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ABSTRACT: The Butler—Volmer (BV) equation links the current
flux crossing an electrochemical interface to the electric potential
drop across it with the assumption of Arrhenius kinetics and the
Boltzmann factor. Applying the semilogarithmic Tafel analysis in
which the logarithm of current is plotted vs the overpotential, one
expects straight lines from which the fundamental reaction rate of
the kinetic process can be computed. However, some Li-ion battery
data, which is the focus here, show nonlinear convex profiles that
cannot be adequately fitted with the standard BV model. We propose
instead two deformed BV models for the analysis of such types of
behaviors constructed from the superposition of cells exhibiting only
local equilibrium and thus giving rise to the power-law g-exponential
and k-exponential functions. Non-Boltzmann distributions have been
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successfully employed for the modeling of a wide spectrum of physical systems in nonequilibrium situations, but not yet for batteries.

We verify the validity of the deformed BV models on experimental

B INTRODUCTION

Chemical-to-electrical or electrical-to-chemical energy conver-
sion in electrochemical energy devices and systems such as
batteries and fuel cells or in electrodeposition and electrolysis
require the presence of two phases in contact with each other.
Generally there is an electron-conducting phase but ionic
insulator on one hand and an ionic conductor but electric
insulator on the other hand. The phases can be solid, liquid, or
gas. At the interphase boundary or interface, which should be
thought of as a physical and not a mathematical plane, chemical
reactions accompanied by charge carrier transfers from one
phase to another take place. Understanding and properly
modeling the measurements carried out on such systems is
important for many applications including renewable energy
technologies with energy storage, electric vehicles, smart grids,
and corrosion prevention.' In particular, it is important and
useful to describe the system-level relationship between the
electrical current flowing through an electrode, or charge
dynamics with time, and the potential difference between the
electrode itself and a point in the bulk electrolyte. Several
approaches have been proposed to model kinetic rate behavior.
The macroscopic phenomenological Butler—Volmer (BV)
model is the de facto mathematical model used for describing
the simultaneous anodic reaction (oxidation) and cathodic
reaction (reduction) on the same electrode surface.” Micro-
scopic theories, including Marcus, Marcus—Hush (MH),
Marcus—Hush—Chidsey (MHC), and their extensions, are
also powerful in describing electron transfer kinetics in both
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data obtained from LiFePO, and Li—O, batteries.

directions but also with physically tractable quantities.*™>
However, the main limitation for the widespread use of
Marcus-type theories is probably that the rate at metal
electrodes/electrolyte has no simple closed-form expression as
it is defined in terms of indefinite integral of a Gaussian function
(classical Marcus rate for the transfer of an electron) over
Fermi—Dirac distribution of electrons.® Different computational
algorithms have been proposed with different levels of accuracy
and computational costs.” There are also a few simple and other
more cumbersome approximating formulas that have been
derived and verified.>>*~"°

Our focus in this study is on the BV formalism and ways to
extend its application to nonequilibrium steady-state systems

~13 as we shall show below.

using the concepts of superstatistics'’
First, let us recall that the BV equation can be derived from
different approaches including the kinetic law of mass action,'*
nonequilibrium thermodynamics,” principle of thermal activa-
tion process,” and also first-principles,'® but here we present the
derivation from transition state theory.'” From Arrhenius

kinetics, it is observed that the natural logarithm of the reaction
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rate k and the reciprocal of the absolute temperature T are
linearly related according to

dln(k) _ E,

o(1/T) R (1)

where R is the universal gas constant and E, is an experimental/
phenomenological activation energy,"* which can be thought of
as the energy necessary to overcome a certain energy barrier for
particles to transition from the well of reactants to the well of
products, and thus for the reaction to proceed. Arrhenius’
suggestion that there is a transition state intermediate between
reactants and products was central to the development of
transition state theory.'® Let us consider the case of a single-step
charge transfer redox reaction of the form:

Ox + ne” = Red )

The forward or oxidation (Ox + ne” — Red) and backward or
reduction (Red = Ox + ne™) charge transfer reactions can be
described by the charge transfer reaction rates k¢ and k. Their
associate forward and backward current densities (per unit
surface) crossing the interface are taken to be proportional to the
surface concentrations Cp, and Cy.4 and can be written as

anfCOX

©)
(4)

where F is the Faraday constant. Thus, the net current flowing
through the electrode is given by the difference:'*

i =i; — iy, = nF(k;Co, — k,,Cgeq)

ig

ib = anbCRed

()

Now by incorporating the expressions for the potential and
temperature-dependence of the forward and backward charge
transfer reaction rates, which are assumed to follow Arrhenius
profiles (with E, taken as a linear function of the potential ) as

ko= kO exp[_aked'//)
£ RT/F (6)
Ao

ky = ky exp| —= J

b XP(RT/F )
Equation S turns out to be

. —ORed¥V AoV

= nF{k2C —Red® | _ x0C

! ”{f OxeXp(RT/F bLRed €XP RT/F

(8)

This equation is known as the kinetic BV equation for the
current—potential relationship with pure charge transfer over-
potential. Here, the dimensionless parameters ag.q and o,
(taking values between 0 and 1 with @rg.q + @o, = 1) denote the
transfer or symmetry factors associated with the oxidation and
reduction reactions, respectively, or qualitatively a measure of
the "position” of the transition state,'” RT/F = V, is the thermal
voltage, and y is the potential of the electrode through which
current flows, which is different from the equilibrium potential
Yy established when no current passes through the electrode.
The difference 7 = y — y, is known as the overpotential.
Equation 8 can also be expressed in terms of the current
exchange density i, (i.e., when i¢ = i, = i, which takes place at the
equilibrium potential y,) such that

i= io{exp( _aRedrl] _ exp( Aol ]}

RT/F

RT/F (9)
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Note that with the use of the dimensionless overpotential scaled
to the thermal voltage, n* = 17/Vy, the dimensionless current i*
= i/ig, and @peq = @, €q 9 can be rewritten as’

i* = exp[—an*] — exp[(1 — a)n*] (10)

For the particular case of a = 0.5, which is commonly used for
battery modeling, the expression for i* simplifies to

i* = 2 sinh(—5*/2) (11)

The Tafel technique of plotting In(i*) versus * gives a straight
line of slope —a for * < 0 and (1 — a) for 77* > 0 from which the
charge transfer rates can be estimated."*’™**

The validity of the BV model is based on the assumption that
the concentration of the reacting species are independent of the
current density and the potential, and consequently only pure
charge transfer overpotential is involved.'” It is also commonly
assumed that the transfer coefficient is independent or a weak
function of the applied potential and can be considered as
constant.'” The surface of the electrode is considered flat and
stress-free.'> Furthermore, within the BV framework an
exponential Boltzmann factor for the reaction rate dependence
on the temperature is considered. The Boltzmann factor, which
is essentially a comparison between the energy of the molecules
and the energy of the barrier when the system is in
thermodynamic equilibrium and characterized by a certain
temperature, assumes that particles are totally independent and
non-interacting and obey the laws of ideal gases.”” It also
assumes that elementary volumes of the system are equiprob-
able. These assumptions are the basis for Boltzmann-Gibbs
(BG) statistical mechanics in which the exponential and
Gaussian distributions are those that maximize the BG entropy
by virtue of the Central Limit Theorem (CLT) and ensure the
equilibrium state.

However, there are several instances where the semi-
logarithmic Tafel analysis of In(i*) versus 7* does not result
in linear profiles, but rather curved plots, which is the motivation
for this work."*"****™>° Focusing on battery materials and
devices, curved Tafel plots have been reported, for instance, by
Munakata et al.”® in experiments conducted on single (porous)
particles of LiFePO,, which is a widely used cathode material for
large-scale batteries. The fitting with the BV model with the
symmetry factor a = 0.5 was reasonable enough for a small
portion of the voltage—current data only.”® Viswanathan et al.*®
also reported highly nonlinear Tafel plots for the discharge of a
nonaqueous Li—air (or Li—0O,) battery. The charging data were
less unusual by showing slight nonlinearities in the profiles.
Generally speaking, reaction systems we are interested in are
actually away from equilibrium and transition from one
metastable state to a neighboring state of metastable equilibrium
in response to external stimuli.”’ Thus, the assumption of
thermodynamic equilibrium is not always appropriate, and the
statistics may not necessarily follow BG statistics.'®*”*” In fact,
for many complex systems at off-equilibrium conditions it is
often observed that power-law distributions are most common,
as is the case, for example, with the dissolution reaction of
magnesium (or aluminum) in aqueous cupric chloride
solution.”® Magnesium (or aluminum) dissolves to form
MgCl, (or AlCly), and copper precipitates at local reaction
rates that can be affected by concentration fluctuations, pitting
dissolution and the formation of the Cu layer, which tends to
inhibit the reaction itself. Furthermore, the breakdown of the Cu
layer because of liberation of hydrogen gas, convective
turbulence near the reactive surface, and erosion of underlying

https://doi.org/10.1021/acs.jpcc.1c09620
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metal increases the local reaction rate at the freshly exposed
surfaces. As a result, one observes fluctuations in current and
voltage found to follow power-law behavior.”® Other systems
that exhibit power-law statistics are, for example, the power grid
frequency fluctuations,” epidemiology and spreadin$ dynamics
of diseases,*® and atomic packing in metallic glasses,3 to name a
few.

The purpose of this contribution is to formulate and study
generalized BV models by incorporating the power-law (i) q;
exponential function based on Tsallis nonextensive statistics’ >
and (ii) the x-exponential based on Kaniadakis statistics®**®
instead of the traditional exponential Boltzmann factor based on
BG statistics. Such approaches have been proven successful for
describing many complex nonequilibrium systems at the
stationary state that behave like the collective superposition of
many subsystems, themselves following the BG statistics. These
systems usually involve long-range interactions, non-Markovian
memory effects, and anomalous diffusion, for instance.*® The
single Boltzmann factor employed in the BV kinetic model is
recovered as a limiting case. We note that the generalization of
reaction rate coefficients using the g-exponential structure
instead of the standard exponential function has been proposed
by Niven,*’ Bagci,38 and Yin et al, > among others,"”” ™" but
to the best of our knowledge, this is the first study on the
extension of the BV model using such a framework for analyzing
battery data. Furthermore, we are not aware of any studies using
the k-exponential function to do so.

The rest of the manuscript is organized as follows. We provide
a brief summary of some important deformed functions (mostly
deformed exponential functions) and their properties, and
formulate the corresponding modified BV expressions. Then, we
analyze experimental lithium battery results compiled from the
literature for which we compare fittings using standard and g-
and k-deformed BV equations.

B THEORY

Motivation. We consider the simplified case model of an
electrode/electrolyte system with a single-step charge transfer
redox reaction as described by reaction 2. The global
equilibrium of the reacting system, which is driven away from
equilibrium, is assumed to be influenced by fluctuations and
stochastic events. Such fluctuations can originate, for instance,
from the effects of the nonuniformity of the electrode/
electrolyte interfaces, porous and fractal structures, long-range
interactions, irreversibilities and parasitic reactions, particle
trapping and partial charge transfer, as well as local variations in
thermodynamic parameters. When modeling such stochastic
dynamics, the question that comes first is how to approximate
the noise distribution? This can be modeled on one hand using
non-Gaussian distributions when fluctuations are known to
display heavy tails and skewness such as in the form of Levy-
stable distributions,”® or on the other hand, the underlying
stochastic process can be interpreted as a superposition of
multiple Gaussian distributions, leading to the framework of
Beck and Cohen superstatistics,"' ~'*” which is also able to
explain heavy tails and skewness. We consider here the latter
with the assumption that the macroscopic electrode/electrolyte
system is made up of many subsystems that are temporarily in
local equilibrium, but each has different statistics (e.g., standard
deviation). This can also be viewed from the angle in which the
process finds an equilibrium with an approximately Gaussian
distribution determined by the current noise, and then after a
lapse of time large enough compared with the intrinsic time scale
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of the system, the system finds another equilibrium also
following an approximately Gaussian distribution but with
different statistics.”’ In other words, we are considering the
situation in which the total distribution of the transfer reaction
rate can be viewed as several aggregated Gaussian distributions,
making it dependent not only on the potential and absolute
temperature as is the case in eqs 6 and 7, but also on the extent
and statistics of fluctuations superposed on the equilibrium. The
fluctuating variable could be for instance the inverse temper-
ature § = 1/T (or in energy units # = 1/(k,T)) or any other
intensive quantity.

In Figure 1, we show a schematic illustration of how one can
imagine the inhomogeneous electrode system to look like when
discretized into a number of spatial cells with different values of
B. Each cell is large enough so that it can be represented by a
constant value of f, and thus a single Boltzmann factor is valid. In
this regard, from Beck and Cohen,"**“a generalized Boltzmann
factor for the whole system can be written as the integral over all
possible fluctuating inverse temperatures 3 of Boltzmann factors

exp(—pE) as

B(E) = fowf(ﬂ)eXp(—ﬂE) dp (12)

where f(f) represents a normalized probability distribution
function (PDF, with /*, () df = 1) and provides a weight for
the distributions exp(—fE)."> B(E) in eq 12 is essentially the
Laplace transform of the function f(f),** and f() is here to
reshape the Boltzmann distribution into a generalized
Boltzmann distribution by providing a statistics for the BG
theory statistics, and thus superstatistics of Beck and Cohen. In
other words, eq 12 can be used to describe a macroscopic
nonequilibrium system in a stationary state (such as the case of
electrified electrode/electrolyte system), but locally, the system
shall remain infinitely close to equilibrium for which the theory
of equilibrium statistical mechanics holds.*’

g-Deformed BV Model. Considering the generalized
Boltzmann factor given by eq 12, we now derive an extension
to the traditional Boltzmann exponential behavior depending on
the choice of the density function f(f). Particularly, it is known
that the sum of n independent exponentially distributed
variables of PDF equal to a exp(—af8) where a > 0 has the
discrete PDF:**

n
a

ﬁﬁ = exp(—aff)

£, =

Figure 1. Illustration of a discretized electrode system into a number of
spatial cells with different values of inverse temperatures /3 (derived in
this example from a Gamma distribution with unit scale and shape
parameter 3). On the left side, we show a low magnification of the
electrode, whereas on the right side, a zoomed area is depicted.

https://doi.org/10.1021/acs.jpcc.1c09620
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By replacing 7 in eq 13 by any real positive number, we get the
general (continuous) Gamma distribution.*” For the case of n =
1, one retrieves the exponential distribution, but a number of
other distributions can be obtained as special cases, such as the
x-square, Weibull, hydrograph, Rayleigh, or the Maxwell
molecular velocity distributions.”” This makes the Gamma
distribution versatile enough to describe different types of
statistics.”* We mention that a further generalization of the
Gamma distribution (associated with a Bessel function for
instance) can be written as™

5, =

a’ 5
I'(y)exp(x/a) (14)
where >0,y >0,a>0,and oF, (; 7; fx) = X5°(Bx)"/ (1)ik!, (1)
is the Pochhammer symbol ((y),=y(y + 1)--(y +k— 1),y #0,

(y)o = 1). It is clear that eq 14 with x = 0 reduces to the
distribution:

£8) =

" exp(—ap),E( v; Bx)

1
—— (/b))
br(c) (15)
in which we used Beck and Cohen’s notations'* where ¢ and b
are positive parameters. The integration over dff in eq 12 with
f(B) given by eq 15 leads unambiguously to the closed-form
power-law function: "’

exp(—p/b)

B(E) = (1 + bEY* (16)

With the substitutions —1/(1 — q) =cand , = [§/f,(8) df =bc
being the average of the fluctuating f3, the right-hand side of eq
16 is rewritten as'***

(1= (1 = DAEIO = exp ()

(17)
where exp,(y) denotes the g-exponential function parametrized
with the real number g. Because ¢ > 0 in the Gamma distribution
function (eq 15), g has to be >1 in eq 17, but it can be rewritten
with the change of variable ¢ = 2 — g’ in order to consider the

cases where g’ < 1.°%°' Thus, a generalized Boltzmann factor
associated with the Gamma PDF (eq 15) is defined as'*****

B,(E) = exp (~4,)

(1+ bE)™

(18)

The parameter g can be thought of as a characteristic of the
system’s statistics and is defined here by the ratio of standard
variation and the mean of the distribution fq(ﬂ),B noting that
when g = 1 there are no superposed fluctuations, and as it should
be, the traditional exponential factor is recovered. Alternatively,
the ordinary statistics are recovered in the limit f, () — 5( —
Bo) in eq 12.

We note some of the properties of the g-exponential

function: 3234652

e forg<1,exp,(y)=0fory<—1/(1—¢q)and equ(y) =[1
+ (1= qy]" fory > ~1/(1 - g)

o forg=1, equ(y) = exp(y) for Vy

e forgq>1, equ(y) =[1+(1- q)y]l/(l_q) fory<1/(q—1)
Figure 2 shows plots of the deformed equ(—y)’ as a function of y
for different values of the parameter q.°*°” The usual
exponential function is also shown for reference. The logarithm
of exp,(—y) provided in the same figure shows a linear
relationship with y only as ¢ — 1; otherwise, for q¢ < 1 the
curve is convex, and for q > 1 it is concave.*”*>** In addition to
these algebraic properties, the function exp,(—y) satisfies the
anomalous power-law rate equation dy/dx = —y? with g # 17>

3032

log[exp , (-y)]

Figure 2. Plots of exp(—y) and equ(—y) (eq 17) for different values of
the parameter g as a function of y.

Another important remark on the g-exponential and the g-
Gaussian distributions is that they are the functions associated
with some systems showing quasi-stationary states and are the

maximizing distributions for the nonadditive Tsallis entropy
32,32,56,57

given by
g )

S
q

(19)

where k is a positive constant, g # 1 (also known as the entropic

index), and the quantities p; = p(E;) represent the probabilities

for the occurrence of the ith microstate and satisfy ). p = 1.

141
The function

(1-9) _ 1
I — (>0
l—q (20)

denotes the g-logarithm, the inverse of the g-exponential, i.e.,
In[exp, ()] = exp,[In,(y)] = y.>” In this case, the underlying
mathematical mechanism is now the generalized CLT.>® It is
clear that in the limiting case of ¢ — 1, Inq(y) — In(y), and one
recovers the standard BG entro})y Sy =—ky 2. p:In(p;) where k=
ky is the Boltzmann constant.’

Finally, the generalized g-deformed BV model we propose,
and incorporating the power-law distribution given by the g-
exponential function for describing the charge transfer reaction
rate dependence on the overpotential and temperature, is given
by

id=11-(1- q)(_arl*)]l/(l—q)
-1-01-90- a)n*]l/(l—q)

lnq(y) =

(21)

=exp [—an*] = exp [(1 — a)n*] (22)

We assumed that the parameter g is the same for both half-
reactions. Again, recovering the ordinary expression of BV (eq
10) is obtained at the limit ¢ — 1. Furthermore, using the
expansion of the g-exponential function for sufficiently small
values of ¥, i.e.,

exp, (=) = ep(=y)[1 + 3(a = 1y’ = g - 1

.

13
one can also recover the usual BV model.

https://doi.org/10.1021/acs.jpcc.1c09620
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kx-Deformed BV Model. In the same way used for the
formulation of the g-deformed BV model, we propose the
following k-deformed BV model:

iy, = exp[—an*] — exp[(1 — a)n*] (23)

where the k-deformed exponential function of y is given by™*

1/k 1
exp (y) = (,/1 +x%y* + Ky) = exp[;sinh_l(zcy)]

(24)

with 0 < x < 1. The function exp (y) emerges from a continuous

linear combination of an infinity of standard exponentials as™

e () = [~ | L | exp(—pm) ap

0 Kﬂ Kﬂo (25)
where J,(y) is the Bessel function of the first kind. This is
equivalent to how the Gamma distribution is the weight function
in the generalized Boltzmann factor given by eq 12 that led to the
g-exponential function. Some of the basic properties of exp. (y)

30
are

. e};p,mo(y) = exp(y) and exp,(y — 0) = exp(y) (exp,(0) =
1
o exp(y) = exp_(y)
o fory — o0, exp(—y) is ~ (2ky and exp,(y) = +o0
Its associated inverse function is the x-logarithm:

)—l/x

—K

In(y) = %sinh(x In(y)) = %

giving In(exp(y)) = exp(In.(y)) = y. Kaniadakis’ entropy
associated with the k-statistics is obtained by replacing the
logarithm in the expression for the standard BG entropy by the
k-logarithm >*?%3%¢

Plots of the standard exp(—y) vs exp (—y) for different values

(26)

of the parameter « are provided in Figure 3.

M RESULTS AND DISCUSSION

In Figure 4, we show the Tafel plots of electrochemical
measurements carried out on a single carbon-coated LiFePO,
particle as-is (i.e., in noncomposite structure without interfer-
ence from the effect of binders and/or other additive conducting

Figure 3. Plots of exp(—y) and exp. (—y) (eq 24) for different values of x
as a function of y.
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materials) from Munakata et al.”> and as adjusted by Bai and
Bazant' (avoiding concentration polarization effects). Values of
current in this single particle technique are usually very small,
which makes it acceptable to neglect the ohmic iR drop. Low-
magnification SEM of the target LiFePO, particle (see Figure 2
in ref 25) shows that it is spherical in shape, of about 24 ym in
diameter, and consists of agglomerates of many 100 to 200-nm-
sized primary particles with interparticle porosity and some
defects. The specific capacity of the particle was estimated to be
1.5 nA b, and the discharge current used was 750 nA, which took
just 4 s for full discharge, i.e,, 900 C.”* From the figure, In(i) vs
the (normalized) voltage drop is clearly curved and not as
expected for traditional Tafel plots. This convex deviation from
linearity was attributed by Munakata et al.>* to the distributions
of electric potential and current density, and also to the
distribution of Li* concentration within the porous single
particle electrode during charging and discharging, which is
usually not observed when nonporous flat electrodes are
considered. This nonlinear behavior becomes more significant
when high rates are applied, which can be further explained as
follows. Let us consider the discharge scheme consisting of the
steps (i) Li* diffusion from the bulk electrolyte to the particle
surface, followed by (ii) charge transfer at the particle/
electrolyte interface, and then (iii) slow solid-phase diffusion
of Li* or polaron diffusion from the surface to the center of the
particle coupled with phase transition from FePO, to LiFe-
PO,.” Step (iii) is the determining step if there is a large spatial
gradient of Li* concentration within the particle from surface to
center which happens at high discharge current rates, whereas
step (ii) may become the controlling step when low rates are
applied. In other words, the system can be viewed as a
combination of a spectrum of superposed kinetic processes of
different origins on the electrode/electrolyte system. If the
constituting subsystems are assumed to be temporarily in local
equilibrium and follow Boltzmann exponential profiles with
different statistics, the system can then be well described with
the modified BV models as discussed above.

() Exp LiFePO,
. | e BV (i,=1.65nA)

a-BV (i,=21.3nA, q=0.71)
s 15-BV (i =16.7nA, 1=0.47)

-15 -10 -5

*

Y

Figure 4. Tafel plots of experimental data by Munakata et al."*°

conducted on single carbon-coated LiFePO, secondary particle
(porous with 24 pm diameter); the potential drop is originally
measured with respect to Li/Li* but is shown here in dimensionless
form as done by Bai and Bazant." We also show data fitting with the
standard BV model (eq 10), the g-deformed BV model (eq 22), and the
k-deformed BV model (eq 23) with the symmetry factor a set to 0.5.

https://doi.org/10.1021/acs.jpcc.1c09620
J. Phys. Chem. C 2022, 126, 3029-3036
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In the same Figure 4, we show the fitting curves performed
with eq 22 (g-BV model), eq 23 (k-BV model), and eq 10
(standard BV model) with a@ = 0.5. We used the MATLAB
R2019b Isqcurvefit function for nonlinear curve-fitting in the
least-squares sense with the same fitting constraints and
tolerances for all models for fair comparison. When considering
the traditional BV model, the data are poorly fitted with a
straight line in the semilogarithmic plane of In(i) vs #*, noting
that a better fit can be obtained if a smaller portion of the data is
selected closer to * = 0 (not shown here; see ref 1). The
goodness-of-fit using the normalized root-mean-square error
(NRMSE) as the cost function is found to be 0.48, knowing that
a value of 1 indicates a perfect fit to the data and —oo a bad one.
The BV model cannot be justified here given the inhomoge-
neous morphological structure of the electrode as described in
ref 25. From the fitting with the g-exponential and k-exponential
modified BV models, however, it is clear that the curved
behavior of the data is closely captured. Convex or concave
curvatures can be realized depending on the value of the
parameter q for the g-deformed model as shown in Figure 2.
Here, we found the best fit to be with g = 0.71 < 1.00, which
phenomenologically indicates the extent of the system’s
departure from BG statistics and the associated assumption of
thermodynamic equilibrium. Given thatin eq 15,c¢=1/(q — 1)
and b= f,(q — 1) (B, being the average of the fluctuating ) with
g < 1, one can construct the gamma PDF that describes the
distribution of fluctuating # in the system. For the x-deformed
BV model we obtained k = 0.47, which can also be interpreted in
a same way, i.e., the extent of the deviation or dispersion of the
data from the usual exponential-based BV model that we can
retrieve when x — 0. The values of the prefactor current
exchange densities are iy = 21.3 nA and iy = 16.7 nA for the g- and
k-deformed models, respectively. The NRMSE fitness values are
0.93 and 0.96, respectively, which are very close to 1. The fittings
by both models are very close to each other given the power-law
asymptotic behavior of both deformed functions at the relatively
large values of the input overpotential. Thus, we are not in the
measure to promote or discriminate any of the two without
enough information about the local statistics of the electrode/
electrolyte interface.

We note also that the fits are in close agreement with Bai and
Bazant’s results’ based on the MHC microscopic theory. The
MHC rate is, however, expressed in terms of indefinite integrals
of a Gaussian distribution (which includes in its argument an
extra term representing a reorganization energy) with Fermi—
Dirac statistics of electron energies distributed around the
electrode potential. Nonetheless, simple approximations, such as
those of Zeng et al.’ using asymptotic analysis methods, have
shown very good agreement with the experiments” which should
make the MHC framework more attractive from a computa-
tional point-of-view. On the other hand, both of the deformed
BV models are also the results of superimposed statistics
obtained from integral transforms of superimposed density on
another density, provide exact closed-form expressions, and are
simple and easy to implement with comparable accuracy and
fitting capabilities. They can be viewed as macroscopic models
providing a posteriori (statistical) information about the
inhomogeneity of the system at the level of subcells, which is
encoded in the PDF f(3).

The curvature of the Tafel plots for other materials and
systems may be different, which can still be captured by the free
parameters q or k depending on the model as shown in Figure S.
The figure depicts the experimental Tafel plots extracted from
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Figure 5. Tafel plots of experimental data by Viswanathan et al.*® for
the discharge of the Li—O, battery. We also show data fitting with the

standard BV model (eq 9), g-deformed BV model (eq 22), and x-BV
model (eq 23) with the symmetry factor a = 0.5.

2.2

Viswanathan et al.*® for the discharge of Li—air (or Li—0O,)
battery. The net reaction is 2Li + O, = Li,O, with the battery
discharge described by the forward direction. The nonlinear
curve has been attributed to a complex crystal growth and
dissolution mechanism of Li,O, which can occur on different
crystal facets or terminations on the electrode or on different
sites (terrace, step or kink), and could involve different
combinations of nucleation and diffusion® or other mecha-
nisms.”>' From the figure, it is clear that the standard BV model
also fails to adequately fit these types of data, whereas based on
different statistics than BG theory, the g- and x-deformed BV
models nicely followed the trend of the curve with (q = 0.67, iy =
0.16 A cm™2) and (k = 0.42, iy = 0.08 A cm™), respectively.
The goodness-of-fit between the models and the experimental
data are —0.11, 0.89, and 0.91, respectively.

B CONCLUSION

In this contribution, we proposed and verified the application of
two deformed versions of the BV model for the analysis of
convex semilogarithmic current-overpotential profiles observed
with some battery data. The models assume that the
nonequilibrium electrode/electrolyte system can be viewed as
a multitude of subsystems temporarily in local equilibrium, and
thus follow the Boltzmann exponential trend only locally and
with different statistics. These fluctuations are taken to be
inverse temperature fluctuations that can be correlated for
instance to spatial inhomogeneities of the interface geometry,
long-range interactions, particle trapping, and partial charge
transfer, as well as distribution of thermodynamic quantities.
Applied to two different examples of battery data,"***° both
deformed models with only one free parameter each (based on
the g- or k-exponential functions) showed very close agreement
with the experiments. The extra degree of freedom in the
modified BV models is related to the extent of deviation of the
data from BG statistics assumed in classical BV, which itself can
be retrieved when ¢ — 1 in eq 22 or k — 0 in eq 23. The
deformed BV models can be applied in principle to other types
of usual or unusual reaction data and power-law relaxation
behavior found in corrosion reactions, sensors, electrocatalytic
processes, solar cells, etc.
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