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We continue our study of bounded solutions of the semilinear parabolic equation 
ut = uxx + f(u) on the real line, where f is a locally Lipschitz function on R. 
Assuming that the initial value u0 = u(·, 0) of the solution has finite limits θ± as 
x → ±∞, our goal is to describe the asymptotic behavior of u(x, t) as t → ∞. 
In a prior work, we showed that if the two limits are distinct, then the solution 
is quasiconvergent, that is, all its locally uniform limit profiles as t → ∞ are 
steady states. It is known that this result is not valid in general if the limits 
are equal: θ± = θ0. In the present paper, we have a closer look at the equal-
limits case. Under minor non-degeneracy assumptions on the nonlinearity, we show 
that the solution is quasiconvergent if either f(θ0) Ó= 0, or f(θ0) = 0 and θ0 is a 
stable equilibrium of the equation ξ̇ = f(ξ). If f(θ0) = 0 and θ0 is an unstable 
equilibrium of the equation ξ̇ = f(ξ), we also prove some quasiconvergence theorem 
making (necessarily) additional assumptions on u0. A major ingredient of our proofs 
of the quasiconvergence theorems—and a result of independent interest—is the 
classification of entire solutions of a certain type as steady states and heteroclinic 
connections between two disjoint sets of steady states.

© 2021 Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous poursuivons notre étude des solutions bornées d’équations paraboliques semi-
linéaires ut = uxx + f(u) sur la droite réelle, avec f une fonction localement 
lipschitzienne. Pour une condition initiale u0 = u(·, 0) admettant des limites finies 
θ± en x → ±∞, notre objectif est de décrire le comportement asymptotique de 
u(x, t) lorsque t → +∞. Dans de précédants travaux, nous avons montré que si 
les deux limites sont distinctes, alors la solution est quasiconvergente : tous ses 
profils limites sont solutions stationnaires. Il est connu que ce résultat ne peut se 
généraliser dans le cas de deux limites égales : θ± = θ0. Dans cet article, étudions 
plus en détail cette situation. Sous des hypothèses de non dégénérescence pour le 
terme non-linéaire, nous montrons que la solution est quasiconvergente si f(θ0) Ó= 0, 
ou si f(θ0) = 0 et θ0 est un équilibre stable de l’équation ξ̇ = f(ξ). Si f(θ0) = 0 et 
θ0 est un équilibre instable de l’équation ξ̇ = f(ξ), nous obtenons aussi un résultat 
de quasiconvergence, nécessairement avec des hypothèses supplémentaires sur u0. 
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Nos preuves reposent sur la classification d’un certain type de solutions entières 
comme solutions stationnaires ou hétérocliniques entre deux ensembles disjoints de 
solutions entières—résultat qui a son intérêt propre.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

1.1. Background

Consider the Cauchy problem

ut = uxx + f(u), x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where f is a locally Lipschitz function on R and u0 ∈ Cb(R) := C(R) ∩ L∞(R). We denote by u(·, t, u0), 

or simply u(·, t) if there is no danger of confusion, the unique classical solution of (1.1), (1.2) and by 

T (u0) ∈ (0, +∞] its maximal existence time. If u is bounded on R ×[0, T (u0)), then necessarily T (u0) = +∞, 

that is, the solution is global. In this paper, we are concerned with the behavior of bounded solutions as 

t → ∞. A basic question we specifically want to address is whether, or to what extent, the large-time 

behavior of bounded solutions is governed by steady states of (1.1).

If the initial datum u0 admits limits as x → ±∞, then for all time t > 0, the solution u(·, t) of (1.1), 

(1.2) admits limits as x → ±∞. In other words, the function space

V := {v ∈ Cb(R) : the limits v(−∞), v(+∞) ∈ R exist} (1.3)

is invariant for (1.1). Continuing our study initiated in [29], we examine the large time behavior of bounded 

solutions in V. More specifically, we are interested in the behavior of the solutions in bounded—albeit 

arbitrarily large—spatial intervals, as t → ∞. For that purpose, we introduce the ω-limit set of a bounded 

solution u, denoted by ω(u) or ω(u0) with u0 = u(·, 0), as follows:

ω(u) := {ϕ ∈ L∞(R), u(·, tn)→ ϕ for some sequence tn → ∞} . (1.4)

Here the convergence is in the topology of L∞
loc(R), that is, the locally uniform convergence. By standard 

parabolic estimates, the trajectory {u(·, t), t ≥ 1} of a bounded solution is relatively compact in L∞
loc(R). 

This implies that ω(u) is nonempty, compact, and connected L∞
loc(R), and it attracts the solution in (the 

metric space) L∞
loc(R):

distL∞

loc(R) (u(·, t), ω(u)) −→
t→∞

0.

If the ω-limit set reduces to a single element ϕ, then u is convergent: u(·, t) → ϕ in L∞
loc(R) as t → ∞. 

Necessarily, ϕ is a steady state of (1.1). If all functions ϕ ∈ ω(u) are steady states of (1.1), the solution u

is said to be quasiconvergent.

Convergence and quasiconvergence both express a relatively tame character of the solution in question, 

entailing in particular the property that ut(·, t) approaches zero locally uniformly on R as t → ∞. In fact, 

the latter property is equivalent to quasiconvergence (convergence is distinguished by a stronger property 

that the improper Riemann integral of ut(x, t) on [1, ∞) exists for each x). In some cases, quasiconvergence 

can be established by means of energy estimates when bounded solutions in suitable energy spaces are 

considered (see [12], for example). However, when no particular rate of approach of u0(x) to its limits at 
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x = ±∞ is assumed, energy techniques typically do not apply. Nonetheless, several quasiconvergence results 

are available for solutions in V (see [33] for a general overview). These include quasiconvergence theorems 

of [23] for nonnegative functions u0 with u0(±∞) = 0 when f(0) = 0—convergence theorems are available 

under additional conditions on u0 ≥ 0, see [10,11,23]; or for generic f , see [25]—and a theorem of [35] for 

functions u0 ∈ V satisfying u0(−∞) > u0 > u0(∞) or u0(−∞) < u0 < u0(∞). An improvement over the 

latter quasiconvergence result was achieved in [29], where we proved that the condition u0(−∞) Ó= u0(+∞)

alone, with no relations involving u0(x) for x ∈ R, is already sufficient for the quasiconvergence of the 

solution if it is bounded.

It is also known that the ω-limit set of a bounded solution always contains at least one equilibrium [18,19]. 

However, bounded solutions, even those in V, are not always quasiconvergent (see [30,32]). Moreover, as 

shown in [32], non-quasiconvergent solutions occur in (1.1) in a persistent manner: they exist whenever f is 

a C1 nonlinearity satisfying certain robust conditions (cf. (1.9) below). In view of these results, the following 

question arises naturally. Given f , can one characterize in some way the initial data u0 ∈ V which yield 

quasiconvergent solutions? Our previous work [29] was our first step in addressing this question: we proved 

the quasiconvergence in the distinct-limits case: u0(−∞) Ó= u0(+∞). In the present paper, we consider the 

case when the limits are equal: u0(−∞) = u0(+∞) := θ0. We assume the nonlinearity f to be fixed and 

satisfy minor nondegeneracy conditions (see the next section).

In our first main theorem, Theorem 1.1, we show that if f(θ0) Ó= 0, or if f(θ0) = 0 and θ0 is a stable 

equilibrium of the equation ξ̇ = f(ξ), then the solution u of (1.1), (1.2) is quasiconvergent if bounded. In 

the examples of non-quasiconvergent solutions with u0(±∞) = θ0, as given in [30,32], θ0 is an unstable 

equilibrium of ξ̇ = f(ξ). Thus, our theorem shows that this is in fact necessary. Other two results, Theo-

rems 1.3 and 1.4, give sufficient conditions for the quasiconvergence of the solution in the case that θ0 is 

an unstable equilibrium of the equation ξ̇ = f(ξ). A special case of the sufficient condition of Theorem 1.4

is the condition that u0 − θ0 has compact support and only finitely many sign changes. Theorem 1.3 has a 

somewhat surprising result saying that any element ϕ of ω(u) whose range is not included in the minimal 

bistable interval containing θ0 is necessarily a steady state.

We give formal statements of these results in Subsection 1.3, after first formulating our hypotheses 

in Subsection 1.2. In Subsection 1.4, we give an outline of our strategy of proving the quasiconvergence 

theorems.

A quasiconvergence result closely related to our Theorem 1.1 has recently been proved by Risler. In [36], 

he considers the Cauchy problem for gradient reaction-diffusion systems on R, where the initial data are 

assumed to converge at ±∞ to stable homogeneous steady states contained in the same level of the potential 

function. Under certain generic conditions on the corresponding stationary system, he proves that bounded 

solutions of such Cauchy problems are quasiconvergent in a localized topology (in the companion paper [37], 

the global shape of such solutions at large times is investigated). His approach is variational, which has an 

advantage that it applies to gradient systems, as opposed to our techniques based on the zero number, which 

only apply to scalar equations. In the scalar case, our method seems to have some advantages. For example, 

it allows us to treat to some extent the case when the limit of the initial data at ±∞ is unstable. Also, in 

principle, the method can be used under much less stringent nondegeneracy conditions (cf. Subsection 1.2) 

and, we believe, will eventually allow us to dispose of the nondegeneracy conditions altogether.

A key ingredient of our method of proof of the quasiconvergence theorems is a classification result for a 

certain type of entire solutions of (1.1), that is, solutions defined for all t ∈ R. Roughly speaking, the result 

shows that the entire solutions are either steady states or connections between two disjoint sets of steady 

states of (1.1) (see Sections 1.4 and 4 for details). Entire solutions play an important role in qualitative 

analysis of solutions of parabolic equations, as it can usually be proved that the large-time behavior of 

bounded solutions is governed by entire solutions. In our setting, for example, the ω-limit sets—or their 

generalized versions, as defined in Section 2.3—of bounded solutions of (1.1) consist of orbits of entire 

solutions. Entire solutions of (1.1) have been extensively studied and many different types of such solutions 
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have been found. These include, in addition to steady states, spatially periodic heteroclinic orbits between 

steady states (see [14,15,34] for example), traveling waves and many types of “nonlinear superpositions” 

of traveling waves and other entire solutions (see [4,5,8,20,21,27,28] and references therein), as well entire 

solutions involving colliding pulses [24]. Unlike for equations on bounded intervals where rather general 

classification results for entire solutions are available (see [3,15,39] and references therein), no such general 

classification is currently in sight for the vast variety of entire solutions of (1.1). Our result classifying 

certain entire solutions as connections between two sets of steady state is a modest contribution in this 

area, exploring the asymptotic behavior of entire solutions as t → ±∞ in the topology of L∞
loc(R).

1.2. Standing hypotheses

As above, f is a locally Lipschitz function. We also assume the following nondegeneracy condition:

(ND) For each γ ∈ f−1{0}, f is of class C1 in a neighborhood of γ and f ′(γ) Ó= 0.

Our theorems can be proved under weaker conditions. To give an example of how (ND) can be relaxed, 

set

F (v) :=

v
∫

0

f(s)ds, (1.5)

so zeros of f are critical points of F . The following nondegeneracy conditions can be considered in place of 

(ND).

(ND1) Each γ ∈ f−1{0} is locally a point of strict maximum or strict minimum for F .

(ND2) If γ1 < γ2 are two consecutive local-maximum points of F and F (γ1) = F (γ2), then γ1, γ2 are 

nondegenerate critical points of F : f is of class C1 in a neighborhood of γ1,2 and f ′(γ1,2) < 0.

Relaxing (ND) to (ND1), (ND2) does not pose major problems in the proof of our results, but it would 

obscure the exposition a bit and would require modification of some standard results we refer to. Thus we 

decided to just work with (ND). All these nondegeneracy conditions are just technical and we believe our 

theorems can be proved by the same general method without them. Clearly, condition (ND) is generic with 

respect to “reasonable” topologies. Note, however, that we allow some nongeneric situations, for example, the 

existence of two consecutive local-maximum points of F at which F takes the same value. The nondegeneracy 

condition constrains considerably the complexity of possible phase portraits associated with equation for 

the steady states of (1.1):

uxx + f(u) = 0, x ∈ R. (1.6)

This is mainly how the nondegeneracy condition is useful in this paper.

We will make another assumption on the nonlinearity. It concerns the behavior of f(u) for large values 

of |u| and it can be assumed with no loss of generality. Indeed, our main quasiconvergence theorems deal 

with individual bounded solutions only. Thus we can modify f freely outside the range of the given solution 

with no effect on the validity of the theorems. It will be convenient to assume that

(MF) f is globally Lipschitz and there is κ > 0 such that for all s with |s| > κ one has f(s) = s/2.

Hypotheses (ND) and (MF) are our standing hypotheses on f .
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Each zero of f is of course an equilibrium of the equation

ξ̇(t) = f(ξ). (1.7)

Hypothesis (ND) implies in particular that any such equilibrium is either unstable from above and below, 

or asymptotically stable (this property would also be implied by (ND1)).

As mentioned above, in this paper we take u0 ∈ V, assuming that its limits at ±∞ are equal. Without 

loss of generality, we assume the limits to be equal to zero:

u0 ∈ V, u0(−∞) = u0(+∞) = 0. (1.8)

We distinguish the following two cases:

(S) Either f(0) Ó= 0, or f(0) = 0 and 0 is a stable equilibrium for (1.7).

(U) f(0) = 0 and 0 is an unstable equilibrium for (1.7).

1.3. Quasiconvergence theorems

If (S) holds, we have a general quasiconvergence theorem:

Theorem 1.1. Assume that (S) holds, and let u0 be as in (1.8). Then if the solution u of (1.1), (1.2) is 

bounded, it is quasiconvergent: ω(u) consists entirely of steady states of (1.1).

Remark 1.2.

(i) We will show, more precisely, that any element ϕ of ω(u) is a constant steady state, or a ground state 

at some level ξ ∈ f−1{0}, or a standing wave of (1.1). See Section 2.2 for a description of the structure 

of steady states of (1.1) and the meaning of the terminology used here. We will also show that there 

is a single chain in the phase plane of ϕxx + f(ϕ) = 0 containing the trajectories of all steady states 

ϕ ∈ ω(u) (the definition of a chain is also given in Section 2.2). The same remarks apply to Theorem 1.4

below.

(ii) It is natural to ask if, under the given hypotheses, the quasiconvergence conclusion can be strengthened 

to the convergence. Or, if not, to have some examples of bounded solutions which are quasiconvergent 

but not convergent. We are not aware of any such examples, and it is not clear to us if any of the 3 

types of solutions mentioned in part (i) of this remark would be ruled out from ω(u) if ω(u) is not a 

singleton. Even if the nondegeneracy condition on f is relaxed or omitted entirely—but (1.8) and (S) 

are kept— examples of nonconvergent bounded solutions do not seem to be available and are probably 

difficult to construct. Under additional generic conditions on the nonlinearity and under the assumption 

that u0 is nonnegative, convergence of the solution u has been proved in [25].

If (U) holds, then, as already noted in the introduction, a similar quasiconvergence does not hold in 

general: the references [30,32] provide examples of bounded solutions of (1.1), (1.2) with u0(±∞) = 0 which 

are not quasiconvergent. More specifically, such solutions exist whenever f ∈ C1 and 0 belongs to a bistable

interval of f : there are γ1, γ2 ∈ R such that

γ1 < 0 < γ2, f(γ1) = f(γ2) = 0, f ′(γ1), f ′(γ2) < 0, and f Ó= 0 in (γ1, 0) ∪ (0, γ2). (1.9)

Whether the bistable nonlinearity f is balanced in (γ1, γ2): F (γ1) = F (γ2), or unbalanced: F (γ1) Ó= F (γ2), 

there always exists a continuous function u0 such that u0(±∞) = 0, γ1 ≤ u0 ≤ γ2 and the solution u of 
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(1.1), (1.2) is not quasiconvergent. Obviously, all limit profiles, stationary or not, of the solution u take 

also values between γ1, γ2. One could naturally speculate that when the initial data are not constrained by 

the assumption γ1 ≤ u0 ≤ γ2, the behavior of the corresponding solutions can only get more complicated, 

with some nonstationary limit profiles possibly occurring outside the interval [γ1, γ2]. Surprisingly perhaps, 

this turns out not to be the case. In our next theorem, we show that any limit profile whose range is not 

contained in (γ1, γ2) is a steady state. Thus it is really the bistable interval [γ1, γ2] which is “responsible” 

for the nonquasiconvergence of the solutions with u0(±∞) = 0, regardless of whether the range of u0 is 

contained in [γ1, γ2] or not.

Note that if (U) holds and γ1, γ2 are the zeros of f immediately preceding and immediately succeeding 

0, respectively, assuming they exist, then the relations in (1.9) are satisfied.

Theorem 1.3. Assume that (U) and (1.9) hold. Assume further that u0 is as in (1.8) and the solution u of 

(1.1), (1.2) is bounded. Then any function ϕ ∈ ω(u) whose range is not contained in the interval (γ1, γ2) is 

a steady state of (1.1).

A stronger version of this result will be given in Theorem 6.4 after some needed terminology has been 

introduced. Obviously, Theorem 1.3 implies that the solution u is quasiconvergent if no function ϕ ∈ ω(u0)

has its range in (γ1, γ2).

Another aspect of the examples of non-quasiconvergent solutions given in [30,32] is that the solutions u

found there are always highly oscillatory in space: for all t > 0 the function u(·, t) has infinitely many critical 

points and infinitely many zeros. This raises another natural question whether, in the case (U), spatially 

nonoscillatory solutions are always quasiconvergent. Here, by a spatially nonoscillatory solution we mean a 

solution satisfying the following condition

(NC) There is t > 0 such that u(·, t) has only finitely many critical points.

A sufficient condition for (NC) in terms of u0 is that there exist a < b such that the function u0 is monotone 

and nonconstant on each of the intervals (−∞, a), (b, ∞). For if this holds, then one shows easily, using the 

comparison principle, that ux(x, t) Ó= 0 for all x ∈ R with |x| ≈ ∞ and all sufficiently small positive times 

t. Consequently, by standard zero number results (cf. Section 2.1), ux(·, t) has only a finite number of zeros 

for all t > 0.

Presently, we are able to prove the quasiconvergence assuming that (NC) holds together with the following 

technical condition:

(R) There are sequences an → −∞, bn → ∞ such that the following holds. For every λ ∈ {a1, a2, . . . } ∪

{b1, b2, . . . } there is t ≥ 0 such that the function Vλu(·, t) := u(2λ − ·, t) − u(·, t) has only finitely 

many zeros.

Remark 1.5(ii) below gives sufficient conditions for (R) in terms of u0.

Theorem 1.4. Assume that (U) holds together with (NC) and (R), and let u0 be as in (1.8). If the solution 

u of (1.1), (1.2) is bounded, it is quasiconvergent.

Remark 1.5. (i) If (R) is strengthened so as to say that Vλu(·, t) := u(2λ − ·, t) − u(·, t) has only finitely 

many zeros for every λ ∈ R, then the quasiconvergence theorem holds—without any extra condition like

(NC) on u and without the nondegeneracy condition (ND) on f—due to a result of [29] which we recall in 

Theorem 2.12 below. This in particular applies when for some t > 0 the function u(·, t) has an odd (finite) 

number of zeros, all of them simple. Indeed, in this case u(x, t) has opposite signs for x ≈ −∞ and x ≈ ∞
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and, consequently, for every λ ∈ R one has Vλu(x, t) := u(2λ − x, t) − u(x, t) Ó= 0 if |x| is large enough. 

Since the zeros of Vλu(·, t) are isolated (cf. Section 2.1), there are only finitely many of them. Of course, it 

may easily happen for a function ψ ∈ V with ψ(±∞) = 0 that Vλψ has only finitely many zeros if |λ| is 

sufficiently large, but has infinitely many of them if |λ| is sufficiently small. An example is any continuous 

function such that

ψ(x) =

{

Mex for x < −k,

e−x(M + sin x) for x > k,

where k > 0 and M > 2.

(ii) Conditions (NC) and (R) are both satisfied if u0 has compact support [c, d] and only finitely many 

zeros in (c, d). More generally, they are satisfied if u0 ≡ 0 on R \ (c, d) and there is ǫ > 0 such that u0

is monotone and nonconstant on each of the intervals (c, c + ǫ], [d − ǫ, d). Indeed, the validity of (NC) is 

verified in the remark following (NC). To show the validity of (R), take any λ > d. Then, the assumption 

on u0 implies that Vλu0(2λ − c − ǫ) Ó= 0 and in the whole interval J := [2λ − c − ǫ, ∞) one has either 

Vλu0 ≥ 0 or Vλu0 ≤ 0. The comparison principle applied to the function Vλu(x, t) (cf. Section 2.4) shows 

that Vλu(x, t) Ó= 0 for all x ∈ J and t > 0. This also implies that Vλu(x, t) Ó= 0 for all x ≈ −∞, as the 

function Vλu(·, t) is odd about x = λ. Consequently, as in the previous remark (i), Vλu(·, t) has only finitely 

many zeros for all t > 0. Similarly one shows that Vλu(·, t) has only finitely many zeros if λ < d (in fact, 

with a little more effort one can show this for any λ Ó= (c + d)/2)). Variations of these arguments show that 

(NC) and (R) are satisfied if u0 ≡ 0 on an interval (−∞, c) and on an interval (d, ∞) one has u0 ≥ 0, u0 Ó≡ 0

(or u0 ≤ 0, u0 Ó≡ 0).

1.4. Entire solutions and chains

Our strategy for proving the quasiconvergence theorems consists in careful analysis of a certain type of 

entire solutions of (1.1). By an entire solution we mean a solution U(x, t) of (1.1) defined for all t ∈ R (and 

x ∈ R). It is well known (see Section 2.3 for more details) that for any ϕ ∈ ω(u) there exists an entire 

solution U(x, t) of (1.1) such that U(·, 0) = ϕ and U(·, t) ∈ ω(u) for all t ∈ R.

In analysis of such entire solutions we employ, as in several earlier papers starting with [31], a geometric 

technique involving spatial trajectories of solutions of (1.1). This technique, powered by properties of the 

zero number functional, often allows one to gain insights into the behavior of solutions of equation (1.1)

(whose trajectories are in an infinite dimensional space) by examining their spatial trajectories, which are 

curves in R2. Specifically for any ϕ ∈ C1(R), we define

τ(ϕ) := {(ϕ(x), ϕx(x)) : x ∈ R} (1.10)

and refer to this set as the spatial trajectory (or orbit) of ϕ. If Y ⊂ C1(R), τ(Y ) ⊂ R
2 is the union of the 

spatial trajectories of the functions in Y :

τ(Y ) := {(ϕ(x), ϕx(x)) : x ∈ R, ϕ ∈ Y } . (1.11)

Note that if ϕ is a steady state of (1.1), then τ(ϕ) is the usual trajectory of the solution (ϕ, ϕx) of the 

planar system

ux = v, vx = −f(u), (1.12)

associated with equation (1.6).
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When considering an entire solution U with U(·, 0) ∈ ω(u), we want to constrain the locations that the 

spatial trajectories τ(U(·, t)), t ∈ R, can occupy in R2 relative to the locations of the spatial trajectories 

of steady states of (1.1). In this, the concept of a chain is crucial. By definition, a chain is any connected 

component of the set R2 \ P0, where P0 is the union of trajectories of all nonstationary periodic solutions 

of (1.12). Any chain consists of equilibria, homoclinic orbits, and, possibly, heteroclinic orbits of (1.12) (see 

Section 2.2). Our ultimate goal is to prove that the spatial trajectories τ(U(·, t)), t ∈ R, are all contained 

in one chain. From this it follows, via a unique-continuation type result (cf. Lemma 2.9 below), that U is a 

steady state of (1.1), which proves that ω(u) consists of steady states, as desired.

To achieve our goal, we first show that if the spatial trajectories τ(U(·, t)), t ∈ R, are not contained in 

one chain, then none of them can intersect any chain; and there exist two distinct chains Σ1, Σ2 such that

τ (α(U)) ⊂ Σ1, τ (ω(U)) ⊂ Σ2. (1.13)

Here ω(U), α(U) stand for the ω and α-limit sets of U ; ω(U) is defined as in (1.4) and the definition of 

α(U) is analogous, with tn → ∞ replaced by tn → −∞. We will also show that the set of all relevant chains, 

namely, the chains that can possibly intersect τ(ω(u)), is finite and ordered by a suitable order relation, 

and that the chains in (1.13) always satisfy Σ1 < Σ2 in that relation. As a consequence, we obtain that the 

sets

K := {ϕ ∈ ω(u) : τ(ϕ) ⊂ Σ},

corresponding to the chains Σ with Σ ∩ τ(ω(u)) Ó= ∅ constitute a Morse decomposition for the flow of (1.1)

in ω(u) (see [9]). However, the existence of such a Morse decomposition (with at least two Morse sets) 

contradicts well-known recurrence properties of the flow in ω(u) (cf. [9,7,17]). This contradiction shows that 

the spatial trajectories τ(U(·, t)), t ∈ R, must in fact be contained in one chain, as desired.

The detailed proof following the above scenario, which we give below, is rather involved mainly because 

there are several different possibilities as to how the chains Σ1, Σ2 in (1.13) can look like and how the 

spatial trajectories τ(U(·, t)), t ∈ R, can fit into the structure of Σ1, Σ2. Even though the number of these 

possibilities is reduced considerably by the nondegeneracy condition (ND), the possibilities that still remain 

require special considerations and arguments.

We wish to emphasize that we prove (1.13) for a large class of entire solutions of (1.1), regardless of their 

containment in the ω-limit set of the solution u of (1.1), (1.2), for any u0. Accordingly, we have striven to 

make Section 4, where the entire solutions are studied in detail, completely independent from the other parts 

of the paper. In particular, no reference is made in that section to the solution u or its limit set ω(u). Thus 

the results there can be viewed as a contribution to the general understanding of entire solutions of (1.1). 

Relations (1.13) can be interpreted as a classification result, characterizing nonstationary entire solutions 

as connections between two different sets of steady states. We refer the reader to Section 4 for more details.

The rest of the paper is organized as follows. In Section 2, we collect preliminary results on the zero 

number, steady states of (1.1), entire solutions of (1.1) and their α and ω-limit sets. We also recall there 

some results from earlier paper that are repeatedly used in the proofs of our main theorems. The proofs 

themselves comprise Sections 3 and 6. Section 4 is devoted to the classification of entire solutions, as 

mentioned above.

2. Preliminaries

In this section, we collect preliminary results and basic tools of our analysis. We first recall some well 

known properties of the zero-number functional and then examine trajectories of steady states of (1.1) in the 

phase plane, taking our standing hypotheses (ND), (MF) into account. Next we recall invariance properties 
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of various limit sets of bounded solutions of (1.1). Finally, in Subsection 2.4 we state several important 

technical results concerning bounded solutions of (1.1).

2.1. Zero number for linear parabolic equations

In this subsection, we consider solutions of a linear parabolic equation

vt = vxx + c(x, t)v, x ∈ R, t ∈ (s, T ) , (2.1)

where −∞ ≤ s < T ≤ ∞ and c is a bounded measurable function. Note that if u, ū are bounded solutions of 

(1.1), then their difference v = u − ū satisfies (2.1) with a suitable function c. Similarly, v = ux and v = ut

are solutions of such a linear equation. These facts are frequently used below, often without notice.

For an interval I = (a, b), with −∞ ≤ a < b ≤ ∞, we denote by zI(v(·, t)) the number, possibly infinite, 

of zeros x ∈ I of the function x Ô→ v(x, t). If I = R we usually omit the subscript R:

z(v(·, t)) := zR(v(·, t)).

The following intersection-comparison principle holds (see [1,6]).

Lemma 2.1. Let v be a nontrivial solution of (2.1) and I = (a, b), with −∞ ≤ a < b ≤ ∞. Assume that the 

following conditions are satisfied:

• if b < ∞, then v(b, t) Ó= 0 for all t ∈ (s, T ),

• if a > −∞, then v(a, t) Ó= 0 for all t ∈ (s, T ).

Then the following statements hold true.

(i) For each t ∈ (s, T ), all zeros of v(·, t) are isolated. In particular, if I is bounded, then zI(v(·, t)) < ∞

for all t ∈ (s, T ).

(ii) The function t Ô→ zI(v(·, t)) is monotone non-increasing on (s, T ) with values in N ∪ {0} ∪ {∞}.

(iii) If for some t0 ∈ (s, T ) the function v(·, t0) has a multiple zero in I and zI(v(·, t0)) < ∞, then for any 

t1, t2 ∈ (s, T ) with t1 < t0 < t2, one has

zI(v(·, t1)) > zI(v(·, t0)) ≥ zI(v(·, t2)). (2.2)

If (2.2) holds, we say that zI(v(·, t)) drops in the interval (t1, t2).

Remark 2.2. It is clear that if the assumptions of Lemma 2.1 are satisfied and for some t0 ∈ (s, T ) one has 

zI(v(·, t0)) < ∞, then zI(v(·, t)) can drop at most finitely many times in (t0, T ); and if it is constant on 

(t0, T ), then v(·, t) has only simple zeros in I for all t ∈ (t0, T ). In particular, if T = ∞, there exists t1 < ∞

such that t Ô→ zI(v(·, t)) is constant on (t1, ∞) and all zeros of v(·, t) are simple.

Using the previous remark and the implicit function theorem, we obtain the following corollary.

Corollary 2.3. Assume that the assumptions of Lemma 2.1 are satisfied and that the function t Ô→ zI(v(·, t))

is constant on (s, T ). If for some (x0, t0) ∈ I × (s, T ) one has v(x0, t0) = 0, then there exists a C
1- function 

t Ô→ η(t) defined for t ∈ (s, T ) such that η(t0) = x0 and v(η(t), t) = 0 for all t ∈ (s, T ).

The following result, which is a version of Lemma 2.1 for time-dependent intervals, is derived easily from 

Lemma 2.1 (cf. [2, Section 2]).
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Lemma 2.4. Let v be a nontrivial solution of (2.1) and I(t) = (a(t), b(t)), where −∞ ≤ a(t) < b(t) ≤ ∞ for 

t ∈ (s, T ). Assume that the following conditions are satisfied:

(c1) Either b ≡ ∞ or b is a (finite) continuous function on (s,T). In the latter case, v(b(t), t) Ó= 0 for all 

t ∈ (s, T ).

(c2) Either a ≡ −∞ or a is a continuous function on (s,T). In the latter case, v(a(t), t) Ó= 0 for all t ∈ (s, T ).

Then statements (i), (ii) of Lemma 2.1 are valid with I, a, b replaced by I(t), a(t), b(t), respectively; and 

statement (iii) of Lemma 2.1 is valid with all occurrences of zI(v(·, tj)), j = 0, 1, 2, replaced by zI(tj)(v(·, tj)), 

j = 0, 1, 2, respectively.

We will also need the following robustness lemma (see [10, Lemma 2.6]).

Lemma 2.5. Let wn(x, t) be a sequence of functions converging to w(x, t) in C1 (I × (s, T )) where I is an 

open interval. Assume that w(x, t) solves a linear equation (2.1), w Ó≡ 0, and w(·, t) has a multiple zero 

x0 ∈ I for some t0 ∈ (s, T ). Then there exist sequences xn → x0, tn → t0 such that for all sufficiently large 

n the function wn(·, tn) has a multiple zero at xn.

2.2. Phase plane of the stationary problem

In this subsection, we examine the trajectories of the solutions of equation (1.6). The first-order system

ux = v, vx = −f(u), (2.3)

associated with (1.6) is Hamiltonian with respect to the energy

H(u, v) =
v2

2
+ F (u) (2.4)

(with F as in (1.5)). Thus, each orbit of (2.3) is contained in a level set of H. The level sets are symmetric 

with respect to the u-axis, and our extra hypothesis (MF) implies that they are all bounded. Therefore, all 

orbits of (2.3) are bounded and there are only four types of them: equilibria (all of which are on the u-axis), 

non-stationary periodic orbits (by which we mean orbits of nonstationary periodic solutions), homoclinic 

orbits, and heteroclinic orbits. Following a common terminology, we say that a solution ϕ of (1.6) is a ground 

state at level γ if corresponding solution (ϕ, ϕx) of (2.3) is homoclinic to the equilibrium (γ, 0); we say that 

ϕ is a standing wave of (1.1) connecting γ− and γ+ if (ϕ, ϕx) is a heteroclinic solution of (2.3) with limit 

equilibria (γ−, 0) and (γ+, 0).

Each non-stationary periodic orbit O is symmetric about the u-axis and for some p < q one has

O ∩ {(u, 0) : u ∈ R} = {(p, 0), (q, 0)}

O ∩ {(u, v) : v > 0} =
{(

u,
√

2(F (p)− F (u))
)

: u ∈ (p, q)
}

. (2.5)

Let

E := {(a, 0) : f(a) = 0} (the set of all equilibria of (2.3)),

P0 := {(a, b) ∈ R
2 : (a, b) lies on a non-stationary periodic orbit of (2.3)},

P := P0 ∪ E (the union of all periodic orbits of (2.3), including the equilibria).
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The next lemma gives a description of the phase plane portrait of (2.3) with all the non-stationary periodic 

orbits removed. The following observations will be useful in its proof and at other places below. Let (p, 0)

be an equilibrium of (2.3). Then f(p) = 0 and, by (ND), f ′(p) Ó= 0. Elementary considerations using the 

Hamiltonian H show that if f ′(p) > 0, then (p, 0) is not contained in the closure of any homoclinic or 

heteroclinic orbit of (2.3). On the other hand, if f ′(p) < 0, then (MF) implies that (p, 0) is contained in the 

closure of a homoclinic or heteroclinic orbit contained in the halfplane {(u, v) : u > p} as well as of another 

one contained in the halfplane {(u, v) : u < p}.

Lemma 2.6. The following two statements are valid.

(i) Let Σ be a connected component of R
2 \ P0. Then Σ is a compact set contained in a level set of the 

Hamiltonian H and one has

Σ =
{

(u, v) ∈ R
2 : u ∈ J, v = ±

√

2(c − F (u))
}

where c is the value of H on Σ and J = [p, q] for some p, q ∈ R with p ≤ q. Moreover, if (u, 0) ∈ Σ and 

p < u < q, then (u, 0) is an equilibrium. If p < q, the points (p, 0) and (q, 0) lie on homoclinic orbits. If 

p = q, then Σ = {(p, 0)}, and p is an unstable equilibrium of (1.7).

(ii) Each connected component of the set R2 \ P consists of a single orbit of (2.3), either a homoclinic orbit 

or a heteroclinic orbit.

Proof. These results, except for the last two statements in (i) are proved in [23, Lemma 3.1] (and they 

are valid without the nondegeneracy condition (ND)). It is also proved there that the point (p, 0) is an 

equilibrium or it lies on a homoclinic orbit. We show that (p, 0) is not an equilibrium if p < q. Indeed, 

assume it is. Then, in view of (ND) and the relation p < q, there is a homoclinic or heteroclinic orbit of 

(2.3) (contained in Σ) having (p, 0) in its closure. Hence, necessarily, f ′(p) < 0, and then it follows that 

(p, 0) is in the closure of another homoclinic or heteroclinic orbit contained in {(u, v) : u < p} (see the 

remarks preceding the lemma). This contradicts the fact Σ is a connected component of R2 \ P0. Analogous 

arguments show that (q, 0) lies on a homoclinic orbit. For similar reasons, if Σ = {(p, 0)}, so (p, 0) is clearly 

an equilibrium, the relation f ′(p) < 0 would imply that Σ is not a connected component of R2 \ P0. Thus 

f ′(p) > 0. 2

The above Lemma motivates the following definitions. A chain is any connected component Σ of R2 \P0. 

We say that a chain is trivial if it consists of a single point.

If H is a connected component of R2 \P, let Λ(H) the set consisting of the closure of H and the reflection 

of H with respect to the u-axis. So Λ(H) is either the union of a homoclinic orbit and its limit equilibrium, 

or the union of two heteroclinic orbits and their common limit equilibria. We refer to Λ(H) as the loop

associated with H.

Hypotheses (ND) and (MF) imply that f has only finitely many zeros. Since any chain or loop contains 

an equilibrium, there is only a finite number of chains and loops. In particular, any chain is the union 

of finitely many loops. Also, any chain is a compact subset of R2 and so their (finite) union, that is, the 

set R2 \ P0, is compact. This implies that P0 admits a unique unbounded connected component and all 

connected components of P0 (as well P0 itself) are open sets.

If Σ is a chain, we denote by I(Σ) the union of all bounded connected components of R2 \Σ. Thus, I(Σ)

is the union of the interiors of the loops, viewed as Jordan curves, contained in Σ; if Σ consists of a single 

equilibrium (necessarily a center for (2.3)), I(Σ) = ∅. Since Σ is clearly compact in R2, the set I(Σ) is open. 

We also define I(Σ) = I(Σ) ∪ Σ. The set I(Σ) is closed and equal to the closure of I(Σ), except when Σ

consists of a single point, in which case I(Σ) = Σ. In a similar way we define the sets I(Λ), I(Λ), I(O), 

I(O), when Λ is a loop and O is a non-stationary periodic orbit.
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Fig. 1. The inner chain and outer loop associated with a connected component Π of P0: Π is indicated by the shaded region, Λout

and Σin form the boundary of Π. The outer loop can be a heteroclinic loop (as in this figure) or a homoclinic loop.

The following lemma introduces two key concepts: the inner chain and the outer loop associated with a 

connected component of P0 (see also Fig. 1).

Lemma 2.7. Let Π be any connected component of P0. The following statements hold true.

(i) The set Π is open.

(ii) There exists a unique chain Σin such that for all periodic orbits O ⊂ Π one has

I (Σin) ⊂ I(O) and I(O) \ I(Σin) ⊂ Π.

(iii) If Π is bounded, there exists a unique loop Λout such that for all periodic orbits O ⊂ Π one has

I(O) ⊂ I(Λout), and I(Λout) \ I(O) ⊂ Π.

(iv) There is a zero β of f such that f ′(β) > 0 and (β, 0) ∈ I(O), for all periodic orbits O ⊂ Π.

(v) If O1, O2 are two distinct periodic orbits contained in Π, then either O1 ⊂ I (O2) or O2 ⊂ I (O1) (thus, 

Π is totally ordered by this relation).

We refer to Σin and Λout as the inner chain and outer loop associated with Π; we denote them by Σin(Π)

and Λout(Π) if the correspondence to Π is to be explicitly indicated.

Proof of Lemma 2.7. The openness of Π follows from the compactness of R2 \ P0, as already mentioned 

above. This takes care of statement (i).

In the rest of the proof, we assume for definiteness that Π is bounded and prove statements (ii)-(v). The 

proof of statements (ii), (iv), (v) in the case that Π is the unique unbounded connected component of P0 is 

similar and is omitted.

Fix any periodic orbit O0 ⊂ Π. By (2.5), there are p0 < q0 such that O0 ∩ {(u, 0) : u ∈ R} =

{(p0, 0), (q0, 0)}, with f(p0) = F ′(p0) < 0 and f(q0) = F ′(q0) > 0. Define

q := sup{q < q0 : (q, 0) /∈ Π}, and q̂ := inf{q > q0 : (q, 0) /∈ Π}.

In other words, (q, q̂) is the maximal open interval containing q0 such that (q, q̂) × {0} ⊂ Π. The existence 

of such an interval is guaranteed by the openness of Π. Note also that none of the points (q, 0), (q̂, 0) is 

contained in P0. Indeed, if, say, (q, 0) ∈ P0, then a neighborhood of (q, 0) is contained in P0. By the definition 

of q, this whole neighborhood would necessarily be contained in the connected component Π, from which 

we immediately get a contraction to the definition of q. So, indeed, (q, 0), (q̂, 0) /∈ P0, in particular they are 

not equilibria of (2.3). Since there is no element of E in (q, q̂) × {0} ⊂ Π, we have F ′ = f Ó= 0 on (q, q̂) and 

F ′(q0) > 0 implies that F
′ > 0 on (q, q̂). In an analogous way, one finds a maximal interval (p̂, p) containing 
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p0 such that (p̂, p) ×{0} ⊂ Π, and proves that (p, 0), (p̂, 0) /∈ P0 and F ′ < 0 on (p̂, p). A continuity argument 

shows that the union of all (periodic) orbits of (2.3) intersecting the segment (q, q̂) × {0} is equal to the 

union of all orbits of (2.3) intersecting (p̂, p) × {0}. We denote this union by Π̃. As distinct orbits of (2.3)

do not intersect, it is clear that the periodic orbits contained in Π̃ are nested in the sense that (v) holds 

with Π replaced by Π̃. (We will prove below that in fact Π = Π̃, thereby proving statement (v).) Observe 

also that the points (p, 0), (q, 0) can be approximated arbitrarily closely by one orbit contained in Π̃. This 

implies that they are in the same level set of the Hamiltonian, that is, F (p) = F (q), and also that F ≤ F (q)

in (p, q). One easily proves from this that the points (p, 0), (q, 0) lie on the same chain which we denote by 

Σin. Using Lemma 2.6 (and the fact that (p, 0), (q, 0) are not equilibria), we can write:

Σin =
{

(u, v) ∈ R
2 : u ∈ [p, q], v = ±

√

2(F (q)− F (u))
}

. (2.6)

Similarly one shows that F (p̂) = F (q̂), F ≤ F (q̂) in (p̂, q̂), and the points (p̂, 0), (q̂, 0) lie on the same 

chain, which we denote by Σout. By Lemma 2.6,

Σout =
{

(u, v) ∈ R
2 : u ∈ [p̄, q̄], v = ±

√

2(F (q̂)− F (u))
}

for some p̄ ≤ p̂, q̄ ≥ q̂. The inequality for F actually holds in the strict sense: F < F (q̂) in (p̂, q̂), due to 

the previously established relation F ≤ F (q) in (p, q) and the strict monotonicity properties of F in the 

intervals (p̂, p), (q, q̂). It follows that the set

Λout :=
{

(u, v) ∈ R
2 : u ∈ [p̂, q̂], v = ±

√

2(F (q̂)− F (u))
}

(2.7)

is a loop contained in Σout. Clearly, Σin, Σout are distinct (hence disjoint) chains; in fact, they lie on two 

different level sets of the Hamiltonian H.

It is obvious from the above constructions that for any periodic orbit O ⊂ Π̃ we have

I (Σin) ⊂ I(O) ⊂ I(O) ⊂ I(Λout). (2.8)

We next claim that

I(Λout) \ I (Σin) = Π̃. (2.9)

That Π̃ is included in the set on the left has already been proved (cf. (2.8)); we prove the opposite inclusion. 

Take any (ξ, η) ∈ I(Λout) \ I (Σin). If (ξ, η) lies on a periodic orbit, then that orbit intersects the u-axis in 

the set ((q, q̂) ∪(p̂, p)) ×{0} (otherwise, in view of (2.6), (2.7) it would have to intersect one of the chain Σin, 

Σout, which is impossible), and hence (ξ, η) ∈ Π̃. If (ξ, η) does not lie on a periodic orbit, then it is contained 

in a chain disjoint from Σin ∪Σout, and such a chain would also have to intersect the set ((q, q̂) ∪(p̂, p)) ×{0}. 

This is impossible, as this set is included in Π̃ ⊂ P0. Thus (2.9) is true.

From (2.9) it follows that Π̃ is a connected component of P0, hence Π̃ = Π. As already noted above, 

this proves statement (v). Statements (iii) and (iv) follow from (2.8), (2.9). To prove statement (iv), take 

the minimum point β of F in [p, q]. Recalling that F ′(p) < 0, F ′(q) > 0, we see that β ∈ (p, q) and it is a 

local minimum point of F , hence f(β) = 0 and f ′(β) > 0, due to (ND). Statement (v) clearly holds for this 

β. 2

The following lemma shows a relation between any two distinct chains.

Lemma 2.8.
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(i) If Σ is any chain, then there is a connected component Π of P0 such that Σ is the inner chain associated 

with Π: Σ = Σin(Π).

(ii) If Σ1, Σ2 are any two distinct chains, then either Σ1 ⊂ I(Σ2), or Σ2 ⊂ I(Σ1), or else there are periodic 

orbits O1, O2 such that I(O1) ∩ I(O2) = ∅ and

Σ1 ⊂ I(O1), Σ2 ⊂ I(O2). (2.10)

Proof. Since there are only finitely many chains, for any given chain Σ there is a connected component Π

of P0 such that Π ⊂ R
2 \ I(Σ) and the boundary of Π contains points of Σ. It then follows from Lemma 2.7

that Σ = Σin(Π). This proves statement (i).

Let now Σ1, Σ2 be any two distinct chains, and let Π1, Π2 be the connected components of P0 such that 

Σj = Σin(Πi), j = 1, 2. Pick periodic orbits O1 ⊂ Π1, O2 ⊂ Π2. By Lemma 2.7, inclusions (2.10) hold. 

Clearly, exactly one of the following possibilities occurs:

(a) O1 ⊂ I(O2), (b) O2 ⊂ I(O1) (c) I(O1) ∩ I(O2) = ∅.

For the proof of statement (ii), it is now sufficient to prove that (a) implies that Σ1 ⊂ I(Σ2), and (b) implies 

Σ2 ⊂ I(Σ1). These being symmetrical cases, we only prove the former. Trivially, Σ1 ∩ (Π2 ∪ Σ2) = ∅; and 

Lemma 2.7(ii) gives I(O2) \ I(Σ2) ⊂ Π2. Thus, if (a) holds, which entails Σ1 ⊂ I(O2), then necessarily 

Σ1 ⊂ I(Σ2). 2

2.3. Limit sets and entire solutions

Recall that the ω-limit set of a bounded solution u of (1.1), denoted by ω(u), or ω(u0) if the initial 

value of u is given, is defined as in (1.4), with the convergence in L∞
loc(R). By standard parabolic estimates 

the trajectory {u(·, t), t ≥ 1} of u is relatively compact in L∞
loc(R). This implies that ω(u) is nonempty, 

compact, and connected in (the metric space) L∞
loc(R) and it attracts the solution in the following sense:

distL∞

loc(R) (u(·, t), ω(u)) −→
t→∞

0. (2.11)

It is also a standard observation that if ϕ ∈ ω(u), there exists an entire solution U(x, t) of (1.1), that is, a 

solution defined for all t ∈ R, such that

U(·, 0) = ϕ, U(·, t) ∈ ω(u) (t ∈ R). (2.12)

We recall briefly how such an entire solution U is found. By parabolic regularity estimates, ut, ux, uxx are 

bounded on R × [1, ∞) and are globally α-Hölder for any α ∈ (0, 1). If u(·, tn) −→
n→∞

ϕ in L∞
loc(R) for 

some tn → ∞, we consider the sequence un(x, t) := u(x, t + tn), n = 1, 2 . . . . Passing to a subsequence if 

necessary, we have un → U in C1
loc(R

2) for some function U ; this function U is then easily shown to be 

an entire solution of (1.1). By definition, U satisfies (2.12). Note that the entire solution U is determined 

uniquely by ϕ; this follows from the uniqueness and backward uniqueness for the Cauchy problem (1.1), 

(1.2).

Using similar compactness arguments, one shows easily that ω(u) is connected in C1
loc(R). Hence, the set

τ (ω(u)) = {(ϕ(x), ϕx(x)) : ϕ ∈ ω(u), x ∈ R} =
⋃

ϕ∈ω(u)

τ(ϕ)

is connected in R2. (Here, τ(ϕ) is as in (1.10).) Also, obviously, τ(ϕ) is connected in R2 for all ϕ ∈ ω(u).
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If U is a bounded entire solution of (1.1), we define its α-limit set by

α(U) := {ϕ ∈ Cb(R) : U(·, tn)→ ϕ for some sequence tn → −∞} . (2.13)

Here, again, the convergence is in L∞
loc(R). The α-limit set has similar properties as the ω-limit set: it is 

nonempty, compact and connected in L∞
loc(R) as well as in C1

loc(R), and for any ϕ ∈ α(U) there is an entire 

solution Ũ such that Ũ(·, 0) = ϕ and Ũ(·, t) ∈ α(U) for all t ∈ R. The connectivity property of α(U) implies 

that the set

τ (α(U)) = {(ϕ(x), ϕx(x)) : ϕ ∈ α(U), x ∈ R} =
⋃

ϕ∈α(U)

τ(ϕ)

is connected in R2.

We will also employ a generalized notion of α and ω-limit sets. Namely, if U is a bounded entire solution, 

we define

Ω(U) := {ϕ ∈ Cb(R) : U(·+ xn, tn)→ ϕ for some sequences xn ∈ R, tn → ∞} , (2.14)

A(U) := {ϕ ∈ Cb(R) : U(·+ xn, tn)→ ϕ for some sequences xn ∈ R, tn → −∞} . (2.15)

The convergence is in L∞
loc(R), but again one can take the convergence in C1

loc(R) without altering the sets 

Ω(U), A(U). These sets are nonempty, compact and connected in C1
loc(R), and they have a similar invariance 

property as ω(u) (cf. (2.12)). Also, by their definitions, the sets Ω(U), A(U) are translation invariant as 

well. Further, the definitions and parabolic regularity imply that the sets

τ (A(U)) =
⋃

ϕ∈A(U)

τ(ϕ), τ (Ω(U)) =
⋃

ϕ∈Ω(U)

τ(ϕ)

are connected and compact in R2. We remark that the sets τ(ω(u)), τ(α(u)) are both connected (as noted 

above), but they are not necessarily compact in R2.

2.4. Some results from earlier papers

Several earlier results are used repeatedly in the forthcoming sections. We state them here for reference.

Throughout this subsection, we assume that u0 ∈ Cb(R) (not necessarily in V), u is the solution of (1.1), 

(1.2) and it is bounded.

In view of the invariance property of ω(u) (see (2.12)), the following lemma gives a criterion for an 

element ϕ ∈ ω(u) to be a steady state. This unique-continuation type result is proved in a more general 

form in [35, Lemma 6.10].

Lemma 2.9. Let ϕ := U(·, 0), where U is a solution of (1.1) defined on a time interval (−δ, δ) with δ > 0

(this holds in particular if ϕ ∈ ω(u)). If τ(ϕ) ⊂ Σ for some chain Σ, then ϕ is a steady state of (1.1).

As already noted above, it is proved in [18] (see also [19]) that the ω-limit set of any bounded solution 

of (1.1) contains a steady state. For bounded entire solutions U , the same is true for the α-limit set due 

to its compactness and invariance properties (just apply the previous result to any entire solution Ũ with 

Ũ(·, t) ∈ α(U)). We state this in the following theorem.

Theorem 2.10. If U is a bounded entire solution of (1.1), then each of the sets ω(U) and α(U) contains a 

steady state of (1.1).
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In the next two results, we make use of the invariance of equation (1.1) under spatial reflections. For any 

λ ∈ R consider the function Vλu defined by

Vλu(x, t) = u(2λ − x, t)− u(x, t), x ∈ R, t ≥ 0. (2.16)

Being the difference of two solutions of (1.1), Vλu is a solution of the linear equation (2.1) for some bounded 

function c.

The following lemma is an adaptation of an argument from [2, Proof of Proposition 2.1].

Lemma 2.11. Let U be a solution of (1.1) on R × J , where J ⊂ R is an open time interval, and let θ ∈ R. 

Assume that for each t ∈ J the function U(·, t) − θ has at least one zero and

ξ(t) := sup{x : U(x, t) = θ}

is finite and depends continuously on t ∈ J . Then, for any t0, t1 ∈ J satisfying the relations t1 > t0 and 

ξ(t1) < ξ(t0), the function Ux(·, t1) is of constant sign on the interval (ξ(t1), ξ(t0)]. If J = (−∞, b) for some 

−∞ < b ≤ ∞ and lim supt→−∞ ξ(t) =∞, then Ux is of constant sign on (ξ(t), ∞), for all t ∈ J .

Analogous statements hold for ξ(t) = inf{x : U(x, t) = θ}.

Proof. Pick any λ ∈ (ξ(t1), ξ(t0)] and set t̄ := max {t ∈ [t0, t1) : ξ(t) = λ}. Consider the function VλU on 

the domain

Qλ :=
{

(x, t) : x ∈ (ξ(t), λ), t ∈ (t̄, t1)
}

.

Clearly, VλU(λ, t) = 0 for all t and, as ξ(t) is the last zero of U(·, t) − θ, VλU(ξ(t), t) is of constant sign on 

(t0, t1). Since VλU solves a linear parabolic equation (2.1), the maximum principle implies that VλU is of 

constant sign on the whole domain Qλ, and the Hopf lemma yields −2∂xU(λ, t1) = ∂xVλu(λ, t1) Ó= 0. Since 

λ ∈ (ξ(t1), ξ(t0)] was arbitrary, Ux(·, t1) is of constant sign on (ξ(t1), ξ(t0)].

To prove the second statement, fix any t′ ∈ J and let λ > ξ(t′). By the unboundedness assumption 

on ξ(t), t0 := sup{t < t′ : ξ(t) = λ} is a number in (−∞, t′). Applying the result just proved, we obtain 

Ux(λ, t′) Ó= 0. Since λ > ξ(t′) was arbitrary, we obtain the desired conclusion. 2

We next state a quasiconvergence result from our previous paper [29].

Theorem 2.12. Assume that u0 ∈ V and one of the following conditions holds:

(i) u0(−∞) Ó= u0(∞),

(ii) there is t > 0 such that for all λ ∈ R, one has z(Vλu(·, t)) < ∞.

Then, u is quasiconvergent.

If condition (i) is assumed, this is the content of the main theorem in [29]. In the proof of the theorem, 

we first proved that condition (i) and Lemma 2.1 imply that condition (ii) holds (this is actually the only 

place where condition (i) is used in the proof). As noted in [29, Remark 3.3], the quasiconvergence result 

holds if condition (i) is replaced by (ii) from the start.

The following result concerning various invariant sets for (1.1) is a variant of the squeezing lemma from 

[34]. This is an indispensable tool in our proofs.

Lemma 2.13. Let U be a bounded entire solution of (1.1) such that if β ∈ f−1{0} is an unstable equilibrium 

of (1.7), then
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z (U(·, t)− β) ≤ N (t ∈ R) (2.17)

for some N < ∞. Let K be any one of the following subsets of R2:

⋃

t∈R

τ (U(·, t)) , τ (ω(U)) , τ (Ω(U)) , τ (α(U)) , τ (A(U)) .

Assume that O is a non-stationary periodic orbit of (2.3) such that one of the following inclusions holds:

(i) K ⊂ I(O), (ii) K ⊂ R
2 \ I(O).

Let Π be the connected component of P0 containing O. If (i) holds, then K ⊂ I (Σin(Π)); and if (ii) holds, 

then K ⊂ R
2 \ I (Λout(Π)) (in particular, Π is necessarily bounded in this case).

Proof. We prove the result in the case (i) only, the proof in the case (ii) is analogous. To simplify the 

notation, let Σin := Σin(Π).

Take first K =
⋃

t∈R
τ (U(·, t)). We go by contradiction: assume that K Ó⊂ I (Σin). Then there exists a 

periodic orbit O1 ⊂ Π such that τ (U(·, t1)) ∩ O1 Ó= ∅, for some t1 ∈ R. By the hypotheses, K ⊂ I(O) and 

K is a compact set. Using the compactness and the ordering of periodic orbits contained in Π, as given in 

Lemma 2.7(v), we find the minimal periodic orbit Omin ⊂ P0 with K ⊂ I (Omin). Clearly,

K ⊂ I (Omin), K ∩ Omin Ó= ∅. (2.18)

Hence, there exist sequences xn, tn such that

(U(xn, tn), Ux(xn, tn)) −→
n→∞

(a, b) ∈ Omin.

Let ψmin be a periodic solution of (1.6) with ψmin(0) = a, ψ′
min(0) = b, so that τ(ψmin) = Omin. Consider 

the sequence of functions Un := U(· + xn, · + tn). By parabolic estimates, upon extracting a subsequence, 

Un converges in C1
loc(R

2) to an entire solution U∞ of (1.1). Obviously, U∞(·, 0) − ψmin has a multiple zero 

at x = 0.

We claim that U∞ Ó≡ ψmin. Indeed, by Lemma 2.7(iv), there exists an unstable equilibrium β of (1.7)

such that z(ψmin − β) = ∞. Hence, there exists M > 0 such that z(−M,M)(ψmin − β) > N + 1, where N is 

as in (2.17). Obviously, all zeros of ψmin − β are simple. Considering that U(· +xn, tn) converges uniformly 

on (−M, M) to U∞(·, 0) and z(−M,M) (U(·+ xn, tn)− β) ≤ N , we see that U∞ cannot be identical to ψmin.

Now, using Lemma 2.7(v), we find a sequence On of periodic orbits such that On+1 ⊂ I (On), O ⊂ I (On), 

for n = 1, 2, . . . , and dist (On, Omin) → 0.2 There is a sequence ψn of periodic solutions of (1.6) such that 

τ(ψn) = On and ψn → ψmin in C1
loc(R). Then, the sequence of functions wn := Un − ψn converges in 

C1
loc(R

2) to w(x, t) := U∞(x, t) − ψmin(x), which is an entire solution of a linear parabolic equation (2.1). 

Since w(·, 0) has a multiple zero at x = 0 and w(·, 0) Ó≡ 0, Lemma 2.5 implies that there exist n0, x0, δ0 such 

that the function wn0
(·, δ0) has a multiple zero at x = x0. Consequently,

τ (U(·, tn0
+ δ0)) ∩ On0

Ó= ∅. (2.19)

However, since Omin ⊂ I(On0
), (2.19) contradicts (2.18). This contradiction concludes the proof of 

Lemma 2.13 in the case K = ∪
t∈R

τ (U(·, t)).

2 Here and below, for A, B ⊂ R
2, dist(A, B) = infa∈A,b∈B |a − b|.
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If K is any of the sets τ (ω(U)), τ (Ω(U)), τ (α(U)), τ (A(U)), then the conclusion follows from the 

previous case and the invariance properties of these sets. Indeed, consider K = τ (ω(U)) for instance, the 

other cases being similar. For any ϕ ∈ ω(U) there is an entire solution Ũ with Ũ(·, t) ∈ ω(U) for all t and 

Ũ(·, 0) = ϕ. Then K̃ := ∪
t∈R

τ
(

Ũ(·, t)
)

satisfies the hypotheses of the first case, and so K̃ is included in 

I (Σin). This is true for all ϕ ∈ ω(U), hence τ (ω(U)) ⊂ I (Σin). 2

Finally, we recall the following well known result concerning the solutions in V (the proof can be found 

in [38, Theorem 5.5.2], for example).

Lemma 2.14. Assume that u0 ∈ V. Then the limits

θ−(t) := lim
x→−∞

u(x, t), θ+(t) := lim
x→∞

u(x, t) (2.20)

exist for all t > 0 and are solutions of the following initial-value problems:

θ̇± = f(θ±), θ±(0) = u0(±∞). (2.21)

3. Spatial trajectories of entire solutions in ω(u)

Throughout this section, we assume, in addition to the standing hypotheses (ND), (MF) on f , that 

u0 ∈ V, u0(±∞) = 0, and the solution of (1.1), (1.2) is bounded. We reserve the symbol u(x, t) for this fixed 

solution.

Due to (2.21), the limits (2.20) are equal: θ+ ≡ θ− =: θ̂, where θ̂ is the solution of (1.7) with θ̂(0) ≡ 0. 

This gives the first two statements of the following corollary; the last statement follows from Lemma 2.1.

Corollary 3.1. If f(0) = 0, then θ̂ ≡ 0; we set θ := 0 in this case. If f(0) Ó= 0, then θ̂(t) → θ ∈ R as t → ∞, 

where θ ∈ f−1{0} is a stable equilibrium of (1.7). In either case, if ψ is any periodic steady state of (1.6)

such that θ is not in the range of ψ, then there exists T > 0 such that z(u(·, t) − ψ) < ∞ for all t > T .

Following the outline given in Section 1.4, we examine the elements ϕ of ω(u) whose spatial trajectories are 

not contained in any chain. At the end, we want to show that no such elements of ω(u) exist (an application 

of Lemma 2.9 then yields the desired quasiconvergence results). For that aim, we first examine the entire 

solutions through such elements ϕ ∈ ω(u). In Proposition 3.2 below, we expose a certain structure these 

entire solutions would necessarily have to have. Then, in Section 6, we show that structure is incompatible 

with other properties of the ω-limit set.

Up to a point, we treat the cases (S) and (U) simultaneously. When (U) holds, we sometimes have to 

assume one or both of the extra conditions (NC), (R); we indicate when this is needed. The following 

notation will be used in the case (U): Π0 is the connected component of P0 whose closure contains (0, 0). 

Note that Π0 is well defined, for f
′(0) > 0 implies that (0, 0) is a center for (2.3).

Proposition 3.2. Under the above hypotheses, assume that ϕ ∈ ω(u) and let U be the entire solution of (1.1)

with U(·, 0) = ϕ. Assume that τ(ϕ) ∩ P0 Ó= ∅, so that there exists a connected component Π of P0 with

τ(ϕ) ∩Π Ó= ∅. (3.1)

If (S) holds, or if (U) holds and Π Ó= Π0, then the following statements are true.
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(i) The connected component Π satisfying (3.1) is unique, it is bounded, and

⋃

t∈R

τ (U(·, t)) ⊂ Π. (3.2)

(ii) Let Σin = Σin(Π) be the inner chain and Λout = Λout(Π) the outer loop associated with Π, as in 

Lemma 2.7. Then

τ (α(U)) ⊂ Σin, τ (ω(U)) ⊂ Λout. (3.3)

If (U) holds and Π = Π0, then statement (i) is true if condition (NC) is satisfied, and statement (ii) is true 

if conditions (NC) and (R) are both satisfied.

Statement (i) is proved in the next subsection. Subsection 3.2 is devoted to the behavior at x ≈ ±∞

of U(·, t), and subsection 3.3 to additional properties when (U) holds. Statement (ii) is then proved in 

sections 4 and 5.

For the remainder of this section, we fix ϕ ∈ ω(u) and denote by U the entire solution of (1.1) such that 

U(·, 0) = ϕ and U(·, t) ∈ ω(u) for all t. Recall from Section 2.3 that there exists a sequence tn → ∞ such 

that

u(·, ·+ tn) −→
n→∞

U in C1
loc(R

2). (3.4)

3.1. No intersection with chains

In this subsection, we prove statement (i) of Proposition 3.2. The following result is a first step toward 

that goal.

Lemma 3.3. Let Σ ⊂ R
2 be a nontrivial chain. If τ(ϕ) ∩ I(Σ) Ó= ∅, then

τ(U(·, t)) ⊂ I(Σ) (t ∈ R) (3.5)

(in particular, τ(U(·, t)) ∩ Σ = ∅ for all t ∈ R). The result remains valid if one considers a loop Λ in place 

of the chain Σ.

Proof. Note that the second statement is a consequence of the first one; just consider the chain Σ containing 

the loop Λ and use the connectedness of the set ∪t∈Rτ(U(·, t)).

Let Σ be a nontrivial chain. We first show that the assumption τ(ϕ) ∩ I(Σ) Ó= ∅ implies

τ(ϕ) ∩ Σ = ∅. (3.6)

Assume for a contradiction that the intersections are both nonempty. The relation τ(ϕ) ∩Σ Ó= ∅ means that 

there is a steady state φ of (1.1) such that τ(φ) ⊂ Σ and U(·, 0) −φ = ϕ −φ has a multiple zero at some point 

x0. Using both assumptions τ(ϕ) ∩Σ Ó= ∅ and τ(ϕ) ∩I(Σ) Ó= ∅, together with the connectedness of τ(ϕ) and 

the fact that distinct chains are disjoint with positive distance, we find a periodic orbit O ⊂ P0 ∩ I(Σ) such 

that τ(U(·, 0)) ∩O Ó= ∅. Hence there is a steady state ψ of (1.1) such that τ(ψ) = O (so ψ is nonconstant and 

periodic) and U(·, 0) − ψ = ϕ − ψ has a multiple zero at some x1. Obviously, U(·, 0) − φ Ó≡ 0 Ó≡ U(·, 0) − ψ.

From τ(φ) ⊂ Σ, we infer that φ is either a ground state at some level a ∈ f−1{0}, or a standing wave 

with some limits a, b ∈ f−1{0}, or a constant steady state a. We just consider the first possibility, the other 

two being similar. Assuming that φ is a ground state at level a, we first show that necessarily a = 0 (and 
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consequently 0 is a stable equilibrium of (1.7), cf. Sect. 2.2). Indeed, the function w(x, t) = U(x, t) − φ(x)

is a nontrivial solution of a linear equation (2.1) and w(·, 0) has a multiple zero at x = x0. By (3.4), the 

sequence wn := u(·, · + tn) − φ converges in C1
loc(R

2) to w. Therefore, by Lemma 2.5, there exist sequences 

xn → x0, δn → 0 such that for all sufficiently large n the function wn(·, δn) has a multiple zero at x = xn. 

In other words, u(·, tn + δn) − φ has a multiple zero at x = xn. Since tn + δn → ∞ and u(·, t) Ó≡ φ (due to 

the assumption τ(ϕ) ∩ I(Σ) Ó= ∅), Lemma 2.1 implies that z(u(·, t) − φ) = ∞ for all t > 0. Now, φ(±∞) = a

and u(±∞, t) = θ̂(t), where f(a) = 0 (and a is a stable equilibrium of (1.7)) and θ̂ is a solution of (1.7). If 

θ̂(t) Ó= a for some (hence any) t, then, by Lemma 2.1, z(u(·, t) − φ) < ∞. Thus, necessarily, θ̂ ≡ a, which 

shows that a = 0, as desired.

To conclude, we use the fact that (0, 0) = (a, 0) belongs to Σ, as does τ(φ). Since Σ is connected and 

τ(ψ) ⊂ I(Σ), we have either ψ > 0 or ψ < 0. Therefore, by Corollary 3.1, z(u(·, t) − ψ) < ∞ for all large 

enough t. On the other hand, using Lemma 2.5 in a similar way as above, since U(·, t1) − ψ has a multiple 

zero and U(·, t1) Ó≡ ψ, we obtain that z(u(·, t) − ψ) = ∞ for all t > 0. This contradiction completes the 

proof of (3.6).

Using (3.6), the connectedness of τ(ϕ), and the assumption τ(ϕ) ∩I(Σ) Ó= ∅ we obtain that τ(ϕ) ⊂ I(Σ). 

The stronger statement (3.5) follows from this. Indeed, if (3.5) is not valid, then for some t1, we have 

τ(U(·, t1)) ⊂ I(Σ) and τ(U(·, t1)) ∩Σ Ó= ∅. At the same time, τ(U(·, t1)) Ó⊂ Σ (otherwise, U ≡ ϕ is a steady 

state, by Lemma 2.9, and then τ(ϕ) ⊂ Σ would contradict the assumption). Thus, τ(U(·, t1)) ∩ I(Σ) Ó= ∅. 

Applying what we have already proved to U(·, t1) ∈ ω(u) in place of ϕ, we obtain τ(U(·, t1)) ∩ Σ = ∅, a 

contradiction. The proof is now complete. 2

The next result is analogous to the previous one, but the proof requires different arguments.

Lemma 3.4. If Σ is a nontrivial chain and τ(ϕ) ∩ (R2 \ I (Σ)) Ó= ∅, then

τ(U(·, t)) ⊂ R
2 \ I (Σ) (t ∈ R) (3.7)

(in particular, τ(U(·, t)) ∩ Σ = ∅ for all t ∈ R).

Proof. It is sufficient to prove that τ(ϕ) ∩Σ = ∅. The stronger conclusion (3.7) follows from this by a similar 

argument as in the last paragraph of the previous proof.

We go by contradiction. Assume that τ(ϕ) ∩ (R2 \ I (Σ)) Ó= ∅ and at the same time τ(ϕ) ∩Σ Ó= ∅. Then, 

there is a solution φ of (1.6) with τ(φ) ⊂ Σ such that U(·, 0) −φ = ϕ −φ has a multiple zero at some x = x0. 

Clearly, φ is either a ground state, or a standing wave, or a zero of f which is the limit of some ground state 

or standing wave. In either case, τ(φ) is contained in a loop Λ ⊂ Σ. To derive a contradiction, we choose 

a sequence ψn of periodic solutions of (1.6) such that On := τ(ψn) ⊂ I(Λ) and ψn → φ in C1
loc(R) (the 

existence of such a sequence of periodic orbits On is guaranteed by Lemma 2.7 and the fact that distinct 

chains are disjoint with positive distance). Then the sequence wn(x, t) := U(x, t) − ψn(x) converges in 

C1
loc(R

2) to w(x, t) := U(x, t) − φ, a solution of a linear equation (2.1). Since U(·, 0) = ϕ Ó≡ φ, we have that 

w Ó≡ 0. Moreover, w(·, 0) has a multiple zero at x = x0. Hence, by Lemma 2.5, there exist n1, t1 such that 

wn1
(·, t1) has a multiple zero. This means that τ(U(·, t1)) ∩ On1

Ó= ∅, hence τ(U(·, t1)) ∩ I(Λ) Ó= ∅. Applying 

Lemma 3.3 to U(·, t1) in place of ϕ, and taking t = 0 in (3.5), we obtain a contradiction to the assumption 

that τ(ϕ) ∩ (R2 \ I (Σin)) Ó= ∅. 2

In the next lemma, we deal with a trivial chain Σ, that is, Σ = {(β, 0)}, where β is an unstable equilibrium 

of (1.7).

Lemma 3.5. Assume that Σ = {(β, 0)} is a trivial chain. If β = 0 (so (U) holds), assume also that condition

(NC) is satisfied. Then (β, 0) /∈ τ(ϕ), which is the same as τ(ϕ) ∩ Σ = ∅, unless U ≡ ϕ ≡ β = 0.
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Proof. Assume that (β, 0) ∈ τ(ϕ). If ϕ Ó≡ β, then U − β is a nontrivial solution of a linear equation. Hence, 

by Lemma 2.5, there is a sequence tn → ∞ such that u(·, tn) − β has a multiple zero for n = 1, 2, . . . . Then 

by Lemma 2.1,

z(u(·, t)− β) = ∞ (t > 0), (3.8)

which is possible only if u(±∞, t) = β for all t > 0. Since β is an unstable equilibrium of (1.7), this relation 

means that (U) holds and β = 0. However, in this situation assumption (NC) is in effect, which clearly 

contradicts (3.8). This contradiction shows that for (β, 0) ∈ τ(ϕ) it is necessary that U ≡ ϕ ≡ β = 0. 2

We are ready to complete the proof of Proposition 3.2(i).

Proof of Proposition 3.2(i). Assume that (3.1) holds for a connected component Π of P0. We first claim 

that Π is bounded. Suppose not. Since u(·, t) and ux(·, t) are uniformly bounded as t → ∞, using (MF) 

we find a periodic orbit O ⊂ Π such that τ(U(·, t)) ⊂ I(O), for all t ∈ R. Then Lemma 2.13 implies that 

τ(ϕ) = τ(U(·, 0)) ⊂ I (Σin(Π)), in contradiction to (3.1).

Thus Π is indeed bounded. Let Σin and Λout be the inner chain and outer loop associated with Π (as 

in Proposition 3.2(ii)). If Π Ó= Π0, then Lemmas 3.3–3.5 show that τ(U(·, t)) ⊂ Π for all t ∈ R. The same 

applies if Π = Π0—in which case Σin = {(0, 0)}—under the extra assumption (NC). This in particular 

shows the uniqueness of Π satisfying (3.1). 2

We finish the subsection with a result ruling out some functions, including all nonconstant periodic steady 

states, from ω(u).

Lemma 3.6. Let ψ be a nonconstant periodic solution of (1.6) and O := τ(ψ). The following statements are 

valid.

(i) If (0, 0) /∈ I(O), then ω(u) contains no function φ satisfying τ(φ) ∩ I(O) Ó= ∅. In particular, ω(u) does 

not contain ψ itself and neither it contains any nonzero β ∈ f−1{0} which is an unstable equilibrium of 

(1.7).

(ii) If (0, 0) ∈ I(O) and either (S) holds, or (U) holds together with (NC), then ψ /∈ ω(u).

Proof. First we prove that ψ /∈ ω(u). By Lemma 2.7(iv), there is β ∈ f−1{0} such that β is an unstable 

equilibrium of (1.7) and z(ψ − β) = +∞. Obviously, all zeros of ψ − β are simple. Hence, if ψ ∈ ω(u), then 

z(u(·, tn) − β) → ∞ for some sequence tn → ∞. This is not possible, by Lemma 2.1, if β Ó= 0. Neither 

is it possible if β = 0—which, due to the instability of β, would mean that (U) holds—if (NC) holds, for 

Lemma 2.1 implies that z(ux(x, t)) is finite and bounded uniformly in t > 0. We have thus proved that 

statement (ii) holds, and also that ψ /∈ ω(u) if (0, 0) /∈ I(O).

To complete the proof of statement (i), assume that (0, 0) /∈ I(O). Suppose for a contradiction that ω(u)

contains a function φ satisfying τ(φ) ∩ I(O) Ó= ∅.

First we find a contradiction if φ is a steady state of (1.1). Note that in this case, the assumption 

τ(φ) ∩ I(O) Ó= ∅ implies that either τ(φ) ⊂ I(O) or φ is a shift of ψ. If φ is a nonconstant periodic 

solution, we just use the result proved above with ψ replaced by φ to obtain that φ /∈ ω(u). If φ is not a 

nonconstant periodic solution, then it is a constant, or a ground state, or a standing wave. In any case, one 

has (φ(x), φ′(x)) → (ϑ, 0) as x → ∞, where (ϑ, 0) is an equilibrium of (2.3). Obviously, (ϑ, 0) ∈ I(O). This 

implies that z(ψ − φ) = +∞. Clearly, all zeros of ψ − φ are simple. Since φ ∈ ω(u), there is a sequence 

tn → ∞ such that z(u(·, tn) − ψ) → ∞. However, due to the assumption that (0, 0) /∈ I(O), 0 is not in 

the range of ψ. So, by Lemma 4.4, z(u(·, t) − ψ) is finite and uniformly bounded as t → ∞, and we have a 

contradiction.
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Next we derive a contradiction if φ is not a steady state and τ(φ) ∩ τ(ψ) Ó= ∅. Take the entire solution 

Ũ of (1.1) with Ũ(·, 0) = φ. The assumption on φ implies that replacing ψ by a suitable shift if necessary, 

φ − ψ = U(·, 0) − ψ has a multiple zero. We have φ Ó≡ ψ, as ψ /∈ ω(u) ∋ φ. Also we know, cf. (3.4), that 

there is a sequence t̃n → ∞ such that u(·, · + t̃n) → Ũ in C1
loc(R

2). Therefore, by Lemma 2.5, there is a 

sequence τn → 0 such that u(·, · + t̃n + τn) − ψ has a multiple zero. Consequently, since t̃n + τn → ∞, 

z(u(·, t) − ψ) = ∞ for all t > 0 and this is a contradiction as in the previous case.

It remains to find a contradiction when τ(φ) ⊂ I(O) and φ is not a steady state. In this case, there is a 

periodic orbit Õ ⊂ I(O) such that Õ ∩ τ(φ) Ó= ∅. Using the previous argument, with O replaced by Õ, we 

obtain a contradiction in this case as well.

Finally, if β Ó= 0 is an unstable equilibrium of (1.7), then, by (ND), f ′(β) > 0. This implies that (β, 0) is 

a center for (2.3), hence any neighborhood of (β, 0) contains a periodic orbit Õ = τ(ψ̃) of (2.3) satisfying 

(β, 0) ∈ I(Õ). We can choose such a periodic orbit so that (0, 0) /∈ I(Õ). Then, taking φ ≡ β and using 

what we have already proved of statement (i) (with ψ replaced by ψ̃), we conclude that β /∈ ω(u). 2

3.2. Existence of the limits at spatial infinity

In this subsection, we assume that Π is as in (3.1); and Σin = Σin(Π), Λout = Λout(Π), as in Proposi-

tion 3.2(ii). If (U) holds and Π = Π0, also assume that (NC) holds.

Recall that we have fixed ϕ ∈ ω(u) and denoted by U be the entire solution of (1.1) with U(·, 0) = ϕ. By 

Proposition 3.2(i), U satisfies (3.2).

As a first step toward the proof of statement (ii) of Proposition 3.2, we show that the limits U(±∞, t)

exist and, at least when Π Ó= Π0 are independent of t.

Recall from Section 2.2 that Σin, as any other chain, has the following structure:

Σin =
{

(u, v) ∈ R
2 : u ∈ J, v = ±

√

2 (F (p)− F (u))
}

, J = [p, q], (3.9)

for some p ≤ q. If p = q, then Σin is trivial: it reduces to a single equilibrium (p, 0). Necessarily, p is an 

unstable equilibrium of (1.7) in this case. If p < q, then (p, 0) and (q, 0) lie on (distinct) homoclinic orbits 

and

f(p) = F ′(p) < 0, f(q) = F ′(q) > 0; F (u) ≤ F (p) (u ∈ [p, q]). (3.10)

We define

β− := min{β ∈ [p, q], f(β) = 0}, β+ := max{β ∈ [p, q], f(β) = 0}. (3.11)

These are well-defined finite quantities, as every chain contains equilibria (finitely many of them, by (ND)). 

Of course, if p = q, then β− = β+ = p. Otherwise, (β−, 0), (β+, 0) are contained in the interiors of distinct 

homoclinic loops. This implies that p < β− < β+ < q and

(β±, 0) ∈ I(Σin); in particular, (β−, 0) /∈ Σin, (β+, 0) /∈ Σin. (3.12)

Also, the definition of β−, β+ and (3.10) imply that β−, β+ are unstable equilibria of (1.7).

In the following lemma, we relate β± and the limit θ = limt→∞ u(±∞, t) (cf. Corollary 3.1).

Lemma 3.7. The following statements hold:

(i) If p = q (that is, Σin = {(p, 0)}), then necessarily β± = p = 0 (= u0(±∞)) and so (U) holds and 

Π = Π0.
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(ii) If 0 is a stable equilibrium of (1.7) or if f(0) Ó= 0 (so that θ Ó= 0), then

β− < θ < β+. (3.13)

Proof. Pick a periodic orbit O ⊂ Π such that τ(ϕ) ∩ O Ó= ∅, and let ψ be a periodic solution of (1.6) with 

O = τ(ψ). Then, possibly after replacing ψ by a suitable shift, U(·, 0) − ψ = ϕ − ψ has a multiple zero. By 

Lemma 3.6, ϕ Ó≡ ψ. Applying Lemma 2.5, we find a sequence tn → ∞ such that u(·, tn) − ψ has a multiple 

zero, and then it follows from Lemma 2.1 that z(u(·, t) − ψ) = ∞ for all t > 0. Corollary 3.1 now tells us 

that θ must be in the range of ψ. Hence, by the definition of Σin,

(θ, 0) ∈ I(Σin).

This and the definition of β± give

β− ≤ θ ≤ β+. (3.14)

If p = q, then Σin = {(p, 0)}, so θ = p, and θ is an unstable equilibrium of (1.7). By Corollary 3.1, θ = 0

and statement (i) is proved.

Assume now that 0 is a stable equilibrium of (1.7) or f(0) Ó= 0. In both cases, θ is a stable equilibrium of 

(1.7). Also, the case p = q is ruled out. The stability of θ and the instability of β± imply that (3.14) holds 

with the strict inequalities, completing the proof of statement (ii). 2

Remark 3.8. Note that θ̂(t) = u(±∞, t), being a solution of (1.7), cannot go across an equilibrium of (1.7). 

Thus (3.13) implies that

β− < u(±∞, t) < β+ (t ≥ 0), in particular, β− < 0 < β+. (3.15)

We can now prove the existence of the limits

Θ−(t) := lim
x→−∞

U(x, t), Θ+(t) := lim
x→∞

U(x, t). (3.16)

Lemma 3.9. The limits (3.16) exist for all t ∈ R. Moreover, the following statements hold:

(i) If p < q (that is, Σin is a nontrivial chain), then Θ−(t), Θ+(t) are independent of t, and their constant 

values, denoted by Θ−, Θ+, satisfy (Θ±, 0) ∈ Σin ∪ Λout. Also, Θ± are stable equilibria of (1.7).

(ii) If p = q (that is, Σin = {(0, 0)}, condition (U) holds, and Π = Π0), then Θ−(t) is either independent 

of t and its constant value Θ− satisfies (Θ−, 0) ∈ {(0, 0)} ∪ Λout, or it is a strictly monotone solution 

of (1.7) with Θ−(−∞) = 0 and (Θ−(∞), 0) ∈ Λout. The same is true for Θ+(t).

Proof. From (3.2) we in particular obtain that τ(U(·, t)) cannot intersect the u-axis between p and q, or, 

in other words,

Ux(x, t) Ó= 0 whenever U(x, t) ∈ [p, q]. (3.17)

Assume now that for some t = t0 one of the limits in (3.16), say the one at ∞, does not exist:

ℓ := lim sup
x→∞

U(x, t0) > ℓ := lim inf
x→∞

U(x, t0).

Then there is a sequence xn of local-maximum points of U(·, t0) and a sequence xn of local-minimum points 

of U(·, t0), such that xn → ∞, xn → ∞, and
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U(xn, t0)→ ℓ, U(xn, t0) → ℓ. (3.18)

In view of (3.17), we may also assume, passing to a subsequence if necessary, that either p > U(xn, t0) for 

all n or U(xn, t0) > q for all n. We assume the former, the latter can be treated similarly. Obviously, we 

also have

p ≥ ℓ ≥ p̂ := inf{(u : (u, 0) ∈ Π}. (3.19)

Observe that there is no zero of f in (p̂, β−), and the instability of β− implies f < 0 in (p̂, β−).

Pick ξ0 > ℓ so close to ℓ that also ξ0 < min{ℓ, β−}. Clearly, each of the functions U(·, t0) − ξ0 and 

Ux(·, t0) has infinitely many sign changes, which implies, by (3.4), that z(u(·, t0 + tn) − ξ0) → ∞ and 

z(ux(·, t0+tn)) → ∞ as n → ∞. The latter immediately gives contradiction if p = q = 0. Indeed, in this case 

Π = Π0, so condition (NC) is in effect, which implies, by Lemma 2.1, that z(ux(·, t)) is finite and bounded 

as t → ∞. If p < q, we employ the former. Take the solution ξ(t) of (1.7) with ξ(t0) = ξ0. Since f < 0 in 

(p̂, β−), we have ξ(t) ր β− as t → −∞. The monotonicity of the zero number gives z(u(·, s) −ξ(s −tn)) → ∞

as n → ∞ for any s > 0. On the other hand, by (3.15), the function u(·, s) − β− has only finitely many 

zeros, and by Lemma 2.1 we may fix s > 0 such that all these zeros are simple. Then, since ξ(s − tn) → β−

as n → ∞ and (3.15) holds, for all sufficiently large n we have z(u(·, s) − ξ(s − tn)) = z(u(·, s) − β−), which 

yields a contradiction.

Thus, (3.16) is proved, and parabolic estimates imply that also

lim
x→−∞

Ux(x, t) = 0, lim
x→∞

Ux(x, t) = 0. (3.20)

It follows that for any t the points (Θ±(t), 0)) are contained in Π̄. If for some t the point (Θ−(t), 0)) is equal 

to an equilibrium (η, 0) of (2.3) in Σin ∪Λout, then Θ−(t) is independent of t (as it is a solution of (1.7) and 

f(η) = 0). Otherwise, Θ−(t) ≤ p or Θ−(t) ≥ q and one shows easily (as for the solution ξ(t) above) that 

Θ−(t) converges as t → −∞ to β− or β+, respectively. In this case, we also obtain that either (β−, 0) ∈ Π̄

or (β+, 0) ∈ Π̄, which can hold only if p = q.

We conclude that if p < q, then Θ−(t) takes a constant value Θ− for all t, and (Θ−, 0) is an equilibrium 

of (2.3) in Σin ∪ Λout. The fact that (Θ−, 0) is contained in a nontrivial chain implies that Θ− is a stable 

equilibrium of (1.7) (cf. Sect. 2.2). This proves statement (i) for Θ−(t); the proof for Θ+(t) is analogous.

If p = q (and Σin = (0, 0)), we have proved that Θ−(t) is either independent of t and (Θ−, 0) is an 

equilibrium of (2.3) contained in {(0, 0)} ∪Λout, or it is a strictly monotone solution of (1.7) with Θ−(−∞) =

0 (= β±). In the latter case, Θ−(t) converges as t → ∞ to a zero η of f such that (η, 0) ∈ Π̄\ {(0, 0)}. Thus, 

necessarily, (η, 0) ∈ Λout. The arguments for Θ+(t) are similar. The proof is now complete. 2

Remark 3.10. Note that we have used the inclusion U(·, t) ∈ ω(u) to prove the existence of the limits (3.16)

only. Once the existence of the limits has been proved, the inclusion was no longer used and statements (i), 

(ii) were derived from (3.16), (3.2) alone.

3.3. Additional properties when (U) and (NC) hold

As in the previous subsection, we assume that Π is as in (3.1) and Σin = Σin(Π), Λout = Λout(Π), but 

here we specifically assume that (U) holds and Π = Π0. So Σin is the trivial chain {(0, 0)}. We also assume 

that (NC) holds.

By Proposition 3.2(i), the entire solution U satisfies

⋃

t∈R

τ (U(·, t)) ⊂ Π0. (3.21)
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Lemma 3.11. The following statements are valid.

(i) There is a positive integer m such that for all t ∈ R one has z(Ux(·, t)) ≤ m and all zeros of Ux(·, t) are 

simple.

(ii) For any t ∈ R, the function U(·, t) has no positive local minima and no negative local maxima.

Proof. First we prove that all zeros of Ux(·, t) are simple. Suppose for a contradiction that x0 is multiple 

zero of Ux(·, t0) for some t0. By parabolic regularity, since f is Lipschitz, the function ux is bounded in 

C1+α(R2) for some α ∈ (0, 1). Therefore, by (3.4),

ux(·, ·+ tn) −→
n→∞

Ux (3.22)

in C1
loc(R

2). It now follows from Lemma 2.5, that there is a sequence τn → 0 such that ux(·, · + tn+ τn) has 

a multiple zero. Consequently, since tn + τn → ∞, z(ux(·, t)) =∞ for all t > 0, in contradiction to (NC).

The simplicity of the zeros of Ux(·, t) for any t ∈ R is thus proved, and from (3.22) and (NC) it follows 

that the other statement in (i) is valid as well.

Take now t0 such that the (finite) zero number k := z(ux(·, t)) is independent of t for t ≥ t0 and all zeros 

of ux(·, t) simple. Such t0 exists due to (NC) and Lemma 2.1. Then, for t > t0, the zeros of ux(·, t) are given 

by a k-tuple ξ1(t) < · · · < ξk(t), where ξ1, . . . , ξk are C
1 functions of t.

Observe also that z(u(·, t)) is finite for all t > t0. Since f(0) = 0 due to (U), u itself is a solution of a 

linear equation (2.1). Therefore, making t0 larger if necessary, we may assume that all zeros of u(·, t) are 

simple for t > t0. In particular, u(ξi(t), t) Ó= 0 for t > t0, i = 1, . . . , k.

Let ξ(t) be any of the functions ξ1(t), . . . , ξk(t). Since ξ(t) is a simple zero of ux(·, t), it is a local minimum 

point of u(·, t) for all t > t0 or a local maximum point of u(·, t) for all t > t0. Moreover, u(ξ(t), t) does not 

change sign on (t0, ∞).

Assume now that u(ξ(t), t) is a positive local minimum of u(·, t) for some—hence any—t > t0. Since

d

dt
u(ξ(t), t) = ut(ξ(t), t) = uxx(ξ(t), t) + f(u(ξ(t), t)) ≥ f(u(ξ(t), t)),

the positivity and boundedness of u(ξ(t), t) imply that lim inft→∞ u(ξ(t), t) ≥ γ+, where γ+ is the smallest 

positive zero of f . For any function ϕ̃ ∈ ω(u) this clearly means that if ϕ̃ has a positive local minimum 

m, then m ≥ γ+. Applying this to ϕ̃ := U(·, t), for any t ∈ R, we obtain, since τ(U(·, t)) ⊂ Π0, that 

U(·, t) can have no positive local minimum. Similarly one shows that U(·, t) does not have any negative 

local maximum. 2

Under condition (R), the critical points of U(·, t) stay in a bounded interval:

Lemma 3.12. Assume that, in addition to (U) and (NC), condition (R) holds. Then there is a constant d > 0

such that for every t ∈ R the critical points of U(·, t) are all contained in (−d, d). Moreover, the number of 

the critical points of U(·, t) and the number of its zeros are both (finite and) independent of t.

Proof. As in the previous proof, there is t0 > 0 such that for all t > t0 the zeros of ux(·, t) are given 

by a k-tuple ξ1(t) < · · · < ξk(t), where ξ1, . . . , ξk are C
1 functions of t. Let ξ(t) be any of the functions 

ξ1(t), . . . , ξk(t).

Take sequences an → −∞, bn → ∞ as in (R) and let λ ∈ {a1, a2, . . . } ∪ {b1, b2, . . . }, so Vλu(·, t) :=

u(2λ − ·, t) − u(·, t) has only finitely many zeros if t is sufficiently large. Since x = λ is one of these zeros, 

Lemma 2.1 implies that for all sufficiently large t one has −2∂xu(λ, t) = ∂xVλu(λ, t) Ó= 0. In particular, 

ξ(t) Ó= λ if t is large enough. Since this holds for arbitrary λ ∈ {a1, a2, . . . } ∪ {b1, b2, . . . }, it follows that as 
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t → ∞ one has either ξ(t) → ∞, or ξ(t) → −∞, or else ξ(t) stays in a bounded interval. Using this, (3.22), 

and the fact that the zeros of Ux(·, t) are all simple, we obtain that these zeros are contained in a bounded 

interval (−d, d) independent of t. It follows from the simplicity and boundedness of the zeros of Ux(·, t) that 

their number is independent of t.

As noted in the proof of Lemma 3.11, the function u(·, t) has only simple zeros, a finite number of them, 

for all sufficiently large t. Using Lemma 2.5, similarly as in that proof, one shows that for any t the zeros of 

U(·, t) are all simple. Also, their number is finite, as z(Ux(·, t)) < ∞, and nonincreasing in t. The only way 

the zero number z(U(·, t)) can drop at some t0 is that some of the zeros escape to −∞ or ∞ as t → t0−. This 

clearly does not happen if U(−∞, t0) Ó= 0 or U(∞, t0) Ó= 0, respectively. On the other hand if U(−∞, t0) = 0, 

then U(−∞, t) = 0 for all t, and in this case the zeros of U(·, t) are all greater than the minimal critical 

point of U(·, t). A analogous remark applies in the case U(∞, t0) = 0. Since the set of the critical points is 

always contained in (−d, d), we obtain that z(U(·, t)) is independent of t. 2

4. A classification of entire solutions with spatial trajectories between two chains

In the previous section, we considered entire solutions U satisfying U(·, t) ∈ ω(u) for all t ∈ R. We derived 

certain conditions any such solution U would have to satisfy, see Proposition 3.2(i) and Lemma 3.9. In this 

section, we examine the entire solutions with the indicated properties and classify them in a certain way. 

Our classification in particular proves Proposition 3.2(ii) under the extra assumption that Σin is a nontrivial 

chain. We stress, however, that no reference is made in this section to the solution u or its limit set ω(u). 

Thus the results here are completely independent from the previous and forthcoming sections and can be 

viewed as contributions to the general understanding of entire solutions of (1.1).

Our assumptions throughout this section are as follows. We assume that the standing hypotheses (ND), 

(MF) on f hold, Π is a bounded connected component of P0, and Σin := Σin(Π), Λout := Λout(Π). The 

next standing hypotheses delineates the class of entire solutions we consider:

(HU) U is a bounded entire solution of (1.1) such that

τ (U(·, t)) ⊂ Π̄ (t ∈ R) (4.1)

and the limits

lim
x→−∞

U(x, t) = Θ−(t), lim
x→∞

U(x, t) = Θ+(t) (4.2)

exist for all t ∈ R.

Our main result in this subsection is following proposition concerning the case when Σin is a nontrivial 

chain.

Proposition 4.1. Under the above hypotheses, assuming also that Σin is a nontrivial chain, the following 

alternative holds. Either U is identical to a steady state φ with τ(φ) ⊂ Σin ∪ Λout or else

⋃

t∈R

τ (U(·, t)) ⊂ Π (4.3)

and

τ (α(U)) ⊂ Σin, τ (ω(U)) ⊂ Λout. (4.4)
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An interpretation of this result is that any entire solution of (1.1) satisfying (4.1), (4.2) is either a steady 

state or a connection, in L∞
loc(R), between the following two sets of steady states:

Ein := {ϕ : ϕ is solution of (1.6) with τ(ϕ) ⊂ Σin},

Eout := {ϕ : ϕ is solution of (1.6) with τ(ϕ) ⊂ Λout}.

Moreover, the connection always goes from Ein to Eout as time increases from −∞ to ∞. Note that this 

result, in conjunction with Proposition 3.2(i) and Lemma 3.9, implies that statement (ii) of Proposition 3.2

holds under the extra assumption that Σin is a nontrivial chain.

In the case when Σin is a trivial chain, we do not have such a complete characterization of entire solutions 

satisfying (HU). We only prove some partial results in this case, which will be used in Section 5. For that, 

we will need the following additional assumption:

(TC) (Additional assumption in the case Σin = {(β, 0)} is a trivial chain). If U is not a steady state, then 

for all t ∈ R the function U(·, t) − β has only simple zeros and the number of its critical points is 

finite and bounded uniformly in t.

In the next subsection, we prove several results valid in general, whether Σin is trivial or nontrivial, 

assuming (TC) in the former case. Then, in Subsection 4.2, we examine in more detail the case when Σin

is nontrivial and prove Proposition 4.1.

The following notation will be used throughout this section.

Recall that Σin (as any other chain) has the structure as in (3.9) for some p ≤ q. We define the values β±

as in (3.11). They are unstable equilibria of (1.7). If Σin = {(β, 0)} is a trivial chain, then β± = p = q = β. 

If Σin is nontrivial, then p < q and (3.10), (3.12) hold.

As for Λout, there are two possibilities:

(A1) Λout is a homoclinic loop, that is, it is the union of a homoclinic orbit of (2.3) and its limit equilib-

rium, or, in other words,

Λout = {(γ, 0)}
⋃

τ(Φ), (4.5)

where f(γ) = 0 and Φ is a ground state of (1.6) at level γ. We choose Φ so that Φ′(0) = 0, that is, 

the only critical point Φ is x = 0.

(A2) Λout is a heteroclinic loop, that is, it is the union of two heteroclinic orbits of (2.3) and their limit 

equilibria (γ±, 0). In other words,

Λout = {(γ−, 0), (γ+, 0)}
⋃

τ(Φ+)
⋃

τ(Φ−), (4.6)

with γ− < γ+, f(γ±) = 0, and Φ± are standing waves of (1.6) connecting γ− and γ+, one increasing 

the other one decreasing. We adopt the convention that Φ+
x > 0 and Φ−

x < 0.

To have a unified notation, we set

p̂ := inf{a ∈ R : (a, 0) ∈ Π} = inf{a ∈ R : (a, 0) ∈ Λout},

q̂ := sup{a ∈ R : (a, 0) ∈ Π} = sup{a ∈ R : (a, 0) ∈ Λout}.
(4.7)

Thus, {p̂, q̂} = {γ, Φ(0)} if (A1) holds; and p̂ = γ−, q̂ = γ+ if (A2) holds.

Also remember that if (γ̄, 0) is any equilibrium of (2.3) contained in Λout or in Σin when Σin is a nontrivial 

chain, then f ′(γ̄) < 0 (cf. Section 2.2). This in particular applies to γ, γ± in (A1), (A2).
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4.1. Some general results

We assume the standing hypothesis for this section, as spelled out in the paragraph containing (HU). In 

case Σin = {(β, 0)}, we also assume the extra hypothesis (TC).

We start by recalling the following consequence of hypothesis (HU) (cf. Remark 3.10).

Corollary 4.2. The following statements hold:

(i) If Σin is a nontrivial chain, Θ±(t) =: Θ± are independent of t and (Θ±, 0) ∈ Σin ∪ Λout.

(ii) If Σin = {(β, 0)} is a trivial chain and Θ(t) stands for Θ+(t) or Θ+(t), then either Θ(t) =: Θ is 

independent of t and (Θ, 0) ∈ {(β, 0)} ∪ Λout, or Θ(t) is a strictly monotone solution of (1.7) with 

Θ(−∞) = β and (Θ(∞), 0) ∈ Λout.

Next we prove the following basic dichotomy.

Lemma 4.3. Either U is identical to a steady state φ with τ(φ) ⊂ Σin ∪Λout, or else U is not a steady state 

and (4.3) holds.

Proof. The existence of the limits (4.2) implies that U cannot be a nonconstant periodic steady state. Thus 

if (4.3) holds, U cannot be any steady state.

Assume now that (4.3) does not hold. Then there exist x0, t0 ∈ R and a steady state φ with τ(φ) ⊂

Σin ∪ Λout such that U(·, t0) − φ has a multiple zero at x0. By connectedness of τ(φ), τ(φ) ⊂ Σin or 

τ(φ) ⊂ Λout. For definiteness, we assume the former; the arguments in the latter case are analogous (and 

one does not need to deal with trivial chain in that case).

We want to show that U ≡ φ. If Σin = {(β, 0)} is a trivial chain (hence φ ≡ β), this follows immediately 

from (TC), specifically from the assumption that U(·, t) − β has only simple zeros. Assume now that Σin is 

a nontrivial chain. If U Ó≡ φ, then U − φ is a nontrivial solution of a linear equation (2.1). Using Lemma 2.7

(and the fact that there are only finitely many chains), we find a sequence ψn of periodic solutions of (1.6)

such that τ(ψn) ⊂ I(Σin) and ψn → φ in C1
loc(R). Applying Lemma 2.5, we find a sequence tn → t0 such 

that U(·, tn) − ψn has a multiple zero. Consequently, τ(U(·, tn)) ∩ τ(ψn) Ó= ∅, in contradiction to (4.1). This 

contradiction shows that, indeed, U ≡ φ. 2

Clearly, the inclusion (4.3) implies that

Ux(x, t) Ó= 0 whenever U(x, t) ∈ [p, q]. (4.8)

The following lemma shows in particular that if U is not a steady state and Σin is a nontrivial chain, 

then the number of critical points of U(·, t) is bounded uniformly in t. If Σin is a trivial chain, we have this 

by assumption, see (TC).

Lemma 4.4. Assume that Σin is a nontrivial chain. If U is not a steady state, then the following statements 

are valid:

(i) There are N+, N− < ∞ such that

z (U(·, t)− β±) = N± (t ∈ R). (4.9)

(ii) Let β = β− or β = β+, and t0 ∈ R. Let I := (ζ1, ζ2), with −∞ ≤ ζ1 < ζ2 ≤ ∞, be any nodal interval 

of U(·, t0) − β (that is, U(·, t0) − β Ó= 0 in I and U(·, t0) − β = 0 on ∂I). Then U(·, t0) has at most one 

critical point in I and if such a critical point exists, it is nondegenerate.
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Remark 4.5. With β and I = (ζ1, ζ2) as in statement (ii), the number of critical points of U(·, t0) in I can 

be specified by elementary considerations. For example, U(·, t0) has exactly one critical point in I if ζ1, ζ2
are both finite (and hence are two successive zeros of U(·, t0) − β). If ζ1 ∈ R, ζ2 = ∞, Ux(ζ1, t0) > 0, then 

either U(·, t0) has exactly one critical point in I and in this case Θ+ = U(∞, t0) < β+ or else Ux(·, t0) > 0

in I. The discussion in the other cases is similar.

Proof of Lemma 4.4. By Lemma 4.3, (4.3) holds, and by Corollary 4.2, (Θ±, 0) are independent of t and 

contained in Σin ∪ Λout. These inclusions and (3.12) imply that {Θ−, Θ+} ∩ {β−, β+} = ∅. Therefore, the 

zero numbers z (U(·, t)− β±) are finite for all t, and are nonincreasing in t. We show that z (U(·, t)− β+)

does not drop at any t0 ∈ R (the proof for β− is similar). By (4.8), all zeros of U(·, t) − β± are simple, 

hence locally they are given by C1 functions of t. The only way z (U(·, t)− β+) can drop at t0 is that one 

of these C1 functions, say ξ(t), is unbounded as t → 0. To rule this possibility out, we show that |ξ′(t)| is 

uniformly bounded. Indeed, from (3.12) and the fact that τ(U(·, t)) ⊂ Π we infer that |Ux(x, t)| is bounded 

from below by a fixed positive constant (independent of x and t) whenever U(x, t) = β+. Since, by parabolic 

estimates, |Ut| is uniformly bounded, a bound on ξ′(t) is found immediately upon differentiating the identity 

U(ξ(t), t) = β+. This completes the proof of statement (i).

In the proof of statement (ii), we only consider the case of a bounded nodal interval I = (ζ1, ζ2), the 

other cases can be treated similarly. Also, we assume for definiteness that U(·, t0) − β > 0 in I, the case 

U(·, t0) − β < 0 in I being analogous. Suppose for a contradiction that U(·, t0) has more than one critical 

point in (ζ1, ζ2) or has a degenerate critical point there. From statement (i) and Remark 2.2 we infer that 

the function U(·, t) − β has a finite number (independent of t) of zeros, all of them simple. Using this and 

the implicit function theorem, we obtain the following. There are C1 functions ζ̄i(t) defined for all t ∈ R

such that ζ̄i(t0) = ζi, i = 1, 2, and, for any t, (ζ̄1(t), ζ̄2(t)) is a nodal interval of U(·, t) − β: U(·, t) > β in 

(ζ̄1(t), ζ̄2(t)), U(ζ̄i(t), t) = β, i = 1, 2. Considering the zero number of Ux(·, t) in (ζ̄1(t), ζ̄2(t)) (remembering 

that Ux(ζ̄i(t), t) Ó= 0, due to the simplicity of the zeros), we infer from Lemma 2.4 that for all t < t0 the 

function U(·, t) has at least two critical points in (ζ̄1(t), ζ̄2(t)). Moreover, for t < t0, t ≈ t0 the critical points 

are all nondegenerate. Pick one of such t, say t1. Due to (4.8), the value of U(·, t1) at the critical points is 

greater than q, which is greater than β+. Therefore, there is ξ1 > q such that the function U(·, t1) −ξ1 has at 

least three zeros. Let ξ(t) denote the solution of ξ̇(t) = f(ξ(t)) with ξ(t1) = ξ1. Then ξ(t) > β+ for all t and 

ξ(−∞) = β+. Consider the function V (x, t) = U(x, t) − ξ(t). It solves a linear equation (2.1) and satisfies 

V (ζ̄i(t), t) < 0 for all t < t0. Therefore, by Lemma 2.4, V (·, t) admits at least 3 zeros in (ζ̄1(t), ζ̄2(t)). Take 

now a large enough negative t so that ξ(t) ∈ (β−, q). Using the fact that U(·, t) − ξ(t) has at least 3 zeros 

in (ζ̄1(t), ζ̄2(t)) while U(·, t) > β+ in (ζ̄1(t), ζ̄2(t)), we find a critical point at which U(·, t) takes a value in 

(β−, q), which clearly contradict (4.8). This contradiction proves the conclusion of statement (ii). 2

Corollary 4.6. If ϕ ∈ A(U) ∪ Ω(U) and Ũ is the entire solution of (1.1) with Ũ(·, 0) = ϕ (and Ũ(·, t) ∈

A(u) ∪Ω(U) for all t), then condition (HU) holds with U replaced by Ũ . In particular, ϕ is not identical to 

any nonconstant periodic steady state.

Proof. The inclusion τ(Ũ(·, t)) ⊂ Π̄ for all t follows from (4.1) and the fact that in the definition of A(U), 

Ω(U) one can take the convergence in C1
loc(R). We next show that the limits Ũ(±∞, t) exist for every 

t ∈ R. A sufficient condition for this is that the zero number of Ũx(·, t) is finite for all t. This is verified 

easily using the fact—assumed in (TC) or proved in Lemma 4.4, depending on whether Σin is trivial or 

not—that z(Ux(·, t)) is finite and bounded from above by some constant k independent of t. Indeed, if 

z(Ũx(·, t0)) = ∞ for some t0, then we can find t < t0 such that Ũx(·, t) has at least k + 1 simple zeros. 

Since Ũ(·, t) ∈ A(u) ∪ Ω(U), we obtain by approximation that Ux(·, t1)) has k + 1 zeros for some t1, which 

is impossible. 2

In the following lemma we establish a basic relation of U to Σin, Λout.
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Lemma 4.7. Assume U is not a steady state and let K be any one of the sets Σin, Λout. Then the following 

statements are valid.

(i) If (xn, tn), n = 1, 2, . . . , is a sequence in R2 such that

dist((U(xn, tn), Ux(xn, tn)), K)→ 0, (4.10)

then, possibly after passing to a subsequence, one has U(· + xn, · + tn) → ϕ in C1
loc(R

2), where ϕ is a 

steady state of (1.1) with τ(ϕ) ⊂ K.

(ii) There exists a sequence (xn, tn), n = 1, 2, . . . as in (i) with the additional property that |tn| → ∞. 

Consequently, there exists a steady state of (1.1) with τ(ϕ) ⊂ K and

ϕ ∈ A(U) ∪ Ω(U). (4.11)

(Recall that A(U) and Ω(U) are the generalized limit sets of U , as defined in Section 2.3.)

Proof of Lemma 4.7. With the sequence (xn, tn) as in (i), we may assume, passing to a subsequence if 

necessary, that

(U(xn, tn), Ux(xn, tn)) −→
n→∞

(a, b) ∈ K.

Let ϕ be the solution of (1.6) with (ϕ(0), ϕ′(0)) = (a, b), so τ(ϕ) ⊂ K. Consider the sequence of functions 

Un := U(· +xn, · +tn). Up to a subsequence, it converges in C1
loc(R

2) to Ũ , an entire solution of (1.1). Clearly, 
(

Ũ(0, 0), Ũx(0, 0)
)

= (a, b), so Ũ(·, 0) − ϕ has a multiple zero at x = 0. Now, unless Ũ ≡ ϕ, Lemma 2.5

implies that if n is large enough, the function U(· + xn, t) − ϕ has a multiple zero for some t ≈ tn. This 

would mean that τ (U(·, t)) ∩ τ(ϕ) Ó= ∅, which is impossible by (4.3). Thus, necessarily, Ũ ≡ ϕ which yields 

the conclusion of statement (i).

We now prove the existence of a sequence (xn, tn) with the above property and with |tn| → ∞. This is

trivial if (Θ−, 0) is independent of t and contained in K, for in this case we have (U(x, t), Ux(x, t)) → (Θ−, 0)

as x → −∞ for every t. Similarly, the statement is trivial if (Θ+, 0) ∈ K. If Θ−(t) is not constant (which 

may happen only if Σin is a trivial chain, cf. Lemma 4.2), then again the statement is trivial and follows from 

the facts that (U(x, t), Ux(x, t)) → (Θ−(t), 0) as x → −∞ and either (Θ−(∞), 0) ∈ K or (Θ−(−∞), 0) ∈ K

(cf. Lemma 4.2). A similar argument applies if Θ+(t) is not constant. It remains to consider the case when 

(Θ±, 0) are both independent of t and contained in K∗, where K∗ ∈ {Σin, Λout}, K
∗ Ó= K. First we show 

the existence of a sequence satisfying (4.10). Suppose that no such sequence exists. Then there is ε > 0 such 

that

dist (τ (U(·, t)) , K) > ε (t ∈ R). (4.12)

This implies that there is a periodic orbit O, taken sufficiently close to K (cf. Lemma 2.7) such that

⋃

t∈R

τ (U(·, t)) ⊂ I(O) or
⋃

t∈R

τ (U(·, t)) ⊂ R
2 \ I(O)).

In either case, Lemma 2.13 shows that

⋃

t∈R

τ (U(·, t)) ∩Π = ∅, (4.13)

in contradiction to (4.3) (cf. Lemma 4.3). Thus there is a sequence satisfying (4.10). We claim that |tn| → ∞. 

Indeed, if not, then for a subsequence we have tn → t0 ∈ R. Since Ut is bounded, we have U(·, tn) → U(·, t0)
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uniformly on R. Consequently, by parabolic regularity, also Ux(·, tn) → Ux(·, t0) uniformly on R. Therefore, 

(U(x, tn), Ux(x, tn)) ≈ (Θ±, 0) ∈ K∗ if n and ±x are sufficiently large. This implies, in view of (4.10), that 

the sequence (xn) is bounded and so, passing to a subsequence, we have xn → x0. Using (4.10) and the 

convergence (xn, tn) → (x0, t0), we obtain (U(x0, t0), Ux(x0, t0)) ∈ K, which is a contradiction to (4.3). This 

contradiction proves our claim and completes the proof of the first part of statement (ii). The last conclusion 

in (ii) follows immediately from statement (i) and the definition of the limit sets A(U), Ω(U). 2

We next show that (4.4) holds if one of the zero numbers z(U(·, t) − β±) vanishes, that is, U < β+ or 

U > β−. The following lemma is a stronger result, which partly also applies when Σin = {(β, 0)} is a trivial 

chain (in which case β± = β). This lemma will be used at several other occasions below.

Lemma 4.8. The following statements are valid (recall that p̂, q̂ are defined in (4.7)).

(i) If U ≤ q̂ − ϑ for some ϑ > 0 and U is not a steady state, then ω(U) = {p̂} (so, necessarily, f(p̂) = 0) 

and τ(α(U)) ⊂ Σin. Similarly, if U ≥ p̂+ϑ for some ϑ > 0 and U is not a steady state, then ω(U) = {q̂}

(so f(q̂) = 0) and τ(α(U)) ⊂ Σin.

(ii) If for some t0 ∈ R and ϑ > 0 one has U(·, t) ≤ q̂ − ϑ for all t < t0, then either U ≡ p̂ or else 

τ(α(U)) ⊂ Σin. If for some t0 ∈ R and ϑ > 0 one has U(·, t) ≥ p̂+ ϑ for all t < t0, then either U ≡ q̂

or else τ(α(U)) ⊂ Σin.

(iii) Assume that Σin is a nontrivial chain. If U ≤ β−, then U ≡ p̂; and if U ≥ β+, then U ≡ q̂.

Proof. We only prove the first statements in (i) and (ii); the proofs of the other statements in (i) and (ii) 

are analogous and are omitted.

The statements in (iii) follow from (i) and the fact that if Σin is a nontrivial chain, then there are no 

functions ϕ with τ(ϕ) ⊂ Σin satisfying ϕ ≤ β− or ϕ ≥ β+.

To prove (i), assume that U is not a steady state and U ≤ q̂−ϑ for some ϑ > 0. By Lemma 4.3, (4.3) holds 

and, in particular, U > p̂. By Lemma 4.7, the set A(U) ∪Ω(U) contains a steady state ϕ with τ(ϕ) ⊂ Λout. 

Obviously, ϕ ≤ q̂ − ϑ, hence, necessarily, ϕ = p̂ (and f(p̂) = 0). Let ψ be any periodic solution of (1.6) with 

ψ′(0) = 0, ψ(0) ∈ (q̂ − ϑ, q̂), and let ρ > 0 be the minimal period of ψ. Clearly, τ(ψ) ⊂ Π, in particular, 

minψ = ψ(ρ/2) > p̂. From p̂ ∈ A(U) ∪ Ω(U) we infer that there exist ξ, t1 ∈ R such that

U(·, t1) < ψ in [−ρ+ ξ, ρ+ ξ]. (4.14)

Consequently, U(·, t1) < ψ in [kρ, (k+1)ρ], where k := [ξ/ρ] is the integer part of ξ/ρ. This and the relations

ψ(kρ) = ψ((k + 1)ρ) = ψ(0) > q̂ − ϑ ≥ U

yield, upon an application of the comparison principle, that U(·, t) < ψ in [kρ, (k+1)ρ] for all t > t1. Hence, 

for each ϕ ∈ ω(U) we have ϕ ≤ ψ in [kρ, (k + 1)ρ]. We claim that, in fact,

ϕ ≤ minψ (ϕ ∈ ω(U)). (4.15)

Indeed, consider the set M of all η̄ ∈ R such that

ϕ ≤ ψ(· − η) in [kρ+ η, (k + 1)ρ+ η],

for all ϕ ∈ ω(U) and all η between 0 and η̄.

We have shown above that 0 ∈ M . Suppose for a contradiction that η− := infM > −∞. Then, clearly, 

η− ∈ M , and using the compactness of ω(U) in L∞
loc(R) one shows easily that for some ϕ ∈ ω(U) the 

inequality
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ϕ ≤ ψ(· − η−) in [kρ+ η−, (k + 1)ρ+ η−] (4.16)

is not strict. Let Ũ be the entire solution of (1.1) with Ũ(·, 0) = ϕ and Ũ(·, t) ∈ ω(U) for all t ∈ R. The 

inclusion η− ∈ M implies that Ũ ≤ ψ(· − η−) in [kρ + η−, (k + 1)ρ + η−] for all t and from the assumption 

on U it follows that

Ũ ≤ q̂ − ϑ < ψ(0) = ψ(kρ) = ψ((k + 1)ρ).

Therefore, by the strong comparison principle, the inequality in (4.16) is in fact strict and we have a desired 

contradiction. We have thus proved that infM = −∞. Similar arguments show that supM = ∞, hence 

M = R. Now, given any ϕ ∈ ω(U) and x0 ∈ R, take η := x0 − kρ − ρ/2. Then x0 ∈ [kρ + η, (k + 1)ρ + η]

and the fact that η ∈ M yields

ϕ(x0) ≤ ψ(x0 − η) = ψ(kρ+ ρ/2) = ψ(ρ/2) = minψ.

This proves (4.15).

Clearly, taking the periodic solution ψ with the maximum ψ(0) sufficiently close to q̂, we can make 

minψ − p̂ as small as we like. Therefore, (4.15) implies that ω(U) = {p̂}, as stated in Lemma 4.8.

Next we show that p̂ /∈ α(U). We actually prove that p̂ ∈ α(U) implies that U ≡ p̂ (which, of course, is a 

contradiction with the fact that U is not a steady state). Note that in this argument we only use that the 

estimate U(·, t) ≤ q̂ − ϑ holds for all sufficiently large negative t, say for all t < t0, so the argument can be 

repeated in the proof of statement (ii) below. Assume that p̂ ∈ α(U). As in the previous paragraphs, taking 

any periodic solution ψ with ψ′(0) = 0 and ψ(0) ∈ (q̂ − ϑ, q̂), we again obtain (4.14), but this time we can 

take ξ = 0 and we can choose t1 < 0 arbitrarily large. The comparison principle then implies in particular 

that U(·, t0) < ψ in [−ρ, ρ]. Taking a sequence of periodic solutions ψ with ψ(0) ր q̂, we obtain U(·, t0) ≡ p̂. 

Consequently, p̂ is a steady state and U ≡ p̂, as claimed.

Take now an arbitrary ϕ ∈ α(U) and let Ũ be the entire solution of (1.1) with Ũ(·, 0) = ϕ and Ũ(·, t) ∈

α(U) for all t ∈ R. Obviously, Ũ inherits the relation Ũ ≤ q̂ − ϑ from U . If Ũ is not a steady state, then, by 

Corollary 4.6, what we have already proved above in this proof applies equally well to Ũ : p̂ ∈ ω(Ũ) ⊂ α(U)

(the latter relation is by compactness of α(U) in L∞
loc(R)). This is impossible as we have just proved, so ϕ

has to be a steady state different from p̂. Moreover, ϕ cannot be periodic (cf. Corollary 4.6), and therefore 

the relation ϕ ≤ q̂ − ϑ implies τ(ϕ) ⊂ Σin. This shows that τ(α(U)) ⊂ Σin, completing the proof (i).

We now prove statement (ii). As already noted above, under the assumption of (ii), p̂ ∈ α(U) implies 

that U ≡ p̂. If p̂ /∈ α(U), we can repeat the previous paragraph to show that τ(α(U)) ⊂ Σin. 2

4.2. Nontrivial inner chain

In this subsection, we assume that Σin is a nontrivial chain (and continue to assume the standing 

hypotheses formulated in the paragraph containing (HU)). By Corollary 4.2, the limits Θ± = U(±∞, t) are 

independent of t and contained in Σin ∪ Λout.

We distinguish the following cases of how (Θ±, 0) can be included in Σin ∪ Λout:

(C1) (Θ±, 0) ∈ Λout

(C2) (Θ±, 0) ∈ Σin

(C3) (Θ−, 0) ∈ Σin and (Θ+, 0) ∈ Λout; or (Θ+, 0) ∈ Σin and (Θ−, 0) ∈ Λout.

We tackle these cases separately in the following subsections; in each of them, we prove that the conclusion 

of Proposition 4.1 holds. Some of the forthcoming results actually give a more specific description the α and 

ω-limit sets than the general description given in (4.4).
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4.2.1. Case (C1): (Θ±, 0) ∈ Λout

We first show that under condition (C1), U converges in L∞(R)—not just in L∞
loc(R)—to a steady state 

φ with τ(φ) ⊂ Λout. In particular, τ(ω(U)) ⊂ Λout.

Lemma 4.9. Assume (C1). Then the limit φ := limt→∞ U(·, t) in L∞(R) exists and is more specifically 

described as follows.

(i) If Θ− Ó= Θ+ (so Λout is a heteroclinic loop as in (A2)), then φ is a standing wave – a shift of Φ
+ or 

Φ−.

(ii) If Θ− = Θ+ and Λout is a heteroclinic loop as in (A2), then φ is identical to one of the constants γ−, 

γ+.

(iii) If Θ− = Θ+ = γ and Λout is a homoclinic loop as in (A1), then φ is identical to the constant γ or to 

a shift of the ground state Φ.

In all these cases, τ(φ) ⊂ Λout.

Proof. If Θ− Ó= Θ+, then {Θ−, Θ+} = {γ−, γ+} (cf. (A2)). Clearly, U is a front-like solution in the sense 

that U takes values between its limits γ−, γ+, at x = −∞, x =∞. Since f ′(γ±) < 0, statement (i) becomes 

a special case of a well-known convergence result [16, Theorem 3.1].

Under the assumptions of statement (ii), Θ− = Θ+ is equal to one of the constants γ−, γ+ and γ− ≤

U ≤ γ+. In this situation, the convergence stated in (ii) is also well-known and can be easily derived from 

[16, Theorem 3.1], see for example [30, Proof of Lemma 3.4].

Assume now that Θ− = Θ+ = γ and Λout is a homoclinic loop as in (A1). Clearly, γ ≤ U ≤ q̃ = Φ(0) and, 

since (γ, q̃] is the range of the ground state Φ, F < F (γ) in (γ, q̃]. Since also f ′(γ) < 0, we are in the setup 

of [23, Theorem 2.5] whose conclusion, translated to the present notation, is the same as the conclusion in 

(iii). 2

The following lemma completes the proof of Proposition 4.1 in the case (C1).

Lemma 4.10. Assume (C1). If U is not a steady state, then τ(α(U)) ⊂ Σin.

Proof. Let φ be as in Lemma 4.9: U(·, t) converges to φ uniformly as t → ∞, hence, by parabolic estimates,

U(·, t) −→
t→∞

φ in C1
b (R). (4.17)

First of all we note that if φ is identical to one of the constants p̂ or q̂ (cf. statements (ii), (iii) in 

Lemma 4.9), then U itself is identical to that constant. Indeed, we have either U(·, t) < β− or U(·, t) > β+

for all large enough t and consequently, by Lemma 4.4, for all t ∈ R. Our statement now follows directly 

from Lemma 4.8(ii). Thus, assuming that U is not a steady state, we only need to consider the cases (i), 

(iii) in Lemma 4.9, and in the case (iii) we may assume that φ = Φ(· − ξ) for some ξ ∈ R.

Case (iii) of Lemma 4.9 with φ = Φ(· − ξ). For definiteness, we also assume that q̂ = Φ(0) (and this is 

the maximum of Φ, cf. (A1)), the case p̂ = Φ(0) being analogous. It follows from (4.17) and Lemma 4.4(i) 

that z (U(·, t)− β±) = 2 for all t ∈ R. Furthermore, by Lemma 4.4(ii) and Remark 4.5, U(·, t) has a unique 

critical point, the global maximum point.

By Lemma 4.7, the set A(U) ∪Ω(U) contains a steady state ϕ with τ(ϕ) ⊂ Σin. The possibility ϕ ∈ Ω(U)

is ruled out by uniform convergence (4.17) to φ = Φ(· − ξ), hence ϕ ∈ A(U). Thus, there are sequences xn

and tn → −∞ such that

U(·+ xn, tn)→ ϕ in C1
loc(R). (4.18)
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We use this in the following conclusion. Fixing any periodic solution ψ of (1.6) with τ(ψ) ⊂ Π, the inclusion 

τ(ϕ) ⊂ Σin implies that ϕ −ψ has infinitely many zeros; in fact, there is δ > 0 such that ϕ −ψ achieves both 

values δ and −δ in each period interval of ψ. Therefore, (4.18) and the monotonicity of the zero number 

imply that

z(U(·, t)− ψ)→ ∞ as t → −∞. (4.19)

We now use (4.19) to show that Φ /∈ A(U) (hence no shift of Φ is contained in A(U), by the shift-

invariance of A(U)). We go by contradiction. Assume Φ ∈ A(U): for some sequences x̃n ∈ R, t̃n → −∞ we 

have

U(·+ x̃n, t̃n)→ Φ (4.20)

in L∞
loc(R). Observe that the monotonicity of U(·, ̃tn) in intervals not containing its unique critical point 

and the relations U(±∞) = Θ± = p̂ = Φ(±∞) imply that the convergence in (4.20) is actually uniform. It 

then follows from parabolic estimates that the convergence takes place in C1
b (R). Consequently,

z(U(·, t̃n)− ψ) → z(Φ− ψ) =: k, (4.21)

where k is obviously finite (it is actually equal to 2, as one can easily verify). This contradiction to (4.19)

proves our claim that no shift of Φ is contained in A(U). This means, by Lemma 4.7, that for some ϑ > 0

the maximum of U(·, t) stays below Φ(0) − ϑ = q̂ − ϑ as t → −∞. An application of Lemma 4.8(ii) gives 

τ(α(U)) ⊂ Σin, which is the desired conclusion.

Case (i) of Lemma 4.9. In this case φ is a standing wave. For definiteness, we assume that φ = Φ+(· − ξ)

for some ξ ∈ R, where Φ+ is the increasing standing wave connecting γ− = p̂ and γ+ = q̂ (cf. (A2)); the 

case when φ is a shift of Φ− is analogous. From (4.17) and Lemma 4.4 we infer that z(U(·, t) − β±) = 1 and 

Ux(·, t) > 0 for all t.

We first proceed similarly as in the previous case. By Lemma 4.7, the set A(U) ∪Ω(U) contains a steady 

state ϕ with τ(ϕ) ⊂ Σin, and ϕ ∈ Ω(U) is ruled out by uniform convergence (4.17) to Φ+(· − ξ). Hence 

ϕ ∈ A(U). Repeating almost verbatim the arguments involving (4.19) and (4.21) (just replace Φ by Φ+ and 

the relations Θ± = p̂ = Φ(±∞) by Θ− = p̂ = Φ+(−∞), Θ+ = q̂ = Φ+(∞)), one shows that no shift of Φ+

is contained in A(U). Obviously, by the monotonicity, no shift of Φ− can be contained in A(U) either.

We claim that none of the constants γ+, γ− is contained in α(U). (We remark that both these constants 

are contained in A(U), simply because U(±∞, t) = γ±.) Suppose, for example, that γ+ ∈ α(U) (the 

possibility γ− ∈ α(U) is ruled out similarly). So there is a sequence tn → −∞ such that U(·, tn) → γ+

locally uniformly. Pick a small ε > 0 so that γ+ − ε > β+. Define

u0(x) :=

{

γ−, if x < 0

γ+ − ε, if x ≥ 0
(4.22)

and let u(x, t) be the solution of (1.1) emanating from u0 at t = 0. By [16], there exists K ∈ R such that 

u(·, t) converges uniformly to Φ+(· − K) as t → ∞. On the other hand, by the assumption on U and due to 

Ux > 0, for every M ∈ R there exists nM such that U(·, tn) > u0(x +M) whenever n > nM . For any such 

n, the comparison principle gives U(x, tn + t) > u(x +M, t) for all t > 0 and x ∈ R. Choosing t = t′ − tn

and taking n → ∞ (so tn → −∞), we obtain that U(x, t′) ≥ Φ+(x − K +M), for all x, t′ ∈ R. Taking 

M → ∞, we obtain U(·, t′) ≥ γ+, which is a contradiction proving our claim.

Note that a similar comparison argument gives the following. If there exist x0 ∈ R and a sequence 

tn → −∞ such that for some γ+ − ε > β+ one has U(x0, tn) > γ+ − ε > β+ for all n, then there is K ∈ R

such that U(x, t) ≥ Φ+(x − K) for all x, t ∈ R. We show that this is impossible, thereby showing that
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Fig. 2. An illustration of relations (4.26) that are ruled out in the proof of Lemma 4.11, in this case z (U(·, t) − β−) = 4. The top 
figure depicts the spatial trajectory and the bottom figure the graph of U(·, t). The relation Θ− < Θ+ chosen for the figure is of 
no significance; the limits may actually be related the other way or may be equal.

lim sup
t→−∞

U(x0, t) ≤ β+ (x0 ∈ R). (4.23)

Indeed, by Theorem 2.10, α(U) contains a steady state ϕ0 of (1.1). It cannot be nonconstant and periodic 

due to the monotonicity of U . As shown above, ϕ0 cannot be identical to any of the constants γ± or any 

shift of Φ±. Therefore, τ(ϕ0) ⊂ Σin. This is not compatible with the relation ϕ0 ≥ Φ+(· − K), which would 

obviously follow from U ≥ Φ+(· − K). Thus (4.23) is proved and it implies that ϕ ≤ β+ for all ϕ ∈ α(U). 

Similarly one shows that ϕ ≥ β− for all ϕ ∈ α(U).

We can now conclude. Given any ϕ ∈ α(U), let Ũ be the entire solution of (1.1) with Ũ(·, 0) = ϕ and 

Ũ(·, t) ∈ α(U) for all t ∈ R. Then β− ≤ Ũ ≤ β+. A direct application of Lemma 4.8(i) shows that ϕ ≡ Ũ

is a steady state. The relations β− ≤ ϕ ≤ β+ imply that τ(ϕ) ⊂ Σin. This shows that τ(α(U)) ⊂ Σin, as 

desired. 2

4.2.2. Case (C2): (Θ±, 0) ∈ Σin

Throughout this subsection, we assume that (C2) holds. We will also assume that the zero numbers N±

are both positive:

N± = z(U(·, t)− β±) > 0. (4.24)

This is the only case we still need to worry about, for Lemma 4.8(iii) shows that the conclusion of Propo-

sition 4.1 holds if one of these zero numbers vanishes.

By (C2), N± are even numbers, in fact, if they are nonzero, they are both equal to 2:

Lemma 4.11. Under conditions (4.24), we have

z (U(·, t)− β−) = 2, z (U(·, t)− β+) = 2, t ∈ R. (4.25)

Proof. Assume for a contradiction that (4.25) is false. Then, since N± are nonzero even numbers, we have 

(cf. Fig. 2)

z(U(·, t)− β−) ≥ 4 (t ∈ R) or z(U(·, t)− β+) ≥ 4 (t ∈ R). (4.26)

Recall that under condition (C2) the limits U(±∞, t) = Θ± are in (β−, β+). By (4.8), Ux(x, t) Ó= 0

whenever U(x, t) ∈ [β−, β+]. It follows that, assuming (4.26), the zero numbers z(U(·, t) − Θ±) are finite 
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and greater than or equal to 2, and the zeros being counted are all simple. Moreover, between any two 

successive zeros of U(·, t) −Θ− there are (two) zeros of either U(·, t) − β− or U(·, t) − β+. This implies that 

z(U(·, t) −Θ−) is bounded uniformly in t. The same goes for z(U(·, t) −Θ+). Thus, by the monotonicity of 

the zero number, z(U(·, t) −Θ±) are constant in t for all sufficiently large negative t, say for all t < t0. We 

define

ξ−(t) := min {x : U(x, t) = Θ−} (the first zero of U −Θ−),

ξ+(t) := max {x : U(x, t) = Θ+} (the last zero of U −Θ+).

These are well defined and continuous functions of t for t < t0. As one checks easily, (4.26) implies that 

ξ−(t) < ξ+(t). Since U(±∞, t) = Θ±, the function U(·, t) is not monotone on (−∞, ξ−(t)), nor it is such on 

(ξ+(t), ∞). Therefore, by Lemma 2.11, there exists K > 0 such that

−K < ξ−(t) < ξ+(t) < K (t < t0). (4.27)

By (4.8) and (4.26), we have either

z(ξ−(t),ξ+(t)) (U(·, t)− β−) ≥ 2 (t < t0)

or

z(ξ−(t),ξ+(t)) (U(·, t)− β+) ≥ 2 (t < t0). (4.28)

We consider the latter, the former is analogous. By Theorem 2.10, there is a steady state φ of (1.1) with 

φ ∈ α(U). Using (4.27), (4.28) and taking into account that between any two successive zeros of U(·, t) −β+

the function U(·, t) achieves a value greater than q or smaller than p, we infer that z(−K,K) (φ − β+) ≥ 2. 

Obviously, τ(φ) ⊂ Π̄ and φ is not a nonconstant periodic solution (see Corollary 4.6). Moreover, because of 

(4.27), there exist x1, x2 with −K ≤ x1 < x2 ≤ K such that φ(x1), φ(x2) ≤ max(Θ−, Θ+). These conditions 

on φ leave only one possibility for the steady state φ: φ = Φ(· − x0) for some x0 ∈ (−K, K), where Φ is the 

ground state at level γ = p̂ as in (A1) (and, necessarily, Λout is a homoclinic loop). We have thus shown 

that for some sequence tn → −∞,

U(·, tn) −→
n→∞

Φ(· − x0)

in L∞
loc(R). Notice that from (4.27) it follows that

Φ(±K − x0) ≤ max(Θ+,Θ−) < q.

We show that this leads to a contradiction, which will complete the proof.

Let ψ be any periodic solution of (1.6) with τ(ψ) ⊂ Π and let ρ > 0 be the minimal period of ψ. Shifting 

ψ, we may assume that ψ(K) = maxψ > q > Φ(K − x0). Then Φ(· − x0) < ψ on (K, K + ρ) (otherwise, 

a shift of the graph of ψ would be touching the graph of Φ(· − x0), which is impossible for two distinct 

solutions of (1.6)). Consequently, if n0 is large enough, we have tn0
< t0 − 1 and

U(x, tn0
) < ψ(x) (x ∈ (K, K + ρ)).

Moreover, since ξ+(t) < K for all t < t0, we have

U(K, t) < ψ(K) and U(K + ρ, t) < ψ(K + ρ) (t < t0).
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Fig. 3. The spatial trajectories and graphs of U(·, t) in the cases ξ(t) < ξ(t) (the figures on the left) and ξ(t) > ξ(t) (the figures on 
the right).

Therefore, applying the comparison principle on (K, K + ρ) × (tn0
, t0), we obtain

U(x, t0 − 1) < ψ(x) (x ∈ (K, K + ρ)).

This is true for all periodic solutions ψ with the indicated properties. Taking sequences of such periodic 

solution with ψj(K) → Φ(0)—which entails ρ → ∞ and ψj → Φ(· − K) locally uniformly—we obtain that 

U(x, 0) < Φ(x − K), x > K. So U(x, t0 − 1) → γ as x → ∞, in contradiction to (C2). 2

Assuming (4.24), the previous lemma shows that (4.25) holds for all t ∈ R. Lemma 4.4 now tells us that 

for every t the function U(·, t) has exactly two critical points ξ(t), ξ(t), both nondegenerate, which are the 

global maximum and minimum points of U(·, t), respectively. Since U(±∞, t) = Θ± ∈ (β−, β+), we have, 

for all t ∈ R,

U(x, t) > β− (x ∈ (−∞, ξ(t))) or U(x, t) > β− (x ∈ (ξ(t), ∞)), (4.29)

depending on whether ξ(t) < ξ(t) or ξ(t) > ξ(t) (cf. Fig. 3). Similarly, for all t ∈ R,

U(x, t) < β+ (x ∈ (ξ(t), ∞)) or U(x, t) < β+ (x ∈ (−∞, ξ(t))). (4.30)

We next prove the conclusion of Proposition 4.1 in the case (C2) when Λout is a homoclinic loop.

Lemma 4.12. Assume that (C2) and (4.24) hold, Λout is a homoclinic loop as in (A1), and U is not a steady 

state. Then τ(α(U)) ⊂ Σin and ω(U) = {γ}, where γ ∈ {p̂, q̂} is as in (A1). In particular, (4.4) holds.

Proof. For definiteness, we assume that γ = p̂—so Φ is a ground state at level p̂ and q̂ = Φ(0) is its 

maximum—the case γ = q̂ is similar. We prove that for some ϑ > 0

max
x∈R

U(x, t) < q̂ − ϑ (t ∈ R). (4.31)

Once this is done, the desired conclusion follows immediately from Lemma 4.8(i).

Assume that (4.31) is not true for any ϑ > 0. Then there is a sequence tn ∈ R such that U(ξ(tn), tn) ր q̂

(and Ux(ξ(tn), tn) = 0). As in the proof of Lemma 4.7(i), passing to a subsequence if necessary, we have 

U(· + ξ(tn), tn) → Φ in C2
loc(R). This and the relations Φ(±∞) = γ = p̂ < β− clearly contradict (4.29). 

Thus (4.31) indeed holds and the proof is complete. 2
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Fig. 4. The graph of U(·, t) when ξ(t) < ξ(t). The relation ξ+(t) < ξ−(t) holds when Θ+ > Θ− (as in the figure), it is reversed 
when Θ+ < Θ−, and ξ+(t) = ξ−(t) when Θ+ = Θ−.

We now treat the case when Λout is a heteroclinic loop.

Lemma 4.13. Assume that (C2) and (4.24) hold, Λout is a heteroclinic loop as in (A2), and U is not a steady 

state. Then (4.4) holds: τ(α(U)) ⊂ Σin, τ(ω(U)) ⊂ Λout.

Proof. With ξ(t), ξ(t) as above, we only consider the case ξ(t) < ξ(t); the arguments in the case ξ(t) > ξ(t)

are similar. Thus (cf. Fig. 4)

Ux(x, t) > 0 (x ∈ (−∞, ξ(t)) ∪ (ξ(t), ∞), t ∈ R),

Ux(x, t) < 0 (x ∈ (ξ(t), ξ(t)), t ∈ R).
(4.32)

As in the proof of Lemma 4.11, we define

ξ−(t) := min {x : U(x, t) = Θ−} (the first zero of U −Θ−),

ξ+(t) := max {x : U(x, t) = Θ+} (the last zero of U −Θ+).

Clearly, for all t ∈ R, ξ±(t) are defined and

ξ±(t) ∈ (ξ(t), ξ(t)) (4.33)

(ξ−(t), ξ+(t) may be equal, or ordered either way, depending on the relation between Θ− and Θ+). Since 

ξ±(t) is a simple zero of U(·, t) −Θ±, it is a C
1 function of t.

We split the rest of the proof into several steps.

Step 1. We show that

τ (A(U)) ⊂ Σin, (4.34)

which in particular gives the first inclusion in Lemma 4.13: τ(α(U) ⊂ Σin.

It is sufficient to prove that the constants γ± are not contained in A(U). Indeed, if this holds, then A(U)

does not contain any shifts of the standing waves Φ± either (by compactness and translation invariance of 

A(U)). Consequently, by Lemma 4.7, dist (τ (A(U)) ,Λout) > 0, and (4.34) follows upon an application of 

Lemma 2.13.

Assume, for a contradiction that γ+ ∈ A(U) (arguments to rule out the possibility γ− ∈ A(U) are similar 

and are omitted). Clearly, since Θ± = U(±∞, t), the function U(·, t) is monotone neither on (−∞, ξ−(t)) nor 

on (ξ+(t), ∞). Therefore, by Lemma 2.11, ξ−(t) is bounded from below and ξ+(t) from above as t → −∞:

there is a constant K > 0 such that

ξ−(t) > −K, ξ+(t) < K, (t < 0). (4.35)

Since γ+ ∈ A(U), there is a sequence tn → −∞ such that, denoting xn := ξ(tn), we have U(xn, tn) → γ+

(and Ux(xn, tn) = 0). As in Lemma 4.7(i), passing to a subsequence if necessary, we obtain that the sequence 
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of functions Un := U(· + xn, · + tn) converges in C1
loc(R

2) to γ+. Moreover, because of (4.33), (4.35), we 

have U(K, t) < Θ+ for all t < 0, thus xn → −∞ as n → ∞.

Let ψ be any periodic solution of (1.6) with τ(ψ) ⊂ Π and ψ(0) > β+, ψ
′(0) = 0. Let 2ρ > 0 be the 

minimal period of ψ, so ψ(0) is the maximum of ψ, and ψ(−ρ) = ψ(ρ) < β− is the minimum of ψ. Obviously, 

for all large enough n, say for all n > n0, we have

U(·+ xn, tn) > ψ on [−ρ, ρ].

Also, due to (4.35) and the convergence xn → −∞, we have, making n0 larger if necessary,

U(±ρ+ xn, t) > Θ− > ψ(−ρ) = ψ(ρ) (n > n0, t ∈ (tn, 0]).

Therefore, by the comparison principle, for n > n0,

U(x+ xn, t) > ψ(x) (x ∈ [−ρ, ρ], t > tn).

In particular, at t = 0, we obtain

max
x∈[−ρ,ρ]

U(x+ xn, 0) ≥ maxψ > β+ (n > n0).

Since xn → −∞, we obtain a contradiction to the fact that U(−∞, 0) = Θ− < β+. This contradiction 

completes the proof of (4.34).

Step 2. We show that

τ (ω(U)) ⊂ Σin or τ (ω(U)) ⊂ Λout. (4.36)

Note that due to (4.32), in both cases Θ− = Θ+ and Θ− Ó= Θ+, the solution U(·, t) satisfies the hypotheses 

of Theorem 2.12. So ω(U) consists of steady states, and it does not contain non-constant periodic functions 

(cf. Corollary 4.6). So τ(ω(U)) ⊂ Π̄ \ P0 and it is connected. This gives (4.36).

Step 3. In this step we complete the proof of Lemma 4.13 by showing that τ(ω(U)) ⊂ Λout. In view of 

(4.36), we just need to rule out the possibility

τ(ω(U)) ⊂ Σin. (4.37)

Assume it holds. We derive a contradiction. Pick a sufficiently small ε > 0 such that

γ− = p̂ < p − ε, γ+ = q̂ > q + ε.

Relation (4.37) in particular implies that for any M > 0 there exists T = T (M) such that

p − ε < U(x, t) < q + ε (x ∈ (−M, M), t > T (M)). (4.38)

By Step 1 and Lemma 4.7(ii), Ω(U) contains one of the constants γ± (or a shift of one of the standing 

waves Φ±, and, consequently, also both constants γ±). We only consider the case γ+ ∈ Ω(U), the case 

γ− ∈ Ω(U) being similar. Hence, there is a sequence tn → ∞ such that, denoting xn := ξ(tn), we have

U(·+ xn, tn) −→
n→∞

γ+, (4.39)

with the convergence in L∞
loc(R). Clearly, (4.39), (4.38) imply that |xn| → ∞. We claim that necessarily 

xn → −∞. Observe that, by (4.32) and (4.33),
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U(x, t) > min(Θ−,Θ+) (−∞ < x < max{ξ−(t), ξ+(t}), (4.40)

U(x, t) < max(Θ−,Θ+) (min{ξ−(t), ξ+(t)} < x < ∞); (4.41)

and Ux(ξ±(t), t) < 0. Using the last relation and Lemma 2.11, we obtain the following monotonicity relations 

for all t > 0:

if ξ−(t) > ξ−(0), then Ux(·, t) < 0 on (ξ−(0), ξ−(t)) , (4.42)

if ξ+(t) < ξ+(0), then Ux(·, t) < 0 on (ξ+(t), ξ−(0)) . (4.43)

From (4.41) and (4.39), it follows that there is n1 such that ξ±(tn) > xn for all n > n1. If for some n > n1 it is 

also true that xn > ξ−(0), then the relations ξ−(0) < xn < ξ−(tn) and (4.42) give U(ξ−(0), tn) > U(xn, tn). 

This inequality can hold only for finitely many n, due to (4.38), (4.39). Thus for all large enough n we have 

xn ≤ ξ−(0), hence, since |xn| → ∞, it must be true that xn → −∞, as claimed.

Pick now a periodic solution ψ of (1.6) with τ(ψ) ⊂ Π such that minψ < p − ε and maxψ > q + ε. We 

shift ψ such that maxψ = ψ(0). Let 2ρ > 0 be the minimal period of ψ. Thus we have

minψ = ψ(±ρ) < p − ε, maxψ = ψ(0) > q + ε.

By (4.39), for n large enough,

U(xn + x, tn) > ψ(0) > q + ε (x ∈ (−ρ, ρ)). (4.44)

By (4.41), necessarily ξ±(tn) > xn + ρ. We now show that for some large enough n0, the following must 

hold in addition to (4.44):

U(xn0
± ρ, t) > ψ(±ρ) (t > tn0

). (4.45)

If this does not hold, then there exist arbitrarily large n such that for some t̃n > tn one has U
(

xn + ρ̄, t̃n

)

=

ψ(ρ̄) < p − ε, where ρ̄ is either −ρ or ρ. Since U(·, t) > min(Θ−, Θ+) on (−∞, ξ+(t)) (cf. (4.40)), it follows 

that ξ+
(

t̃n

)

< xn + ρ̄. But, due to xn → −∞, we also have xn + ρ̄ < ξ+(0) if n is large enough; so, by 

(4.43), U
(

ξ+(0), t̃n

)

< U
(

xn + ρ̄, t̃n

)

< p − ε. This cannot be true for arbitrarily large n, due to (4.38), so 

(4.45) must indeed hold for some, arbitrarily large, n0.

Using (4.44), (4.45), and the comparison principle, we obtain U(xn0
, t) > ψ(0) > q + ε, for all t > tn0

. 

This is a contradiction to (4.38).

We have shown that the assumption (4.37) leads to a contradiction, which concludes the proof of 

Lemma 4.13. 2

4.2.3. Case (C3): (Θ−, 0) ∈ Σin and (Θ+, 0) ∈ Λout

Our assumption in this subsection is that (Θ−, 0) ∈ Σin and (Θ+, 0) ∈ Λout. The case (Θ+, 0) ∈ Σin and 

(Θ−, 0) ∈ Λout is analogous and will be skipped.

For definiteness, we also assume that Θ+ = p̂ (hence f(p̂) = 0); the other possibility, Θ+ = q̂, can be 

treated in an analogous way.

Lemma 4.14. Under condition (C3), τ (ω(U)) ⊂ Λout.

Proof. Theorem 2.12 implies that U is quasiconvergent, hence and ω(U) contains only non-periodic steady 

states or constant steady states.

If Λout is a heteroclinic loop, as in (A2), we choose a decreasing continuous function ũ0 such that 

ũ0(−∞) = γ+ > ũ0 > γ− = ũ0(∞) and ũ0 ≥ U(·, 0). By the comparison principle, the corresponding 
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solution ũ = u(·, ·, ̃u0) of (1.1) satisfies ũ(·, t) > U(·, t) for all t > 0. By [16, Theorem 3.1], the (front-like) 

solution ũ(·, t) converges in L∞(R) to a shift of the decreasing standing wave Φ−, say Φ−(· − η), as t → ∞. 

This implies that for all ϕ ∈ ω(U), we have ϕ ≤ Φ−(· − η). Now, every ϕ ∈ ω(U) is a steady state with 

τ(ϕ) ⊂ Π̄. Therefore, ϕ ≤ Φ−(· − η) implies that ϕ is identical to q̂ = γ− or to a shift of Φ−. In particular, 

τ(ϕ) ⊂ Λout.

If Λout is a homoclinic loop, as in (A1), we have γ = p̂ since we are assuming that Θ+ = p̂ and f(p̂) = 0. 

The arguments here are similar as for the heteroclinic loop, but instead of a front-like solution, we compare 

U to a solution which converges to a shift of the ground sate Φ. For that, we find a continuous function ũ0

with the following properties:

(s1) ũ0 is even and monotone nondecreasing in (−∞, 0);

(s2) ũ0 > γ, ũ0(±∞) = γ;

(s3) ũ0(x) ≥ U(x, 0) for all sufficiently large x > 0;

(s4) the solution ũ(·, t) := u(·, t, ̃u0) converges in L∞(R) to Φ as t → ∞.

Such a function ũ0 is provided by [23, Theorem 2.6]. More specifically, take first a continuous function u1

satisfying (s1)–(s3) and such that u1 ≡ β+ on the interval (−ℓ, ℓ) (so, in particular, u1 ≤ β+). According 

to Theorem 2.6 of [23], if ℓ is sufficiently large, then for some λ > 1/2 the function ũ0 := γ + 2λ(u1 − γ)

satisfies (s4) (the corresponding solution ũ(·, t) is a threshold solution in the terminology of [23]); it obviously 

satisfies (s1)–(s3) as well.

Since U(x, 0) is decreasing for large x > 0, relations (s1)–(s3) imply that for a sufficiently large η > 0 we 

have z(ũ0(· −η) −U(·, 0)) = 1. Therefore, z(ũ(· −η, t) −U(·, t)) ≤ 1 for all t > 0. As a consequence, taking into 

account that the difference of any two steady states (1.1) has only simple zeros, we have z(Φ(· −η) −ϕ) ≤ 1 for 

all ϕ ∈ ω(U). Therefore, any ϕ ∈ ω(U) is identical to q̂ = γ or to a shift of Φ. In particular, τ(ϕ) ⊂ Λout. 2

Turning our attention to α(U), we start with a preliminary lemma.

Lemma 4.15. Assume (C3) holds. Then α(U) does not contain any function ϕ with τ(ϕ) ⊂ Λout.

Proof. We assume that

N± = z(U(·, t)− β±) > 0, (4.46)

the case when N− = 0 or N+ = 0 having been settled by Lemma 4.8(iii).

Recall that we are also assuming, without loss of generality, that f(p̂) = 0 and Θ+ = p̂. Thus, U(−∞, t) =

Θ− ∈ (β−, β+) and U(∞, t) = p̂ for all t ∈ R. Using Lemma 4.4, we obtain that the function U(·, t) is 

decreasing to p̂ as x → ∞, and monotone near x = −∞, and the function U(·, t) − Θ− has only finitely 

many zeros, all of them simple, with N := z(U(·, t) −Θ−) independent of t.

We denote by η(t) the first zero of U(·, t) −Θ−. Since Θ− = U(−∞, t), the function U(·, t) is not monotone 

on (−∞, η(t)). Therefore, by Lemma 2.11, there is κ ∈ R such that

η(t) > κ (t < 0). (4.47)

We distinguish the following two possibilities

(pi) U(·, t) < Θ− on (−∞, η(t)) (t ∈ R)

(pii) U(·, t) > Θ− on (−∞, η(t)) (t ∈ R)
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Assume (pi). Then (4.47) implies that for all t < 0

U(x, t) ≤ Θ− < β+ (x ≤ κ) (4.48)

and any function in α(U) has to satisfy this relation. In particular, the constant q̂ and any shift of Φ− (if 

Λout is a heteroclinic loop) are ruled out from α(U). It remains to rule out the constant p̂, any shift of the 

ground state Φ (if Λout is a homoclinic loop), and any shift of Φ+ (if Λout is a heteroclinic loop). Take any 

of these functions, denoting it by ϕ, and assume for a contradiction that ϕ ∈ α(U). By (4.48),

ϕ(x) ≤ Θ− < β+ (x ≤ κ). (4.49)

Take any periodic solution ψ of (1.6) with τ(ψ) ⊂ Π, ψ(κ) = β+, and ψ′(κ) > 0. Obviously, there is ρ > 0

such that ψ(κ − ρ) = β+. We claim that

U(x, t) < ψ (x ∈ [κ − ρ, κ], t ≤ 0). (4.50)

Due (4.48), this follows from the comparison principle if we can find a sequence tn → −∞ such that the 

claim is valid for t = tn, n = 1, 2, . . . . Note that the function ϕ, fixed as above, satisfies ϕ < ψ on (κ − ρ, κ). 

This is trivial if ϕ ≡ p̂; if ϕ is a shift of the ground state or the increasing standing wave, it follows from 

(4.49) (otherwise, a shift of the graph of ψ we would be touching the graph ϕ at some point, which is 

impossible for two distinct solutions of (1.6)). Since ϕ ∈ α(U), there is a sequence tn → −∞ such that 

U(·, tn) → ϕ locally uniformly. This sequence, possibly after omitting a finite number of terms, has the 

desired property.

Thus, (4.50) has to hold for any periodic solution ψ with the indicated properties. We now choose a 

sequence of such periodic orbits ψk converging locally uniformly on R to a shift of the ground state (if Λout

is a homoclinic loop) or a shift of Φ+ (if Λout is a heteroclinic loop). In either case, the relations (4.50) with 

ψ = ψk, k = 1, 2, . . . and t = 0, contradict the relations U(−∞, 0) = Θ− > p̂. This contradiction completes 

the proof if (pi) holds.

Now assume (pii). Then (4.47) implies that for all t < 0

U(x, t) ≥ Θ− > p̂ (x ≤ κ).

Therefore, each function in α(U) has to satisfy this inequality, which shows that the following functions 

cannot be elements of α(U): the constant p̂, any shift of the ground state Φ (if Λout is a homoclinic loop), any 

shift of the increasing standing wave Φ+ (if Λout is a heteroclinic loop). Thus, we only need to show that if 

Λout is a heteroclinic loop, then α(U) does not contain the constant q̂ or any shift of Φ−. The arguments for 

this are analogous to the arguments used in the case (pi) to show that α(U) does not contain the constant 

p̂ or any shift of Φ+ and are omitted. 2

We conclude this section by the following lemma, which, in conjunction with Lemma 4.14, shows that 

(4.4) holds in the case (C3) as well.

Lemma 4.16. Assume (C3). Then τ (α(U)) ⊂ Σin.

Proof. From Lemma 4.15 (combined with Lemma 2.9), we know that for any ϕ0 ∈ α(U), the trajectory 

τ(ϕ0) is disjoint from Λout.

Fix an arbitrary ϕ0 ∈ α(U), we need to prove that τ(ϕ0) ⊂ Σin. Let Ũ be the entire solution with 

Ũ(·, 0) = ϕ0. Then Ũ satisfies (HU) (cf. Corollary 4.6). Therefore, we may apply to Ũ the results concerning 

the ω-limit set already proved in this subsection and in the previous two subsections. Thus, if ϕ0 is not 
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a steady state, then τ(ω(Ũ)) ⊂ Λout. This would mean—since τ(ω(Ũ)) ⊂ α(U) by the invariance and 

compactness of α(U)—that α(U) contains a function ϕ with τ(ϕ) ⊂ Λout, in contradiction to Lemma 4.15. 

Therefore, ϕ0 has to be a steady state. It is not periodic (cf. Corollary 4.6) and τ(ϕ0) is not contained in 

Λout by Lemma 4.15. We are left with the desired option τ(ϕ0) ⊂ Σin, completing the proof. 2

5. Proof of Proposition 3.2 in the case Π = Π0

Proposition 4.1, proved in the previous section, implies that statement (ii) of Proposition 3.2 holds if 

Π Ó= Π0. We now consider the case Π = Π0 (and so Σin = {(0, 0)}), assuming that conditions (U), (NC), 

(R) hold. We further assume that ϕ ∈ ω(u), U is the entire solution of (1.1) with U(·, 0) = ϕ, and

⋃

t∈R

τ (U(·, t)) ⊂ Π0. (5.1)

We prove that

α(U) = {0}, τ (ω(U)) ⊂ Λout, (5.2)

thereby completing the proof of Proposition 3.2 (note that α(U) = {0} is equivalent to τ(α(U)) = {(0, 0)} =

Σin).

We use a similar notation as in the previous section:

p̂ := inf{a ∈ R : (a, 0) ∈ Π0} = inf{a ∈ R : (a, 0) ∈ Λout},

q̂ := sup{a ∈ R : (a, 0) ∈ Π0} = sup{a ∈ R : (a, 0) ∈ Λout}.
(5.3)

Thus, {p̂, q̂} = {γ, Φ(0)} if (A1) holds; and p̂ = γ−, q̂ = γ+ if (A2) holds, where conditions (A1), (A2) are 

as in Section 4 (cf. (4.5), (4.6)).

Recall from Lemmas 3.11, 3.12 that k := z(U(·, t)), ℓ := z(Ux(·, t)) are finite and independent of t, all 

zeros of U(·, t), Ux(·, t) are simple for all t, and the zeros of Ux(·, t) are contained in an interval (−d, d)

independent of t. Further, U(·, t) has no positive local minima and no negative local maxima. This means 

that the zeros and critical points of U(·, t) alternate.

Clearly, one of the following possibilities occurs:

k = 0; ℓ ≥ 2; ℓ = 1 and k = 1; ℓ = 1 and k = 2; ℓ = 0 and k = 1. (5.4)

We differentiate with respect to these four possibilities.

If k = 0, then (5.2) is a direct consequence of Lemma 4.8(i).

Next we show that ℓ ≥ 2 is impossible. Assume it holds. Then U(·, t) has at least one zero contained 

between two successive critical points—hence contained in (−d, d)—for all t. If U(±∞, t) ≤ 0, then the 

function U(·, t) assumes its positive global maximum in (−d, d), at one of the local maxima. We claim that 

U has to stay below q̂ − ϑ for some ϑ > 0. Assume otherwise: then there exist sequences (xn) in (−d, d)

and (tn) in R such that (U(xn, tn), Ux(xn, tn)) converges to (q̂, 0) as n → ∞, and by Lemma 4.7(i), up to 

a subsequence, U(· + xn, · + tn) converges in C1
loc(R) to some steady state φ as n → ∞ with τ(φ) ⊂ Λout. 

On the other hand, U(· + xn, tn) admits two critical points in (−d, d) where it takes opposite signs, which 

clearly contradicts the convergence to φ. Thus our claim is proved and Lemma 4.8(i) now implies that 

ω(U) = {p̂}. This, however, is also prevented by the existence of a zero in (−d, d) and we have a contradiction. 

Similarly one shows that the relations U(±∞, t) ≥ 0 lead to a contradiction. If U(−∞, t) > 0 > U(∞, t) or 

U(−∞, t) < 0 < U(∞, t), then, by [16, Theorem 3.1], the (front-like) solution U(·, t) converges as t → ∞
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to a standing wave of (1.1) in C1
b (R). But this implies that U(·, t) has no critical points in [−d, d], and we 

have a contradiction again.

Now consider the case ℓ = 1 = k. We denote by ξ(t), η(t) the critical point and the zero of U(·, t), 

respectively. For definiteness, we assume that ξ(t) < η(t) and U(·, t) > 0 in (−∞, η(t)); the other possibilities 

that can occur in the case ℓ = k = 1 can be treated similarly. It follows that ξ(t) is the point of positive 

maximum of U(·, t). First, we dispose of the possibility that Λout is a homoclinic loop. Since ξ(t) < η(t)

and ξ(t) is the unique critical point of U(·, t), we have Ux(·, t) < 0 in [η(t), ∞), in particular U(∞, t) <

U(η(t), t) = 0. Therefore, U(∞, t) converges to a stable equilibrium of the equation ζ̇ = f(ζ) as t → ∞. 

In view (5.1), this equilibrium has to equal p̂, which gives f(p̂) = 0. So if Λout is a homoclinic loop as in 

(A1), the ground state Φ satisfies Φ(±∞) = p̂ and Φ(0) = q̂. Using Lemma 4.7(i) and the facts that Φ has 

two zeros while U(·, t) has only one and that U(ξ(t), t) > 0 with ξ(t) bounded, one shows easily that the 

global maximum of U(·, t), namely U(ξ(t), t), has to stay below q̂ − ϑ for some ϑ > 0. By Lemma 4.8(i), 

ω(U) = {p̂}, which contradicts the relation U(ξ(t), t) > 0. We may thus proceed assuming that Λout is a 

heteroclinic loop, in particular p̂, q̂ are zeros of f . As above, if U(ξ(t), t) stays below q̂ − ϑ for some ϑ > 0, 

then Lemma 4.8(i) yields a contradiction. Thus, there is a sequence tn ∈ R such that U(ξ(tn), tn) → q̂

and, then, by Lemma 4.7(i) and the fact that ξ(tn) ∈ (−d, d), up to some subsequence, U(·, tn) → q̂ in 

L∞
loc(R). Obviously, the sequence {tn} is unbounded. Pick any periodic solution ψ of (1.6) with τ(ψ) ⊂ Π0

and minψ = ψ(−d) ≤ 0. Let 2ρ > 0 be the minimal period of ψ. Then, for any large enough n we have 

U(·, tn) > ψ in [−d − 2ρ, −d]. Since also U(·, t) > 0 ≥ ψ(−d) = ψ(−d − 2ρ) in (−∞, −d], the comparison 

principle gives U(·, t) > ψ in [−d − 2ρ, −d] for all t > tn. Consequently,

U(x, t) > ψ(−d − ρ) = maxψ (x ∈ [−d − ρ, −d], t > tn), (5.5)

since Ux(·, t) > 0 in (−∞, −d) (the only critical point of U(·, t) is in (−d, d) and it is the maximum 

point). Using (5.5) and taking admissible periodic solutions with maxψ → q̂ (and ρ → ∞), we obtain two 

conclusions. First, U(·, t) → q̂ in L∞
loc(−∞, −d) as t → ∞ and, consequently, τ(ω(U)) = {(q̂, 0)} ⊂ Λout. 

Second, the sequence {tn} has to be bounded from below (otherwise (5.5) leads to U(·, 0) ≡ q̂, which is 

absurd). This implies that there is ϑ > 0 such that U(ξ(t), t) < q̂ − ϑ for all t < 0. Lemma 4.8(ii) now shows 

that τ(α(U)) = {(0, 0)}, completing the proof of (5.2) in the case ℓ = 1 = k.

In the case ℓ = 1 and k = 2, we denote by ξ(t) the unique critical point of U(·, t) and assume for 

definiteness U(ξ(t), t) > 0, so U(ξ(t), t) is the global maximum of U(·, t). If U(ξ(t), t) < 0, the arguments 

are analogous. Since k = 2, we have U(±∞, t) < 0. The possibility U(±∞, t) = p̂ can be treated in much 

the same way as the case (C1) with Θ− = Θ+ in Subsection 4.2.1: (5.2) holds in this case. Consider the 

opposite possibility, U(−∞, t) > p̂ or U(∞, t) > p̂. We assume, again just for definiteness, that the former 

holds. Then, since U(−∞, t) is a solution of ζ̇ = f(ζ), U(−∞, t) → 0 as t → −∞ and U(−∞, t) → p̂ as 

t → ∞. In particular, f(p̂) = 0. If Λout is a heteroclinic loop, it is easy to prove, using [16, Theorem 3.1]

as in [30, Proof of Lemma 3.4] for example, that U(·, t) → p̂ as t → ∞, uniformly on R. This, of course, is 

impossible when k = 2. Thus Λout has to be a homoclinic loop, as in (A1), and the ground state Φ satisfies 

Φ(±∞) = p̂ and Φ(0) = q̂. We claim that there is ϑ > 0 such that U(ξ(t), t) < q̂ − ϑ for all t < 0. Indeed, 

otherwise, by Lemma 4.7(i) and the boundedness of ξ(t), there is a sequence tn → −∞ such that U(·, tn)

approaches a shift of the ground state in L∞
loc(R). This in conjunction with the property that U(−∞, t) → 0

as t → −∞ would imply that U(·, tn) has more than one critical point if n is large enough, a contradiction 

to ℓ = 1. Thus, our claim is proved and Lemma 4.8(ii) now implies that τ(α(U)) = {(0, 0)}. For the proof 

of (5.2), we now prove that dist((0, 0), τ(ω(U))) > 0. Once proved, this will yield a nonstationary periodic 

orbit O of (2.3) such that τ(ω(U)) ⊂ R
2 \ I(O) from which (5.2) follows at once upon an application 

of Lemma 2.13. Assume for a contradiction that dist((0, 0), τ(ω(U))) = 0. Then Lemma 4.7(i) yields a 

sequence (xn, tn) ∈ R
2 such that tn → ∞ and U(· + xn, tn) → 0 in C2

loc(R). This implies that given any 

periodic solution ψ of (1.6) with τ(ψ) ⊂ Π0 one has z(U(·, tn) − ψ) → ∞ as n → ∞. On the other hand, 
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since U(±∞, 0) < 0, picking ψ near 0, so that ψ > U(±∞, 0), we obtain that for t ≥ 0 the zero number 

z(U(·, t) − ψ) is finite and therefore bounded as t increases to infinity. This contradiction completes the 

proof of (5.2) in the case ℓ = 1 and k = 2.

Finally, we deal with the case ℓ = 0 and k = 1. Clearly, U(±∞, t) are nonzero and have opposite signs. 

Assume for definiteness that U(−∞, t) < 0 < U(∞, t). The assumption ℓ = 0 then means that Ux > 0

everywhere. Being solutions of ζ̇ = f(ζ), U(±∞, t) converge to stable equilibria of this equation as t → ∞. 

By (5.1), these equilibria have to be p̂, q̂: U(−∞, t) → p̂, U(∞, t) → q̂. In particular, f(p̂) = f(q̂) = 0

and Λout is a heteroclinic loop. Using [16, Theorem 3.1], we obtain that the (front-like) solution U(·, t)

approaches a shift of the increasing standing wave Φ+, as t → ∞, uniformly on R, so τ(ω(U)) ⊂ Λout. We 

now claim that α(U) = {0}. If U(−∞, t) = p̂, U(∞, t) = q̂, our claim can be proved by essentially the same 

arguments as those used in the case (C1) with Θ− < Θ+ in Subsection 4.2.1; see the proof of Lemma 4.10, 

the relevant part starts with “Case (i) of Lemma 4.9.” If U(−∞, t) > p̂, then U(−∞, t) → 0 as t → −∞. 

This, in conjunction with the relation Ux > 0, implies that φ ≥ 0 for any φ ∈ α(U). Similarly, if U(∞, t) < q̂, 

then φ ≤ 0 for any φ ∈ α(U). Thus, if U(−∞, t) > p̂ and U(∞, t) < q̂, we are done: α(U) = {0}. It remains 

to consider the possibility when exactly one of these inequalities holds, say U(−∞, t) > p̂ and U(∞, t) = q̂

(the case U(−∞, t) = p̂ and U(∞, t) < q̂ is analogous). If there is φ ∈ α(U), φ Ó≡ 0, then α(U) contains the 

constant q̂. To see this take the solution Ũ of (1.1) with Ũ(·, 0) = φ and Ũ(·, t) ∈ α(U) for all t ∈ R. Then, 

since φ ≥ 0, φ Ó≡ 0, we have Ũ(·, t) → q̂ in L∞
loc(R). The compactness of α(U) gives q̂ ∈ α(U), as claimed. 

This, however, can be proven to be contradictory by the same comparison argument involving the function 

(4.22) as in the proof of Lemma 4.10. This shows that α(U) = {0} and completes the proof of (5.2) in the 

case ℓ = 0, k = 1.

6. Morse decompositions and the proofs of the quasiconvergence results

In this section, we prove Theorems 1.1, 1.3, and 1.4, giving also a stronger and more precise version of 

Theorem 1.3, see Theorem 6.4 below. We prepare the proofs by recalling some results concerning Morse 

decompositions and chain recurrence.

Throughout this section, we assume that u0 is as in (1.8)—specifically, u0 ∈ V and u0(−∞) = u0(+∞) =

0—and the solution of (1.1), (1.2) is bounded. In what follows, the ω-limit set of this solution, ω(u0), is 

viewed as a compact subset of L∞
loc(R) equipped with the induced topology (in which it is a compact metric 

space).

We start by recalling the following result of [13, Lemma 6.2]. Consider a bounded set Y in Cb(R) which 

is positively invariant for (1.1), meaning that ū0 ∈ Y implies that u(·, t, ̄u0) ∈ Y for all t > 0.

Lemma 6.1. Let Y be a bounded set in Cb(R) which is positively invariant for (1.1). Equip Y with a metric 

from L∞
loc(R). Given any T > 0, there is L = L(T ) ∈ (0, ∞) such that for each t ∈ (0, T ) the map 

ū0 Ô→ u(·, t, ̄u0) : Y → Y is Lipschitz continuous with Lipschitz constant L.

We now consider the solution flow on ω(u0). For any t ∈ R, let G(t) : ω(u0) → ω(u0) be defined by 

G(t)ϕ = U(·, t), where U(·, t) is the entire solution of (1.1) with U(·, 0) = ϕ. As noted in Section 2.2, this 

entire solution is well (and uniquely) defined and satisfies U(·, t) ∈ ω(u0) for all t ∈ R. We claim that the 

family G(t), t ∈ R, defines a flow on ω(u0), that is,

(i) G(0) is the identity on ω(u0),

(ii) G(t + s) = G(t)G(s) (s, t ∈ R),

(iii) for each t0 ∈ R, the map G(t0) is continuous.



182 A. Pauthier, P. Poláčik / J. Math. Pures Appl. 153 (2021) 137–186

Property (i) is obvious. The group property (ii) follows from the uniqueness of U and the time-translation 

invariance of (1.1). The continuity of G(t0) for t0 > 0 follows from Lemma 6.1 applied to Y = ω(u0). Let 

now t0 < 0. Properties (i) and (ii) imply that G(t0) is the inverse to the continuous map G(−t0). Since 

ω(u0) is compact, the inverse is continuous, too.

Obviously, for any fixed ϕ, the map t Ô→ G(t)ϕ : R → ω(u0) is continuous. In fact, the map (ϕ, t) Ô→

G(t)ϕ : ω(u0) × R → ω(u0) is (jointly) continuous. This can be proved easily using Lemma 6.1, but the fact 

that the joint continuity follows from the separate continuity in t and ϕ is a general property of flows (see 

[22, Section 8A]).

Next we note that the flow G(t), t ∈ R, on ω(u0) is chain recurrent in the following sense. Let d be a 

metric on ω(u0) compatible with the topology of L∞
loc(R). For any ϕ ∈ ω(u0), ε > 0, T > 0, there exist an 

integer k ≥ 1, real numbers t1, · · · , tk ≥ T , and elements ϕ0, · · · , ϕk ∈ ω(u0) with ϕ0 = ϕ = ϕk such that

d(G(ti+1)ϕi, ϕi+1) < ε (0 ≤ i < k).

This chain recurrence property of the ω-limit set of solutions with compact orbits is well-known from [9, 

Sect. II.6.3], where it is proved for flows on compact metric spaces. For semiflows, including those generated 

by parabolic equations, proofs can be found in [7, Lemma 7.5], [26, Proposition 1.5], [17, Lemma 4.5]. Of 

course, the continuity result 6.1 is needed here, as the limit set ω(u0) is taken with respect to the topology 

of L∞
loc(R).

Finally, we recall that a Morse decomposition for G is a system M1, . . . , Mk of mutually disjoint compact 

subsets of ω(u0) with the following properties:

(mi) For j = 1, . . . , k, the set Mj is invariant under G: G(t)ϕ ∈ Mj for all ϕ ∈ Mj and t ∈ R.

(mii) If ϕ ∈ ω(u0) \ ∪j=1,...,kMj and U(·, t) = G(t)ϕ is the corresponding entire solution, then for some 

i, j ∈ {1, . . . , k} with i < j one has α(U) ⊂ Mi and ω(U) ⊂ Mj .

(Note that in our definition of α(U), ω(U), we use the convergence in the topology of L∞
loc(R), and the same 

topology is used on ω(u0).) The following result of [9, Theorem II.7.A] will be instrumental below. The 

chain recurrence property of the flow G implies that if M1, . . . , Mk is a Morse decomposition for G, then

ω(u0) ⊂
⋃

j=1,...,k

Mj . (6.1)

In the proofs of our theorems, we build Morse decompositions for G using chains of (2.3). Consider the 

system

Σj , j = 1, . . . k, (6.2)

of all chains Σ of (2.3) with the property that Σ ∩ τ(ω(u0)) Ó= ∅ (as noted in Section 2.2, conditions (ND), 

(MF) imply that there are only finitely many chains).

Given any two distinct chains Σ, Σ̃, we have, according to Lemma 2.8(ii), that either Σ ⊂ I(Σ̃), or 

Σ̃ ⊂ I(Σ), or else there are periodic orbits O1, O2 of (2.3) such that I(O1) ∩ I(O2) = ∅ and Σ ⊂ I(O), 

Σ̃ ⊂ I(Õ). For chains Σ, Σ̃ intersecting τ(ω(u0)), the last possibility is ruled out by Lemma 3.6(i). Thus, 

relabelling the chains in (1.13) if necessary, we may assume that

Σj ⊂ I(Σj+1), j = 1, . . . k − 1. (6.3)

We will utilize Morse decompositions with Morse sets of the form

{ϕ ∈ ω(u0) : τ(ϕ) ⊂ Σ}, (6.4)
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or

{ϕ ∈ ω(u0) : τ(ϕ) ⊂ I(Σ)}, (6.5)

where Σ is one of the chains (1.13). Let us prove first of all that these are compact subsets of ω(u0).

Lemma 6.2. If Σ is any of the chains (1.13), then the sets (6.4), (6.5) are closed subsets of ω(u0).

Proof. We prove the result for (6.4); the proof for (6.5) is similar and is omitted. Assume that ϕn, n =

1, 2, . . . belong to the set (6.4) and ϕn → ϕ in ω(u0). This means, a priori, that ϕn → ϕ in L∞
loc(R), but 

since ω(u0) is compact in C1
loc(R) (cf. Section 2.3), we also have ϕn → ϕ in C1

loc(R). Pick any x ∈ R. Then 

(ϕn(x), ϕ
′
n(x)) → (ϕ(x), ϕ′(x)). Since the set Σ is obviously closed in R2 and (ϕn(x), ϕ

′
n(x)) ∈ τ(ϕn) ⊂ Σ, 

we obtain that (ϕ(x), ϕ′(x)) ∈ Σ. Since x ∈ R was arbitrary, we have proved that ϕ belongs to the set 

(6.4). 2

We are ready to complete the proofs of our main theorems. In proving the quasiconvergence results, 

Theorems 1.1 and 1.4, our goal is to show that there is a chain Σ of (2.3) such that

τ(ω(u0) ⊂ Σ. (6.6)

This inclusion implies, by Lemma 2.9, that ω(u0) consists of steady states of (1.1), and also gives an 

additional information that the spatial trajectories of the functions in ω(u0) are all contained in one chain.

Proof of Theorems 1.1, 1.4. We use the chains in (6.2) to define the following sets

Mj := {ϕ ∈ ω(u0) : τ(ϕ) ⊂ Σj}, j = 1, . . . , k. (6.7)

They are obviously mutually disjoint—as the chains (6.2) are such, cf. (6.3)—and by Lemma 6.2 they are 

compact in ω(u0). Since the sets Mj consist of steady states (cf. Lemma 2.9), they are invariant for G. 

Take now an arbitrary ϕ ∈ ω(u0) \ ∪j=1,...,kMj , if there is any such ϕ, and let U(·, t) = G(t)ϕ be the 

corresponding entire solution. By the definition of the sets (6.7) and (6.2), τ(ϕ) is not contained in any 

chain. Therefore, Proposition 3.2 tells us that—under the hypotheses of Theorem 1.1 or Theorem 1.4— 

there are two chains Σin, Σout such that Σin ⊂ I(Σout) and

τ (α(U)) ⊂ Σin, τ (ω(U)) ⊂ Σout (6.8)

(for Σout, we take the chain containing the loop Λout, with Λout as in (3.3)). Since α(U), ω(U) ⊂ ω(u0), the 

inclusions (6.8) imply that Σin = Σℓ, Σout = Σj for some ℓ, j ∈ {1, . . . , k}; and Σin ⊂ I(Σout) implies that 

ℓ < j. We have thus proved that M1, . . . , Mk is a Morse decomposition for the flow G. From (6.1) and the 

connectedness of ω(u0) we now conclude that k = 1, that is, there is only one chain in (6.2) and (6.6) holds 

for that chain, as desired. 2

Remark 6.3. Hypotheses (R) of Theorem 1.4 is only needed in the proof of Proposition 3.2 in the case that 

(U) holds and Π = Π0 is the connected component of P0 whose closure contains (0, 0) (see Section 5). If 

this part of Proposition 3.2 could be proved under weaker or no conditions in place of (R), then the above 

proof would work without change.

We next state and prove a stronger version of Theorem 1.3. Recall from Section 3 that if (U) holds, 

Proposition 3.2 holds true for any connected component Π of P0 distinct from Π0.
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Theorem 6.4. Assume that (U) holds. If ϕ ∈ ω(u0) is such that τ(ϕ) is not contained in Π0 ∪ {(0, 0)}, then 

ϕ is a steady state of (1.1).

Obviously, Theorem 1.3 follows from this result.

Proof of Theorem 6.4. Let Λ0 := Λout(Π0) be the outer loop associated with Π0 and let Σ0 the chain 

containing the loop Λ0. Note that I(Λ0) = Π0 ∪ {(0, 0)}.

We first consider the possibility that

τ(ω(u0)) ∩ I(Σ0) = ∅. (6.9)

This in particular implies that Σj ∩ I(Σ0) = ∅ for j = 1, . . . , k. In this situation, one can almost verbatim 

repeat the previous proof to conclude that k = 1 and ω(u0) ⊂ M1 consists of steady states. We only remark 

that if ϕ ∈ ω(u0) \ ∪j=1,...,kMj , then, due to condition (6.9), one has τ(ϕ) ∩Π0 = ∅. Thus Proposition 3.2

applies to ϕ.

Now assume that

τ(ω(u0)) ∩ I(Σ0) Ó= ∅. (6.10)

We distinguish the following two possibilities:

τ(ω(u0)) Ó⊂ I(Σ0), (6.11)

τ(ω(u0)) ⊂ I(Σ0). (6.12)

The first one, (6.11), can actually be ruled out. Indeed, if (6.11) holds, Proposition 3.2 ensures that at 

least one of the chains (6.2) is disjoint from I(Σ0). Denoting by m the number of such chains, we list those 

chains as

Σ̃1, . . . , Σ̃m. (6.13)

Here, the labels are chosen such that Σ̃i ⊂ I(Σ̃i+1) for i = 1, . . . m − 1 (cf. (6.3)).

Consider the following subsets of ω(u0):

M0 := {ϕ ∈ ω(u0) : τ(ϕ) ⊂ I(Σ0)},

Mj := {ϕ ∈ ω(u0) : τ(ϕ) ⊂ Σ̃j} (j = 1, . . . , m).
(6.14)

All these sets are nonempty by (6.11) and the definition of the sets Σ̃j . We claim that these sets constitute 

a Morse decomposition on ω(u0). Clearly, the sets are mutually disjoint. By Lemma 6.2, they are compact 

in ω(u0). The sets Mj , j = 1, . . . , m, consist of steady states (cf. Lemma 2.9), hence they are invariant for 

G. To prove the invariance of M0, take any ϕ ∈ ω(u0) with τ(ϕ) ⊂ I(Σ0) and let U(·, t) = G(t)ϕ be the 

corresponding entire solution. If τ(ϕ) ∩ I(Σ0) Ó= ∅, then, by Lemma 3.3, τ(U(·, t)) ⊂ I(Σ0)—in particular 

U(·, t) ∈ M0—for all t ∈ R. Otherwise, τ(ϕ) ⊂ Σ0 and ϕ is a steady state, so U(·, t) ∈ M0 holds trivially. 

Thus, the invariance of M0 is proved.

Take now an arbitrary ϕ ∈ ω(u0) \ ∪j=1,...,kMj , if there is any such ϕ, and let U(·, t) = G(t)ϕ be the 

corresponding entire solution. We have τ(ϕ) ∩ I(Σ0) = ∅ and τ(ϕ) is not contained in any chain. Applying 

Proposition 3.2 (with Π Ó= Π0), we obtain similarly as in the proof of Theorems 1.1, 1.4, that there are two 

chains Σin, Σout such that Σin ⊂ I(Σout) and

τ (α(U)) ⊂ Σin, τ (ω(U)) ⊂ Σout. (6.15)



A. Pauthier, P. Poláčik / J. Math. Pures Appl. 153 (2021) 137–186 185

Arguing similarly as in the proof of Theorems 1.1, 1.4, we obtain from (6.15) that M0, . . . , Mk is a Morse 

decomposition for the flow G, and so (6.1) holds. This time, however, since there are at least two Morse 

sets in (6.14), from (6.1) we obtain a contradiction to the connectedness of ω(u0).

We have thus ruled (6.11), so (6.12) has to hold. Take now any ϕ ∈ ω(u0) such that τ(ϕ) is not contained 

in Π0 ∪ {(0, 0)} = I(Λ0). Note that, due to Lemma 3.3, τ(ϕ) ∩ Π0 = ∅. We claim that τ(ϕ) ⊂ Σ0, in 

particular, by Lemma 2.9, ϕ is a steady state of (1.1). Once this claim is proved, the proof of Theorem 6.4

will be complete.

Suppose our claim is not true. Then τ(ϕ) ∩ I(Λ) Ó= ∅, where Λ is a loop in Σ0 different from Λ0. We can 

therefore find a periodic orbit O of (2.3) such that O ⊂ I(Λ) and τ(ϕ) ∩ I(O) Ó= ∅. Since Λ Ó= Λ0, we have 

{(0, 0)} /∈ I(O). Lemma 3.6 now implies that ϕ /∈ ω(u0) and we have a contradiction. 2
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