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Abstract—In this work, we aim to show that there are

generally four possible mapping functions that can be used to

map the time-domain or frequency-domain representations of an

applied voltage input to the resulting time-domain or frequency-

domain electrical charge output; i.e. when the capacitive device

is voltage-charged. Alternatively, there are four more possible

combinations when the device is current-charged. The dual

relationship between each pair of functions for the case of

voltage or charge input are provided in terms of single or double

Fourier transforms. All eight system functions coincide with each

other if and only if a constant time- and frequency-independent

capacitance is considered.

Index Terms—Capacitve devices, Circuit theory, Capacitance,

Fourier transform

I. INTRODUCTION

Ideal electrostatic capacitors are constructed from two con-

ductors separated by a perfect insulator. The standard charge-

voltage relation q = cv represents the linear relationship

between the magnitude of the charge on each conductor with

the difference of potential applied across the two conductors. It

is true in both time and frequency domains for ideal capacitors

having constant, time-independent and frequency-independent

capacitances that can be only computed, and not measured,

from voltage and charge.

However, other capacitive devices, such as electrochemical

capacitors (including electric double-layer capacitors (EDLCs)

and pseudocapacitors), cannot be characterized with a constant

capacitance value [1]–[3]. Their electrodes are fractal and

porous in nature, and are separated by ionic conductors leading

to complex charge transports that are inherently different from

ideal capacitors. Coupled ionic and electronic transports take

place in these devices, which are ultimately controlled by

diffusion dynamics and migration in the bulk electrolyte, and

through their micro/nano-porous structured electrodes. The

correlated disorder of the background electrolyte also has an

impact on the overall charge transport process which makes it

deviate from normal diffusion to subdiffusion, and hence in-

ternal dissipative processes [4], [5]. From a system-level point

of view, the spectral impedance phase angle of most -if not

all- EDLCs and other similar energy storage devices deviate

from the -90◦ value expected for ideal capacitors, even at near-

dc, sub-Hz frequencies [3], [6]. It has also been demonstrated

experimentally that an EDLC charged with two different time-

domain voltage waveforms to the same thermodynamic state of

voltage and charge, (v, q), exhibits different relaxation profiles

when discharged into the same resistor [7]. This means that

there are inherent memory effects in these devices [7]–[9],

and that the dynamic (dis)charging paths should be taken

into consideration when evaluating their performance metrics

[10]–[12]. This is not the case with ideal capacitors whose

relaxation depends only on the initial condition. In addition,

several time-domain transient measurements conducted on

EDLCs show in some form or another nonlinearities and

power-law behaviors that prohibit the extraction of a constant

capacitance from the system’s response [11]–[14]. We note

that the EDL structure for instance is ubiquitous in many

other fields of fundamental and applied electrochemistry such

as in intercalation materials, capacitive deionization and elec-

trosorption, colloidal suspensions, bipolar membranes, etc.,

and therefore properly evaluating its electrical parameters is

paramount for meaningful progress and development in these

research areas.

Unfortunately, there is a conceptual misunderstanding, even

in specialized literature, on the difference in computation of

performance metrics between an ideal capacitor and other

capacitive energy storage devices [15]. A classical example

is the direct calculation of capacitance from the time-domain

expression q = cv, but the same formulation of charge equal

to the product of capacitance by voltage expressed in the

frequency domain, and indirectly derived from impedance

spectroscopy measurements, is used to characterize the same

device, as if it was an ideal capacitor with constant capacitance

(see [16]–[27] to cite a few). This is in direct contradiction

with the convolution theorem [28], and clearly indicates that

there is an urgent need for a unified methodology of system

identification for such devices. Most recently, in [15] the

authors studied the difference between the time-domain defi-

nition qt(t) = ct(t)vt(t) and its frequency-domain counterpart

defined as a convolution integral, i.e. Qt(f) = (Vt ⊛ Ct) (f),
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and the frequency-domain definition Qf (f) = Cf (f)Vf (f)
and its time-domain equivalent qf (t) = (cf ⊛ vf ) (t). We

denote by V (f) the Fourier transform of the input time-

domain voltage v(t) and by Q(f) the Fourier transform

of the output time-domain charge q(t) with the definitions

F{g(t)} = G(f) =
∫
∞

−∞
g(t)e−j2πftdt and F−1{G(t)} =

g(t) = (2π)−1
∫
∞

−∞
G(f)ej2πftdt. In [15], we showed that

the extraction of capacitance functions (rather than constant

capacitance) from these two pairs of equations for the case

of dispersive mono-fractional-order capacitors (known also

as constant phase elements) subjected to sinusoidal voltage

excitation do not lead to the same results. The same has been

illustrated and verified for the case of linear voltage ramp and

constant current input applied to a commercial supercapacitor

device [10]. It is therefore one pair of equations or the other

that can be used simultaneously, and the relation q = cv
can only be applied on one-domain (time or frequency) but

not the other. We recommended nonetheless the use of the

multiplicative capacitance function in the frequency domain,

i.e. Qf (f) = Cf (f)Vf (f), in order to be in line with the

definition of impedance of linear time-invariant systems [15],

[28].

This work is a direct extension of our previous studies [10],

[15], and is primarily concerned with the system identification

problem of capacitive devices from the two measurable quan-

tities voltage and charge. The goal is to establish the different

relationships between possible system capacitance functions

without the prior assumption of any model. In Section II,

we present the theoretical framework of this work while its

implications are discussed further in Section III. It is important

to note that there are no simulations or experimental results

presented here since they have been readily presented in [10],

[15] upon dealing with specific devices.

II. THEORY

Consider the schematic illustration presented in Fig. 1 re-

lating the input/output of a capacitive device in the time and

frequency domains. It is evident that there are four possible op-

erators that can map an input voltage (in the time or frequency

domain) to an output charge (in the time or frequency-domain).

When we refer to the frequency-domain, the time-domain

quantity is dealt with indirectly through its Fourier frequency

spectrum. We can write from the four signal representations

v(t), V (f) and q(t), Q(f) the following relations [29], [30]:

q(t) = Ctt{v(t)} (1a)

Q(f) = Cff{V (f)} (1b)

q(t) = Ctf{V (f)} (1c)

Q(f) = Cft{v(t)} (1d)

where the four operators Cij ({i, j} = {t, f}) map or

transform the input signal in space j = {t, f} for time or

frequency to space i = {t, f}. For example, the operator Ctt

in Eq. (1a) represents the mapping relationship between the

voltage input v(t) (cause) and charge output q(t) (effect)

both defined in the time domain, whereas the operator Ctf

in Eq. (1c) represents the mapping relationship between the

v(t)

Input

V (f)

Device

Cij

q(t)

Output

Q(f)

Ctt(t− x)

Cft(f − x) Ctf(t− y)

Cff(f − y)

Single FT

Double FT

Fig. 1. Schematic diagram illustrating the two time-domain and frequency-

domain representations of voltage input and the two time-domain and

frequency-domain representations of the charge output in a capacitive energy

device. The different relationships between the capacitance functions Cij

defined in Eq. 2 are also summarized (FT: Fourier transform).

voltage input V (f) defined in the frequency domain and the

charge output q(t) defined in the time domain. The mapping

operators Cij are unique, and can be in general related to

differential or integro-differential equations that govern the

space-time charge distributions in a capacitive device.

For the case of devices which are assumed to be linear

time-invariant wherein the input-output relationship is invari-

ant under translation in time and the superposition principle

holds, we can write the following linear integral equations of

convolution [31]:

q(t) =

∫
Ctt(t− x)v(x)dx (2a)

Q(f) =

∫
Cff(f − y)V (y)dy (2b)

q(t) =

∫
Ctf(t− y)V (y)dy (2c)

Q(f) =

∫
Cft(f − x)v(x)dx (2d)

The four kernels Cij ({i, j} = {t, f}) can be viewed as kernel

system functions as proposed by Bello [29], [30]. Note that

when the limits of integration are not explicitly indicated in

the equations they are to be taken from −∞ to ∞, and the

integrals are assumed to exist. Also, all quantities are treated

as normalized and thus dimensionless. It is important to clarify

at this point that in [15] the focus was to establish the differ-

ence between assuming the correctness of the multiplicative

equation q = cv in the time domain versus assuming its

correctness in the frequency domain, which are both widely

used definitions in the literature. This led us to define four

different capacitance functions ct(t), Ct(f) and Cf (f), cf (t)
by virtue of the convolution theorem as explained above. In

this work, we approach the problem from a general system

identification perspective as described by the set of Eqs. (2).
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Therefore the functions Cij ({i, j} = {t, f}) should not be

confused with ct(t), Ct(f), Cf (f) or cf (t), which are not in

conflict with the present analysis.

Equations (2a) and (2c) provide two different expressions

for the same time-domain charge q(t). With the use of Parse-

val’s equation [32] we can write:∫
∞

−∞

f(t)G(t)dt =

∫
∞

−∞

F (ω)g(ω)dω (3)

(under the assumption that f(t) and g(t) are absolutely inte-

grable over −∞ < t < ∞). The kernel functions Ctf(t−y) and

Ctt(t−x) constitute a Fourier transform pair with t considered

as a parameter:

F{Ctf(t− y)} = Ctt(t− x) (4)

In the same way, we can establish from equating the

frequency-domain charge Q(f) given by both Eqs. (2b) and

(2d) that:

F{Cff(f − y)} = Cft(f − x) (5)

with f being considered as a parameter. From Eqs. (2a), (2d)

(after applying the Fourier transform to both sides of Eq. (2a))

and Eqs. (2c), (2b) (after applying the Fourier transform to

both sides of Eq. (2c)), we can write:

Cft(f − x) =

∫
e−j2πftCtt(t− x)dt (6)

and

Cff(f − y) =

∫
e−j2πftCtf(t− y)dt (7)

respectively. Finally, from Eqs. (2a) and (2b) we can establish

the following relation between Cff(f − y) and Ctt(t− x):

Cff(f − y) =
1

2π

∫∫
Ctt(t− x)e−j2πtfej2πyxdt dx

=
1

2π

∫∫
Ctt(t− x)ej2π(yx−tf)dt dx (8)

and from Eqs. (2c), (2d) we have:

Cft(f − x) =

∫∫
Ctf(t− y)e−j2πtfe−j2πxydt dy

=

∫∫
Ctf(t− y)e−j2π(tf+xy)dt dy (9)

Figure 1 summarizes the four different forms of system

functions Cij ({i, j} = {t, f}) defined in Eq. (2) along with

their pair relationships either as single or double Fourier

transforms.

A simple example that demonstrates the correspondence

between these system functions is the case in which the charge

is a delayed copy input voltage v(t), i.e. [31]:

q(t) = Ctt{v(t)} = Av(t− τ0) (A = 1) (10)

Thus:

Ctt(t− x) = δ(t− x− τ0) (11)

which verifies Eq. 2a. From here the rest of the system

functions in Eqs. 2b, 2c and 2d are

Cff(f − y) = δ(f − y)e−j2πyτ0 (12)

Ctf(t− y) = ej2πy(t−τ0) (13)

Cft(f − x) = e−j2πf(x+τ0) (14)

respectively. These functions can be transformed into one

another as indicated in Fig. 1. Another example is when the

resulting time-domain charge q(t) is a response to an input

voltage v(t) given by [31]:

q(t) = Ctt{v(t)} = v(t− τ0)e
j2πf0t (15)

The four capacitance functions are then:

Ctt(t− x) = δ(t− x− τ0)e
j2πf0t (16)

Cff(f − y) = δ(f − y − f0)e
−j2πyτ0 (17)

Ctf(t− y) = e2πjt(y+f0)e−j2πyτ0 (18)

Cft(f − x) = e−j2π(f−f0)(x+τ0) (19)

Such types of functions are not only necessary in relating

charge and voltage in capacitive devices but are also necessary

in modeling communication channels for instance. As an

example, the intrabody communication channel is predom-

inantly capacitive and modeled by distributed networks of

ideal capacitors, as shown in [33] for an in-vehicle scenario.

The availability of frequency domain-based network analyzers

forces the application of frequency-domain modeling tech-

niques as seen for example in the scattering matrix results

reported in [34].

The equation pairs presented above are all related to the

case when a capacitive device is being voltage-charged. The

electric charge on the device is thus a result (output). However,

when using the electrical current instead of voltage to charge

capacitive devices, this implies that the charge is readily

created by the charging power supply since dq =
∫
i(t)dt

[35] before being applied on the device. The input in this case

is the electrical charge and the voltage measured is thus a

result (output), as shown in Fig. 2. A new set of four equations

similar to Eqs. (1) can be deduced for this case albeit the

LHS must be the voltage and the RHS must be the charge,

with the mapping functions (C∗

ij ) being inverse-capacitance

functions. When a device is reciprocal, the output charge from

Fig. 1 fed as an input in Fig. 2 should result in an output

q(t)

Input

Q(f)

Device

C∗

ij

v(t)

Output

V (f)

C∗

tt
(t− x)

C∗

ft
(f − x) C∗

tf
(t− y)

C∗

ff
(f − y)

Single FT

Double FT

Fig. 2. Schematic diagram similar to Fig. 1 with the electrical charge being

the input and the voltage being the output in a capacitive energy device.
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voltage from Fig. 2 identical to that supplied as input to Fig. 1

[35]. However, this is not always necessarily true and hence

the computation of a capacitance function is associated only

with voltage excitation whereas the computation of inverse

capacitance functions should be done in the case of current

excitations.

III. DISCUSSION

A capacitive device is treated here as a lumped electrical

signal processing element at the link between voltage input

and charge output or charge input and voltage output (single-

input single-output device) as depicted in Figs. 1 and 2, re-

spectively. The charge, being the time-integral of the current,

can be the result of all current contributions taking place

within the device and thus there is no real discrimination

between what is effectively being used for the purpose of

energy storage for future reuse, or what is being dissipated.

In mathematical terms, the whole device can be thought of

as an operator which transforms a certain input signal into an

output signal, both of which can be described either in the

time domain or frequency domain [29]. Cyclic voltammetry,

constant current charge/discharge and impedance spectroscopy

are all routine techniques for time-domain and frequency-

domain measurements of capacitive energy storage devices

[10], [12], [15], [36]. However, the relations presented above

are actually valid for any arbitrary excitations as long as

the linearity and time-invariance of the device are respected,

noting that there are also identification methods for time-

variant and nonlinear systems [30], [37], [38]. Furthermore, in

reality the input and output signals can have superposed noises

associated with measurement errors or other environmental

conditions that should be taken into account when estimating

the corresponding mapping system functions. This requires the

use of efficient regularization methods and inverse problem

computations and not simple multiplications and divisions as

commonly done using the ideal capacitor formulæ.

In fact, from the classical treatment inherited from ideal

capacitors one can write interchangeably q = cv or v = q/c
without worrying about which is the input variable (voltage

or charge). This is clearly incorrect for the general case of

capacitive functions. There is indeed a difference between

the system functions Cij and C∗

ij for a linear time-invariant

capacitive device, and thus between voltage charging and

current charging as illustrated in Figs. 1 and 2. The results

further highlight that computing the capacitive (or inverse

capacitive) functions is dependent on the form and type of

the applied excitation, which is different from ideal capacitors.

Applying a step function, linear ramp or sinusoidal excitation

(voltage or current) will result in different capacitive functions.

Therefore, one should specify clearly how the device is being

excited and which capacitive (or inverse capacitive) function

is being computed because these functions cannot be identical

to each other except for the case of ideal capacitors (i.e.

Cij = C∗

ij = c). We believe that this will have significant

implications on the way capacitance (and similarly inductance)

is computed in the future in an era where capacitive energy

storage devices are on high demand in electrical vehicles, IoT

systems and many other applications.

IV. CONCLUSION

This work is an important companion to our recent work

in [15]. We have shown here that there are several system

functions that can map an arbitrary input voltage/charge,

represented in time or frequency, to an output charge/voltage,

represented in time or frequency for a capacitive device (see

Figs. 1 and 2). From the estimation of one function (for

example Ctt that maps voltage to charge when they are both

defined in the time domain, one can deduct all other functions

using single or double Fourier transforms. We emphasize

that the functions Cij and C∗

ij should be regarded as system

functions and not capacitances, which are solely characteristics

of ideal capacitors.
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