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1. Introduction

A quantum state is bound if the probability to find parts of the system infinitely farfrom
each other vanishes. It is one of the basic problems in quantum mechanics to determine
conditions for a bound state to occur. Such problems are typically encountered imfew-
body settings. However, they also play an important role in many-body physics. For
example, a low-energy model of dilute many-body systems may include bound states as
building blocks.

Only in some special cases, there exist results that provide/conditions for binding.
For example, any attractive potential supports a two-body boundsstate in one (1D) and
two (2D) spatial dimensions, whereas solely ‘deep’ potentials/can leadwto a bound state in
three dimensions (3D) [1, 2]. For more than two particles, general ¢onditions for binding
are not known. Moreover, there seem to be no universal theoretical approaches to find
them. Typically, one has to resort to numerical calculations; and only some problems can
be addressed analytically (within certain approximation,schemes). The latter class of
problems includes for example the Efimov effect,/whieh provides a universal mechanism
for resonant interactions in 3D [3-6]. Angther example of analytically tractable model
are bound states of weakly repulsive bosensrattracted by a short-range potential [7—
10]. That system is reminiscent of an atom wherewthe role of electrons is played by the
bosons, and the nucleus is realized by the potential. Therefore, in what follows we shall
occasionally refer to the system as an ‘artificial'atom from bosons’.

Artificial atoms were mainly studied inwerie or three spatial dimensions. In 3D, dif-
ferent theoretical methods seem to disagree on the number of bosons that can be bound
to an impurity [7—10]. In 1D, theres a similar puzzle. The outcome of the mean-field
approximation [7, 11] is not supported by the phenomenological argument of Ref. [9].
The latter study argues that a dilute Bose gas can always be mapped onto a system of
non-interacting fermions implying that only a single boson can be bound (cf. the Pauli
exclusion principle). However, the mean-field studies demonstrate that the number of
bound bosons can be largeiif boson-boson interactions are weak. These different results
certainly motivate further investigations of the ‘artificial atom’ problem. Besides pro-
viding insight into eenditions for binding, they shed light onto the physics of the Bose
polaron (see, e'g.; [12-14}), in particular onto the polaron-to-molecule transition region.
In this paper, we focus on properties of a one-dimensional artificial atom.

Main results of 'the paper

Our first result concerns

o the:mean-field solution of an artificial-atom problem in a finite ring. This solution
rigorously shows that an impurity can support a many-boson bound state.

Specifically, the mean-field solution unveils the existence of three different physical sce-
narios depending on the number of bosons, N, see Eqgs. (4) and (5). Below a critical
particle number all bosons are trapped by the impurity, which confirms the previous
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findings of Refs. [7, 11]. In this regime, the density of the Bose gas decays exponen-
tially, see Eq. (15). Therefore, we classify the system as a many-body bound state. A%
the critical particle number, all bosons are also bound to the impurity.” Howeverythe
corresponding density decays as 1/z%, see Eq. (16). Therefore, we shall say that the
system is in a critical state. If the number of bosons is larger than the,critical one, a
certain portion of bosons occupies scattering states, i.e., there is a significant probability
to find a boson far from the impurity.

The second result of this paper is

e a validation of the mean-field predictions for the artificial atom problem wusing
numerical beyond-mean-field methods.

To this end, we use a recently introduced in-medium similarifysrenormalization group
method for bosons (IM-SRG; also called flow equations) [15]whose accuracy is confirmed
here using the well-established multi-layer multi-configuration time-dependent Hartree
method for atomic mixtures (ML-MCTDHX) [16]. #These methods allow us to study
the decay of phase correlations and demgnstrate phase coherence between the bosons
in the vicinity of the impurity, see Fig. 4. We conelude that the mean-field solution
describes the system well as long as all bosons are bound to the impurity. When bosons
populate scattering states, they oceupysthe whole space, which lowers the density and
increases phase fluctuations. The here employed numerical methods can be used to test
the argument of Ref. [9] that bosons fermienize in artificial atoms in 1D. Our results
suggest that fermionization oceurs only for bosons in scattering states.

Structure of the paper

The paper is structured as/follows: Section 2 introduces the system under consider-
ation. Section 3 presénts the mean-field solution, which is further analyzed in the
zero-density limit in Sec. 45 Further, the mean-field solution is benchmarked against the
flow equations results in'Sec. 5. A mobile impurity in a Bose gas is studied in Sec. 6;
it is concluded that:the mean-field approach describes that system also well. Section 7
contains a brief summary.and outlook. For convenience, we provide five appendices that
elaborate on technical details of our study. Appendix A describes the employed numer-
ical methods. They are benchmarked against one another in Appendix B. Appendix
C presents a mean-field solution for a box trap. Appendix D contains some details on
the mean-field solution in the zero-density limit. In Appendix E we discuss the smallest
non-trivial\system — a two-boson artificial atom.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NJP-114674.R1

Artificial atoms from cold bosons in one dimension 4

2. System: An Impurity Atom in a Bose Gas

2.1. Hamiltonian

We investigate a one-dimensional system of N bosons and an impurity imya ring. The
standard Hamiltonian for such a system in the context of cold-atom experiments reads
(see, e.g., [17, 18] and references therein)

1 @ 1P
0= ~omop ~ 0 2 02 +c;5<xi—y>+g;6<xi—m, (1)
where we assume h = 1; y (z;) is the position of the/impurity” (ith boson), m

refers to the mass of the impurity atom, and M denotes, the mass of a boson. For
convenience, we shall use a system of units with M = _1 in themnumerical calculations.
To model atom-atom interactions, we employ delta-function potentials that describe
s-wave scattering [19], which is dominant in the ultracold.regime. Their strengths ¢ and
g can be virtually arbitrary thanks to the possibility. to tune them via external fields
using the phenomenon of Feshbach resonances [20].

For simplicity, we first focus on a heavy, impurity, m/M — oo; the role of the
impurity mass is briefly discussed in Sec. 6. Witheut loss of generality, we place the
impurity at y = 0 as illustrated in{Figsd. a)s Note that from the experimental point
of view, a heavy impurity can be realized using atoms with very different masses, e.g.,
"Li (bosons) and '™Yb (impurity) [21], stel’ that the kinetic energy of the impurity
can be neglected. Alternativelypa localized external field (light blade) can be used to
trap the impurity atom (see, e.g., Ref. [12]) or to even simply produce a delta-function
potential, see, e.g., Ref. [22]. Note that these different experimental methods might lead
to different finite range effeétsrwhose investigation we leave for future studies.

Below, we focus on attractiye boson-impurity (¢ < 0) and repulsive boson-boson
interactions (g > 0). Inl the main part of the discussion, we consider periodic boundary
conditions, i.e., particles are confined to a ring of length L. For completeness, we also
present results for & box trap in Appendix B and Appendix C. Note that such boundary
conditions can alsobe realized in experiment, see, e.g., Refs. [23, 24].

2.2. Physical \Picture

Before we proceed with an analysis of the Hamiltonian H, let us provide some basic
insight inte the/physics of the system, which is driven by the interplay between attractive
impurity-boson and repulsive boson-boson interactions. First we note that a delta-
funetion potential supports a single bound state (see, e.g., [25]). This means that an
arbitrary number of bosons can be trapped by the impurity if the bosons are non-
mmteracting (¢ = 0). In contrast, if 1/g = 0, the bosons fermionize [26], and only one
boson can be trapped by the impurity. [Indeed, only one fermion can be trapped by
the impurity due to the Pauli exclusion principle]. This observation implies that the
interplay between the attractive impurity-boson interaction and repulsive boson-boson
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Figure 1: Panel a): Illustration of the system. Red balls represent Ni,bosons. The blue
vertical line is the heavy attractive impurity. Panel b): Sketch of'the density of the Bose
gas for a finite value of N, and a large system size (i.e., zero-density limit) assuming
that g/|c| < 1. Near the impurity, at distances ~ 1/(Mc), the density of the Bose gas is
high due to the impurity-boson attraction and thus the effe¢tive bason-boson interaction
is weak. For larger distances from the impurity, the demsity isilow, which implies that
the Bose gas is strongly interacting there. [Note that it is'$pecific to 1D systems that
a lower density corresponds to stronger interactions. Formexample, in three dimensions,
the situation is reversed — low densities imply wgak interactions.|

interaction should lead to a critical number of bosons, N.., that can be bound to an
impurity.

In this work, we estimate this’critical number N, from a mean-field approximation
(see also Refs. [7, 11]). We also investigateithe system using two numerical approaches,
namely the IM-SRG [15] and the ML-MCTDHX [16] (for a brief description of these
methods see Appendix A). These,methods allow us to estimate the importance of
beyond-mean-field effects from the deeay of the quasi-long-range order as captured by
the system’s reduced density-matrixgsee Sec. 5 and Appendix B.

To understand why the/mean-field approximation is accurate, let us consider the
system in the limit L= oo |Nis'fixed] and g/|c| < 1, which is one of the main limits of
this work. The effective strength of the boson-boson interactions can be parameterized
by Mg/p(z), wherg p(z)is the density of the Bose gas. This parameterization is natural
for 1D problems, /see, e.g.; [27]. The value of Mg/p(x) is the smallest in the vicinity of
the impurity, and, it grows towards the edge of the bound state. For example for g = 0,
p(x) = Nlc|Me7?M%l seeje.g., Ref. [25]. Assuming that this density approximates also
the system.withyg/|e| < 1, we conclude that

9 g 2M |cz|
~ e . 2
p(z)  NM]c| @)

Therefore,/the mean-field ansatz must describe the Bose gas well in the vicinity of the
impurity as long as x is not large. The characteristic width of this ‘mean-field’ region is
proportional to 1/(M]|c|). Farther away from the impurity, the density of the Bose gas
is low, hence, the boson-boson interactions are strong, and the mean-field ansatz is no
longer applicable, see Fig. 1 b). We extend this line of argumentation in Sec. 4.
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2.3. Relevant Length Scales

Three parameters define the length scales in our model: 1/(Mg), 1/{M|c|) and L.
One can always employ one of them to define the system of units. In ourfwork, it is
convenient to use 1/(M]|c|) for this purpose because it is the only relevant’length.scale
for the impurity-boson bound state if N =1 or g = 0 (see Eq. (2)). The eorresponding
two dimensionless parameters are: the relative interaction strengths@» = c/grand the
dimensionless length LM |c|. Note that the latter will be useful sometimes to express
as LM|c|/N or equivalently as M]|c|/p, where p = N/L is the densityiof'the Bose gas
without the impurity. This will be especially convenient in Sec..5 where we consider
how the system approaches the zero-density limit (L — oo and N is finite).

3. Mean-Field Solution for the Heavy Impurity Problem

For a system consisting of weakly interacting bosons/it.is reasonable to assume that the
ground-state wave function is a product state: ®u= [[f(£;). Here, f(x) is a single-

particle function obtained by minimizing {®|H|®)./ This minimization procedure leads
to the Gross-Pitaevskii equation (GPE) [27}:
1 d*f

oINS S0 f(@) = uf(a), 3)

where p is the chemical potentialf. By, assumption, the function f is periodic i.e.
f(=L/2) = f(L/2). [For a brief discussion of a system in a box trap where f(—L/2) =
f(L/2) = 0, see Appendix C]." Note that some care is needed when using a mean-
field approximation in 1D where quantum fluctuations destroy the condensate in the
thermodynamic limit [27, 29-31]s, We shall rely on ab-initio numerical calculations to
confirm that the mean-field approximation is indeed accurate, at least for describing
the Bose gas in the vicinity of the impurity. The relevant physical picture is given in
Sec. 2.2.

We notice thatelg. (3)"with ¢ = 0 is integrable, see, e.g., Ref. [32]. Therefore,
one can follow the same strategy as when solving the Schrodinger equation with the
delta-function interaetion [25], i.e., use the known solutions for x > 0 and = < 0, then
implement the boson-impurity interaction c¢d(z) as the boundary condition at z = 0.
Once the mean-field solution is obtained, it is possible to calculate any observable of
interest. (For example, the energy of the system is determined by

L)2

. Q(N_l) 4
= 8 / F(2)[*de.

—L/2

E

N

Below, we present the two solutions to Eq. (3) that, by increasing L to infinity,
¢onnect adiabatically to the two different physical situations: (i) all bosons are bound

11t is interesting to note that this equation was also derived and studied for a heavy atom in a
strong magnetic field, see parameter regime 5 (‘region 5’) of Ref. [28].
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to the impurity, (ii) no boson is bound, see the next section. The two solutions coineide
at the threshold for binding, which we refer to as the point of transition (PoT). Note
that the bound-state solution was discussed in Refs. [7, 11] for L — oo.

We focus on systems with finite values of L, since they allow us/tendirectly
benchmark the mean-field method against beyond-mean-field numerical approaches. In
addition, our solution is relevant to cold-atom experiments, which typically have a finite
size. Last but not least, the finite-L solution provides insight into the/case with/N > N,
which is important for understanding the thermodynamic limit, as‘we plan to discuss
in an upcoming work.

3.1. Mean-field Solutions

The first solution to Eq. (3) reads

fmbb($) = \/M;gg?;}j)i 1)dS (QK(pmbb) {% + % - 2_15:| 7pmbb) . (4)

It is determined by the Jacobi elliptic fungtion ds [32]. By construction, this solution is

parity symmetric fuopp(—2) = fubb(z). The ¢hemicalipotential is
_ 2K (prbb)* (1 ="2pumbp)
where K is the complete elliptic integralof the first kind.

The second solution to Eg. (3) is given by the Jacobi elliptic function ns:

_ 4K(pscatt)2 € 1 1
fscatt(-r) - \/MgL252(N — 1)HS 2K(pscatt) E + 5 % y Pscatt | - (5)

The corresponding chemigal potential is

— 2K<pscatt)2(pscatt + 1)
,uscatt M(52L2 .

The parameters pseays € [0,1), pupp € [0,1) and 0% that enter in the definitions

above are fixed bysnormalization, and the boundary condition due to the impurity-

boson potential
L2

[ r@pa =1, L

~L)2

= Mcf(0).

z—0+

Ituis straightforward to write these conditions in a more explicit form. For example,
for fupp, the normalization condition leads to

5 (K—%,p) +(1—p)nd (?,p) sc (%:p) B+ 1;]9[(: MgLi([iV—l)7
(6)

INote that the solutions fgcatt and fup, can be transformed into one another via pyp, = — gEt— f%;a““
sca’

if one allows for negative values of p. The parameter ¢ remains unchanged in this transformation.
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where K = K(p), and we imply that p = puw, [€, E(p) (not to be confused withnthe
energy), sc and nd are standard Jacobi functions [32]]. The boundary condition can be
written as

K (pmbb)
() yan
ZK(pmbb) = . (7)
nc (K(pgnbb) , pmbb) dC (K(pglbb) , pmbb>

Equations (6) and (7) can be satisfied only for N < N, i.e., fuppican describe only

such systems. The solution f..i; describes systems with N > N... The calculation of
N, will be given in the next section, see Eq. (10).

The subscripts ‘mbb’ (many-body bound) and ‘scatt’ (scattering) are motivated by
the observation that for a large system (L — o0) N, is thesmaximal number of bosons
that can be trapped by the impurity, see Ref. [7, 11].and therdiscussion in the next
section. Note also that the chemical potential for the first (second) solution is negative
(positive) for large system sizes since pyp, — 1 and pgeag — 1 for L — oo. This is
another indication that the first solution describés a:many-body bound state while the
second is applicable if the bosons occupy Scattering states.

We illustrate mean-field solutions in"Fign2 for different values of N and L. At
the position of the impurity, any solution 'f reachés its maximum as a result of the
attractive impurity-boson interaction. Imereasing the number of particles decreases the
binding energy per particle (increases the,energy per particle) due to the repulsive boson-
boson interaction, see Fig. 2 d), which alsorleads to a more flat profile of the density
for the largest considered systems. The insets in panels a) and b) show the parameters
p and ¢ as a function of the particlenumber. As it can be seen 6 — 1 for increasing
particle number. The parameter.p first drops down to 0 at the critical particle number
Ne = 11, see Eq. (10), and"then rises again towards 1 [Note that for N < 11 (N > 11),
p corresponds to pupp (Pseatt).]- For the largest ring size p is larger; for L — oo (not
shown) we find empirically that p — 1 except in the vicinity of N.. The chemical
potential becomes negativeifor the largest ring size and N < 11 (Fig. 2 ¢)), which is an
indication of a bound state. We discuss this behavior in more detail in the following
sections.

3.2. Point of Transition

The point of transition from one solution to another occurs at pupp = Pscare = 0 (cf. the
insets in Figs.2 a) and b)). In this case, the functions in Egs. (4) and (5) coincide:

T2 1
fror(z) = \/MgL2(52(N —1) oS (w(r—L/2)> ' ®

oL

The corresponding chemical potential reads

7T2

HPoT = 2M§2L2
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Figure 2: Upper panels: Mean-field solutions for different numbers of particles. Panel
a) is for LM|c| = 1; panel b) is for LM |cjp= 5. The relative interaction strength is
fixed to &« = —5. Therefore the maximal possible particle number in a bound state is
Ne = 11, see Eq. (10). The insets'show the parameters p and § as a function of the
particle number. The lower pamnels depict the corresponding chemical potential ¢) and
the energy per particle d) for different system sizes (see legends).

It vanishes for large system sizes, i.e., upor = 0 for L — co. Normalization, and
the boundary conditionidue to the delta-function potential determine the parameter o

7 tan (1> = M]|c|Ld, (9)

and the critical number of bosons

Ne = % +1. (10)
g
Note that N, — oo when g — 0, and N, = 1 when ¢ — o0, in agreement with our
discussion in Sec. 2.2.

Eguation (9) shows that 0 is determined only by the dimensionless parameter
M|c|L, whereas N, depends only on the ratio |c¢[/g. This decoupling of ¢ and N,
is unexpected for systems with finite values of L. It suggests scale invariance of the
problem at the point of transition, and leads to a number of surprising consequences.
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In particular, at the point of transition, the energy of the system also does not depend
on L:
N.,2M

B=-=r— (1)

which implies a state of zero pressure, in a sense that it costs no energy to adiabatically
change the radius of the ring. This unique signature will later be used/ to.identify the
transition point in our numerical simulations. Note that Eq. (11) provides a variational
upper bound on the exact value of the energy. It rigorously shows thati more than
a single boson can be trapped by the impurity, since this uppeér.bound is below the
ground-state energy of a single boson, —M¢?/2, for N, > 3.

4. Zero-Density Limit: Mean-Field Results

In this section, we discuss the limit of vanishing density (p— 0) that occurs for a fixed
number of bosons in a large system, i.e., L — oo (seewalso Refs. [7, 11] and Appendix
D). This limit provides insight into the general results of tlfe previous section.

4.1. Many-body bound state

The limit p — 0 leads to pmp, — 1 (cf. Figy 2 andvrits discussion), so that Eq. (4) can
be written as

2¢(2¢ +4) 1
m >0) = , 12
Fan (7 > 0) Tmbb  (2€ 4 1)e®/Tmbb — e=/Tmbb (12
where
Ncr - N 1 Ncr —1 1 C+ 1
(= —, L' mbb 7 =
N -1 Mlec| N — N Mlc| ¢

The quantity xypp sets the characteristic width of the state§. If we define ( = 0 for
N > N, ¢ can be seen as the order’ parameter for our system. Indeed, { is positive
for a many-body bound state,jand vanishes as we approach the point of transition. The
respective chemical potential reads
1
2Ma?

It is negative,which/ means that adding an additional boson lowers the total energy —

Hmbb = (13)

this is a typical eharacteristic of a bound state. The energy of the system is given by

_ N C(¢+1) 1
By = I ( S+ 6) : (14)

Additionally, for large values of |z| Eq. (12) yields

/ 9 e
Jmb (2] > 20pp) =~ me Ir|n1|>b7 (15)

8Note that z,pp is proportional to the characteristic size of a one-body bound state 1/M]|c|.
However, it can be much larger since xypp grows with N.

Page 10 of 32
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which corresponds to a typical tail of a bound state whose extension is defined by @,
(see, e.g., Ref. [1]). Note that Eq. (15) is valid only for N < N. At the point of
transition (¢ — 0, zyp, — 00), another function will describe the tail of the stateysee
below.

4.2. Point of Transition

At ¢ = 0, the mean-field solution of Eq. (12) can be further simplified

le| M 1

Fror(@) = /=5 Mlez| +1°

(16)

We see that for our many-body problem there is a finite prebabilityrto find a boson next
to the impurity even at the threshold of binding. This clearlyndistinguishes the many-
body problem from the one-body system [see Eq. (2)] whereithis probability vanishes in
the limit L — oo.

The characteristic length x,,,, diverges, and*wesneed another quantity to describe
the size of the state. It cannot be a root-mean-square radius, because of the 1/z tail of
fror(z). Still, we can define a meaningful size,of the'state as

1
TpoT = W

This quantity defines the spatial region which contains half of the probability
density, i.e., [T f2op(x)dets 1/2. Note that zper is given by the size of a one-
particle bound state [Eq. (2)], which.supports the physical picture provided in Sec. 2.2.

The energy of the system|was already given in Eq. (11), which is independent of
the system size L. The chemical potential is zero. This implies that if we add more
bosons, they must occupy sgattering states. Hence, Eq. (11) defines the energy for all

systems with N > Ng.and pr=—0.

4.3. Scattering state

The function fyae 0fiEqge (5) in the limit p — 0 (pseart — 1) can be approximated as
follows

Fens (a2 1 1 16 i (1 16 T n 0—1
seatt\ P = MgL2(52(N - 1) . 1-— Pmbb 0 . 1-— Pmbb oL 20 ‘

For this solution, it is not possible to fulfil simultaneously normalization, and the

delta-potential boundary conditions. If we impose the latter condition, we derive a non-
normalizable wave function for L — oco. If we demand a normalized state, the resulting
function is constant in space and does not include the impurity potential. We interpret
this result as if all bosons occupy scattering states and distribute over the whole system
until they are no longer affected by the impurity. This state is physical, however it is
not the ground state, in which N, bosons are bound to the impurity, and other bosons
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occupy scattering states. The GPE cannot describe this physics because it agsumes
that all bosons occupy the same orbital. Hence, as soon as there are more bosons in
the system than can be supported by the many-body bound state, all oceupy scattering
states within the mean-field approximation.

An appropriate variational ansatz for large (but finite) L should include two parts,
where the first part describes a many-body bound state, and the second oneaecounts for
the bosons that occupy scattering states. In the low-density limit this leads to'a Tonks-
Girardeau gas formed outside the many-body bound state. We leave an _investigation
of such an ansatz for a future study.

5. IM-SRG Results: Approach to the Zero-Density ‘Limit

To test our findings from the previous sections, we use the IM=SRG and ML-MCTDHX
methods, which are briefly discussed in Appendix A, see the references given there
for more details. Both numerical methods are able torcapture corrections stemming
from quantum fluctuations, and agree for the considered parameters. Therefore, in this
section we illustrate our numerical results only for IM-SRG, see Appendix B for some
ML-MCTDHX results. We focus on the question of approaching the limit L — oo. This
allows us not only to test the mean-field predictions but to also address beyond-mean-
field corrections that must be importantifar from the impurity, see Fig. 1 b).

5.1. Energies

In Fig. 3, we present the energy perparticle as a function of the inverse density (1/p) for
different values of N. For the considered parameters, the critical number of bosons that
can be trapped by the impuzity iV, = 11. We see that the IM-SRG data agree with
the mean-field results well. Only small deviations are visible for N 2 N,.. We attribute
these deviations to residualybeyond-mean-field effects naturally captured by the IM-
SRG. The energies of theisystems with N > N, decrease and in the limit of L — oo,
we expect them tofappreach the critical energy of Eq. (11). Unfortunately, we cannot
follow this convergence for larger values of L; we observed that the IM-SRG method is
not accurate for |c[/p= 1. In particular, for the largest considered particle numbers,
the truncated flow equations diverge. This can be interpreted as a sign that the system
becomes progressively more correlated, and IM-SRG cannot map the reference state (in
our casela condensate) onto the real ground state of the system.

For ‘N, </N.,, Fig. 3 shows that the energy increases with the size of the ring.
This is a typical behavior for bound states (at least for L — o), where the potential
energy dominates the kinetic one. For N = 1, this increase can be understood using the
equation for the binding energy

\2M|\E
%tanh(\/2|E|ML) ~1,

Mlc
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Figure 3: The energy per particle as a function of the inverse’density M |c|/p for different
particle numbers. The circles are calculated using IM-SRG:, The dashed-dotted curves
represent our mean-field results. The solid (horizontaljslines eorrespond to the mean-
field prediction for p = 0, see Eq. (14). The left panel shows the data for N < N,,.
The right panel is for N > N... We fix « = —5 whichleads to N., = 11. Notice that
the numerical error bars on the IM-SRG data calculated, according to Appendix A are
smaller than the sizes of the markers.

which leads to E = —MQCQ — 2McPe2MIel for Mlc|L > 1. For N = N, the energy

remains nearly constant with respéct to the system size as predicted by Eq. (11). There

is a very weak dependence on L pointingsto beyond-mean-field effects. For N > N,
the energy is a decreasing function of L./ Our interpretation is that some bosons
are now dropped out of the many=body bound state. Their kinetic energy decreases
approximately as 1/L?, allowing us to conjecture the following behavior of the energy
in the limit L — oo

MNuc® 202NN+ 1)(2N + 1)
b N 1
6 3ML? ’ (17)
where N’ = (N — Ngo—1)/2for odd values of N — N, and
MN.2 27 RN +1 22
Fe c+7rN(N+ )(N+)_2N7T (18)

6 3ML? ML?’

with N' = (N.-#N,,) /2 for even values of N — N,,. These expressions are the sums of the
energy ofhe many-body bound state and the energy of the Tonks-Girardeau gas made
of N — N, particles, assuming that there is no interaction between the bound state and
bosonsyin seattering states€.

All in all, the IM-SRG data support the existence of different physical scenarios that
correspond to bound and scattering states. However, note that our numerical analysis

YEquations (17) and (18) assume that the size of the ring is sufficiently large in the sense that
1/kp > 1/|c|M, where kp is the Fermi wavelength corresponding to the Tonks-Girardeau gas and
1/|c|M is the characteristic width of the many-body bound state. Assuming that kr = 7p, we derive
the' condition M|c|/p > m. This condition implies that the ring sizes used in Fig. 3 are too small to
numerically confirm Egs. (17) and (18).
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Figure 4: Panels a) and c¢) show the density'of the Bose gas. Circles are calculated with
IM-SRG, and the solid curves are, the corresponding mean-field results (Egs. (4), (8)).
Panels b) and d) demonstrate phase fluctuations whose non-zero values reveal presence
of beyond-mean-field correlations. The dashed curves are plotted to guide the eye. The
data show many-body bound, critical and scattering states. We fix a = —5, thus, the
critical number of bosons supported by the bound state is N., = 11. Panels a) and b) are
for systems with LM |¢| = 0.1N"(M|c|/p = 0.1). Panels c¢) and d) refer to LM|c| = 0.5N
(Mcl/p = 0.5)
. The numerical error bars are calculated according to the prescription given in
Appendix A.

cannot rule out, thepossibility that N.. becomes larger when L — oco. In particular, we
cannot rule out,bound states with an infinite number of particles that are exponentially
weakly bound in the limit L. — oco. However, one does not expect this to happen because
far from the impurity the bosons interact strongly (fermionize).

5.2. Densities and Phase Fluctuations

Here, we calculate the density of the Bose gas

p(r) = (P, | Z 0(z — )| Pgr) , (19)
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in the ground state, ®,,. We also investigate beyond-mean-field effects. To this eadypwe
estimate phase fluctuations (also known as phase correlations), §®,,, from the one-body
density matrix according to the prescription (see, e.g., [27, 33, 34])

plo) = (Bl )0} = Vo e { - 2522 (20)
The quantity 6®,, is a measure of the off-diagonal quasi-long-range order, which
vanishes for a condensate (mean-field) state. Note that §®,,  is notienly.@ convenient
theoretical object for studying the importance of the beyond-miean-field effects. It also
leads to experimental indicators of phase coherence that are,observable through Bragg
spectroscopy and interferometry, see, e.g., Ref. [35].

In Fig. 4, we show p(z) and §®,,s for L = 0.1N/M|¢["and L= 0.5N/M]|c|. For all
considered parameters, the IM-SRG and mean-field results agree on the density profile
of the Bose gas. The density is the highest in the viginity of the impurity, as expected.
For the largest values of N, it features a weak dependence on N irrespective of the
(considered) ring size. In spite of this, there is/a notieeable increase of beyond-mean-
field correlations as identified by the nen=vanishing phase fluctuations. Their effect
is more pronounced for the largest ring and V. > N, especially in the region with
low densities. This observation is in agreement with the physical picture outlined in
Fig. 1: low densities lead to strong/boeson-boson interactions, which can be quantified by
Mg/p(zx). Surprisingly, IM-SRG and mean-field results are in a reasonable agreement
even when Mg/p(x) is of the order of unity, where the mean-field treatment is not
expected to be valid. It is also worthwhile noting that the mean-field approximation is
valid, in particular Eq. (10), eéven forithe smallest non-trivial bound system — a two-
boson artificial atom, see Appendix Ei

Note that phase flucttiations are the strongest for the largest considered N. This
can be rationalized in the following way. For N = 15, a few bosons are not trapped
by the impurity. Therefore, the probability of strong boson-boson interactions far away
from the impurity dsthigh leading to large phase fluctuations. In contrast, for small
particle numbers(e.g., N.= 5), phase fluctuations may be small even if the density is
low. The probability ef finding two bosons outside the many-body bound state in this
case is exponentiallyi suppressed.

6. Mobile Impurity

A single mobile impurity atom in a weakly interacting Bose gas is an experimentally
releyant system [12, 36|, which motivated various theoretical studies of a ‘Bose-polaron’,
see, foriexample, Refs. [37-43]. Here, we complement those studies by considering the
many-body bound state that follows from our results in the previous sections.
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Figure 5: The energy per particle as a function of the inverse density 1/p for a mobile
impurity (m = M) for different values of N. The circles are calculated using IM-SRG.
The dashed-dotted curves represent the mean-field results. The'solid (horizontal) lines
correspond to the mean-field prediction for p = 0, see Eq. (14). The left (right) panel
shows the energy for N < N (N > N.). We fix a =»—5 which leads to N, = 11.
Notice that the numerical error bars calculated within IM-SRG according to Appendix
A are smaller than the sizes of the markers.

6.1. Mean-field analysis

To investigate an impurity with a finite'mass, we use the mean-field ansatz in the frame
‘co-moving’ with the impurity [40, 41, 44-47]. This frame is introduced via the set of
new coordinates

i =00y — i) + ;i — y, (21)

where 6(x) is the Heaviside step.function. These coordinates allow us to exclude
the position of the impurity from the Hamiltonian (similarly to the Lee-Low-Pines
transformation [48])||. In the new coordinates, the Hamiltonian reads as follows

N

1 & B IS 0\ P 0
M= i et S (20 ) 2y T2 ) Te 0, (22

i<j i=1

where P is agguantum number — the total (angular) momentum of the system. For

simplicity, we gonsider the case P = 0, which corresponds to the ground-state manifold.
The Gross-Pitacvskii equation that follows from Eq. (22) reads (see, e.g., [40]):

1 d*f

2k dz?

where k =/mM /(m+ M) is the reduced mass. This equation is equivalent to Eq. (3) up

+9(N = 1)f(2)" + cd(2)f(2) = nf(2), (23)

to a change of the mass of the boson M to k. In this sense, all of our mean-field results
from Secs. 3 and 4 also apply to a mobile impurity.
| Transformation to the ‘co-moving’ frame allows us to use the analytical results of the previous

sections. The mean-field approximation in the laboratory frame will lead to a system of coupled Gross-
Pitaevskii equations, which one should solve numerically, see Appendix B.
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6.2. IM-SRG results

We use IM-SRG to validate the mean-field predictions of Eq. (23). We fogus on'the case
with m = M. In Fig. 5, we show the ground-state energy as a function of 1)/p - similar
to Fig. 3. First of all, we see that the mean-field and IM-SRG results are in agreement.
Furthermore, just like before, the energy of the system with N < N/ increases as a
function of L. For the critical number of bosons, the energy remains‘nearly eonstant.
Note that according to Eq. (10) the critical number of bosons does/not depend on the
mass of the impurity. Our numerical simulations confirm this result. Finally, we used
IM-SRG to calculate the density and phase fluctuations of the Bose'gas in the presence
of a mobile impurity. The comparison of the mean-field predictions t0 the IM-SRG is
similar to the one presented in Fig. 4. Therefore, we refrain from discussing it further.

7. Summary & Outlook

We studied a one-dimensional artificial atom made of besons. First, we analyzed this
system within the mean-field approximatien, and presented two possible solutions. In
the limit L. — oo, the solutions correspond to two different physical scenarios with the
bosons bound (or not) to the impurity. The\critieal state in between these scenarios is a
zero-pressure state, meaning that its energy does not depend on the radius of the ring.
We presented analytical expressions that describe this state.

Second, we investigated the system numerically using beyond-mean-field methods
(IM-SRG and ML-MCTDHX)»Our numerical simulations justified the use of the mean-
field approximation for studying artificial atoms from bosons in one dimension. They
confirmed the existence of bound, critical and scattering states in the system. Despite
the validity of the obtained mean=field solutions, we argued that quantum fluctuations
are present in the tail of the wavefunctions. Therefore, only the bosons near the impurity
are described with aymean-fieldfansatz well. Bosons far away from the impurity are
strongly interacting, supporting the phenomenological argument of Ref. [9]. However,
their influence on the system can be neglected for particle numbers smaller than the
critical one, becatise the attraction from the impurity assures a sufficiently large region
with high density. whereparticles are weakly interactings*. Although, we mainly focused
on a heavy impurity; we also showed that our results are applicable for a mobile one.

Further studies are needed to understand Bose systems with N, + 1 particles in the
limit L + oo. Qur results indicate that the mean-field approach is not suitable for such
studies. Tm particular, it cannot be used to calculate the effective boson-artificial-atom
interactions. The knowledge of this interaction will simplify the analysis of low-density
Bose gases with attractive potentials.

Our results pave the way for investigations of many-atom physics using artificial
atoms as elementary building blocks. For example, a lattice of heavy impurities

xxNote that in Appendix E we validate the mean-field solution even for a two-boson system where

the strength of the boson-boson repulsion can be of the same order of magnitude as the one of the
boson-impurity attraction.
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immersed in a Bose gas may feature different phases (e.g., Mott insulator and superfluid)
depending on the strength of the boson-impurity and boson-boson interactions.' Dilute
systems of artificial atoms based upon mobile impurities can enjoy the ‘physics oficold
gases. To explore that context, one needs to understand the effective interactionbetween
two artificial atoms.
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Appendix A. Numerical Methods

In this Appendix, we briefly discuss the two numerical methods used in this work. The
first method is called the flow equation ‘@approach orAM-SRG (“in-medium similarity
renormalization group”). Our numerical implementation of this approach is based upon
previous works [40, 49] (see also Ref. [15] for a study of the Lieb-Liniger gas), which are
inspired by the methods known i’ condensed matter and nuclear physics (see e.g. [50—
52]). The second method is called the multi-layer multi-configuration time-dependent
Hartree method for atomic mixtures (ML-MCTDHX) [16] (see also a relevant review
on the topic [53]). It is a variational approach that has been extensively used, among
others, for studying systems with impurities [42, 43, 54-57].

Appendiz A.1. Flow Equation Approach (IM-SRG)

The flow equation approach (block)-diagonalizes the Hamiltonian in second quantiza-

tion,
H = ZAi,jajaj + Z Bijklaja;’akala (A1)
i\ i,g ksl
via the so-called flow equation
dH
— = [n, H]. A2
=1 (A2)

Here, s is the flow parameter, which formally plays a role of (imaginary) time. The
genetator of the flow 7 has to be chosen such that the off-diagonal matrix elements
vanish in the limit s — oo [50].

In, this work, we aim to decouple the ground state from the rest of the Hilbert
space. Therefore, we normal order the Hamiltonian using a reference state following the
prescription in Ref. [15]. This leads to the normal-ordered Hamiltonian

H=FEI+ me : ajaj C+ Z Lo aj»a;akal :, (A.3)

i?j i7j7k7l
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where we denote normal ordered operators with : O :. The matrix elements f;; andidy;x
describe one- and two-particle excitations from the reference state. For the generator,
we use

n(s) = fio(s) : ala; : +Tij00(s) : a}a}akal : —h.c., (A4)

these are the matrix elements which need to vanish in order to decouple the ground state
from the excitations. Therefore, once the flow equation converges, our ground-state is
decoupled.

The transformation governed by the flow equations can alse bemunderstood as a
mapping of the reference state onto the real ground state of thessystem. Since we
are interested in a system of bosons, it is reasonable to use condensate as reference
state. Our reference state is constructed iteratively: Starting from the ground state
solution of the non-interacting Hamiltonian, the density is'calculated and used as the
new reference state. This procedure is repeated until the density converges. Note that
also other choices for the reference state are possible such as the mean-field solution,
see Ref. [49]. For our system of interest such a reference state leads to the same result.

Induced higher order terms make it impossible to/solve Eq. (A.2) exactly, and
should be truncated. In our truncation scheme, we truncate at the two-body level, while
keeping three-body operators which contain at least, one agao operator. This leaves us
only with zero-, one- and two-body operators in Eq. (A.2) which leads to a system
of coupled, closed, non-linear differential equations, which we solve numerically [15,
49]. We estimate the error due to the neglected pieces (called W) using second order
perturbation theory

O, | [°W (s)ds|P,

51 SRl " WIdsf ) )
" <(I)p|H|q>p> - <q)ref|H|q)ref>

where @, is a state that contains three-body excitations and ®,¢r is our reference state.

To construct the Hamiltonian in second quantization we use the solution of the

one-body Hamiltonianfof ourfsystem. Since we can only work with a finite Hilbert

space, we solve the flow equations for different numbers of basis states (in our case
n € [11,13,15,17,19,21]). For the energy, we fit these values with

E(n) = E(n — o0) + % (A.6)

to obtain the result in infinite Hilbert space. For other observables, such a fit is not
always possible, In such cases, we take the result for the largest Hilbert space as our
result andiestimate the error by the largest deviation between the results for the different
numbers of basis states. So there are in total two contributions to our error bars:
The truncation error from neglecting higher order terms in the flow equation and the
truncation error due to a finite Hilbert space.

For a more detailed description of the method we refer to Ref. [15], where the flow
equations and our estimate of the truncation error are introduced, see also Ref. [49] for
information about calculation of observables and a detailed explanation of our estimate
of error bars.
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Appendiz A.2. ML-MCTDHX approach

In the ML-MCTDHX approach, the Hilbert space is truncated in a variationally optimal
manner. To this end, one employs a time-dependent moving basis in which the systemis
instantaneously optimally represented through time-dependent permanents 7. Inthis
sense, the many-body wave function is expressed with respect to bosoni¢' number states
|77} = |n1,na,...,np;t) and time-dependent expansion coefficients C#(#) as follows

W (t)) = Zoﬁ(t) Iny,na,...,np;t). (A7)

Here, |fi;t) built upon time-dependent single-particle functionsy¢;(t) with i =
1,2,...,D. The summation in Eq. (A.7) is performed over, all possible combinations n;
such that the total number of bosons N is conserved. In our numerical implementation,
the single-particle functions ;(t) are expanded in a time-independent primitive basis of
dimension M 11 that is based upon a sine discrete ¥variable representation for the box
potential with hard-wall boundary conditions at/#L/2. Té calculate the ground-state
wave function of the many-body setting/ we determiné the underlying equations-of-
motion for the coefficients Cz(t) and the single-particle functions ¢;(t) following the
Dirac-Frenkel [58] variational principle. An‘imaginary time propagation method is used
to obtain the system’s ground stateseonfiguration. More details on the ingredients of
this variational method can be found i _Refs."[16, 59].

Appendix B. ML-MCTDHX results

In the main text, the analytical solution for the bound state has been benchmarked
against IM-SRG data. Weghavenehecked that these results are in agreement with
the predictions of the well-established ML-MCDTHX approach. This is illustrated in
Fig. B1 where the densities andphase fluctuations for the largest value of N considered
in the main text are shown (cf. Fig. 4).

Below, we study a system in a box potential, thus, exploring the formation of the
artificial atom from bosons in the presence of hard-wall boundary conditions. This
allows us to further understand the validity of the relatively novel IM-SRG method.
Afterwards, we discuss the mean-field approximation to a mobile impurity in a Bose gas
without the tramsfermation to relative coordinates, Eq. (21).

t1For a.multicomponent setting, the variational ansatz has a multilayer structure allowing one to
includesbothiintra- and interspecies correlations, see Ref. [16]. Here, we describe a reduction of ML-
MCTDHX te a single-component system that is investigated.

i1In the limit where D = M the wave function expansion of Eq. (A.7) is equivalent to a full
configuration interaction approach, while for D = 1 it reduces to a single product state, which
autematically satisfies symmetrisation conditions for bosons, and thus corresponds to the mean-field
approximation.
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Figure B1: Density (left) and phase fluctuations (right) for the Bese gas using periodic
boundary conditions calulcated with IM-SRG (circles) and ME-MCTDHX (solid curves).
The dashed curves are added to guide the eye. Theé parameters of the system are:
a = =5, LM|c| = 0.5N, and N = 15. In ML-MCDTHX we used D = 5 orbitals.
The energy per particle in IM-SRG is EM/Nc¢? = —0.100722 + 0.000089 and in ML-
MCDTHX it is EM/Nc* = —0.097. The numerical ertor) bars are calculated according
to the prescription given in Appendix A.

Appendiz B.1. IM-SRG vs ML-MCTDHX

We show in Fig. B2 the energy, densitynand phase fluctuations of the Bose gas for
different particle numbers N./The used values of N correspond to bound, critical, and
scattering states discussed in the main text. Note, however, that the box trap modifies
all properties of the system ifl L is ofithe order of 1/M|c|. For example, we noticed
that we need to use stronger impurity-boson interactions (and therefore larger numbers
of particles) than in the main text to be able to observe significant beyond-mean-field
effects.

The ML-MCTDHX and IM-SRG results for the energy (panel a)) and the density
(panel b)) are ingagreement. However, phase fluctuations (panel c¢)) show some
We notice, that while the density and the

energy are accurate alteady for a small number of orbitals in ML-MCDTHX, phase

deviations for larger particle numbers.

fluctuations require \more involved simulations. This is expected for several reasons.
In particular, phase fluctuations require to determine the off-diagonal of the reduced
density matrix which is a higher order observable. Note that ML-MCTDHX contains
in generab.moré information about the Hilbert space of the system in comparison to
IM-SRG. Furthermore, ML-MCTDHX provides a direct access to spatially resolved
observables and multicomponent settings. In that light, ML-MCTDHX calculations of
certain observables are computationally more demanding than those with IM-SRG.
Nevertheless, increasing the number of orbitals leads to an agreement between the
IM-SRG and the ML-MCDTHX results also for the phase fluctuations. We showcase
this statement in panel d), presenting the phase fluctuations within ML-MCDTHX for
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Figure B2: Observables for a Bose gas in a box trap assuming that there is an impurity in
the middle of the trap. The parameters of the system are: a = —12.5, LM|c| = 0.25N,
and N = 15, 26, 40. [Note that the eritical particle number for these parameters in a
ring would be N, = 26]. Panels.a),/b) and c) show correspondingly the energy, the
density and phase fluctuations calculated with IM-SRG and ML-MCDTHX for different
particle numbers. Solid curyes present ML-MCDTHX data. In ML-MCDTHX, we used
D = 5,7,6 orbitals for N = 15, 26, 40, respectively. Dots, squares, triangles showcase
IM-SRG results. Dashed lines are added to guide the eye. In panel d) we show phase
fluctuations for N.= 26 for different numbers of orbitals in ML-MCDTHX together with
the IM-SRG result.“Note that already for three orbitals, the values of the energy and
the density are convergedfor this V.

an increasing otbital number in the case of N = 26 (a similar pattern is expected for
N =.40)."We observe a systematic convergence behavior. The main disagreement is
near the boundaries of the box trap where the calculation of phase fluctuations becomes
hard'dueto almost zero densities, see Eq. (20) especially so for ML-MCTDHX which
eperates in first quantization. We conclude that the decrease of phase fluctuations near
the boundary is a numerical artifact caused in part by the presence of hard walls. Thus,
we only show results for x < 0.35L. Overall, both numerical methods predict the same
behavior for the observables of interest.
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numerically solve the following set of coupled Gross-Pitaevskii equations

ho d?
s IO = DI+ )| o) = )
2M dx
[— m dy? + | Up(x)]* | Wr(y) = ur¥i(y),
for increasing particle numbers while fixing the ratio N/a = —1. Here, ¥\ (¥p) is the

mean-field wave function of the impurity (bosons). Below, we assumewn/M = 1.

To justify this mean-field approximation, we benchmark it/against ML-MCDTHX.
[Note that we cannot use the current implementation of IM-SRG for such a benchmark,
as it cannot be used to study multicomponent systems.] Our findings are illustrated
in Fig. B3 where the one-body densities of the impurity’and,the bosons are shown. It
becomes evident that a larger particle number results i @higher bosonic density at the
position of the impurity as the effective boson-bosotr interaetion decreases if the ratio
N/« is kept fixed.

The considered weak boson-boson interactions/leadto a good agreement between
the mean-field and ML-MCTDHX methods, at least for the density of the Bose
gas. This is expected since for these weak imteractions boson-boson correlations are
suppressed. For the impurity, the deviations between the ML-MCDTHX and the mean-
field predictions become more noticeable for the largest numbers of bosons. Particularly,
the impurity appears to be more spatiallylocalized in the mean-field approach.

Our data allow us to conélude that the mean-field approximation is able to provide
adequate results also without tramsformation to a co-moving frame. However, such a
transformation is needed to obtain someé analytic insight into the system, as we discuss
in the main text. If one is simplyninterested in estimating lower order observables such
as densities in the mean-field approximation, then it seems that it is sufficient to work
in the laboratory frame:

Appendix C. Mean-field Solution for Hard-Wall Boundary Conditions

To complement the mean-field studies in the main text, here, we present a solution of
Eq. (3) for a/box trap, i.enfor f(—L/2) = f(L/2) = 0. For these boundary conditions,
the solution that becomes the many-body bound state in the limit L — oo is given by
the Jacobi-cs function [32]:

\/MgL252 e <2K6(p) [% + 5;—1} ,p> , (C.1)

—2
— 2K (p2 L=
ft () 3 i1

To find the parameters p and ¢, one should use the normalization condition and

with
(C.2)
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the boundary condition due to the delta-function potential:

of
[irtaae=1 2

Note that there are other Jacobi-elliptic functions that can solve the GPE] for
example, the Jacobi-sc function:

= —cM f(0). (C.3)

=01

_ | AK(p)*(1 —p) z| 1
with B p—2
p=2K0) "5 (C.5)

This function, however, does not lead to a physical solutionyin the limit L — oo, and
therefore we do not consider it here. We refrain from/diseussing any further solutions,
which may, for example, correspond to the scattering solution, Eq. (5), from the main
text. It turns out that hard-wall boundary conditions make it harder to find correct
solutions for systems with finite L.

Appendix D. Zero-Density Limit within Mean-field Approximation

In this Appendix, we provide some technical details for the results presented in Sec. 4.

Appendiz D.1. Many-body bound state

We first of all notice that the soldtiomdrom Eq. (4) presented in the main text for periodic
boundary conditions and Eq. (C.1) from the previous appendix for closed boundary
conditions are identical in shélimit of L — oco,p — 1:

f(@) Mg(;f — 1%(5) sinh <ln(a) {gc—L‘ + bD_l, (D.1)

-1
— dnd b := % We used that K(p) — 1/21In(a) [32].

Now we need to fulfill the boundary condition due to the delta-function potential

with a :=

J'(07) = Mcf(0) (D.2)
r+1 —cMoL
——— = coth(l = for z := a® D.
= 7 coth(In(a)b) In(a) orz:=a (D.3)
and normalization
L/2
1 = lim / f(z)*dx (D.4)
L—oo
~L/2
4 In(a) [ 1 1 ] asa 4 In(a) 1
1= — = . D.
= Mg(N —1) 6L {1—@ 1—x} kg(N —1) 6L = —1 (D-5)
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Combining these two equations leads to

In(a) _ Mg(N —1)
oL 2

¢, (D.6)
with

2c _ Ne— N
gN-1)—-1 N-—-1"

Note that by definition > 1, therefore, we derive the condition for the existence of the

(=~ (D.7)

solution:

N <old 1, (D.8)
g

which is in agreement with the PoT condition Eq. (10) from the main text.
For the chemical potential, we derive:

In(a)? Mg*(N —1)? 1
U VST N I 9
2Mo2L 8 M2,
with zph = ﬁc—?, the characteristic width defined in"the main text. For the energy
per particle, we find
L/2
N -1 @ 1 1
E/N = Llim w— 9N —1) 5 ) / dx fa)* 21 “Mg*(N — 1) (—C(C; ) + ﬂ)
—00
_Lj2 (D.10)
R NSS!
o Ma?,, 2 2 6/
For the function f(z), we camn.use Eq. (D.6) to simplify the solution as
Mg(N %1 Mg(N -1 -
flz) = %gsmh <%@: +In(\/2¢ + 1))
(D.11)

20(26,:+ 1) 1
Lmbb (2C + 1)€x/mmbb — e—x/xmbb ?

At the point/of tramsition, { — 0, this function can be expanded around z( — 0 as
follows

e M 1

Jx) = 2 |Mz+1

(D.12)

Appendiz D.2. Point of transition

The solution with the critical particle number still supporting a many-body bound state
reads

fz) = MgL25%(N — 1) oo (n(w—Lﬂ)) '

(D.13)

6L
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In the limit L — oo, we have 7 — 0 and  — 1. Therefore, we can expand the solution

such that:
le| M 1
f(x) =4/ —. (Dui4)
2 x|+ L5(g 1)

From the normalization condition,

MgéL(N —1) T
o = tan <%) : (D.15)
we derive N 51 9
—
tan (%) S T (D.16)

which leads to

fla) =/ |C|2M |C|Mi+ - (D.17)

Note, that this expression coincides with the one derived in the previous subsection.
The corresponding chemical potential vanishes:

2

= lim ) (D.18)

iy
L—oo 2M52L2
Appendix E. Few-body Limit of the Artificial Atom

In this appendix, we discuss the smallest nentrivial system with N = 2 assuming that
only two or three bosons can be bound to the impurity. Note that a prior: it is not clear
that the mean-field solution is applicable to such a few-body system.

For a two-particle system, the IM-SRG becomes essentially exact (there is only an
error due to the finite Hilbért space, see Appendix A, which can be easily controlled).
This allows us to benchmark our/mean-field results for large ring sizes. The results are
presented in Fig. E1 where panels a) and b) show the density of the Bose gas for the
cases where N, = 2 and Ng.= 3. It can be readily seen that independently of the ring
size the behavior of the density is in an excellent agreement between the mean-field and
IM-SRG approach. The same holds for the corresponding phase fluctuations depicted in
panels ¢) and/d) for distinct,sizes of the ring. Note that the density for the largest ring
size, i.e. LM|cf= 2.5N, in both panels is too low to render meaningful values of phase
fluctuations'(cf."Eq. (20)). However, even for the largest ring size, phase fluctuations are
still low land the Bose gas can be adequately approximated with the mean-field ansatz.
This.mumerical observation shows that the physical picture given in Sec. 2.2 is accurate
even for the smallest set-ups.
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Figure E1: Panels a) and b) show the density of the Bose gas. Circles, boxes, crosses
and triangles are calculated with IM-SRG, and the solid curves are the corresponding
mean-field results (Egs. (4), (8)). Panels'c) and d) demonstrate phase fluctuations whose
non-zero values reveal the presence.of beyond-mean-field correlations. The dashed curves
are provided to guide the eye./The data show results for two bosons (N = 2) for different
ring sizes. Panels a) and ¢) arefor systems with o = —0.5 (N, = 2), and panels b)
and d) for &« = —1 (N=3). The numerical error bars are calculated according to the
prescription given imAppendix A.
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