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Abstract

We investigate the polaronic properties of a single impurity immersed in a weakly interacting
bosonic environment confined within a one-dimensional double-well potential using an exact
diagonalization approach. We find that an increase of the impurity–bath coupling results in a
vanishing residue, signifying the occurrence of the polaron orthogonality catastrophe. Asymptotic
configurations of the systems’ ground state wave function in the strongly interacting regime are
obtained by means of a Schmidt decomposition, which in turn accounts for the observed
orthogonality catastrophe of the polaron. We exemplify that depending on the repulsion of the
Bose gas, three distinct residue behaviors appear with respect to the impurity–bath coupling.
These residue regimes are characterized by two critical values of the bosonic repulsion and
originate from the interplay between the intra- and the interband excitations of the impurity.
Moreover, they can be clearly distinguished in the corresponding species reduced density matrices
with the latter revealing a phase separation on either the one- or the two-body level. The impact of
the interspecies mass-imbalance on the impurity’s excitation processes is appreciated yielding an
interaction shift of the residue regions. Our results explicate the interplay of intra- and interband
excitation processes for the polaron generation in multiwell traps and for designing specific
polaron entangled states motivating their exposure in current experiments.

1. Introduction

Ultracold atomic gases provide pristine platforms to study quantum many-body physics owing to their
unprecedented controllability, e.g. in terms of the involved trapping geometries and the atomic interactions
[1–4]. Among the achieved milestones [5–7], trapping of a many-body bosonic gas in a one-dimensional
(1D) double-well (DW) potential constitutes a prototype system for unraveling the emergent complex
quantum dynamics [8–10]. This system represents a bosonic Josephson junction (BJJ), namely the atomic
analogue of the Josephson effect initially predicted for tunneling of Cooper pairs through two weakly linked
superconductors [11, 12]. Relevant investigations of the BJJ unveiled various intriguing phenomena
including, for instance, Josephson oscillations [13–15], macroscopic quantum self-trapping events
[10, 13, 14], collapse and revival population sequences [15], and the formation of an atomic squeezed state
[16, 17]. Moreover, the role of interparticle correlations has been examined [18, 19], revealing the existence
of strongly correlated tunneling processes in few-body systems [20–24]. The above mechanisms are not
accessible in conventional superconducting systems.

On the other hand, with the aid of sympathetic cooling as well as the experimental progresses on
realizing few-body ensembles [25–34], studies of ultracold atomic mixtures featuring an appreciably large
particle number imbalance have also been put forward for both bosonic [35, 36] and fermionic [37–39]
settings. These systems are inherently related to the so-called polaron concept [40, 41], which is originally
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introduced in the context of a mobile impurity immersed in a quantum many-body environment with the
former becoming dressed by the excitations of the bath [42–45]. So far, notable investigations of the
emergent polaron properties in the ultracold atomic realm unveil, for example, their effective mass
[35, 46–49], the underlying excitation spectra [50–54], the existence of bath mediated induced-interactions
[55–60], as well as the orthogonality catastrophe (OC) mechanism [61–65].

Interestingly, the above investigations focus on either homogeneous [46–48, 50–52, 61, 62] or
harmonically trapped mixtures [35, 49, 53–60, 63–65]. Studies considering a strong spatial inhomogeneity,
e.g. by assuming that both the impurity and the bath are trapped within a DW potential are still rare
[66, 67]. Indeed, current explorations have predominantly dealt with the impurity transport in lattices
[68, 69] and were mainly restricted to the lowest-band approximation besides a few exceptions [70]. As such
the interplay of excitation processes within the same or between different energetic bands as a result of the
inhomogeneity is still far from being completely understood even in the static properties of these systems.
Since the DW offers a toy-model of a lattice geometry where the band-structure is important, it provides a
testbed for examining the interplay of related excitations and in particular their role in the polaron
generation [71]. Here, the polaronic behavior should strongly depend on the involved interactions and an
intriguing prospect would be to engineer specific entangled polaron states in certain interaction regimes
with an additional knob provided by the interspecies mass-imbalance. Moreover, we should also emphasize
that these hybridized systems are of further interest due to the fact that one subsystem (impurity) lies in the
deep quantum regime while the other one (medium) can be potentially described semi-classically [72–77].
For instance, it has been demonstrated that following an impurity–bath interaction quench leads to chaotic
signatures in the dynamics of the bath accompanied by significant coherence losses [77].

In the present work, we investigate the polaron properties of an atomic mixture where a single impurity
is embedded into a weakly interacting bosonic gas confined within a 1D DW potential. Particular focus is
placed on the polaronic properties appearing in the ground state (GS) of the mixture upon considering
variations of the involved interaction strengths (both the intra- and interspecies ones) as well as the
interspecies mass-imbalance. To argue on the emergent polaron generation and consequent behavior, we
rely on the so-called residue [61–64], being a measure of the overlap between the dressed polaronic state
and the initial non-interacting one. We analyze this composite system via the numerically exact
diagonalization (ED) method. The latter allows us to take all correlations of the mixture into account as
well as capture the impurity’s higher-band excitation processes.

We find that an increase of the impurity–bath repulsion results in a vanishing residue, signifying the
occurrence of the polaron OC. Employing a Schmidt decomposition of the many-body wave function, we
obtain two asymptotic configurations of the GS wave function for strong interspecies repulsions, which in
turn account for the observed OC of the polaron. We explicate that depending on the repulsion strength of
the Bose gas, three distinct residue behaviors appear with respect to the impurity–bath coupling. More
specifically, with increasing interspecies repulsion the residue exhibits: (i) a sharp decrease, (ii) an initial
decrease followed by a pronounced revival at intermediate repulsions and then vanishes for stronger
impurity–bath coupling or (iii) a slow monotonous decay. These residue regimes are characterized by two
critical repulsion strengths of the Bose gas and originate from the interplay between the intra- and the
interband excitations of the impurity. Moreover, they are clearly visible in the corresponding species
reduced density matrices, which alternatively reveal a spatial phase separation on either the one- or the
two-body level. The impact of the mass-imbalance on the impurity’s excitation processes is also discussed
yielding a shift of the above-described residue regions with respect to the bosonic repulsion.

This work is organized as follows. In section 2, we introduce our setup and the employed tight-binding
description for the bath. Section 3 presents our main observation: the existence of three interaction regions
characterized by distinct polaronic residue behaviors. We describe in detail each residue regime in
sections 3.2–3.4, respectively. Afterward, a spectral analysis is performed in section 3.5 unveiling the origin
of the underlying critical bosonic repulsions separating the aforementioned residue regimes. An outlook is
provided in section 4 containing some future perspectives of our findings. In appendix A we discuss the
impact of the parity conservation in the GS wave function on the shape of the bosonic density
configuration. Appendix B explicates the form of the asymptotic wave function in terms of the Wannier
basis representation, appendix C elaborates on the ingredients of the species mean-field (SMF) approach
and exemplarily showcases the effective potential for the bath demonstrating the validity of the adopted
two-mode approximation within the considered parameter regime.

2. Impurity setting and tight-binding description

We consider a highly particle imbalanced binary atomic mixture consisting of a single impurity NI = 1
being immersed in a bosonic gas containing NB = 100 bosons. As such for finite impurity–bath couplings
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Figure 1. Schematic representation of the DW (gray dashed line) characterized by aDW = 2.0, bDW = 1.5 and its energetically
lowest single-particle spectrum. The horizontal lines denote the lowest eight energy levels, in which the solid (dashed) lines
correspond to the even (odd) parity states of the DW. The energy difference (gap) between the lowest two energetic bands is
denoted by ∆. The red and blue solid lines represent the Wannier states uL(x) and uR(x) in the lowest band of the left and right
well, respectively.

the impurity is dressed by the excitations of the bosonic gas forming a Bose polaron [35], a behavior that
has been exemplified in 1D by the emulation of relevant spectroscopy schemes [53, 54, 65] as well as by
constructing related effective polaron Hamiltonians [49]. The underlying many-body Hamiltonian is given
by Ĥ = ĤI + ĤB + ĤIB, where

ĤI =

∫

dx ψ̂†
I (x)hI(x)ψ̂I(x),

ĤB =

∫

dx ψ̂†
B(x)hB(x)ψ̂B(x) +

gBB

2

∫

dx ψ̂†
B(x)ψ̂†

B(x)ψ̂B(x)ψ̂B(x),

ĤIB = gIB

∫

dx ψ̂†
I (x)ψ̂†

B(x)ψ̂B(x)ψ̂I(x). (1)

In the above expressions, hσ(x) = − !2

2mσ

∂2

∂x2 + VDW(x) is the single-particle Hamiltonian for the σ = I(B)

species being confined within a 1D symmetric DW potential VDW(x) = aσ(x2 − b2
σ)2. The parameters aσ

and bσ control the central barrier height as well as the relative distance between the two wells, respectively.
ψ̂†
σ(x) [ψ̂σ(x)] is the field operator that creates (annihilates) a σ-species particle of mass mσ at position x

[78]. Moreover, we assume that both the intra- (Bose–Bose) and the interspecies (impurity–bath)
interactions are short-range i.e. of contact type characterized by the strengths gBB and gIB respectively. This
is an adequate approximation within the ultracold temperature regime where s-wave interaction processes
are the dominant ones [2]. In the following, we rescale the Hamiltonian of the mixture Ĥ in harmonic
units, with the energy and length being expressed in terms of η = !ω and ξ =

√

!/mBω, respectively.
Throughout this work, we assume that the atoms of both species are trapped in the same DW geometry,

i.e. aI = aB = aDW and bI = bB = bDW. In practice, we set aDW = 2.0 and bDW = 1.5 such that the low-lying
single-particle energy levels form a band-like doublet structure. For the above DW potential, one can
further introduce a characteristic harmonic frequency ω0 by expanding VDW(x) near its local minima
x = ±bDW. In this way, we obtain a harmonic potential Vhar(x) = 1

2ω
2
0(x ± bDW)2 which approximates the

profile of the DW near its local minima with ω0 =
√

8aDWb2
DW being the corresponding harmonic

frequency. For the DW parameters given above, i.e. aDW = 2.0 and bDW = 1.5, we have ω0 = 6.0. The
spatial geometry of VDW(x) is depicted in figure 1 (see gray dashed line) together with the lowest eight
single-particle energy levels (see horizontal lines). Moreover, we focus on repulsive interactions for both
species and assume that the bosonic bath is weakly interacting, i.e. 0 < gBB # 1. We explore how the GS
polaronic nature is affected by considering variations of both interaction strengths as well as the
mass-imbalance β = mI/mB between the two species. Let us note that such a 1D mixture is experimentally
accessible by imposing a strong transverse and a weak longitudinal confinement to a binary e.g. Bose–Fermi
mixture with two different kinds of atoms [25, 26] or a Bose–Bose mixture that is made of atoms residing
in two different hyperfine states [27, 28]. The DW potential can also be readily constructed by imposing a
1D optical lattice on top of a harmonic trap, constructing a superlattice whose shells correspond to
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double-wells [10, 12]. Moreover, the contact interaction strengths gIB and gBB can be controlled
experimentally by tuning the s-wave scattering lengths via Feshbach or confinement-induced resonances
[2–4].

Given that the bosons are weakly interacting and are confined within a tight DW with a large energy gap
∆ between the first and the second band4 (cf figure 1), we further adopt the two-mode approximation for
the bosonic bath

ψ̂B(x) = uL(x)b̂L + uR(x)b̂R, (2)

with uL,R(x) being the Wannier states [12] localized in the left and the right well, respectively (cf figure 1).
They are chosen to be real valued due to the preserved time-reversal symmetry of the mixture [79]. This
ansatz leads to the low-energy effective Hamiltonian for the bosonic species

ĤB = −JB(b̂†Lb̂R + b̂†Rb̂L) +
UB

2

∑

i=L,R

b̂†i b̂†i b̂ib̂i, (3)

corresponding to the two-site Bose–Hubbard (BH) model [80, 81] with

JB =

∫

dx uL(x)hB(x)uR(x),

UB = gBB

∫

dx|ui(x)|4 (i = L, R), (4)

representing the hopping amplitude and the on-site repulsion energy, respectively.
Hereafter, we designate the GS of our mixture for gIB > 0 (gIB = 0) by |Ψ〉 (|Ψ0〉), and denote the

eigenstates of the single-species Hamiltonian ĤI and ĤB as {|φI
i〉} and {|φB

i 〉}, respectively. Moreover, we
refer to the eigenstates of the bosonic single-particle Hamiltonian hB as {|ϕB

i 〉}. In this way, the above
introduced Wannier states |uL,R〉 are expressed with respect to |ϕB

0 〉 and |ϕB
1 〉 as |uL,R〉 = 1√

2
[|ϕB

0〉± |ϕB
1 〉].

The preserved parity symmetry of the DW potential results in each eigenstate of Ĥ or Ĥσ to possess a
definitive parity. Specifically, the GS |Ψ〉 (|Ψ0〉) is even parity, while |φσ

i 〉 for i = 0, 2, 4, . . . (i = 1, 3, 5, . . .)
possesses an even (odd) parity.

3. Bose polaron residue response and its decay

In the following, we investigate the GS polaronic properties of the mixture. In particular, we focus on how
variations of both the intra- and the interspecies interactions as well as the mass-imbalance impact the
emergent polaronic nature. To this end, we examine as a representative measure the so-called polaronic
residue, quantified by the overlap between the dressed polaronic state and the initial non-interacting one
[61–64]. As we shall argue below, the increase of gIB always leads to a vanishing residue, signifying the
occurrence of the OC of the polaron. Interestingly, we shall also exemplify that there exist two critical values
of the bosonic repulsion, referred to as gcI

BB and gcII
BB (depending also on the mass-imbalance β) according to

which three distinct residue response regions are encountered for increasing gIB. We perform a detailed
investigation demonstrating the properties of these regions and explicating the origin of the aforementioned
critical bosonic repulsion strengths.

3.1. Overview of the polaronic residue

The polaronic residue is given by Z = |〈Ψ0|Ψ〉|2, which measures the overlap between the dressed polaronic
state and the initial non-interacting one. Here, |Ψ0〉 = |φI

0〉|φB
0 〉 is the GS of the mixture for fixed gBB and β

and vanishing impurity-medium coupling (gIB = 0), while |Ψ〉 denotes the GS for gIB > 0. In figure 2, we
present the residue Z as a function of both the Bose–Bose and the impurity–bath interaction strengths for
various mass ratios, namely β = 0.5 (figures 2(a) and (b)), β = 1.0 (figures 2(c) and (d)) and β = 2.0
(figures 2(e) and (f)). As it can be seen, for fixed β and gBB, an increase of gIB leads eventually to the
suppression of the polaronic residue, which in turn implies the decay of the polaronic nature. In particular,
the residue becomes negligible for gIB → 1, signifying that the OC of the polaron takes place in this strongly
interacting regime5. Moreover, for all different mass ratios, there exist two critical bosonic repulsion

4 For the employed DW parameters, aDW = 2.0 and bDW = 1.5, the energy gap ∆ between the first and the second band is
approximately 103 times larger than the width of the first band.
5 Note that the mechanism of the polaron OC, discussed herein, is different from the original Anderson OC [45]. The latter is strictly
defined in the thermodynamic limit while our finite atom number mixture is also spatially inhomogeneous due to the DW. Instead, we
rely on the fact that for a GS with vanishing polaronic nature its residue becomes Z = 0, a behavior that it is here partially caused by
the trap-induced spatial inhomogeneity. Albeit this differentiation, as we shall see below, the polaronic residue in our system exhibits a
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Figure 2. Polaronic residue Z with respect to variations of the involved interaction strengths and particular mass ratios. The
latter refer to (upper panels) (a) β = 0.5, (c) β = 1.0 and (e) β = 2.0. Three different residue regimes in terms of gBB are
identified and they are separated by the white dashed horizontal lines, which denote the critical bosonic repulsion strengths
corresponding to (a) gcI

BB = 0.003, gcII
BB = 0.008, (c) gcI

BB = 0.0035, gcII
BB = 0.035 and (e) gcI

BB = 0.004, gcII
BB = 0.045. Lower panels:

same with the upper panels but for specific bosonic repulsions (see legends). The residue decay designating the OC of the Bose
polaron for strong repulsive gIB is evident.

strengths gcI
BB and gcII

BB (see the white dashed horizontal lines in figure 2). Depending on gBB being below or
above each of these critical values, three distinct residue regions are found for increasing gIB. For instance,
in the equal-mass case we have gcI

BB = 0.0035 and gcII
BB = 0.035 (figure 2(c)). For gBB = 0 and increasing gIB,

the residue, starting from Z = 1, sharply drops to Z ≈ 0 for gIB = 0.003 and remains almost constant for
further increasing gIB (cf figure 2(d) red line). This behavior essentially reveals that, for gBB < gcI

BB, the OC of
the polaron takes place even for an extremely weak impurity–bath repulsion. In contrast, once we ramp up
the bosonic repulsion e.g. to gBB = 0.008, the residue initially decreases to Z = 0.05 and then exhibits a
pronounced peak for larger gIB (cf figure 2(d) blue line), which signifies the revival of the polaron for
intermediate impurity–bath interactions and within the region gBB ∈ [gcI

BB, gcII
BB]. Turning to gBB > gcII

BB, a
relatively slower monotonous decrease of Z with respect to gIB is observed, suggesting that the mixture
enters a regime with a slow polaron decay (see black line in figure 2(d) for the case gBB = 0.05).

Interestingly, while gcI
BB appears to be inert with respect to variations of the mass ratio, gcII

BB depends
strongly on β, e.g. gcII

BB = 0.008 for β = 0.5 while gcII
BB = 0.035 for β = 1.0 and gcII

BB = 0.045 for β = 2.0.
Based on the above observations, we will refer to the aforementioned three distinct regions as type-I
(gBB ∈ [0, gcI

BB]), type-II (gBB ∈ [gcI
BB, gcII

BB]) and type-III polaron decay (gBB > gcII
BB), respectively. Moreover, in

order to analyze the properties and origin of these regions we will solely focus on the equal-mass case
(sections 3.2–3.4), while the influence of the mass-imbalance will be discussed later on in section 3.5.

3.2. Type-I polaron decay

To understand the polaron decay in the interaction region gBB < gcI
BB, we first investigate the σ-species

single-particle density ρσ1 (x) = 〈Ψ|ψ̂†
σ(x)ψ̂σ(x)|Ψ〉/Nσ for σ = I(B). It provides the probability of finding a

σ-species particle at position x [82, 83] and is experimentally accessible via an average over a sample of
single-shot measurements [1, 84]. Figures 3(a) and (b) depict the spatial distributions of ρσ1 (x) for fixed
gBB = 0 and varying gIB. Due to the DW confinement, the ρσ1 (x) configurations in the case of gIB = 0 exhibit
a two-hump structure, which reflects the spatial inhomogeneity of the mixture (cf figure 3(b) red
dash-dotted line). Interestingly, for increasing gIB the profiles of ρσ1 (x) for both species remain un-altered
(cf figure 3(a)). We note that the behavior of ρB

1 (x) can be understood via the adopted two-mode
approximation (cf equation (2)). Due to the negligible spatial overlap between the two Wannier states, i.e.
uL(x)uR(x) ≈ 0, it holds that ρB

1 (x) ≈
∑

i=L,Rui(x)ui(x)〈Ψ|b̂†i b̂i|Ψ〉/NB. Together with the property

similar behavior to the one obtained in the Anderson’s original argument. Namely, for an increasing bath particle number NB →∞ the
residue Z → 0.

5
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Figure 3. Spatial profiles of the impurity’s reduced densities for the type-I residue decay. (a) The single-particle density ρI
1(x) of

the impurity as a function of gIB with gBB = 0 showing an equal population of the two wells. The bosonic gas density ρB
1 (x)

exhibits exactly the same shape (not shown). (b) Profiles of ρI
1(x) (ρB

1 (x)) for gBB = 0 and for either gIB = 0 (red dash-dotted
line) or gIB = 1.0 (blue dashed line). (c)–(e) The impurity–bath two-body density distributions ρIB

2 (xI , xB) in the case of gBB = 0
and (c) gIB = 0.0, (d) gIB = 0.003 and (e) gIB = 1.0. A two-body phase-separation process occurs for increasing gIB.

b̂†Lb̂L = b̂†Rb̂R = NB/2, originating from the parity symmetry (see appendix A and the discussions below),
ρB

1 (x) is thus invariant against variations of both gIB and gBB.6 In contrast, the interaction dependence of the
impurity’s density is not explained straightforward. As we shall discuss below, this behavior can also be
understood if the impurity is predominately restricted to the lowest band of the DW.

Despite the fact that the single-particle densities of the two species remain miscible, with increasing gIB,
we note that a phase separation occurs on the two-body level. This becomes evident by inspecting the
two-body interspecies density distribution, i.e. ρIB

2 (xI, xB) = 〈Ψ|ψ̂†
I (xI)ψ̂I(xI)ψ̂

†
B(xB)ψ̂B(xB)|Ψ〉/(NINB),

which refers to the probability of detecting the impurity at position xI while one boson is at position xB

[82, 83]. In this way, it naturally incorporates impurity–bath spatial correlations. For gIB = 0, the two
species are fully decoupled, namely both the impurity and the bosons can freely tunnel between the two
wells. As a result, ρIB

2 (xI, xB) exhibits four dominant peaks within the spatial regions (xI, xB) = (±1.5,±1.5),
i.e. around the minima of the DW (cf figures 1 and 3(c)). With increasing gIB, the emergent repulsion
renders such a two-body density distribution energetically unfavorable. Consequently, the impurity and the
bosons tend to become anti-bunched, leading to an increase (decrease) of ρIB

2 (xI, xB) values in the vicinity of
the off-diagonal (diagonal) (cf figure 3(d)). Moreover, in the case of gIB = 1.0, the two species are fully
anti-bunched, leaving a probability distribution solely along the off-diagonal (see figure 3(e)). As a matter
of fact, the mixture in turn resides in a superposition of two equally-weighted configurations and thus
forms a Schrödinger-cat state [73], manifesting the dominant role of impurity–bath entanglement (see also
below). Specifically, each of the two configurations represents a scenario where the impurity lies in one well
while all the bosons are located in the other well. In this way, a two-body interspecies phase separation takes
place in space (see also the discussion below), a phenomenon that has already been observed in fermionic
mixtures [85]. Comparing the residue behavior (figure 2(d), red solid line) to the respective two-body
densities (figures 3(c)–(e)), it becomes clear that the OC of the polaron is directly related to the phase
separation between the two species. This has been indeed confirmed independently by recent studies on the
polaron dynamics, where this phase separation leads to a dissipative motion of the impurity accompanied
by an energy transfer to the bath species, and hence diminishes its polaronic nature [63, 84].

Having investigated the impact of gIB on the σ-species density distributions, we now analyze the
structure of the many-body wave function in order to gain deeper insights into the above-described polaron
decay. To this end, we first employ a Schmidt decomposition and express the GS wave function of the
mixture in the form [86]

|Ψ〉 =
∞
∑

i=1

√

λi|ψI
i 〉|ψB

i 〉, (5)

6 This result relies on the fact that the two Wannier states have negligible spatial overlap uL(x)uR(x) ≈ 0, which is only valid for a DW
with an adequately large barrier. For a shallow DW, the bosonic density indeed depends on both gIB and gBB (results are not shown).
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Figure 4. Schmidt numbers and SP occupations of the impurity quantifying interspecies entanglement and the excitations of the
impurity. (a) The first two Schmidt numbers for gBB = 0.0 and varying gIB. The red solid (blue dashed) line denotes the value of
λ1 (λ2). The inset provides a magnification within the region 0 < gIB < 0.01. (b) The SP occupation n

sp
i of the impurity when

considering gBB = 0 as a function of gIB. The red solid (blue dashed) line refers to nsp
0 (nsp

1 ). The inset depicts the SP occupations
for

∑
i>1nsp

i .

where λi, being real positive values, are the Schmidt numbers with λ1 > λ2 > . . . . They obey the constraint
∑

i λi = 1 which originates from the normalization of the wave function. |ψσ
i 〉 denotes the ith Schmidt

orbital for the σ-species and can always be expanded as a linear superposition of the Ĥσ eigenstates

|ψσ
i 〉 =

Dσ−1
∑

k=0

Cσ
i,k|φσ

k 〉. (6)

Here, Dσ is the dimension of the Hilbert space corresponding to the σ-species Hamiltonian Ĥσ . Regarding
the bosonic species, DB is finite due to the employed two-mode approximation and we have
DB = NB + 1 = 101. For the impurity, we truncate DI to some finite large values depending on the
interaction strengths in order to guarantee the convergence of our results. It is important to note that the
Schmidt numbers {λi} directly reveal the presence of interspecies entanglement [86]. In particular, if
λ1 = 1 while the remaining λi+=1 = 0, the mixture is non-entangled with the corresponding wave function
being of a simple product form, i.e. |Ψ〉 = |ψI〉|ψB〉 (for simplicity, we have neglected the subscript of each
Schmidt orbital for this product form). As we shall discuss later, the mixture in this special limit is fully
captured by the SMF description, where the mutual impact of the species is merely an effective potential
[57].

Figure 4(a) showcases the first two Schmidt numbers with respect to gIB for the case of gBB = 0. Note,
however, that all other Schmidt numbers are explicitly excluded due to their negligible values (λi < 10−5 for
i > 2). For gIB = 0, the GS is simply |Ψ0〉 = |φI

0〉|φB
0 〉, and hence the two Schmidt numbers are λ1 = 1 and

λ2 = 0. Upon switching on the impurity–bath repulsion, we observe that λ1 (λ2) quickly decreases
(increases) to the value λ1 = 0.52 (λ2 = 0.48) for gIB = 0.003. Afterward, it exhibits an extremely slow
decrease (increase) toward λ1 = λ2 = 0.5 until gIB = 0.8 and retains this value for gIB > 0.8. In this regard,
we can deduce the asymptotic form of the GS wave function in the region gBB < gcI

BB and for a strong
impurity–bath repulsion (namely gIB > 0.8)

|ΨT−I〉 =
1√
2

[

|ψI
1〉|ψB

1 〉+ |ψI
2〉|ψB

2 〉
]

, (7)
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Figure 5. Expansion coefficients for the first two bosonic Schmidt orbitals for gBB = 0.0 and (a) gIB = 1.0, (b) gIB = 0.05 and
(c) gIB = 0.003. In all cases, the red solid and the blue dashed line denote |CB

1,k|2 and |CB
2,k|2, respectively. The black solid line in

(a) depicts the expansion coefficients |C̃B
1,k|2 and |C̃B

2,k|2 obtained from equation (B3) given in appendix B.

with the prefactor 1/
√

2 stemming from the fact that λ1 = λ2 = 1/2 for large gIB (see also figure 4(a)).
Further inspecting the first two Schmidt orbitals of the impurity, we find that

|ψI
1〉 ≈ |φI

0〉, |ψI
2〉 ≈ |φI

1〉. (8)

Together with equation (7), this immediately yields the single-particle (SP) occupations for the impurity as
n̂sp

0 = n̂sp
1 ≈ 1/2 and n̂sp

i>1 ≈ 0, reflecting the fact that the impurity is predominately occupying the lowest
band of the DW (cf figure 4(b) and the discussions below). Here, n̂sp

i = (âI
i )
†âI

i denotes the occupation
number of the ith single-particle state |φI

i〉 of the impurity.
On the other hand, the corresponding Schmidt orbitals for the bosonic species can be written as

|ψB
1 〉 =

∑

k=0,2,4,...

CB
1,k|φB

k 〉, |ψB
2 〉 =

∑

k=1,3,5,...

CB
2,k|φB

k 〉, (9)

with CB
1,k and CB

2,k being the corresponding expansion coefficients and |φB
k 〉 denoting the kth eigenstate of

ĤB for the case gBB = 0 (cf equation (6)). As it can be seen in figure 5(a), for gIB = 1.0, CB
1,k (CB

2,k) obtained
from the ED method vanishes exactly for the odd (even) parity eigenstates |φB

k 〉. This is the reason for the
index notation k = 0, 2, 4, . . . (k = 1, 3, 5, . . .) introduced in equation (9). Physically, this observation is a
direct consequence of the preserved parity symmetry of the wave function of the mixture. Indeed, since the
GS wave function |Ψ〉 is of even parity, each product state |ψI

i 〉|ψB
i 〉 in equation (7) then needs to has an

even parity as well. As a result, the bosonic Schmidt orbital |ψB
i 〉 shares the same parity symmetry with the

impurity. According to equation (8), the Schmidt orbital |ψB
1 〉 (|ψB

2 〉) for the bosonic species hence has an
even (odd) parity. Moreover, the even parity of the GS wave function |Ψ〉 ensures that the distribution of
the bosons between the two wells obeys b̂†Lb̂L = b̂†Rb̂R = NB/2 (see appendix A). This leads to the invariant
nature of ρB

1 (x) against variations of the interaction strengths. Importantly, we note that such a property of
ρB

1 (x) holds for all different types of residue decay. Apart from that, we also notice that both |CB
1,k|2 and

|CB
2,k|2 follow a binomial distribution with their maximal values located at k = 50 and k = 49, respectively

(cf figure 5(a) red solid line and blue dashed line). We note that, this result directly stems from the
above-described interspecies two-body phase separation (see also figure 3(e)).

8
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In appendix B, we show that |ΨT−I〉 (see also the results from equation (7) to equation (9)) is exactly
equivalent to

|ΨT−I〉 =
1√

2NB!

[

â†L(b̂†R)NB + â†R(b̂†L)NB

]

|0〉, (10)

with âL,R = 1√
2
(âI

0 ± âI
1) and âI

i (i = 0, 1) referring to the annihilation operator acting on the ith

single-particle state |φI
i〉 of the impurity. Remarkably, equation (10) essentially represents a Schrödinger-cat

state being a superposition of two macroscopic many-body states. Each of them corresponds to a
configuration where the impurity resides in one well while all the bosons are located in another well. Thus it
reflects the above-described two-body phase separation between the two species. We remark that such a
Schrödinger-cat state has been reported in reference [73] by restricting the impurity in the lowest band of
the DW (see below). It has also been argued that this state is extremely sensitive to the environment
meaning that an arbitrary small perturbation can lead to a collapse onto one of the two macroscopic
configurations. This should be indeed the case upon the experimental measurement of this configuration
which is a manifestation of the entanglement. The obtained asymptotic GS wave function |ΨT−I〉 allows for
further explicating the OC of the polaron for strong impurity–bath repulsion: since for the impurity
〈ψI

2|φI
0〉 = 〈φI

1|φI
0〉 = 0 (cf equation (8)), |ψI

2〉|ψB
2 〉 is trivially orthogonal to the ground state

|Ψ0〉 = |φI
0〉|φB

0 〉 for gIB = 0. Moreover, the binomial distribution of the coefficients |CB
1,k|2 together with the

normalization condition
∑

k|CB
1,k|2 = 1 render7 CB

1,0 → 0 for NB →∞. As a result, we have 〈ψB
1 |φB

0 〉 = 0 (cf
equation (6)) and |ψI

1〉|ψB
1 〉 is orthogonal to |Ψ0〉 as well. In this way, we explicate the above OC of the

polaron.
Before closing this section, let us elaborate on the polaron decay for 0 < gIB < 0.8 in more detail. As we

have already mentioned above, for all values of gIB only the first two Schmidt orbitals are populated in the
GS (see figure 4(a) as well as its inset providing a magnification within the region 0 < gIB < 0.01). The GS
wave function correspondingly takes the form

|Ψ〉 =
√

λ1|ψI
1〉|ψB

1 〉+
√

λ2|ψI
2〉|ψB

2 〉. (11)

For the impurity, we have also verified that the Schmidt orbitals follow the relations in equation (8) exactly
for varying gIB. This observation, on the one hand, reveals that the impurity is predominately restricted
within the lowest band of the DW which, in turn, explicates the invariant profile of ρI

1(x) for different
gIB (cf figures 3(a) and (b) and the accompanied discussion above). On the other hand, it also results in an
even (odd) parity bosonic Schmidt orbital |ψB

1 〉 (|ψB
2 〉) (see the expansion coefficients |CB

1,k|2 and |CB
2,k|2 in

figures 5(b) and (c)). Moreover, we note that the GS of the mixture deforms from |Ψ0〉 with respect to gIB as
follows: for 0 < gIB < 0.003, a larger gIB leads to the intraband excitations of the impurity within the
lowest-band of the DW identified by an SP transition of the impurity between the states |φI

0〉 and |φI
1〉

(see figure 4(b)). This process is accompanied by a rapid growth of the bath species populations onto the
low-lying excited states {|φB

k 〉} of ĤB for k ! 12 (cf figure 5(c)). Consequently, it leads to the sharp decrease
of the polaronic residue as depicted in figure 2(d). Further increasing the impurity–bath repulsion to
gIB = 0.8, the impurity ceases to be excited to higher bands. Instead, the bosonic species gradually populate
its higher-lying excited states {|φB

k,1〉} (cf figure 5(b)). Notice, however, that the bosons are always
restricted to the lowest-band of the DW due to the employed two-mode approximation (cf equation (2)).
The excited states are {|φB

k 〉} strictly referred to as the eigenstates of the BH Hamiltonian ĤB. Owing to the
fact that the impurity always remains in the lowest band of the DW (when gBB ≈ 0) during the whole
process of the polaron decay, hereafter, we refer to this regime as the intraband excitation induced polaron
decay. According to the above we can infer that the critical bosonic interaction strength gcI

BB should
correspond to the maximally attainable gBB value such that the impurity predominantly remains within the
lowest band of the DW upon increasing gIB. In this regard, in practice, we can deduce the following
criterion

gBB < gcI
BB such that n̂sp

0 + n̂sp
1 > 0.99, (12)

for the determination of the gcI
BB value. Recall that n̂sp

i is the SP occupation of the impurity fulfilling the
normalization condition

∑

in̂
sp
i = 1. Notice also that equation (12) holds for gIB ∈ [0, 1].

3.3. Type-II polaron decay

Next, we turn into the description of the type-II polaron decay, which occurs in the interaction regime
gBB ∈ [gcI

BB, gcII
BB]. For β = 1, we have gcI

BB = 0.0035 and gcII
BB = 0.035. As a characteristic example, we present

the density distributions of the impurity for fixed gBB = 0.008 and different values of gIB (cf figures 6(a)

7 The maximal value of the binomial distribution of |CB
1,k|2 is located at k = NB/2. For NB →∞, the CB

1,k value for both k # NB/2 and
k , NB/2 approaches CB

1,k → 0. This can also been seen in figure 5(a).
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Figure 6. The impurity’s reduced densities regarding the type-II residue decay. (a) The single-particle density of the impurity as
a function of gIB for gBB = 0.008. (b) Profiles of ρI

1(x) for gBB = 0.008 and gIB = 0 (red dash-dotted line), gIB = 0.2 (blue dashed
line) and gIB = 1.0 (black solid line). The impurity localizes around the central region of the DW for stronger gIB experiencing a
one-body phase separation with the medium. (c)–(e) The corresponding two-body impurity-medium density spatial
distributions for the parameters showcased in (b).

and (b)). Before proceeding, let us remark that the corresponding bosonic density ρB
1 (x) has the same shape

as the one depicted in figure 3(b), i.e. it distributes among the individual wells. On the contrary, the spatial
profile of the impurity’s density in this regime of gBB depends strongly on gIB (cf figures 3(a) and 6(a)).
Instead of maintaining the initial two-hump structure, for increasing gIB, the bosons considerably expel the
impurity into the center of the DW rendering a highly localized ρI

1(x) distribution around the region
x ∈ [−1, 1] for gIB > 0.1. This correspondingly leads to a negligible spatial overlap between ρI

1(x) and ρB
1 (x)

for strong impurity–bath repulsions (see red dash-dotted and black solid lines in figure 6(b) referring to the
cases gIB = 0 and gIB = 1.0. Moreover, note that the profile of ρI

1(x) for gIB = 0 is same with the one of
ρB

1 (x)). The above process illustrates another type of phase separation, which is clearly visible on the
single-particle densities. It is for this reason that below we shall refer to it as the one-body phase separation
[49]. Complementary, this phase separation is also captured by the corresponding two-body interspecies
density since the latter contains all the information of the single-particle density. For increasing gIB, we
observe that ρIB

2 (xI, xB) quickly evolves from a checkerboard pattern with both the diagonal and the
off-diagonal elements occupied for weak gIB (cf figures 6(c) and (d)) toward a configuration with dominant
populations around the spatial regions xI ∈ [−1, 1] and xB ≈ ±1.5 for gIB = 1.0 (cf figure 6(e)). This
reflects a configuration where the impurity lies at the center of the DW, while the bosons are located in the
outer two wells. In this regard, it manifests the above-mentioned one-body phase separation.

Interestingly, the distinct density behavior of ρI
1(x) in this regime is inherently related to a richer

excitation behavior of the impurity as compared to the former region of the type-I polaron decay. In
contrast to the case discussed in section 3.2, where the impurity features only the intraband excitations here
a larger gIB triggers also interband processes. To demonstrate the latter, we resort again to the above
introduced SP occupation n̂sp

i , which is alternatively related to the underlying band occupation for the
impurity as n̂b

1 = n̂sp
0 + n̂sp

1 , n̂b
2 = n̂sp

2 + n̂sp
3 , and so on. For gIB < 0.1, the impurity predominately populates

the lowest band of the DW, leaving a band occupation n̂b
1 > 0.98 (see figures 7(a) and (b) red solid lines).

This is also manifested by restricting the impurity into the lowest band, i.e. by considering the ansatz
ψ̂I(x) = φI

0(x)âI
0 + φI

1(x)âI
1 and calculate the corresponding polaronic residue Z for different gIB. As

compared to the numerically exact results, we find a good agreement between each other (cf figure 8(a),
compare blue solid and green dash-dotted lines). Importantly, we remark that this observation further
implies that the corresponding GS wave function |Ψ〉 takes the form introduced in equation (11). In fact,
since each Schmidt orbital of the impurity becomes a linear superposition of the SP states |φI

0〉 and |φI
1〉, to

preserve its orthogonality, i.e. 〈ψI
i |ψI

j 〉 = 0 for i += j, there are at most two linearly independent Schmidt
orbitals. On the contrary, increasing the impurity–bath repulsion toward gIB = 0.2 leads to a sharp decrease
(increase) of the SP occupation n̂sp

i for i = 1 (i = 2, 4) as well as a slow decrease of n̂sp
0 (cf figures 7(b), (c)

and (e), red solid lines). This behavior essentially reveals that the impurity experiences transitions among
the SP states |φI

1〉 → |φI
2〉 and |φI

1〉 → |φI
4〉. Hence, interband excitation processes of the impurity become

relevant. Interestingly, combining our observations for the impurity’s SP occupations (cf figure 7) and its

10
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Figure 7. SP occupations of the impurity for the type-II and type-III residue decay regions. The SP occupation nsp
i of the

impurity with respect to gIB for gBB = 0.008 (red solid line) and gBB = 0.05 (blue dashed line). The left (right) panels correspond
to all even (odd) parity single-particle states.

density (cf figure 6(a)) we conclude that the triggered interband excitations are accompanied by the
occurrence of one-body phase separation between the two species.

Further increasing the impurity–bath interaction to gIB > 0.2, a negligible (large) SP occupation of the
odd (even) parity states of the impurity is observed. Particularly, a slow decrease (increase) of the
population n̂sp

0 and n̂sp
2 (n̂sp

4 ) takes place. The interband excitations of the impurity are consequently
dominated by the transitions e.g. among the SP states |φI

0〉 ↔ |φI
2〉, |φI

0〉 ↔ |φI
4〉 and |φI

2〉 ↔ |φI
4〉, which

preserve the parity symmetry of the impurity’s wave function (see also the discussion below). Importantly,
the Schmidt numbers for gIB > 0.2 become as λ1 ≈ 1 and λi>1 ≈ 0. Hence, the GS wave function |Ψ〉
possesses a simple product form

|Ψ〉 = |ψI〉|ψB〉. (13)

Therefore, our mixture can be fully captured within the SMF description where the mutual impact of the
species is merely an effective potential [57]. The SMF description reduces the interspecies correlated setting
into a single-species problem whose effective Hamiltonian reads

Ĥσ
eff = Ĥσ + 〈ψσ̄ |ĤIB|ψσ̄〉, (14)

with σ̄ = B(I) for σ = I(B). Moreover, the GS of Ĥσ
eff is equivalent to the Schmidt orbital |ψσ〉 given by

equation (13). In this way, the σ-species particle experiences, instead of the initial DW, an effective potential
due to the presence of the other species. For the impurity, this effective potential takes the form

V I
eff(x) = VDW(x) + gIBNBρ

B
1 (x), (15)

which is simply the DW superimposed to a potential proportional to the bosonic density. With increasing
gIB, we observe that V I

eff(x) deforms from the initial DW toward a triple-well structure for gIB = 1.0 with
two dominant barriers located at the positions x ≈ ±1.5 (cf figure 8(b)). The central barrier of the DW is
gradually smeared out in the resulting effective potential V I

eff(x) due to the growth of the potential term
gIBNBρB

1 (x) for larger gIB.8 As a result, the impurity becomes significantly localized at the center of the DW
(cf figure 6(b), black solid line). Before proceeding, we note that within the parameter space that we have
examined, the effective potential for the bosonic species only slightly deviates from the initial DW due to
the large particle number imbalance (see appendix C). Hence, the corresponding bosonic Schmidt orbital

8 Note that the corresponding zero-point energies are excluded from the depicted effective potentials in figure 8(b) and thus V I
eff(x) have

the same minimum independently of gIB.
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Figure 8. (a) The polaronic residue Z as a function of gIB as predicted within ED for fixed gBB = 0.008 (blue solid line). The
green dash-dotted line represents the resulting residue Z by restricting the impurity within the lowest band of the DW. The red
dashed line denotes the overlap between |ψI〉 and |φI

0〉 with respect to gIB for gBB = 0.008 thus using the SMF method (no
entanglement). It can be concluded that the residue predictions of the lowest-band (SMF) are in good agreement with ED for
weak (strong) impurity-medium couplings but both approaches fail to predict the correct residue behavior in the intermediate
interaction regime. (b) The effective potential of the impurity for gBB = 0.008 and gIB = 0.2 (red dash-dotted line) and gIB = 1.0
(blue solid line). The black dashed line represents the DW. (c) The corresponding impurity density distributions obtained from
the Schmidt orbital ρI

SMF(x) = |ψI (x)|2 (red dash-dotted and blue solid line) for the cases examined in (b). The black dashed line
shows the impurity density ρI

0(x) = |φI
0(x)|2 for gIB = 0 (see main text). (d) The pair-correlation function for gBB = 0.008 and

gIB = 0.1 obtained from ED simulations, explicating the emergent two-body impurity-medium correlations.

|ψB〉 resembles the GS of the Hamiltonian ĤB, i.e.

|ψB〉 ≈ |φB
0 〉. (16)

Note, however, that the case gIB →∞ will result in a bosonic effective potential significantly different from
the DW. This could subsequently render the employed two-mode approximation insufficient for describing
the bosonic gas (cf equation (2)). A discussion of this limit, is therefore, beyond the scope of our study.

The SMF description not only introduces a significant simplification in the study of mixtures but also
allows for profound insights concerning the polaron decay as well as its OC. Indeed, the results provided in
equations (13) and (16) suggest that the residue Z for gIB > 0.2 simply becomes the overlap between the
Schmidt orbital |ψI〉, i.e. the GS of the effective potential V I

eff(x), and the initial SP state |φI
0〉 (cf figure 8(a)

blue solid and red dashed lines). Upon the increase of gIB, the deformation of the density profile
ρI

SMF(x) = |ψI(x)|2 from ρI
0(x) = |φI

0(x)|2 (cf figure 8(c)) suggests the subsequent decrease of the overlap
between |ψI〉 and |φI

0〉, and hence, leads to the corresponding residue decay (see equation (6) and
figure 8(a)). Based on the behavior of the SP occupations presented in figure 7, we know that the impurity
is dominated by interband transitions during this process. In this regard, we refer to this decay mechanism
as the interband excitation induced polaron decay.

Turning to the case of gIB = 1.0, which corresponds to the OC of the polaron we note that the negligible
spatial overlap between ρI

SMF(x) and ρI
0(x) (cf figure 8(c), blue solid line and black dashed line) indicates

that 〈φI
0|ψI〉 ≈ 0. Together with the fact that ρI

0(x) = ρB
1 (x), the above result implies that ρI

SMF(x)ρB
0 (x) ≈ 0,

which reflects the above-mentioned one-body interspecies phase separation (cf figures 6(a), (b) and (e)). In
this way, we obtain the physical connection between the OC of the polaron and the one-body phase
separation. With this knowledge, let us point out the asymptotic form of the GS wave function
corresponding to this strongly interacting regime

|ΨT−II〉 = |ψI〉|ψB〉 and ρI
1(x)ρB

1 (x) = 0, (17)

which accounts for the above OC of the polaron. Interestingly, for a fixed large gIB (e.g. gIB = 1.0) and for
increasing gBB, a transition between the GS wave function |Ψ〉 = |ΨT−I〉 for gBB < gcI

BB and |Ψ〉 = |ΨT−II〉

12
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for gBB > gcI
BB is realized. This crossover is also accompanied by the deformation of the impurity’s density

profile from the ρI
1(x) in figure 3(b) (blue dashed line) to the one depicted in figure 6(b) (black solid line).

In section 3.5, we will elaborate on the physical origin of this crossover via a spectral analysis of the wave
functions |ΨT−I〉 and |ΨT−II〉. Moreover, it is worth to be mentioned that in the limiting case NB →∞ the
effective potential in equation (15) can be approximated by V I

eff(x) ≈ gIBNBρB
1 (x). The impurity thus feels

two infinitely high potential barriers located at positions x ≈ ±1.5, which corresponds to the two-hump
structure of the bosonic density (cf figure 3(b)). As a result, it leads to a vanishing overlap between ρI

SMF(x)
and ρB

0 (x) leaving the residue Z → 0. Another important consequence of the SMF description is that, due to
the preservation of the parity symmetry in the effective potential picture, the Schmidt orbital |ψI〉 has
always even parity. As a result, it leads to the negligible SP occupations n̂sp

i of all the odd parity states |φI
i〉

for gIB > 0.2 (see the red solid lines in figures 7(b), (d) and (f)).

3.4. Type-III polaron decay

Finally we explore the polaron decay in the interaction region gBB > gcII
BB. For a fixed gIB > 0.2, the negligible

discrepancies between the residue values for the case gBB = 0.008 and gBB = 0.05 suggest that the GS wave
function takes the same product form as introduced in equation (13) (cf figure 2(d) blue solid and black
solid line). This is indeed confirmed by inspecting the gIB-dependence of the Schmidt numbers finding that
{λi!2} have negligible values for gBB = 0.05 and gIB > 0.2 (results not shown). It turns out that the above
relation holds for all cases with gIB < 0.2 as well. As a matter of fact, the mixture in the region gBB > gcII

BB is
fully described by the SMF ansatz. The corresponding polaron decay with increasing gIB can thus be readily
interpreted via the above introduced effective potential. As expected, it gives rise to the same asymptotic
form of the GS wave function |ΨT−II〉 as introduced in equation (17) for large gIB as well as the negligible SP
occupations n̂sp

i for all odd parity states |φI
i〉 (see the blue dashed lines in figures 7(b), (d) and (f)). Due to

the small variations of the effective potential for bosons with respect to the initial DW, we note that for the
bosonic species the relation in equation (16) holds as well, indicating the negligible probability for the
bosons to populate the excited states {|φB

i>0〉}. Before proceeding, let us elaborate on how the value of the
critical Bose–Bose interaction strength gcII

BB can be practically determined. As discussed above, the type-III
polaron decay is related to the interband impurity excitations for increasing gIB while the SP occupations n̂sp

i

for all odd parity states |φI
i〉 are negligible. Hence, it is possible to infer the following criterion:

gBB > gcII
BB, such that

∑

i=0,2,4,...

n̂sp
i > 0.95, (18)

for determining the value of gcII
BB with equation (18) being valid for gIB ∈ [0, 1].

Albeit the fact that, for a fixed gIB, there are no significant differences among the reduced densities ρσ1 (x)
and ρIB

2 (xI, xB) between the case of gBB > gcII
BB and the one for gBB ∈ [gcI

BB, gcII
BB], prominent deviations are

imprinted in the corresponding pair-correlation function. The latter is defined as

g2(xI, xB) =
ρIB

2 (xI, xB)

ρI
1(xI)ρB

1 (xB)
. (19)

Notice that, through the division by the single-particle densities the g2 function, as compared to the
two-body density ρIB

2 (xI, xB), naturally excludes the impact of the spatial inhomogeneity. It can be also
readily deduced that within the SMF description g2 is simply unity due to the product form of the
many-body wave function. In contrast, for gIB = 0.1 and gBB = 0.008 the pair-correlation function deviates
significantly from unity with g2 < 1 (g2 > 1) along the diagonal (off-diagonal) region. This pattern signifies
the presence of strong anti-correlations between the impurity and the majority bosons (cf figure 8(d)).

3.5. Origin of the critical bosonic repulsion

So far, we have discussed the properties of the three different types of residue decay in terms of gBB upon
increasing the repulsive impurity–bath interaction strength. It has been found that the corresponding
residue regimes are characterized by two critical bosonic repulsion strengths gcI

BB and gcII
BB. In addition, two

asymptotic GS wave function forms namely |ΨT−I〉 and |ΨT−II〉 were obtained for strong impurity–bath
repulsion, which in turn account for the OC of the polaron. Interestingly, for a fixed large gIB (e.g.
gIB = 1.0) and increasing gBB, we observe an abrupt transition of the GS wave function from |Ψ〉 = |ΨT−I〉
for gBB < gcI

BB toward |Ψ〉 = |ΨT−II〉 for gBB > gcI
BB. Hereafter, we will first perform a spectral analysis with

respect to the above two asymptotic wave functions. This allows us to unveil the origin of the critical
bosonic repulsion gcI

BB. Afterward, we comment on the existence of gcII
BB and demonstrate how the

impurity-medium mass ratio affects their values.
To begin with, we note that for both |ΨT−I〉 and |ΨT−II〉 the corresponding interspecies interaction

energies given by 〈ΨT−I|ĤIB|ΨT−I〉 and 〈ΨT−II|ĤIB|ΨT−II〉 can be safely neglected. In fact, due to the phase

13



New J. Phys. 24 (2022) 033004 J Chen et al

Figure 9. Energy competition between two asymptotic GS wave functions (see main text). The energies ET−I (red solid line) and
ET−II (blue solid line) obtained within ED as a function of gBB. Here, ET−I = 〈ΨT−I|ĤI + ĤB|ΨT−I〉 and
ET−II = 〈ΨT−II|ĤI + ĤB|ΨT−II〉.

separation occurring on either the one-body or the two-body level in the limit gIB → 1, atoms from
different species have negligible probability to reside in the vicinity of one another. Together with the
employed contact form of the interspecies interaction, it thereby results in a negligible interspecies
interaction energy. In this regard, we solely need to compute the energies associated with the single-species
Hamiltonians ĤI and ĤB (equation (1)). For |ΨT−I〉, we have

ET−I = 〈ΨT−I|ĤI|ΨT−I〉+ 〈ΨT−I|ĤB|ΨT−I〉 = EI
SW + EB

SW, (20)

with EI
SW (EB

SW) being the energy corresponding to the configuration where the impurity (all the bosons
with a fixed gBB) are restricted in either the left (right) or the right (left) well. On the other hand, for |ΨT−II〉
the resulting energy reads

ET−II = 〈ΨT−II|ĤI|ΨT−II〉+ 〈ΨT−II|ĤB|ΨT−II〉 = EI
SMF + EB

0 , (21)

in which EI
SMF = 〈ψI|ĤI|ψI〉 represents the impurity energy obtained from the SMF Schmidt orbital |ψI〉

corresponding to a strong impurity–bath repulsion and fixed gBB > gcI
BB. Here, we set gIB = 1.0 and

gBB = 0.008. We note that as long as gBB > gcI
BB, different values of gBB do not impact the shape of the

impurity’s effective potential, thus resulting in the same Schmidt orbital |ψI〉 (see also the discussion in
section 3.3). Also, EB

0 is the GS energy of the Hamiltonian ĤB for a fixed gBB.
Equations (20) and (21) essentially reveal that both ET−I and ET−II depend on the bosonic repulsion

strength gBB. Therefore, the competition between the two energies upon the increase of gBB directly
determines the form of the GS wave function |Ψ〉 in the asymptotic limit of strong gIB. In the case of
gBB ≈ 0, the negligible width of the lowest band of the DW leads to EI

SW ≈ EI
0 and EB

SW ≈ EB
0 with EI

0 being
the GS energy of ĤI. Since EI

SMF is obviously larger than EI
0, it thus results in ET−I < ET−II. Thereby, the

wave function |ΨT−I〉 is energetically more favorable. In contrast, with increasing gBB, the rapid growth of
the on-site bosonic repulsion renders the energy EB

SW dominant as compared to all other energies. As a
result, the GS of the mixture turns out to be |Ψ〉 = |ΨT−II〉. Based on this knowledge, we can deduce that
the critical bosonic repulsion strength gcI

BB corresponds to the case where ET−I = ET−II holds (cf figure 9).
Turning to gcII

BB, it corresponds to the situation that the GS of the mixture always acquires the product form
|Ψ〉 = |ψI〉|ψB〉 for different gIB, in which |ψB〉 ≈ |φB

0 〉 (cf equations (13) and (16)). Thus, the bosonic
species is hardly excited irrespectively of the variations of the interspecies coupling. Accordingly, it becomes
clear that only a large enough gBB can result in corresponding large energy differences between the GS and
the excited states of ĤB. This fact effectively prohibits the excitations among the bosons.

Finally, let us demonstrate how the variations of mass-imbalance impact the values of the
above-discussed bosonic repulsions. For a light impurity, the associated SP wave functions {φI

i (x)} are
much more spatially extended as compared to the ones for a heavy impurity (results are not shown). This
facilitates the interband excitations of the impurity quantified by the transition amplitude TI =

∑

i>1 Ui

with

Ui =
∑

j=0,1

∑

k,l=0,1

gIB

∫

dx|φI
i (x)φI

j (x)ϕB
k (x)ϕB

l (x)|2. (22)
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It represents the magnitude of the transition amplitude of the impurity, due to the impurity–bath coupling,
between the energetically lowest and higher bands of the DW after averaging out different configurations of
the bosons. Recall that, from the discussions in sections 3.3 and 3.4, it is known that gcII

BB essentially
corresponds to the regime where the impurity is dominated by interband excitation processes upon
increasing gIB. Hence, it gives rise to a smaller gcII

BB in the case of β = 0.5 when compared to β = 2.0.
Regarding gcI

BB, it essentially characterizes the transition of the GS wave function from |ΨT−I〉 to |ΨT−II〉 for
larger gIB. As we have already discussed above, the interspecies interaction energy in this limit always
vanishes. Accordingly, changes of TI lead to a negligible impact on this GS crossover. It is for this reason
that gcI

BB is inert to variations of the mass-imbalance β.

4. Conclusions and outlook

We have investigated the polaronic properties in the ground state of a binary atomic mixture consisting of a
single impurity and bosonic gas confined in a 1D DW. Due to the trap-induced spatial imhomogeneity,
three distinct polaronic residue regions in terms of the bosonic repulsion have been identified with respect
to the impurity–bath interaction strength. They are characterized by two critical values of the bosonic
repulsion denoted as gcI

BB and gcII
BB. Moreover, the increase of gIB always results in a suppressed residue,

signifying the occurrence of the OC of the polaron. Depending on the value of gBB being below or above gcI
BB

or gcII
BB, the residue exhibits a sharp decrease, an initial decrease followed by a pronounced revival or a slow

monotonous decay, respectively. The presence of these interaction regions stems from the interplay between
the intra- and interband excitations of the impurity and are clearly imprinted in the structure of the
corresponding reduced density matrices. The latter essentially reveal a phase separation on either the one-
or the two-body level depending on the bosonic repulsion. Additionally, it is found that the interspecies
mass ratio affects the values of the gcII

BB critical bosonic repulsion while gcI
BB appears to be almost un-affected.

It is argued that this behavior can be understood in terms of the respective interband transition amplitudes.
To provide deeper insights into the polaron decay and the existence of the interaction regions where the

residue exhibits a distinct behavior, we perform a detailed analysis of the structure of the many-body wave
function at specific limits. By utilizing a Schmidt decomposition of the many-body wave function, it allows
us to construct two asymptotic configurations of the GS wave function for strong interspecies repulsion.
Importantly, they also account for the observed OC of the polaron. Finally, by means of a spectral analysis,
we elucidate the physical origin of the observed two critical bosonic repulsions and demonstrate how the
mass-imbalance impacts their values.

Possible future research directions include the investigation of the polaronic properties arising in the
ground state of the binary atomic mixture in the presence of long-range e.g. dipolar interactions. Another
interesting perspective is to study the polaron dynamics following an interaction quench. Here, the impact
of higher-band excitations of the impurity or a beyond the two-site Bose–Hubbard description for the
bosonic species would be worthwhile to pursue.
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Appendix A. Impact of an even parity GS wave function |Ψ〉 to the bosonic
single-particle density

Let us demonstrate that an even parity GS wave function |Ψ〉 essentially implies that the bosonic spatial
distribution between the two wells obeys the condition b̂†Lb̂L = b̂†Rb̂R = NB/2. Therefore, it leads to an
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invariant ρB
1 (x) profile against variations of the involved interaction strengths. To showcase this behavior, we

first rewrite the bosonic annihilation operator as b̂L,R = 1√
2
(âB

0 ± âB
1 ), with âB

i being the annihilation

operator acting on the ith SP state |ϕB
i 〉 of the DW. As a result, the occupation number of the bosons on the

left (right) well becomes

NB
L,R = 〈Ψ|b̂†L,Rb̂L,R|Ψ〉 =

NB

2
±

1

2
〈Ψ|(âB

0 )†âB
1 + (âB

1 )†âB
0 |Ψ〉, (A1)

where we have used the fact that (âB
0 )†âB

0 + (âB
1 )†âB

1 = NB, due to the particle number conservation and the
employed two-mode approximation for the bosons. Further employing a Schmidt decomposition on the GS
wave function |Ψ〉, equation (A1) reduces to

NB
L,R =

NB

2
±

1

2

∞
∑

i=1

λi

[

〈ψB
i |(âB

0 )†âB
1 + (âB

1 )†âB
0 |ψB

i 〉
]

, (A2)

with the last term in equation (A2) corresponding to a parity-flipping operation acting on the bosonic
species. Since the GS wave function |Ψ〉 is of even parity, each product state |ψI

i 〉|ψB
i 〉 in equation (7) then

has an even parity as well, which renders the bosonic Schmidt orbital |ψB
i 〉 possessing a definitive parity. As

a result, the last term in equation (A2) vanishes and thus we have NB
L,R = NB/2.

Appendix B. Expressing the asymptotic wave function |ΨT−I〉 in the Wannier-basis
representation

In this part, we demonstrate that the wave function |ΨT−I〉 of equation (7) is equivalent to

|ΨT−I〉 =
1√

2NB!

[

â†L(b̂†R)NB + â†R(b̂†L)NB

]

|0〉, (B1)

where

âL,R =
1√
2

(âI
0 ± âI

1), b̂L,R =
1√
2

(âB
0 ± âB

1 ), (B2)

with âI
i (âB

i ) being the annihilation operator acting on the ith SP state |φI
i〉 (|ϕB

i 〉) of the impurity and the
bosonic species, respectively. By substituting equation (B2) into equation (B1), it results in

|ΨT−I〉 = 1√
2

[

|φI
0〉|ψ̃B

1 〉+ |φI
1〉|ψ̃B

2 〉
]

, where

|ψ̃B
1 〉 =

NB
∑

k=0,2,4,...

C̃B
1,k|φB

k 〉 =
NB
∑

k=0,2,4,...

(

1√
2

)NB−1(
NB

k

)1/2

|φB
k 〉,

|ψ̃B
2 〉 =

NB
∑

k=1,3,5,...

C̃B
2,k|φB

k 〉 =
NB
∑

k=1,3,5,...

−
(

1√
2

)NB−1(
NB

k

)1/2

|φB
k 〉. (B3)

Here, |φB
k 〉 denotes the kth eigenstate of ĤB for gBB = 0. The expansion coefficients |C̃B

1,k|2 and |C̃B
2,k|2 in

equation (B3) follow a binomial distribution and match exactly to the |CB
1,k|2 and |CB

2,k|2 of equation (9)
(cf figure 5(a) black solid line, red solid line and blue dashed line). In this way, we show that |ΨT−I〉 in
equation (7) is equivalent to the form of equation (B1).

Appendix C. The species mean-field description and the effective potential of the bath
species

The SMF description assumes the wave function of the mixture to have a simple product form, i.e.
|Ψ〉 = |ψI〉|ψB〉. This leads to the corresponding Lagrangian of the mixture

L = 〈Ψ|Ĥ|Ψ〉+
∑

σ=I,B

µσ

[

1 − 〈ψσ|ψσ〉
]

, (C1)

where µσ is the associated Lagrange multiplier under the constraint of norm conservation of |ψσ〉. By
utilizing a variational principle with respect to each orbital |ψσ〉, we immediately obtain a Schrödinger-type
equation for the σ-species Ĥσ

eff|ψσ〉 = µσ|ψσ〉, in which the effective Hamiltonian Ĥσ
eff reads

Ĥσ
eff = Ĥσ + 〈ψσ̄ |ĤIB|ψσ̄〉, (C2)
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Figure 10. The effective potential of the bath species for gBB = 0.008 and gIB = 0.2 (red dash-dotted line) and gIB = 1.0 (blue
dashed line). The black solid line represents the DW. The inset depicts the energy difference ∆ between the first and the second
band of the bosonic effective potential upon increasing the impurity–bath coupling.

with σ̄ = B(I) for σ = I(B). In this way, we note that the GS of Ĥσ
eff is equivalent to the Schmidt orbital

|ψσ〉. Moreover, the last term in equation (C2) represents a potential

V̂σ = 〈ψσ̄|ĤIB|ψσ̄〉 = gIBNσ̄

∫

dx ρσ̄1 (x)ψ̂†
σ(x)ψ̂σ(x), (C3)

with ρσ̄1 (x) = 〈ψσ̄ |ψ̂†
σ̄(x)ψ̂σ̄(x)|ψσ̄〉/Nσ̄ being the one-body density of the σ̄-species. From equations (C2)

and (C3), we conclude that within the SMF description the mutual impact of the species is merely an
additional potential experienced by the other species.

As a specific example we note that the effective potential for the bath species is given by

VB
eff(x) = VDW(x) + gIBρ

I
1(x). (C4)

It is the DW superimposed to a potential proportional to the impurity’s density. Figure 10 depicts
characteristic profiles of VB

eff(x) for fixed gBB = 0.008 and gIB = 0.2 (red dash-dotted line) as well as
gIB = 1.0 (blue dashed line), together with the original DW (black solid line). Comparing VB

eff(x) to VDW(x),
we find that the effective potential for the bosons bears a striking resemblance to the DW due to the small
impact of the single impurity density. Accordingly, also the band gap of the effective potential remains
almost intact, see the inset of figure 10, in this range of gIB. Thus, interband excitations of the bath species
are suppressed, allowing us to safely deduce the validity of the adopted two-mode approximation for the
bath within the considered parameter regime.
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