates. Channels with a contri-
bution greater than 0.001% are listed.
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K lxi
lyi l Sxi

jab W

(⇤↵�⇤) Jacobi
0 0 0 0 0.0 0.0 0.980

2 0 0 0 0.0 0.0 0.004

4 2 2 0 0.0 0.0 0.012

(⇤⇤�↵) Jacobi
0 0 0 0 0.5 0.5 0.980

2 1 1 0 0.5 0.5 0.004

4 1 1 0 0.5 0.5 0.001

4 0 0 0 0.5 0.5 0.010

(⌦↵�⌦) Jacobi
0 0 0 0 0.0 0.0 0.993

2 0 0 0 0.0 0.0 0.005

(⌦⌦�↵) Jacobi
0 0 0 0 1.5 1.5 0.993

2 1 1 0 1.5 1.5 0.005

0 4 8 12
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Fig. 3: The hyperradial wave function ⇢5/2R�(⇢) for the
first three dominant channels, � ⌘ {0,0,0,0,0,0} (green
dash-dotted line), � ⌘ {2,0,0,0,0,0} (blue dashed line),
and � ⌘ {4,0,0,0,0,0} (red solid line), of the ground
state wave functions of ⇤⇤↵ and ⌦⌦↵ systems.

Fig. 4: The 3B ground state probability density of ⇤⇤↵
and ⌦⌦↵ systems as a function of hrY Y i, the distance
between Y Y pair, and r(Y Y )↵, the distance between ↵

particle and the center of mass of the Y Y pair.

In Table 6, we present the contribution of dif-
ferent channels, indicated by the quantum numbers
{K,lxi

, lyi , l,Sxi
, jab}, to the total norm of 3B ground

state wave functions of ⇤⇤↵ and ⌦⌦↵ systems in both
(Y ↵�Y ) and (Y Y �↵) Jacobi coordinates. As one can
see, the main contributions in 3B wave functions come
from the s�wave channels, and the higher partial wave
channels substantially have an insignificant contribution.

In Fig. 3, we show the first three dominant hy-
perradial components ⇢

5/2
R�(⇢) for the ground state

wave functions of ⇤⇤↵ and ⌦⌦↵ systems, obtained by
imax = 25. As the binding energy of the 3B system is
increasing from the left to the right panel, the system is
becoming more compact in the configuration space. In
Fig. 4, we illustrate the probability density of 3B ground
states of ⇤⇤↵ and ⌦⌦↵ systems as a function of hrY Y i,
the distance between the two identical Y hyperons, and
r(Y Y )↵, the distance between ↵ particle and the center of
mass of two Y particles. As we can see for both systems,
the distributions along the hrY Y i direction are broader
than the r(Y Y )↵ direction,

confirming that the distance between identical Y hy-
perons is greater than the distance of the spectator ↵
particle and the center of mass of the Y Y pair.

5 Summary and Outlook

In this paper, we study the ground-state properties
of multi-strangeness hypernuclei 6

⇤⇤He and 6
⌦⌦He in a hy-

perharmonic three-body model of (Y Y ↵). To this aim,
we solve two coupled Faddeev equations in configura-
tion space with the hyperspherical harmonics expansion
method using the most modern two-body interactions,
including the recent lattice QCD potentials, to calcu-
late the ground state binding energies and geometrical
properties. In our numerical analysis, we check the con-
vergence of 3B ground state binding energies and nu-
clear matter radii as a function of the maximum value
of hyperradial excitations imax and hyperangular quan-
tum number Kmax. Our numerical results show that
the ground state binding energy of 6

⇤⇤He using three
models of ⇤⇤ lattice interactions changes in the domain
(�7.468, �7.804) MeV while 6

⌦⌦He has deep binding en-
ergy of �67.21 MeV. We should indicate that imple-
mented ⌦↵ potential in our calculations is restricted to
only one angular momentum channel, and the contribu-
tion of repulsive channels is not considered. So this could
explain the deep binding of the ⌦↵ and consequently the

6
⌦⌦He system.

We study the geometrical properties of the aforemen-
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tioned 6He double hyperon by calculating the expecta-
tion values of the Jacobi coordinates and the r.m.s. mat-
ter radius and correlation density. Our numerical results
confirm that the studied 3B systems, composed of two
identical hyperons and one alpha particle, form isosceles
triangles where the most probable positions of the par-
ticles perfectly satisfy the Pythagorean theorem. Our
numerical analysis on the structure of 3B ground state
wave functions shows that the main contributions of over
99% are from the s�wave channels. Our numerical re-
sults for 6

⇤⇤He are in agreement with other theoretical
studies.

Considering the contributions of the coupled chan-
nels in ⇤⇤�⌅N (⌦N�⇤⌅�⌃⌅) interactions is a com-
plementary task to be implemented in the FaCE toolkit
to include the coupled components in the wave function
of 6

⇤⇤He ( 6
⌦⌦He). As it is shown in Refs. [81, 84], the

contribution of the coupled channels leads to an increase
of about 0.1⇠ 0.4 MeV in the ⇤⇤↵ binding energy while
using an e↵ective single-channel interaction leads to a
reduction of about 0.3 MeV [14]. This reduction is due
to the tight ↵ cluster binding, which inhibits the e↵ec-
tiveness of the ⇤⇤�⌅N coupling, and we assume that
this should also be valid for the ⌦⌦↵ system. Moreover,
while the contribution of transition potentials to the in-
elastic channels [85], i.e., ⌦N �⇤⌅�⌃⌅ are expected
to be small [79], they have not yet been derived from
the lattice QCD calculations and can be considered in a
future study when they are developed.
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37 K. Wosińska et al. Correlations of neutral and charged parti-
cles in 40 Ar-58 Ni reaction at 77 MeV/u. Eur. Phys. J. A, 32
(1):55–59, 2007. URL https://link.springer.com/article/
10.1140/epja/i2006-10279-1.

38 W. Rzesa et al. Femtoscopy of kaon-proton and kaon-deuteron
from ALICE. https://twiki.cern.ch/twiki/pub/Main/ Wut-
Students/raportWR.pdf, 2019. URL https://indico.cern.
ch/event/819610/contributions/3425246/attachments/
1845730/3028148/hirg1605.pdf.
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