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Abstract

We investigate the polaronic properties of a single impurity immersed in a weakly interacting
bosonic environment confined within a one-dimensional double-well potential using an exact
diagonalization approach. We find that an increase of the impurity—bath coupling results in a
vanishing residue, signifying the occurrence of the polaron orthogonality catastrophe. Asymptotic
configurations of the systems’ ground state wave function in the strongly interacting regime are
obtained by means of a Schmidt decomposition, which in turn accounts for the observed
orthogonality catastrophe of the polaron. We exemplify that depending on the repulsion of the
Bose gas, three distinct residue behaviors appear with respect to the impurity—bath coupling.
These residue regimes are characterized by two critical values of the bosonic repulsion and
originate from the interplay between the intra- and the interband excitations of the impurity.
Moreover, they can be clearly distinguished in the corresponding species reduced density matrices
with the latter revealing a phase separation on either the one- or the two-body level. The impact of
the interspecies mass-imbalance on the impurity’s excitation processes is appreciated yielding an
interaction shift of the residue regions. Our results explicate the interplay of intra- and interband
excitation processes for the polaron generation in multiwell traps and for designing specific
polaron entangled states motivating their exposure in current experiments.

1. Introduction

Ultracold atomic gases provide pristine platforms to study quantum many-body physics owing to their
unprecedented controllability, e.g. in terms of the involved trapping geometries and the atomic interactions
[1-4]. Among the achieved milestones [5-7], trapping of a many-body bosonic gas in a one-dimensional
(1D) double-well (DW) potential constitutes a prototype system for unraveling the emergent complex
quantum dynamics [8—10]. This system represents a bosonic Josephson junction (B]J), namely the atomic
analogue of the Josephson effect initially predicted for tunneling of Cooper pairs through two weakly linked
superconductors [11, 12]. Relevant investigations of the BJJ unveiled various intriguing phenomena
including, for instance, Josephson oscillations [13—15], macroscopic quantum self-trapping events

[10, 13, 14], collapse and revival population sequences [15], and the formation of an atomic squeezed state
[16, 17]. Moreover, the role of interparticle correlations has been examined [18, 19], revealing the existence
of strongly correlated tunneling processes in few-body systems [20—24]. The above mechanisms are not
accessible in conventional superconducting systems.

On the other hand, with the aid of sympathetic cooling as well as the experimental progresses on
realizing few-body ensembles [25—34], studies of ultracold atomic mixtures featuring an appreciably large
particle number imbalance have also been put forward for both bosonic [35, 36] and fermionic [37-39]
settings. These systems are inherently related to the so-called polaron concept [40, 41], which is originally

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft



10P Publishing

New J. Phys. 24 (2022) 033004 ] Chen et al

introduced in the context of a mobile impurity immersed in a quantum many-body environment with the
former becoming dressed by the excitations of the bath [42—45]. So far, notable investigations of the
emergent polaron properties in the ultracold atomic realm unveil, for example, their effective mass

[35, 46—49], the underlying excitation spectra [50—54], the existence of bath mediated induced-interactions
[55-60], as well as the orthogonality catastrophe (OC) mechanism [61-65].

Interestingly, the above investigations focus on either homogeneous [46—48, 50-52, 61, 62] or
harmonically trapped mixtures [35, 49, 53—60, 63—65]. Studies considering a strong spatial inhomogeneity,
e.g. by assuming that both the impurity and the bath are trapped within a DW potential are still rare
[66, 67]. Indeed, current explorations have predominantly dealt with the impurity transport in lattices
[68, 69] and were mainly restricted to the lowest-band approximation besides a few exceptions [70]. As such
the interplay of excitation processes within the same or between different energetic bands as a result of the
inhomogeneity is still far from being completely understood even in the static properties of these systems.
Since the DW offers a toy-model of a lattice geometry where the band-structure is important, it provides a
testbed for examining the interplay of related excitations and in particular their role in the polaron
generation [71]. Here, the polaronic behavior should strongly depend on the involved interactions and an
intriguing prospect would be to engineer specific entangled polaron states in certain interaction regimes
with an additional knob provided by the interspecies mass-imbalance. Moreover, we should also emphasize
that these hybridized systems are of further interest due to the fact that one subsystem (impurity) lies in the
deep quantum regime while the other one (medium) can be potentially described semi-classically [72-77].
For instance, it has been demonstrated that following an impurity—bath interaction quench leads to chaotic
signatures in the dynamics of the bath accompanied by significant coherence losses [77].

In the present work, we investigate the polaron properties of an atomic mixture where a single impurity
is embedded into a weakly interacting bosonic gas confined within a 1D DW potential. Particular focus is
placed on the polaronic properties appearing in the ground state (GS) of the mixture upon considering
variations of the involved interaction strengths (both the intra- and interspecies ones) as well as the
interspecies mass-imbalance. To argue on the emergent polaron generation and consequent behavior, we
rely on the so-called residue [61-64], being a measure of the overlap between the dressed polaronic state
and the initial non-interacting one. We analyze this composite system via the numerically exact
diagonalization (ED) method. The latter allows us to take all correlations of the mixture into account as
well as capture the impurity’s higher-band excitation processes.

We find that an increase of the impurity—bath repulsion results in a vanishing residue, signifying the
occurrence of the polaron OC. Employing a Schmidt decomposition of the many-body wave function, we
obtain two asymptotic configurations of the GS wave function for strong interspecies repulsions, which in
turn account for the observed OC of the polaron. We explicate that depending on the repulsion strength of
the Bose gas, three distinct residue behaviors appear with respect to the impurity—bath coupling. More
specifically, with increasing interspecies repulsion the residue exhibits: (i) a sharp decrease, (ii) an initial
decrease followed by a pronounced revival at intermediate repulsions and then vanishes for stronger
impurity—bath coupling or (iii) a slow monotonous decay. These residue regimes are characterized by two
critical repulsion strengths of the Bose gas and originate from the interplay between the intra- and the
interband excitations of the impurity. Moreover, they are clearly visible in the corresponding species
reduced density matrices, which alternatively reveal a spatial phase separation on either the one- or the
two-body level. The impact of the mass-imbalance on the impurity’s excitation processes is also discussed
yielding a shift of the above-described residue regions with respect to the bosonic repulsion.

This work is organized as follows. In section 2, we introduce our setup and the employed tight-binding
description for the bath. Section 3 presents our main observation: the existence of three interaction regions
characterized by distinct polaronic residue behaviors. We describe in detail each residue regime in
sections 3.2-3.4, respectively. Afterward, a spectral analysis is performed in section 3.5 unveiling the origin
of the underlying critical bosonic repulsions separating the aforementioned residue regimes. An outlook is
provided in section 4 containing some future perspectives of our findings. In appendix A we discuss the
impact of the parity conservation in the GS wave function on the shape of the bosonic density
configuration. Appendix B explicates the form of the asymptotic wave function in terms of the Wannier
basis representation, appendix C elaborates on the ingredients of the species mean-field (SMF) approach
and exemplarily showcases the effective potential for the bath demonstrating the validity of the adopted
two-mode approximation within the considered parameter regime.

2. Impurity setting and tight-binding description

We consider a highly particle imbalanced binary atomic mixture consisting of a single impurity N; = 1
being immersed in a bosonic gas containing Ny = 100 bosons. As such for finite impurity—bath couplings
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Figure 1. Schematic representation of the DW (gray dashed line) characterized by apw = 2.0, bpw = 1.5 and its energetically
lowest single-particle spectrum. The horizontal lines denote the lowest eight energy levels, in which the solid (dashed) lines
correspond to the even (odd) parity states of the DW. The energy difference (gap) between the lowest two energetic bands is
denoted by A. The red and blue solid lines represent the Wannier states uy (x) and ug(x) in the lowest band of the left and right
well, respectively.

the impurity is dressed by the excitations of the bosonic gas forming a Bose polaron [35], a behavior that
has been exemplified in 1D by the emulation of relevant spectroscopy schemes [53, 54, 65] as well as by
constructing related effective polaron Hamiltonians [49]. The underlying many-body Hamiltonian is given
byH = HI + I:IB + HIB) where

m:/wwmmmMm

mz/w%wmm%w+%/w%m%m%m%m

fm:m/aww%w%m%w. ()
In the above expressions, h,(x) = —% 5% + Vpw(x) is the single-particle Hamiltonian for the o = I(B)

species being confined within a 1D symmetric DW potential Vpw(x) = a,(x* — b2)?. The parameters a,
and b,, control the central barrier height as well as the relative distance between the two wells, respectively.
@L(x) [@q(x)] is the field operator that creates (annihilates) a o-species particle of mass m, at position x
[78]. Moreover, we assume that both the intra- (Bose—Bose) and the interspecies (impurity—bath)
interactions are short-range i.e. of contact type characterized by the strengths g, and g respectively. This
is an adequate approximation within the ultracold temperature regime where s-wave interaction processes
are the dominant ones [2]. In the following, we rescale the Hamiltonian of the mixture H in harmonic
units, with the energy and length being expressed in terms of 7 = fww and £ = \/h/mpw, respectively.
Throughout this work, we assume that the atoms of both species are trapped in the same DW geometry,
i.e. ay = ag = apw and by = by = bpw. In practice, we set apw = 2.0 and bpw = 1.5 such that the low-lying
single-particle energy levels form a band-like doublet structure. For the above DW potential, one can
further introduce a characteristic harmonic frequency wy by expanding Vpw(x) near its local minima
x = Zbpw. In this way, we obtain a harmonic potential Vi, (x) = %wé(x + bpw)? which approximates the
profile of the DW near its local minima with wy = \/8apwb?, being the corresponding harmonic
frequency. For the DW parameters given above, i.e. apw = 2.0 and bpw = 1.5, we have wy = 6.0. The
spatial geometry of Vpyw(x) is depicted in figure 1 (see gray dashed line) together with the lowest eight
single-particle energy levels (see horizontal lines). Moreover, we focus on repulsive interactions for both
species and assume that the bosonic bath is weakly interacting, i.e. 0 < gz < 1. We explore how the GS
polaronic nature is affected by considering variations of both interaction strengths as well as the
mass-imbalance 8 = m;/mp between the two species. Let us note that such a 1D mixture is experimentally
accessible by imposing a strong transverse and a weak longitudinal confinement to a binary e.g. Bose—Fermi
mixture with two different kinds of atoms [25, 26] or a Bose—Bose mixture that is made of atoms residing
in two different hyperfine states [27, 28]. The DW potential can also be readily constructed by imposing a
1D optical lattice on top of a harmonic trap, constructing a superlattice whose shells correspond to
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double-wells [10, 12]. Moreover, the contact interaction strengths g, and gz can be controlled
experimentally by tuning the s-wave scattering lengths via Feshbach or confinement-induced resonances
[2-4].
Given that the bosons are weakly interacting and are confined within a tight DW with a large energy gap
A between the first and the second band* (cf figure 1), we further adopt the two-mode approximation for
the bosonic bath R R R
Pp(x) = ug(x)by + ur(x)br, (2)

with up r(x) being the Wannier states [12] localized in the left and the right well, respectively (cf figure 1).
They are chosen to be real valued due to the preserved time-reversal symmetry of the mixture [79]. This
ansatz leads to the low-energy effective Hamiltonian for the bosonic species

Hy = ~Ja(bibr + bibe) + = > blblbibs (3)

i=L,R

corresponding to the two-site Bose—Hubbard (BH) model [80, 81] with
Jp = / dx uy (x) hp (x) ur (x),

%zm/mmmVG:Lm 4)

representing the hopping amplitude and the on-site repulsion energy, respectively.

Hereafter, we designate the GS of our mixture for gz > 0 (g = 0) by |¥) (|¥y)), and denote the
eigenstates of the single-species Hamiltonian Hy and Hy as {|¢})} and {|¢P)}, respectively. Moreover, we
refer to the eigenstates of the bosonic single-particle Hamiltonian Ay as {|©?)}. In this way, the above
introduced Wannier states |u,r) are expressed with respect to [0f) and |¢}) as [urr) = 5 []5) = [])].
The preserved parity symmetry of the DW potential results in each eigenstate of H or H, to possess a
definitive parity. Specifically, the GS |¥) (|¥y)) is even parity, while |¢7) fori = 0,2,4,... (i=1,3,5,...)
possesses an even (odd) parity.

3. Bose polaron residue response and its decay

In the following, we investigate the GS polaronic properties of the mixture. In particular, we focus on how
variations of both the intra- and the interspecies interactions as well as the mass-imbalance impact the
emergent polaronic nature. To this end, we examine as a representative measure the so-called polaronic
residue, quantified by the overlap between the dressed polaronic state and the initial non-interacting one
[61-64]. As we shall argue below, the increase of g;; always leads to a vanishing residue, signifying the
occurrence of the OC of the polaron. Interestingly, we shall also exemplify that there exist two critical values
of the bosonic repulsion, referred to as g§, and g5l (depending also on the mass-imbalance ) according to
which three distinct residue response regions are encountered for increasing g5. We perform a detailed
investigation demonstrating the properties of these regions and explicating the origin of the aforementioned
critical bosonic repulsion strengths.

3.1. Overview of the polaronic residue

The polaronic residue is given by Z = |(¥|¥)|*, which measures the overlap between the dressed polaronic
state and the initial non-interacting one. Here, | W) = |#))|¢f) is the GS of the mixture for fixed gy, and 3
and vanishing impurity-medium coupling (g = 0), while |¥) denotes the GS for gz > 0. In figure 2, we
present the residue Z as a function of both the Bose—Bose and the impurity—bath interaction strengths for
various mass ratios, namely 3 = 0.5 (figures 2(a) and (b)), 5 = 1.0 (figures 2(c) and (d)) and 8 = 2.0
(figures 2(e) and (f)). As it can be seen, for fixed 3 and gy, an increase of g leads eventually to the
suppression of the polaronic residue, which in turn implies the decay of the polaronic nature. In particular,
the residue becomes negligible for g;; — 1, signifying that the OC of the polaron takes place in this strongly
interacting regime’. Moreover, for all different mass ratios, there exist two critical bosonic repulsion

‘ 2

* For the employed DW parameters, apyw = 2.0 and bpy = 1.5, the energy gap A between the first and the second band is
approximately 10° times larger than the width of the first band.

> Note that the mechanism of the polaron OC, discussed herein, is different from the original Anderson OC [45]. The latter is strictly
defined in the thermodynamic limit while our finite atom number mixture is also spatially inhomogeneous due to the DW. Instead, we
rely on the fact that for a GS with vanishing polaronic nature its residue becomes Z = 0, a behavior that it is here partially caused by
the trap-induced spatial inhomogeneity. Albeit this differentiation, as we shall see below, the polaronic residue in our system exhibits a
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Figure 2. Polaronic residue Z with respect to variations of the involved interaction strengths and particular mass ratios. The
latter refer to (upper panels) (a) 3 = 0.5, (c) 8 = 1.0 and (e) # = 2.0. Three different residue regimes in terms of g, are
identified and they are separated by the white dashed horizontal lines, which denote the critical bosonic repulsion strengths
corresponding to (a) g5y = 0.003, g5 = 0.008, (c) g5 = 0.0035, gii = 0.035 and (e) g5 = 0.004, g5t = 0.045. Lower panels:
same with the upper panels but for specific bosonic repulsions (see legends). The residue decay designating the OC of the Bose
polaron for strong repulsive g, is evident.

strengths g5k and g§i (see the white dashed horizontal lines in figure 2). Depending on g, being below or

above each of these critical values, three distinct residue regions are found for increasing g;;;. For instance,
in the equal-mass case we have ggk = 0.0035 and ggii = 0.035 (figure 2(c)). For gzz = 0 and increasing g,
the residue, starting from Z = 1, sharply drops to Z ~ 0 for g;; = 0.003 and remains almost constant for
further increasing gy (cf figure 2(d) red line). This behavior essentially reveals that, for ggs < gf, the OC of
the polaron takes place even for an extremely weak impurity—bath repulsion. In contrast, once we ramp up
the bosonic repulsion e.g. to gz, = 0.008, the residue initially decreases to Z = 0.05 and then exhibits a
pronounced peak for larger g (cf figure 2(d) blue line), which signifies the revival of the polaron for
intermediate impurity—bath interactions and within the region gss € [gih, gsh]. Turning to ggp > gih, a
relatively slower monotonous decrease of Z with respect to g is observed, suggesting that the mixture
enters a regime with a slow polaron decay (see black line in figure 2(d) for the case gz = 0.05).
Interestingly, while ggk appears to be inert with respect to variations of the mass ratio, gii depends
strongly on f3, e.g. gsh = 0.008 for 3 = 0.5 while g5k = 0.035 for 3 = 1.0 and gfi = 0.045 for 3 = 2.0.
Based on the above observations, we will refer to the aforementioned three distinct regions as type-I
(gss € [0,g551), type-II (gpp € [g55, g5]) and type-III polaron decay (ggs > g5h), respectively. Moreover, in
order to analyze the properties and origin of these regions we will solely focus on the equal-mass case
(sections 3.2—3.4), while the influence of the mass-imbalance will be discussed later on in section 3.5.

3.2. Type-I polaron decay

To understand the polaron decay in the interaction region ggp < ggh, we first investigate the o-species
single-particle density p?(x) = (U|4] (x)1h, (x)|¥) /N, for ¢ = I(B). It provides the probability of finding a
o-species particle at position x [82, 83] and is experimentally accessible via an average over a sample of
single-shot measurements [1, 84]. Figures 3(a) and (b) depict the spatial distributions of p{(x) for fixed
g = 0 and varying g;5. Due to the DW confinement, the p{(x) configurations in the case of g;; = 0 exhibit
a two-hump structure, which reflects the spatial inhomogeneity of the mixture (cf figure 3(b) red
dash-dotted line). Interestingly, for increasing g;;; the profiles of p{ (x) for both species remain un-altered
(cf figure 3(a)). We note that the behavior of p?(x) can be understood via the adopted two-mode
approximation (cf equation (2)). Due to the negligible spatial overlap between the two Wannier states, i.e.
ur (x)ur(x) = 0, it holds that p®(x) ~ z:i:L)Rui(x)u,'(x)<\Il|it:-r l;l\\Il> /Ng. Together with the property

similar behavior to the one obtained in the Anderson’s original argument. Namely, for an increasing bath particle number Ny — oo the
residue Z — 0.
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Figure 3. Spatial profiles of the impurity’s reduced densities for the type-I residue decay. (a) The single-particle density p} (x) of
the impurity as a function of g, with g, = 0 showing an equal population of the two wells. The bosonic gas density p} (x)
exhibits exactly the same shape (not shown). (b) Profiles of p}(x) (p?(x)) for gy; = 0 and for either g;;; = 0 (red dash-dotted
line) or g, = 1.0 (blue dashed line). (c)—(e) The impurity—bath two-body density distributions p2*(x;, x) in the case of gz = 0
and (¢) gz = 0.0, (d) gz = 0.003 and (e) g, = 1.0. A two-body phase-separation process occurs for increasing g.

bl by = bjbg = Ng/2, originating from the parity symmetry (see appendix A and the discussions below),
p¥(x) is thus invariant against variations of both g,z and g;;.° In contrast, the interaction dependence of the
impurity’s density is not explained straightforward. As we shall discuss below, this behavior can also be
understood if the impurity is predominately restricted to the lowest band of the DW.

Despite the fact that the single-particle densities of the two species remain miscible, with increasing g,
we note that a phase separation occurs on the two-body level. This becomes evident by inspecting the
two-body interspecies density distribution, i.e. p3(x;, xp) = <\If"LZJ}L(xI)’LZJI(xI)’LZJL(xB)’LZJB(xB)|\I/> /(NiNg),
which refers to the probability of detecting the impurity at position x; while one boson is at position xg
[82, 83]. In this way, it naturally incorporates impurity—bath spatial correlations. For g;; = 0, the two
species are fully decoupled, namely both the impurity and the bosons can freely tunnel between the two
wells. As a result, piP(x, xp) exhibits four dominant peaks within the spatial regions (x;,xp) = (£1.5,41.5),
i.e. around the minima of the DW (cf figures 1 and 3(c)). With increasing g;;;, the emergent repulsion
renders such a two-body density distribution energetically unfavorable. Consequently, the impurity and the
bosons tend to become anti-bunched, leading to an increase (decrease) of pi® (x, xp) values in the vicinity of
the off-diagonal (diagonal) (cf figure 3(d)). Moreover, in the case of g;; = 1.0, the two species are fully
anti-bunched, leaving a probability distribution solely along the off-diagonal (see figure 3(e)). As a matter
of fact, the mixture in turn resides in a superposition of two equally-weighted configurations and thus
forms a Schrodinger-cat state [73], manifesting the dominant role of impurity—bath entanglement (see also
below). Specifically, each of the two configurations represents a scenario where the impurity lies in one well
while all the bosons are located in the other well. In this way, a two-body interspecies phase separation takes
place in space (see also the discussion below), a phenomenon that has already been observed in fermionic
mixtures [85]. Comparing the residue behavior (figure 2(d), red solid line) to the respective two-body
densities (figures 3(c)—(e)), it becomes clear that the OC of the polaron is directly related to the phase
separation between the two species. This has been indeed confirmed independently by recent studies on the
polaron dynamics, where this phase separation leads to a dissipative motion of the impurity accompanied
by an energy transfer to the bath species, and hence diminishes its polaronic nature [63, 84].

Having investigated the impact of g; on the o-species density distributions, we now analyze the
structure of the many-body wave function in order to gain deeper insights into the above-described polaron
decay. To this end, we first employ a Schmidt decomposition and express the GS wave function of the
mixture in the form [86]

W) = VNl [WP), (5)
=1

© This result relies on the fact that the two Wannier states have negligible spatial overlap u; (x)ug(x) 2 0, which is only valid for a DW
with an adequately large barrier. For a shallow DW, the bosonic density indeed depends on both g, and g, (results are not shown).
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Figure4. Schmidt numbers and SP occupations of the impurity quantifying interspecies entanglement and the excitations of the
impurity. (a) The first two Schmidt numbers for g, = 0.0 and varying g;. The red solid (blue dashed) line denotes the value of
A1 (A2). The inset provides a magnification within the region 0 < g < 0.01. (b) The SP occupation #;" of the impurity when
considering g,, = 0 as a function of g;. The red solid (blue dashed) line refers to ny’ (n}"). The inset depicts the SP occupations
for 35, .

where )\;, being real positive values, are the Schmidt numbers with A\; > X\, > .... They obey the constraint
>~; Ai = 1 which originates from the normalization of the wave function. |¢)7) denotes the ith Schmidt
orbital for the o-species and can always be expanded as a linear superposition of the H,, eigenstates

Dy—1

7)) = Chler). (6)
k=0

Here, D, is the dimension of the Hilbert space corresponding to the o-species Hamiltonian H,. Regarding
the bosonic species, Dy is finite due to the employed two-mode approximation and we have

Dgp = Ng + 1 = 101. For the impurity, we truncate D; to some finite large values depending on the
interaction strengths in order to guarantee the convergence of our results. It is important to note that the
Schmidt numbers {);} directly reveal the presence of interspecies entanglement [86]. In particular, if

A1 = 1 while the remaining Ai+; = 0, the mixture is non-entangled with the corresponding wave function
being of a simple product form, i.e. |¥) = [1")[1)®) (for simplicity, we have neglected the subscript of each
Schmidt orbital for this product form). As we shall discuss later, the mixture in this special limit is fully
captured by the SMF description, where the mutual impact of the species is merely an effective potential
[57].

Figure 4(a) showcases the first two Schmidt numbers with respect to g, for the case of g5z = 0. Note,
however, that all other Schmidt numbers are explicitly excluded due to their negligible values (\; < 107> for
i > 2). For g, = 0, the GS is simply |¥y) = |¢})|¢F), and hence the two Schmidt numbers are A\; = 1 and
A, = 0. Upon switching on the impurity—bath repulsion, we observe that A\; (\;) quickly decreases
(increases) to the value A; = 0.52 (A, = 0.48) for g;; = 0.003. Afterward, it exhibits an extremely slow
decrease (increase) toward A; = A, = 0.5 until gz = 0.8 and retains this value for g;; > 0.8. In this regard,
we can deduce the asymptotic form of the GS wave function in the region ggp < gi}; and for a strong
impurity—bath repulsion (namely g; > 0.8)

Wr-) = = (DI + oDl @)




10P Publishing

New J. Phys. 24 (2022) 033004 ] Chen et al

|CEP(1C3 1)

0.2

0.1r

[CEPCE)

28

0.5

B
2,
=

C3)

|CE?

0 4 8 12 16 20

Figure 5. Expansion coefficients for the first two bosonic Schmidt orbitals for gy, = 0.0 and (a) g, = 1.0, (b) gz = 0.05 and
(¢) g = 0.003. In all cases, the red solid and the blue dashed line denote |C,|* and |C,|?, respectively. The black solid line in
(a) depicts the expansion coefficients |C},|* and |C3 |* obtained from equation (B3) given in appendix B.

with the prefactor 1/ V2 stemming from the fact that \; = A\, = 1/2 for large g, (see also figure 4(a)).
Further inspecting the first two Schmidt orbitals of the impurity, we find that

Y1) & léo) ) R [ (8)

Together with equation (7), this immediately yields the single-particle (SP) occupations for the impurity as
iy’ = &~ 1/2 and i | ~ 0, reflecting the fact that the impurity is predominately occupying the lowest
band of the DW (cf figure 4(b) and the discussions below). Here, 71;¥ = (a!)'a! denotes the occupation
number of the ith single-particle state |¢!) of the impurity.

On the other hand, the corresponding Schmidt orbitals for the bosonic species can be written as

W)= Y Chlddh D)= D Chei) 9)

k=0,2,4,... k=1,3,5,...

with CP; and C} being the corresponding expansion coefficients and |¢}) denoting the kth eigenstate of
Hp, for the case g = 0 (cfequation (6)). As it can be seen in figure 5(a), for g, = 1.0, Clﬁk (Cik) obtained
from the ED method vanishes exactly for the odd (even) parity eigenstates |¢). This is the reason for the
index notation k = 0,2,4,... (k= 1,3,5,...) introduced in equation (9). Physically, this observation is a
direct consequence of the preserved parity symmetry of the wave function of the mixture. Indeed, since the
GS wave function |W) is of even parity, each product state |¢)!)[1/®) in equation (7) then needs to has an
even parity as well. As a result, the bosonic Schmidt orbital |1/?) shares the same parity symmetry with the
impurity. According to equation (8), the Schmidt orbital |1/®) (|1/®)) for the bosonic species hence has an
even (odd) parity. Moreover, the even parity of the GS wave function | W) ensures that the distribution of
the bosons between the two wells obeys Z;IZ;L = Z;LZIR = Np/2 (see appendix A). This leads to the invariant
nature of p¥(x) against variations of the interaction strengths. Importantly, we note that such a property of
p¥(x) holds for all different types of residue decay. Apart from that, we also notice that both \C‘ik | and
|C3|* follow a binomial distribution with their maximal values located at k = 50 and k = 49, respectively
(cf figure 5(a) red solid line and blue dashed line). We note that, this result directly stems from the
above-described interspecies two-body phase separation (see also figure 3(e)).
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In appendix B, we show that [Ur_;) (see also the results from equation (7) to equation (9)) is exactly

equivalent to
1

v/2Npg!

with dp r = %(&é +al) and a! (i = 0, 1) referring to the annihilation operator acting on the ith

|Wr_1) =

al (B + a8} o), (10)

single-particle state |¢!) of the impurity. Remarkably, equation (10) essentially represents a Schrodinger-cat
state being a superposition of two macroscopic many-body states. Each of them corresponds to a
configuration where the impurity resides in one well while all the bosons are located in another well. Thus it
reflects the above-described two-body phase separation between the two species. We remark that such a
Schrodinger-cat state has been reported in reference [73] by restricting the impurity in the lowest band of
the DW (see below). It has also been argued that this state is extremely sensitive to the environment
meaning that an arbitrary small perturbation can lead to a collapse onto one of the two macroscopic
configurations. This should be indeed the case upon the experimental measurement of this configuration
which is a manifestation of the entanglement. The obtained asymptotic GS wave function |¥r_;) allows for
further explicating the OC of the polaron for strong impurity—bath repulsion: since for the impurity

(Pl oh) = (dh|eh) = 0 (cf equation (8)), [11)|4P) is trivially orthogonal to the ground state

|Wo) = [¢)|90) for gy = 0. Moreover, the binomial distribution of the coefficients |C},|* together with the
normalization condition ), [C},|* = 1 render’ C}y — 0 for Ny — o0c. As a result, we have (17 |¢g) = 0 (cf
equation (6)) and |¢!)|¢®) is orthogonal to |¥y) as well. In this way, we explicate the above OC of the
polaron.

Before closing this section, let us elaborate on the polaron decay for 0 < g < 0.8 in more detail. As we
have already mentioned above, for all values of g, only the first two Schmidt orbitals are populated in the
GS (see figure 4(a) as well as its inset providing a magnification within the region 0 < g;; < 0.01). The GS
wave function correspondingly takes the form

1T) = /N[0 ) + el D). (11)

For the impurity, we have also verified that the Schmidt orbitals follow the relations in equation (8) exactly
for varying g. This observation, on the one hand, reveals that the impurity is predominately restricted
within the lowest band of the DW which, in turn, explicates the invariant profile of ! (x) for different
g (cf figures 3(a) and (b) and the accompanied discussion above). On the other hand, it also results in an
even (odd) parity bosonic Schmidt orbital [¢P) (|1/})) (see the expansion coefficients |CP,|* and |C},|* in
figures 5(b) and (c)). Moreover, we note that the GS of the mixture deforms from |¥y) with respect to g, as
follows: for 0 < g < 0.003, a larger g, leads to the intraband excitations of the impurity within the
lowest-band of the DW identified by an SP transition of the impurity between the states |¢}) and |¢})
(see figure 4(b)). This process is accompanied by a rapid growth of the bath species populations onto the
low-lying excited states {|¢F)} of Hy for k < 12 (cf figure 5(c)). Consequently, it leads to the sharp decrease
of the polaronic residue as depicted in figure 2(d). Further increasing the impurity—bath repulsion to
g = 0.8, the impurity ceases to be excited to higher bands. Instead, the bosonic species gradually populate
its higher-lying excited states {|¢p. )} (cf figure 5(b)). Notice, however, that the bosons are always
restricted to the lowest-band of the DW due to the employed two-mode approximation (cf equation (2)).
The excited states are {|¢F)} strictly referred to as the eigenstates of the BH Hamiltonian Hp. Owing to the
fact that the impurity always remains in the lowest band of the DW (when g, ~ 0) during the whole
process of the polaron decay, hereafter, we refer to this regime as the intraband excitation induced polaron
decay. According to the above we can infer that the critical bosonic interaction strength g&, should
correspond to the maximally attainable g, value such that the impurity predominantly remains within the
lowest band of the DW upon increasing g;;. In this regard, in practice, we can deduce the following
criterion

g8p < g such that i 4 P > 0.99, (12)

for the determination of the g}, value. Recall that 7" is the SP occupation of the impurity fulfilling the

normalization condition ) ;72" = 1. Notice also that equation (12) holds for g;; € [0,1].

3.3. Type-II polaron decay

Next, we turn into the description of the type-II polaron decay, which occurs in the interaction regime

288 € [g5s> gim]. For 3 = 1, we have gfl, = 0.0035 and ggi = 0.035. As a characteristic example, we present
the density distributions of the impurity for fixed g;; = 0.008 and different values of g; (cf figures 6(a)

7 The maximal value of the binomial distribution of |C}},|* is located at k = Nj/2. For Ny — 00, the C}, value for both k < Ni/2 and
k >> Ng/2 approaches C, — 0. This can also been seen in figure 5(a).
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Figure 6. The impurity’s reduced densities regarding the type-II residue decay. (a) The single-particle density of the impurity as
a function of g, for gz = 0.008. (b) Profiles of p} (x) for gz = 0.008 and g;; = 0 (red dash-dotted line), g; = 0.2 (blue dashed
line) and g, = 1.0 (black solid line). The impurity localizes around the central region of the DW for stronger g, experiencing a
one-body phase separation with the medium. (c)—(e) The corresponding two-body impurity-medium density spatial
distributions for the parameters showcased in (b).

and (b)). Before proceeding, let us remark that the corresponding bosonic density p®(x) has the same shape
as the one depicted in figure 3(b), i.e. it distributes among the individual wells. On the contrary, the spatial
profile of the impurity’s density in this regime of g, depends strongly on g (cf figures 3(a) and 6(a)).
Instead of maintaining the initial two-hump structure, for increasing g, the bosons considerably expel the
impurity into the center of the DW rendering a highly localized p} (x) distribution around the region

x € [—1,1] for gz > 0.1. This correspondingly leads to a negligible spatial overlap between p!(x) and p¥(x)
for strong impurity—bath repulsions (see red dash-dotted and black solid lines in figure 6(b) referring to the
cases gy = 0 and g, = 1.0. Moreover, note that the profile of p!(x) for g, = 0 is same with the one of
p¥(x)). The above process illustrates another type of phase separation, which is clearly visible on the
single-particle densities. It is for this reason that below we shall refer to it as the one-body phase separation
[49]. Complementary, this phase separation is also captured by the corresponding two-body interspecies
density since the latter contains all the information of the single-particle density. For increasing g, we
observe that p!®(x, x3) quickly evolves from a checkerboard pattern with both the diagonal and the
off-diagonal elements occupied for weak g (cf figures 6(c) and (d)) toward a configuration with dominant
populations around the spatial regions x; € [—1,1] and xg ~ £1.5 for gz = 1.0 (cf figure 6(e)). This
reflects a configuration where the impurity lies at the center of the DW, while the bosons are located in the
outer two wells. In this regard, it manifests the above-mentioned one-body phase separation.

Interestingly, the distinct density behavior of p! (x) in this regime is inherently related to a richer
excitation behavior of the impurity as compared to the former region of the type-I polaron decay. In
contrast to the case discussed in section 3.2, where the impurity features only the intraband excitations here
a larger g, triggers also interband processes. To demonstrate the latter, we resort again to the above
introduced SP occupation ", which is alternatively related to the underlying band occupation for the
impurity as 7t = 7y + 77, ,1127 =1y + iy , and so on. For g < 0.1, the impurity predominately populates
the lowest band of the DW, leaving a band occupation nl > 0.98 (see figures 7(a) and (b) red solid lines).
This is also manifested by restricting the impurity into the lowest band, i.e. by considering the ansatz
D1(x) = ¢h(x)al + ¢! (x)al and calculate the corresponding polaronic residue Z for different gip- As
compared to the numerically exact results, we find a good agreement between each other (cf figure 8(a),
compare blue solid and green dash-dotted lines). Importantly, we remark that this observation further
implies that the corresponding GS wave function |¥) takes the form introduced in equation (11). In fact,
since each Schmidt orbital of the impurity becomes a linear superposition of the SP states |#}) and |¢}), to
preserve its orthogonality, i.e. (¢f|w}> = 0 for i # j, there are at most two linearly independent Schmidt
orbitals. On the contrary, increasing the impurity—bath repulsion toward g, = 0.2 leads to a sharp decrease
(increase) of the SP occupation Ptf-p fori=1(i = 2,4) as well as a slow decrease of 71 (cf figures 7(b), (c)
and (e), red solid lines). This behavior essentially reveals that the impurity experiences transitions among
the SP states |¢!) — |¢L) and |¢!) — |¢}). Hence, interband excitation processes of the impurity become
relevant. Interestingly, combining our observations for the impurity’s SP occupations (cf figure 7) and its
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Figure7. SP occupations of the impurity for the type-1I and type-I1I residue decay regions. The SP occupation 7;" of the
impurity with respect to g, for gz, = 0.008 (red solid line) and g, = 0.05 (blue dashed line). The left (right) panels correspond
to all even (odd) parity single-particle states.

density (cf figure 6(a)) we conclude that the triggered interband excitations are accompanied by the
occurrence of one-body phase separation between the two species.

Further increasing the impurity—bath interaction to gz > 0.2, a negligible (large) SP occupation of the
odd (even) parity states of the impurity is observed. Particularly, a slow decrease (increase) of the
population 7 and 715} (71}°) takes place. The interband excitations of the impurity are consequently
dominated by the transitions e.g. among the SP states |¢}) < |#)), |#h) < |#L) and |¢h) <> |@L), which
preserve the parity symmetry of the impurity’s wave function (see also the discussion below). Importantly,
the Schmidt numbers for gz > 0.2 become as A; &~ 1 and \;~; &~ 0. Hence, the GS wave function | )
possesses a simple product form

@) = [4)["). (13)

Therefore, our mixture can be fully captured within the SMF description where the mutual impact of the
species is merely an effective potential [57]. The SMF description reduces the interspecies correlated setting
into a single-species problem whose effective Hamiltonian reads

HZ = H, + (07 [H|y7), (14)

with & = B(I) for o = I(B). Moreover, the GS of H% is equivalent to the Schmidt orbital |¢/7) given by
equation (13). In this way, the o-species particle experiences, instead of the initial DW, an effective potential
due to the presence of the other species. For the impurity, this effective potential takes the form

Vig(x) = Vpw(x) + gisNpp? (%), (15)

which is simply the DW superimposed to a potential proportional to the bosonic density. With increasing
gip> we observe that V1 (x) deforms from the initial DW toward a triple-well structure for g = 1.0 with
two dominant barriers located at the positions x ~ £1.5 (cf figure 8(b)). The central barrier of the DW is
gradually smeared out in the resulting effective potential V1i(x) due to the growth of the potential term
gisNppP(x) for larger g;p.° As a result, the impurity becomes significantly localized at the center of the DW
(cf figure 6(b), black solid line). Before proceeding, we note that within the parameter space that we have
examined, the effective potential for the bosonic species only slightly deviates from the initial DW due to
the large particle number imbalance (see appendix C). Hence, the corresponding bosonic Schmidt orbital

§ Note that the corresponding zero-point energies are excluded from the depicted effective potentials in figure 8(b) and thus V!, (x) have
the same minimum independently of g,.
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Figure 8. (a) The polaronic residue Z as a function of g;; as predicted within ED for fixed g,, = 0.008 (blue solid line). The
green dash-dotted line represents the resulting residue Z by restricting the impurity within the lowest band of the DW. The red
dashed line denotes the overlap between [)") and |¢}) with respect to g, for gz, = 0.008 thus using the SMF method (no
entanglement). It can be concluded that the residue predictions of the lowest-band (SMF) are in good agreement with ED for
weak (strong) impurity-medium couplings but both approaches fail to predict the correct residue behavior in the intermediate
interaction regime. (b) The effective potential of the impurity for g, = 0.008 and g;; = 0.2 (red dash-dotted line) and g;; = 1.0
(blue solid line). The black dashed line represents the DW. (c¢) The corresponding impurity density distributions obtained from
the Schmidt orbital p§;(x) = [¢0'(x)]* (red dash-dotted and blue solid line) for the cases examined in (b). The black dashed line
shows the impurity density pj(x) = |¢}(x)|* for g;; = 0 (see main text). (d) The pair-correlation function for g, = 0.008 and
& = 0.1 obtained from ED simulations, explicating the emergent two-body impurity-medium correlations.

|4)®) resembles the GS of the Hamiltonian Hip, i.e.

[°) &~ |¢p). (16)

Note, however, that the case g;; — oo will result in a bosonic effective potential significantly different from
the DW. This could subsequently render the employed two-mode approximation insufficient for describing
the bosonic gas (cf equation (2)). A discussion of this limit, is therefore, beyond the scope of our study.

The SMF description not only introduces a significant simplification in the study of mixtures but also
allows for profound insights concerning the polaron decay as well as its OC. Indeed, the results provided in
equations (13) and (16) suggest that the residue Z for g; > 0.2 simply becomes the overlap between the
Schmidt orbital Wl>, i.e. the GS of the effective potential V1;(x), and the initial SP state |¢}) (cf figure 8(a)
blue solid and red dashed lines). Upon the increase of g, the deformation of the density profile
Piavp(x) = [1(x)]? from pl(x) = |@h(x)|? (cf figure 8(c)) suggests the subsequent decrease of the overlap
between |¢') and |#}), and hence, leads to the corresponding residue decay (see equation (6) and
figure 8(a)). Based on the behavior of the SP occupations presented in figure 7, we know that the impurity
is dominated by interband transitions during this process. In this regard, we refer to this decay mechanism
as the interband excitation induced polaron decay.

Turning to the case of g;; = 1.0, which corresponds to the OC of the polaron we note that the negligible
spatial overlap between pk,(x) and pf(x) (cf figure 8(c), blue solid line and black dashed line) indicates
that (¢} |¢") =~ 0. Together with the fact that p(x) = p¥(x), the above result implies that ply;(x)pf (x) = 0,
which reflects the above-mentioned one-body interspecies phase separation (cf figures 6(a), (b) and (e)). In
this way, we obtain the physical connection between the OC of the polaron and the one-body phase
separation. With this knowledge, let us point out the asymptotic form of the GS wave function
corresponding to this strongly interacting regime

Wrou) = [W)e?) and ) =0, (17)

which accounts for the above OC of the polaron. Interestingly, for a fixed large g (e.g. gz = 1.0) and for
increasing gy, @ transition between the GS wave function |¥) = |Ur_;) for ggp < g5y and [U) = |¥r_y1)
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for ggp > g5b; is realized. This crossover is also accompanied by the deformation of the impurity’s density
profile from the p!(x) in figure 3(b) (blue dashed line) to the one depicted in figure 6(b) (black solid line).
In section 3.5, we will elaborate on the physical origin of this crossover via a spectral analysis of the wave
functions |¥r_;) and |Ur_y;). Moreover, it is worth to be mentioned that in the limiting case Ny — oo the
effective potential in equation (15) can be approximated by V!;(x) ~ gizNpp®(x). The impurity thus feels
two infinitely high potential barriers located at positions x ~ £1.5, which corresponds to the two-hump
structure of the bosonic density (cf figure 3(b)). As a result, it leads to a vanishing overlap between py;(x)
and pf(x) leaving the residue Z — 0. Another important consequence of the SMF description is that, due to
the preservation of the parity symmetry in the effective potential picture, the Schmidt orbital |¢') has
always even parity. As a result, it leads to the negligible SP occupations #;" of all the odd parity states |¢})
for g;p > 0.2 (see the red solid lines in figures 7(b), (d) and (f)).

3.4. Type-III polaron decay

Finally we explore the polaron decay in the interaction region ggp > gih. For a fixed gj; > 0.2, the negligible
discrepancies between the residue values for the case ggp = 0.008 and gz = 0.05 suggest that the GS wave
function takes the same product form as introduced in equation (13) (cf figure 2(d) blue solid and black
solid line). This is indeed confirmed by inspecting the g;;-dependence of the Schmidt numbers finding that
{Ai>2} have negligible values for gz = 0.05 and gz > 0.2 (results not shown). It turns out that the above
relation holds for all cases with gz < 0.2 as well. As a matter of fact, the mixture in the region ggp > gih is
fully described by the SMF ansatz. The corresponding polaron decay with increasing g;; can thus be readily
interpreted via the above introduced effective potential. As expected, it gives rise to the same asymptotic
form of the GS wave function |¥7_y;) as introduced in equation (17) for large g, as well as the negligible SP
occupations ﬁ?p for all odd parity states |¢!) (see the blue dashed lines in figures 7(b), (d) and (f)). Due to
the small variations of the effective potential for bosons with respect to the initial DW, we note that for the
bosonic species the relation in equation (16) holds as well, indicating the negligible probability for the

bosons to populate the excited states {|¢2 ) }. Before proceeding, let us elaborate on how the value of the

critical Bose—Bose interaction strength gsh can be practically determined. As discussed above, the type-II1
polaron decay is related to the interband impurity excitations for increasing g;; while the SP occupations 7;

for all odd parity states |¢}) are negligible. Hence, it is possible to infer the following criterion:

P

g > ghp,  suchthat @ > 0.95, (18)

i=0,2,4,...

for determining the value of g5i with equation (18) being valid for g € [0,1].

Albeit the fact that, for a fixed g, there are no significant differences among the reduced densities pf (x)
and p™B(x1, xp) between the case of ggp > g5 and the one for ggp € [gh, g5a], prominent deviations are

imprinted in the corresponding pair-correlation function. The latter is defined as

P (x1, xp)

ph () p} (x) (19)

& (x1, x8) =
Notice that, through the division by the single-particle densities the g, function, as compared to the
two-body density p2B(xy, xp), naturally excludes the impact of the spatial inhomogeneity. It can be also
readily deduced that within the SMF description g, is simply unity due to the product form of the
many-body wave function. In contrast, for g;; = 0.1 and g, = 0.008 the pair-correlation function deviates
significantly from unity with g, < 1 (g, > 1) along the diagonal (off-diagonal) region. This pattern signifies
the presence of strong anti-correlations between the impurity and the majority bosons (cf figure 8(d)).

3.5. Origin of the critical bosonic repulsion
So far, we have discussed the properties of the three different types of residue decay in terms of g, upon
increasing the repulsive impurity—bath interaction strength. It has been found that the corresponding
residue regimes are characterized by two critical bosonic repulsion strengths g&, and g&i. In addition, two
asymptotic GS wave function forms namely |Ur_;) and |¥r_y;) were obtained for strong impurity—bath
repulsion, which in turn account for the OC of the polaron. Interestingly, for a fixed large g, (e.g.
gp = 1.0) and increasing g, we observe an abrupt transition of the GS wave function from |¥) = |Ur_;)
for ggp < g5 toward |¥) = |Ur_p) for gg > gfk. Hereafter, we will first perform a spectral analysis with
respect to the above two asymptotic wave functions. This allows us to unveil the origin of the critical
bosonic repulsion ggL. Afterward, we comment on the existence of g5 and demonstrate how the
impurity-medium mass ratio affects their values.

To begin with, we note that for both |¥r_;) and |¥r_y) the corresponding interspecies interaction

energies given by <\I/T_1\I:I | Pr_1) and <\I/T_H|I:IIB|\IJT_H> can be safely neglected. In fact, due to the phase
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separation occurring on either the one-body or the two-body level in the limit g;; — 1, atoms from
different species have negligible probability to reside in the vicinity of one another. Together with the
employed contact form of the interspecies interaction, it thereby results in a negligible interspecies
interaction energy. In this regard, we solely need to compute the energies associated with the single-species
Hamiltonians H; and Hp (equation (1)). For |¥r_;), we have

Er_1 = (U |Hi|Ur 1) 4+ (Ur_|Hp|Ur 1) = Eiyy + Eos (20)

with EL, (EB,) being the energy corresponding to the configuration where the impurity (all the bosons
with a fixed ggp,) are restricted in either the left (right) or the right (left) well. On the other hand, for |V r_y)
the resulting energy reads

Er = (Ur_u|Hi|Ur n) + (Ur_u|Hg|Vr 1) = Ebyp + B, (21)

in which Eyz = (4"|Hy|t)") represents the impurity energy obtained from the SMF Schmidt orbital |¢")
corresponding to a strong impurity—bath repulsion and fixed ggs > gfk. Here, we set gz = 1.0 and

gz = 0.008. We note that as long as ggs > gik, different values of gy, do not impact the shape of the
impurity’s effective potential, thus resulting in the same Schmidt orbital |¢)') (see also the discussion in
section 3.3). Also, EP is the GS energy of the Hamiltonian Hy for a fixed Lpp-

Equations (20) and (21) essentially reveal that both Er_; and Er_y; depend on the bosonic repulsion
strength g, .. Therefore, the competition between the two energies upon the increase of g, directly
determines the form of the GS wave function |¥) in the asymptotic limit of strong g;;. In the case of
Zpp ~ 0, the negligible width of the lowest band of the DW leads to E}, ~ E} and E,, ~ E§ with E} being
the GS energy of Hj. Since EL,; is obviously larger than E}, it thus results in Er_; < Er_y;. Thereby, the
wave function |Ur_;) is energetically more favorable. In contrast, with increasing gy, the rapid growth of
the on-site bosonic repulsion renders the energy E5,, dominant as compared to all other energies. As a
result, the GS of the mixture turns out to be |¥) = |Ur_y;). Based on this knowledge, we can deduce that
the critical bosonic repulsion strength ggL corresponds to the case where Er_; = Er_jj holds (cf figure 9).
Turning to g&h, it corresponds to the situation that the GS of the mixture always acquires the product form
|T) = [op")[4)") for different g5, in which [¢)®) ~ |#E) (cf equations (13) and (16)). Thus, the bosonic
species is hardly excited irrespectively of the variations of the interspecies coupling. Accordingly, it becomes
clear that only a large enough gz, can result in corresponding large energy differences between the GS and
the excited states of Hg. This fact effectively prohibits the excitations among the bosons.

Finally, let us demonstrate how the variations of mass-imbalance impact the values of the
above-discussed bosonic repulsions. For a light impurity, the associated SP wave functions {¢!(x)} are
much more spatially extended as compared to the ones for a heavy impurity (results are not shown). This
facilitates the interband excitations of the impurity quantified by the transition amplitude T' = ", U;
with

U= 3 [ sl ekl 22)

7=0,1 kJ=0,1
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It represents the magnitude of the transition amplitude of the impurity, due to the impurity—bath coupling,
between the energetically lowest and higher bands of the DW after averaging out different configurations of
the bosons. Recall that, from the discussions in sections 3.3 and 3.4, it is known that g§} essentially
corresponds to the regime where the impurity is dominated by interband excitation processes upon
increasing g;5. Hence, it gives rise to a smaller g§} in the case of 5 = 0.5 when compared to 3 = 2.0.
Regarding g5k, it essentially characterizes the transition of the GS wave function from |¥r_p) to U1 ) for
larger g;;. As we have already discussed above, the interspecies interaction energy in this limit always
vanishes. Accordingly, changes of T' lead to a negligible impact on this GS crossover. It is for this reason

that g§; is inert to variations of the mass-imbalance 3.

4. Conclusions and outlook

We have investigated the polaronic properties in the ground state of a binary atomic mixture consisting of a
single impurity and bosonic gas confined in a 1D DW. Due to the trap-induced spatial imhomogeneity,
three distinct polaronic residue regions in terms of the bosonic repulsion have been identified with respect
to the impurity—bath interaction strength. They are characterized by two critical values of the bosonic
repulsion denoted as gi, and ggh. Moreover, the increase of g, always results in a suppressed residue,
signifying the occurrence of the OC of the polaron. Depending on the value of g, being below or above ggl,
or gilt, the residue exhibits a sharp decrease, an initial decrease followed by a pronounced revival or a slow
monotonous decay, respectively. The presence of these interaction regions stems from the interplay between
the intra- and interband excitations of the impurity and are clearly imprinted in the structure of the
corresponding reduced density matrices. The latter essentially reveal a phase separation on either the one-
or the two-body level depending on the bosonic repulsion. Additionally, it is found that the interspecies
mass ratio affects the values of the g§i critical bosonic repulsion while g&, appears to be almost un-affected.
It is argued that this behavior can be understood in terms of the respective interband transition amplitudes.

To provide deeper insights into the polaron decay and the existence of the interaction regions where the
residue exhibits a distinct behavior, we perform a detailed analysis of the structure of the many-body wave
function at specific limits. By utilizing a Schmidt decomposition of the many-body wave function, it allows
us to construct two asymptotic configurations of the GS wave function for strong interspecies repulsion.
Importantly, they also account for the observed OC of the polaron. Finally, by means of a spectral analysis,
we elucidate the physical origin of the observed two critical bosonic repulsions and demonstrate how the
mass-imbalance impacts their values.

Possible future research directions include the investigation of the polaronic properties arising in the
ground state of the binary atomic mixture in the presence of long-range e.g. dipolar interactions. Another
interesting perspective is to study the polaron dynamics following an interaction quench. Here, the impact
of higher-band excitations of the impurity or a beyond the two-site Bose—Hubbard description for the
bosonic species would be worthwhile to pursue.
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Appendix A. Impact of an even parity GS wave function | ¥) to the bosonic
single-particle density

Let us demonstrate that an even parity GS wave function |¥) essentially implies that the bosonic spatial
distribution between the two wells obeys the condition bIbL = bJ}QbR = Np/2. Therefore, it leads to an
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invariant p?(x) profile against variations of the involved interaction strengths. To showcase this behavior, we
first rewrite the bosonic annihilation operator as by g = % (ab + aP), with aP being the annihilation
operator acting on the ith SP state |?) of the DW. As a result, the occupation number of the bosons on the
left (right) well becomes

PTS N; 1 ARt A ARt A
NP = (U[b] el ¥) = =2 = 2 (w|@f)'al + @)ab|w), (A1)
where we have used the fact that (a5)al + (a®)aP = Ng, due to the particle number conservation and the
employed two-mode approximation for the bosons. Further employing a Schmidt decomposition on the GS

wave function |¥), equation (A1) reduces to

Ng | I CBVEAB | (aByie
Nig=—+ 5; A [WPl@g)a + @ 'agf)] (A2)
with the last term in equation (A2) corresponding to a parity-flipping operation acting on the bosonic
species. Since the GS wave function |¥) is of even parity, each product state |1})[¢?) in equation (7) then
has an even parity as well, which renders the bosonic Schmidt orbital [1)?) possessing a definitive parity. As

a result, the last term in equation (A2) vanishes and thus we have N’y = Ng/2.

Appendix B. Expressing the asymptotic wave function |¥7_;) in the Wannier-basis
representation

In this part, we demonstrate that the wave function |¥r_;) of equation (7) is equivalent to

Wrot) = < Al B + 451 o), (B1)

v/2Npg!

where . X
(ay & ay), (@b +ab), (B2)

LR = —= bir = —=

L,R \/E L,R \/E

with a! (aP) being the annihilation operator acting on the ith SP state |¢!) (|¢P)) of the impurity and the
bosonic species, respectively. By substituting equation (B2) into equation (B1), it results in

1) = 35 [I8)08) + [6)103)], where

7By _ SN By _ .- LNB?I Ne\'"
= > Cuedl= > (5 L) 18D

k=0,2,4,... k=0,2,4,...

Ng Ng 1\l /N 1/2
0 > B
W= Y Cadd= > -(=>5 L) 1eh. (B3)

L V2

=135, k=1,3,5,...
Here, |¢P) denotes the kth eigenstate of Hy for gz = 0. The expansion coefficients |(~7]13)k|2 and \C};’k\z in
equation (B3) follow a binomial distribution and match exactly to the |C},|* and |C}, |* of equation (9)
(cf figure 5(a) black solid line, red solid line and blue dashed line). In this way, we show that |U7_;) in
equation (7) is equivalent to the form of equation (B1).

Appendix C. The species mean-field description and the effective potential of the bath
species

The SMF description assumes the wave function of the mixture to have a simple product form, i.e.
|T) = [4")[)®). This leads to the corresponding Lagrangian of the mixture

£= (W) + 3 o [1- @]9 (c1)

o=ILB

where p,, is the associated Lagrange multiplier under the constraint of norm conservation of |¢)”). By
utilizing a variational principle with respect to each orbital |¢)”), we immediately obtain a Schrédinger-type
equation for the o-species H%{1”) = 11, |17}, in which the effective Hamiltonian HZ; reads

1% = H, + (47 |Hip|0)7), (C2)
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Figure 10. The effective potential of the bath species for g;; = 0.008 and g, = 0.2 (red dash-dotted line) and g;; = 1.0 (blue
dashed line). The black solid line represents the DW. The inset depicts the energy difference A between the first and the second
band of the bosonic effective potential upon increasing the impurity—bath coupling.

with & = B(I) for 0 = I(B). In this way, we note that the GS of I:Ig’ff is equivalent to the Schmidt orbital
|107). Moreover, the last term in equation (C2) represents a potential

77 = (4 |Epl”) = gy / e 7 (OB (00 (), (C3)

with p7(x) = (47 |[1L ()15 (x)[1)7) /N5 being the one-body density of the 7-species. From equations (C2)
and (C3), we conclude that within the SMF description the mutual impact of the species is merely an
additional potential experienced by the other species.

As a specific example we note that the effective potential for the bath species is given by

VE(x) = Vpw(x) + gimpl (x). (C4)

It is the DW superimposed to a potential proportional to the impurity’s density. Figure 10 depicts
characteristic profiles of VE(x) for fixed gzz = 0.008 and g, = 0.2 (red dash-dotted line) as well as

g = 1.0 (blue dashed line), together with the original DW (black solid line). Comparing Vf}f(x) to Vpw(x),
we find that the effective potential for the bosons bears a striking resemblance to the DW due to the small
impact of the single impurity density. Accordingly, also the band gap of the effective potential remains
almost intact, see the inset of figure 10, in this range of g;;. Thus, interband excitations of the bath species
are suppressed, allowing us to safely deduce the validity of the adopted two-mode approximation for the

bath within the considered parameter regime.
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