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Counterflow dynamics of two correlated impurities immersed in a bosonic gas
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The counterflow dynamics of two correlated impurities in a double well coupled to a one-dimensional

bosonic medium is explored. We determine the ground-state phase diagram of the system according to the

impurity-medium entanglement and the impurities’ two-body correlations. Specifically, bound impurity struc-

tures reminiscent of bipolarons for strong attractive couplings as well as configurations with two clustered or

separated impurities in the repulsive case are identified. The interval of existence of these phases depends

strongly on the impurity-impurity interactions and external confinement of the medium. Accordingly the

impurities’ dynamical response, triggered by suddenly ramping down the central potential barrier, is affected by

the medium’s trapping geometry. In particular, for a box-confined medium, repulsive impurity-medium couplings

lead, due to attractive induced interactions, to the localization of the impurities around the trap center. In

contrast, for a harmonically trapped medium the impurities perform a periodic collision and expansion dynamics

further interpreted in terms of a two-body effective model. Our findings elucidate the correlation aspects of the

collisional physics of impurities which should be accessible in recent cold-atom experiments.

DOI: 10.1103/PhysRevA.105.053314

I. INTRODUCTION

Ultracold quantum gases provide an exceptional play-
ground for the investigation of fundamental quantum many-
body phenomena since they feature an exquisite experimental
control [1]. For instance, it is possible to control the shape
and dimensionality of the external potential [2–4], design
species-selective potentials [5–8], and, most importantly, tune
the interparticle interactions to an almost arbitrary extent via
Feshbach resonances [1,9,10]. A particular research focus has
been set on strongly particle-imbalanced mixtures, which al-
low to emulate impurity systems interacting with a bath. The
key mechanism is that the bare impurity becomes dressed
by the excitations of the bath and, thus, can be considered
as a quasiparticle, the so-called polaron [11]. In this regard,
several works have been devoted to exemplify the funda-
mental stationary properties of both Fermi [12–18] and Bose
polarons [19–27], such as their effective mass [13,24,26],
energy [20,21], and residue [12,14].

Recently, more attention has been placed on the inter-
play between several impurities immersed in a quantum
gas [28–31]. Among others, the coalescence of two bosonic
impurities coupled to a harmonically trapped bosonic medium
has been predicted [32] as well as the existence of their
induced interactions [33–35]. In the strongly attractive in-
teraction regime, the formation of bipolarons referring to
impurity bound states was also unraveled [36,37]. Beyond
these studies the nonequilibrium dynamics of quasiparticles
following an interaction quench [38–40] has been examined,
unveiling, in particular, energy redistribution processes, tem-

poral orthogonality catastrophe phenomena, and the effective
temperature of the impurities [39], e.g., by emulating pump-
probe and Ramsey spectroscopy.

Another branch in the field of ultracold quantum gases
concerns the collisional aspects of atomic ensembles. Coun-
terflow dynamics can be triggered, e.g., by employing a
magnetic field gradient separating two atomic hyperfine
states [41] or releasing an ultracold quantum gas from a
double-well potential into a harmonic oscillator [42]. For a
single atomic species these protocols result in the oscilla-
tion of the formed dark solitons [42] or in the case of a
two-component mixture in the spontaneous generation of
dark-bright soliton trains [41]. Another technique to ini-
tiate atomic collisions constitutes two counterpropagating
harmonic oscillator potentials [43], which has been exper-
imentally realized with 40K and 87Rb clouds utilizing two
optical tweezers [44,45].

In this sense, it is intriguing to explore the counterflow
correlated dynamics of impurities in combination with a su-
perimposed superfluid background. A similar question was
addressed for fermions [46,47], e.g., showing the formation
of shock waves. Thereby, of immediate interest is the influ-
ence of the background on the collisional response and the
associated emergent induced interactions between the impu-
rities [47]. The impact of the bath on the impurity dynamics
is expected to depend on the confining potential of the bath,
and the impurities’ coupling strength as well as the interaction
between the impurities and the bath particles [48]. To tackle
these open questions, herein we consider a minimal model of
two bosonic impurities trapped in a double well and immersed
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in a bosonic bath. The counterflow dynamics between the
impurities is induced by suddenly ramping down the potential
barrier of their double well and, subsequently, letting the sys-
tem evolve in time for different interaction configurations.

Specifically, it is shown that already the ground-state
configurations depend on the chosen impurity-medium and
impurity-impurity interaction strength and, importantly, on
the type of the underlying trapping potential of the medium.
For instance, in the case of a box-confined medium the im-
purities coalesce for intermediate repulsive impurity-medium
couplings independently of the impurity-impurity repulsion.
On the other hand, for a harmonically trapped bath the impuri-
ties separate from each other for strong impurity-impurity and
impurity-medium repulsions [32]. Moreover, we find indica-
tions of bipolaron formation [36] for strong impurity-medium
attractions.

The dynamical response of the impurities appears to be
strongly affected by the combination of the involved interac-
tion strengths as well as by the external confinement of the
bath. More precisely, in the case of a box-confined medium
and intermediate repulsive impurity-medium couplings the
impurities’ induced interactions lead to their localization at
the trap center after their first collision. However, increas-
ing the impurity-medium interaction strength, the impurities
experience a periodic collisional response characterized by a
damped amplitude: a behavior that is argued to be governed by
finite size effects determined by the size of the box potential.
Employing a harmonically trapped medium, the impurities
localize at the trap center for attractive impurity-medium
coupling strengths, while for intermediate and strong repul-
sions they phase separate with the medium [49,50] and thus
their dressing is suppressed. Considering weakly repulsive
impurity-impurity interactions, a state transfer manifests from
two separated to two coalesced impurities. Importantly, this
process is absent in the decoupled case, elucidating the role
of the coupling with the bath and thus of the interspecies
correlations (entanglement).

A microscopic analysis provides insights into the single-
particle excitation processes and the two-body states partici-
pating in the dynamics and the aforementioned state transfer.
To describe the stationary and dynamical properties of the
composite impurity-medium system we employ the multi-
layer multiconfiguration time-dependent Hartree method for
atomic mixtures (ML-MCTDHX) [51–54]. This ab initio ap-
proach allows us to efficiently track the relevant inter- and
intraspecies correlations which are anticipated to be enhanced,
especially during the dynamics. This is in part due to the few-
body impurity subsystem as well as the spatial inhomogeneity
caused by the external potential.

This work is structured as follows. In Secs. II and III we
present the impurity model under consideration and introduce
the ingredients of the variational method, respectively. We
proceed in Sec. IV with an analysis of the system’s ground
state and draw a phase diagram with respect to variations
of the impurity-impurity and impurity-medium interaction
strengths. This analysis is based on the two-body densities
quantifying the correlations of the bath particles and the im-
purities. Next, in Secs. V and VI the dynamical response of
the system following a sudden reduction of the double-well
barrier is discussed. In particular, Sec. V elaborates on the

case of a box-confined medium in which we explicate, e.g.,
the localization of the impurities at intermediate repulsive
impurity-medium coupling strengths and the emergence of
finite size effects. The case of a harmonically trapped medium
is investigated in Sec. VI, where the focus is set on the
impurities’ excitation processes and their dependence on the
impurity-medium couplings. Our results are summarized in
Sec. VII together with an outlook regarding further research
directions. Appendix A elaborates on the behavior of the
impurities’ relative distance in their ground state and in Ap-
pendix B the impact of the impurities’ mass on their collisions
is exposed. In Appendix C we discuss the persistence of the
impurities’ collisional features when a linear ramp is applied
to the barrier height of the double-well potential.

II. IMPURITY-MEDIUM SETTINGS

The system consists of two different bosonic species B and
I at ultracold temperatures. In particular, we consider NI = 2
impurities of mass mI and a bosonic bath of NB = 20 particles
with mass mB. The corresponding Hamiltonian reads

Ĥ = ĤB + ĤI + ĤBI , (1)

where Ĥσ =
∑Nσ

i=1 ( − h̄2

2mσ

∂2

(∂xσ
i )2 + Vσ (xσ

i ) + gσσ

∑

i< j

δ(xσ
i − xσ

j )) is the interaction Hamiltonian of species
σ ∈ {B, I}. Each component is subject to a different
external potential Vσ (xσ

i ), a scenario that can be achieved
via species-selective optical potentials [55,56]. It is also
restricted to one spatial dimension [57] that can be realized
experimentally, e.g., by freezing out the transverse degrees of
freedom using a strong harmonic confinement [58,59].

Since we are operating in the ultracold regime it is suffi-
cient to take into account only s-wave scattering processes and
thus the interaction between two particles of the same species
is modeled with a contact interaction potential [9] determined
by the one-dimensional effective coupling strength parameter
gσσ . Analogously, the coupling between the impurities and
the bath is described through a contact interaction poten-

tial ĤBI = gBI
∑NB

i=1

∑NI
j=1 δ(xB

i − xI
j ), where gBI denotes the

impurity-medium interaction strength. Due to the fact that
gσσ ′ with σ, σ ′ ∈ {B, I} depends, among others, on the three-
dimensional s-wave scattering length it can be experimentally
adjusted, e.g., via Feshbach resonances utilizing either mag-
netic or optical fields [1,10,60,61]. Below, we consider a
bosonic medium of 87Rb atoms and 133Cs impurities. Thus,
the mass ratio is mI/mB = 133/87 [5,55,62,63].

At t = 0 the system is prepared in its ground state with
a specific combination of interaction strengths (gσσ ′). The
impurities are initially confined in a double well V dw

I (x) =
1
2
mIω

2
I x2 + hI

wI

√
2π

exp( −x2

2w
2
I
) which is the superposition of

a harmonic oscillator potential with frequency ωI and a
Gaussian of width wI and height hI [64,65]. For the ex-
ternal potential of the bosonic medium we consider two
cases: a box potential of size LB = 1 with VB(x) = 0 for
−LB/2 < x < LB/2 and VB(x) = ∞ elsewhere, and a har-
monic oscillator VB(x) = 1

2
mBω2

Bx2. In the former scenario

we consider x̃box = LB/10 and Ẽbox = h̄2

mBx̃2
box

as characteristic

length and energy scales, respectively [66]. Thus, the time
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FIG. 1. Schematic representation of the considered setup and the

quench protocol. Two bosons (red circles) are coupled to a bosonic

medium (blue shaded area) which is either confined in (a) a box

potential or (b) a harmonic oscillator. First, the two impurities are

loaded into the double well and the equilibrium state of the system

is obtained for a specific set of inter- and intraspecies interaction

parameters (gBB, gII , gBI ). Subsequently, a counterflow dynamics be-

tween the two impurities is induced by suddenly ramping down the

barrier of the double-well potential.

and interaction strength are expressed in units of t̃box = mBx̃2
box

h̄

and g̃box = h̄2

mBx̃box
, respectively. However, in the case of a

harmonically trapped medium it is more convenient to ex-
press the energy in units of the medium’s harmonic oscillator,
Ẽho = h̄ω̃ho, where ωB/ω̃ho = 1. It follows that the length,
interaction strength, and timescales are given in terms of

x̃ho =
√

h̄
mBωB

, g̃ho =
√

h̄3ωB

mB
, and t̃ho = ω−1

B , respectively. To

construct the impurities’ double well we employ ωI/ω̃box,ho =
0.6, hI/Ẽbox,hox̃−1

box,ho = 3.0, and wI/x̃box,ho = 0.7.
The ground state of the composite system is acquired for

a set of values of interaction strengths (gBB, gII , gBI ). In
the case of a box-confined medium the impurities always
exhibit a finite spatial overlap with the bath particles for the
considered interaction strengths. However, for a harmonically
trapped bath the impurity-medium overlap vanishes as long
as gBI > gBB (see also the discussion below). Subsequently,
the dynamics is triggered by suddenly reducing (at t = 0) the
barrier of the impurities’ double-well potential (see Fig. 1).
Consequently, in the course of the time evolution the impu-
rities collide and experience a harmonic oscillator potential
V ho

I (x) with frequency ωI . As we argue below, the emerging
collisional correlated dynamics depends strongly on the initial
phase of the system determined by the interaction parameters
(gBB, gII , gBI ).

III. VARIATIONAL APPROACH AND WAVE-FUNCTION

ANSATZ

To determine the time-dependent solution of the problem
described by the Hamiltonian of Eq. (1) we invoke the ML-
MCTDHX method [51–54]. This approach is an ab initio one
and optimizes a chosen basis, e.g., in terms of the Dirac-
Frenkel variational principle [67]. In particular, the basis set
which underlies the many-body wave function |&MB(t )〉 is
characterized by a time-dependent and multilayered structure
with individual truncation parameters [68]. First, the many-
body wave function is expanded into distinct sets of species
functions {|&σ

i (t )〉}Dσ

i=1 with Dσ denoting the number of the
latter for species σ ∈ {B, I}. Since here we consider a two-
component mixture, |&MB(t )〉 is first expressed in two such
basis sets and, thus, can be written in the form a truncated

Schmidt decomposition [69–71]:

|&MB(t )〉 =
D

∑

i=1

√

λi(t ) |&B
i (t )〉 |&I

i (t )〉 , (2)

where D = DB = DI and |&σ
i (t )〉 are the so-called natural

species functions [53]. The time-dependent Schmidt coeffi-
cients λi(t ) determine the population of the ith natural species
function and provide information about the interspecies en-
tanglement [71,72]. For instance, in the case that only a single
Schmidt coefficient λi(t ) is nonzero, the system is described
by a direct product ansatz of species functions indicating the
absence of entanglement. On the other hand, the two species
are considered to be entangled when more than one Schmidt
coefficient is nonzero.

In the next step of the many-body wave function |&MB(t )〉
truncation, each species function is expanded into time-
dependent permanents,

|&σ
i (t )〉 =

∑

'n|Nσ

Cσ
i,'n(t )|'n(t )〉. (3)

Here, each permanent represents one of the (Nσ + dσ − 1
Nσ

)
possible configurations to distribute Nσ particles on dσ single-
particle functions |ϕσ

j (t )〉. A further imposed condition is that
the number of occupied single-particle functions for each
permanent has to be equal to Nσ (indicated by 'n|Nσ ). This
expansion enables us to account for intraspecies correlations.
Finally, the time-dependent single-particle functions |ϕσ

j (t )〉
are expanded into a time-independent discrete variable repre-
sentation [73], which we choose here to consist of 300 grid
points in an interval {−5, 5} in units of x̃box,ho. Additionally,
in this work we employ D = 6 species functions and dA = 4,
dB = 6 single-particle functions for the accurate calculation
of the considered systems.

In particular, the multilayered architecture and the time-
dependent basis of the many-body wave function mainly
contribute to the high degree of flexibility of the method which
enables |&MB(t )〉 to approach the accurate solution for each
time instant with a high fidelity even for systems containing a
mesoscopic particle number. In this way, the ML-MCTDHX
method keeps the number of required wave-function coef-
ficients within a computationally feasible limit and, at the
same time, accounts for the relevant inter- and intraspecies
correlations.

IV. CHARACTERIZATION OF THE GROUND STATE

In the following we provide an overview of the ground-
state characteristics of two impurities trapped in a double
well and coupled to a bosonic bath confined either in a box
potential or a harmonic oscillator. These ground states will
subsequently serve as a starting point for examining the coun-
terflow impurity dynamics immersed in a medium which will
be discussed below in Sec. V. Unless stated otherwise, the
interaction strength between the bath particles is kept fixed to
gBB/g̃box = gBB/g̃ho = 0.5.
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FIG. 2. (a) Phase diagram of the impurities-bath ground state with respect to the impurity-medium (gBI ) and impurity-impurity (gII )

interaction strengths for constant interactions of the medium (gBB/g̃box = 0.5). The impurities are confined in a double well and the medium

is trapped in a box potential. The respective ground-state configurations are characterized in terms of the two-body densities of the bath,

ρ (2)
BB (xB

1 , xB
2 ), and the impurities, ρ (2)

II (xI
1, xI

2). All crossovers among the involved phases are smooth. For each inset the range of the color map is

optimally chosen and maximally extends from 0 to 2 [0.2] for ρ (2)
II (xI

1, xI
2) [ρ (2)

BB (xB
1 , xB

2 )]. In (b1)–(d2) the ground-state two-body densities of the

bath and the impurities are presented in terms of a weakly interacting bath (gBB/g̃box = 0.1) and strongly interacting impurities (gII/g̃box = 2.0).

The interspecies interaction strengths from the top to the bottom row are gBI/g̃box = 5.0, 0.2, and −2.0, respectively.

A. Main observables of interest

Let us first introduce the quantities that will be employed
for the identification of the ground-state phases and the
quench dynamics of the two interacting impurities in the
cases of a box-confined and a harmonically trapped medium.
The distinction between the emergent ground-state config-
urations is performed with respect to the two-body density
distributions of the impurities and the bath particles at t = 0.
The reduced two-body density of two particles of the same
species is given by

ρ (2)
σσ

(

xσ
1 , xσ

2 , t
)

=
〈

&MB(t )
∣

∣ &̂†
σ

(

xσ
1

)

&̂†
σ

(

xσ
2

)

× &̂σ

(

xσ
1

)

&̂σ

(

xσ
2

)
∣

∣&MB(t )
〉

, (4)

where &̂ (†)
σ (xσ

1 ) denotes the bosonic field operator which anni-
hilates (creates) a particle of species σ ∈ {B, I} at position xσ

1 .
In fact, ρ (2)

σσ (xσ
1 , xσ

2 ) is the probability of finding one particle
at xσ

1 and, simultaneously, another particle of the same species
at xσ

2 . In the following, we will drop the time parameter since
for the ground state t = 0.

In both considered external confinements of the medium,
an increase of the repulsive impurity-medium coupling
strength leads to the development of interspecies correlations
(entanglement) which eventually impact the ground-state
configurations [74]. A common measure for quantifying
entanglement in a bipartite system is the von Neumann en-
tropy [71,75], defined as

SvN = −
D

∑

i=1

λi ln λi. (5)

Recall that D denotes the number of the employed species
functions and λi are the Schmidt coefficients [cf. Eq. (2)].
For a maximally entangled mixture the von Neumann entropy
obtains its maximum value, SvN

max = ln D and λi = 1/D. This

value corresponds to SvN
max = 1.79 in our case. In contrast, a

vanishing von Neumann entropy indicates a decoupled (i.e.,
nonentangled) mixture such that the total many-body wave
function can be written as a direct product state of the two
individual species wave functions.

Moreover, in order to judge the degree of miscibility
among the impurity and medium clouds we calculate the
interspecies spatial overlap [76,77] which is quantified
through

*BI =
[ ∫

dxρ (1)
B (x)ρ (1)

I (x)
]2

∫

dx
[

ρ (1)
B (x)

]2 ∫

dx
[

ρ (1)
I (x)

]2
. (6)

Here, ρ (1)
σ (x) = 〈&MB| &̂†

σ (x)&̂σ (x) |&MB〉 is the one-body
density of σ ∈ {B, I} species [78].

B. Decoupled case gBI = 0

Before addressing the ground-state properties of the cou-
pled mixture, we focus on the simpler scenario where the bath
and the impurities are decoupled from each other (gBI = 0)
and thus they can be treated individually. Accordingly, the
impurity-bath entanglement is vanishing, i.e., SvN = 0. Then,
the system reduces to two interacting bosons in a double
well [79–81] with the bath being homogeneous or harmoni-
cally trapped [cf. Figs. 2(a) and 3(a) for gBI = 0]. Here, we
distinguish between weakly and strongly coupled impurities.
In the former case, the two impurities are delocalized over
the two sites of the double well; see the dominant population
of the off-diagonal compared to the diagonal elements of
ρ (2)

II (xI
1, xI

2) [cf. insets of Figs. 2(a) and 3(a) corresponding to
regime (II)].

On the other hand, for larger impurity-impurity repulsion
gII the density maxima along the diagonal vanish and only
density peaks at the off-diagonal remain [cf. inset of Fig. 2(a)
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FIG. 3. (a) Ground-state phase diagram of the impurities inside

a harmonically trapped medium. The crossover from region (I) to

region (III) is abrupt, marked by the dashed line, while all others are

smooth. (b) Spatial overlap *BI and (c) von Neumann entropy SvN

between the bath and the impurities for varying impurity-medium

interaction strength and different fixed impurity-impurity couplings

(in units of g̃box,ho) as well as for distinct external potentials of the

bath (see legend). The interaction strength among the bath particles

is fixed to gBB/g̃box = gBB/g̃ho = 0.5.

belonging to regime (III)]. This configuration of ρ (2)
II (xI

1, xI
2)

is described by the conditional probability of finding one
impurity at the left and one impurity at the right site of the
double well or vice versa. In this sense, the impurities tend
to separate from each other and are anticorrelated within the
same site of the double well. Thus, they reside in a Mott-type
state. Notice that for a decoupled mixture the above-described
impurity configurations corresponding to regimes (II) and (III)
occur independently of the particular trapping geometry of the
bath [cf. gBI = 0 in Figs. 2(a) and 3(a)]. Thereby, the medium
extends almost homogeneously over the box potential as also
reflected by the shape of its two-body density [see inset of
Fig. 2(a)], while in the harmonically trapped scenario it ex-
hibits a Gaussian profile [cf. inset of Fig. 3(a)].

C. Finite interspecies interactions with the medium confined

in a box potential

Having analyzed the spatial configurations of the interact-
ing impurities for a suppressed impurity-bath coupling we
then discuss the ground-state properties of the composite
system when the bath is confined in a box potential and
the interspecies interaction strength gBI becomes finite. The
respective ground-state phase diagram is mapped out and
presented in Fig. 2(a) based on the underlying two-body con-
figurations identified in ρ (2)

BB (xB
1 , xB

2 ) and ρ (2)
II (xI

1, xI
2). Overall,

we find that upon varying gBI and gII , the system deforms
smoothly across the different phases, which are analyzed in
detail in the following (see also Ref. [82]).

In the case of strong repulsive gBI , the mixture enters
regime (I) [see Fig. 2(a)] [83]. Here, the impurities’ two-body
density exhibits two peaks along its diagonal meaning that
the two impurities occupy simultaneously a single site of the
double well. Such a behavior is referred to as the coalescence
of the impurities and has been observed also for the case

where the impurities and bath particles are both harmonically
confined [32]. Intuitively, we explain this behavior as follows.
One impurity lying at a specific site of the double well repels
the bath particles and, thereby, creates an effective hole which
attracts the other impurity [84,85]. On the other hand, the
impurities impact accordingly the bath. This back-action man-
ifests, for instance, in the off-diagonal parts of the medium’s
two-body density which exhibits strongly suppressed spatial
regions at the location of the impurities [see inset in regime (I)
of Fig. 2(a)]. Indeed, the probability to find two bath particles
at positions corresponding to opposite double-well sites is
vanishing. This is due to the fact that the impurities lie both
either at the left or at the right double-well site as it becomes
apparent from their reduced two-body density. However, a
configuration where two bath particles reside simultaneously
at the same double-well site is still conceivable, assuming that
the impurities are at the opposite site, thereby avoiding the
bath particles [note the nonvanishing density at the diagonal
of ρ (2)

BB (xB
1 , xB

2 ) in the inset of Fig. 2(a)].
Increasing the impurity-medium interaction strength

within regime (I) for a fixed gII/g̃box ∈ [0, 2] we observe two

prominent features appearing in terms of ρ (2)
BB (xB

1 , xB
2 ). First,

the two-body density holes at the off diagonal of ρ (2)
BB (xB

1 , xB
2 )

become more pronounced for increasing gBI and, second, for
a gBI/g̃box ! 2.5 two bath particles are correlated at the most
right and most left or at opposite sites of the bath cloud [see
the outermost density peaks at the diagonal and off-diagonal

elements of ρ (2)
BB (xB

1 , xB
2 ) in the inset of Fig. 2(a)]. From this

latter behavior we can conclude that the bath particles exhibit
two-body long-distance correlations. Moreover, we note that
in the case of strong impurity-impurity repulsions, e.g., for
gII/g̃box = 2.0, the two-body state of the impurities begins

to fermionize and the diagonal peaks of ρ (2)
II (xI

1, xI
2) broaden

and, eventually, fragment [86] [see corresponding inset of
Fig. 2(a)].

Similarly to the coalescence of the impurities in the repul-
sive case [regime (I)], also in the attractive scenario the two
impurities simultaneously occupy either the left or right site of
the double well, as it can be deduced from their diagonal and

highly localized two-body density configuration ρ (2)
II (xI

1, xI
2)

[see the inset of Fig. 2(a)]. In both the repulsive and the
attractive cases, the bath mediates an induced attractive in-
teraction between the impurities such that the latter coalesce
and tend to occupy the same double-well site. For a more
detailed discussion regarding the presence of the attractive
induced interactions between the impurities via their relative
distance, see Appendix A. Furthermore, due to the attractive
interactions the bath particles localize in the vicinity of the
impurities such that also the two-body density of the medium
exhibits two dominant peaks along the diagonal [Fig. 2(a)].
Also, we remark that regime (II) in Fig. 2(a) includes ground
states corresponding to delocalized impurities, i.e., where the

diagonal and off-diagonal elements of ρ (2)
II (xI

1, xI
2) are simul-

taneously populated. However, with varying gII and gBI the
particular density peaks are deformed compared to the de-
picted insets of regime (II) in Fig. 2(a). For instance, in the
case of gII/g̃box = 2.0 and gBI/g̃box = 1.0 corresponding to
regime (II) in Fig. 2(a), the two-body density of the impurities
exhibits peaks at its off-diagonal elements [similar to regime
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(III)] and fragmented density humps at its diagonal [as ob-
served in regime (I)].

Moreover, increasing (decreasing) the interspecies interac-
tion to large repulsive (attractive) values leads to a noticeable
growth of the von Neumann entropy. Namely, the impurities
become highly entangled with the bath [cf. Fig. 3(b)]. At the
same time the impurities and the bath share a finite spatial
overlap with each other for all the considered values of gBI and
gII [Fig. 3(c)]. Therefore, since these two features constitute a
basic requirement for the formation of quasiparticles, e.g., as
discussed in Refs. [24,39,50,87], in principle, the impurities
can be dressed by the excitations of the bath and, thus, form
Bose polarons.

Additionally, we investigated the ground state of the
system for a weakly interacting bath, e.g., for gBB/g̃box = 0.1.
As we will argue, the enhanced compressibility of the
bath can alter the ground-state configurations and this is
evident, among other observables, in terms of the two-body
density. In Figs. 2(b1)–2(d2) we exemplarily present the
two-body densities of the impurities and the bath particles
for gBB/g̃box = 0.1 and gII/g̃box = 2.0. Here, the impurities’
two-body densities exhibit a qualitatively similar structure
with the ones corresponding to a moderately interacting
bath [Fig. 2(a)]. For instance, a localization at the sites
of the double well is observed for strongly attractive gBI

[Fig. 2(d1)] as well as an anticorrelated behavior for weak
impurity-medium couplings [Fig. 2(c1)] and the coalescence
of the impurities for strong gBI [Fig. 2(b1)]. Similarly, the
two-body density of the weakly interacting medium resembles
the one of a moderately interacting bath in the cases of weak
attractive and repulsive as well as strong attractive gBI

[Figs. 2(c2) and 2(d2)]. However, for strong repulsive gBI the
medium’s two-body density is modified for weak gBB; i.e., the
off-diagonal parts of ρ (2)

BB (xB
1 , xB

2 ) are depopulated and only
the diagonal ones are occupied [Fig. 2(b2)]. We attribute this
behavior to the increased compressibility of the bath which
suppresses correlations between two bath particles residing at
longer distances, e.g., the opposite edges of the cloud as ob-
served in Fig. 2(a). Additionally, this behavior is accompanied
by strong anticorrelations between the impurities and the bath
particles; i.e., the respective two-body density ρ (2)

BI (xB
1 , xI

2)
exhibits only peaks at its off diagonal (not shown).

Furthermore, we have found that in the corresponding
ground-state phase diagram of a weakly interacting medium
(gBB/g̃box = 0.1) with NB = 20, regimes (II) and (III) shrink
as compared to the gBB/g̃box = 0.5 case shown in Fig. 2(a).
Specifically, their phase boundaries are shifted towards the
line corresponding to gBI = 0. A similar, but less pronounced,
shift of the phase boundaries is observed when increasing the
number of bath particles to NB = 30 but keeping gBB fixed.
Summarizing, both decreasing gBB or increasing NB while
considering fixed all other parameters leads to an enhance-
ment of the magnitude of the attractive induced interactions
between the impurities when gBI is switched on towards finite
attractive or repulsive values.

D. Harmonically trapped medium

We then proceed to analyze in more detail the system con-
sisting of a harmonically trapped medium. This change of the

external confinement reduces the mobility of the bath particles
which are then naturally bounded by the harmonic oscillator
around the trap center. The respective phases presented in
Fig. 3(a) feature smooth crossovers among them besides the
one between regimes (I) and (III), which is abrupt. To testify
to the “smoothness” of the underlying crossover regions, we
track, as in the box-confined scenario, the behavior of the
impurities’ two-body densities (cf. Ref. [82]).

An increasing impurity-medium repulsion such that gBI >
gBB leads to a phase separation between the impurities and
the bath particles as it is captured by the diminishing spa-
tial overlap depicted in Fig. 3(b). In this case the impurities
are no longer dressed by the excitations of the bath and,
thus, the quasiparticle notion is essentially lost [39,49,50].
Thereby, we distinguish between two cases according to the
impurity-impurity interaction strength. In the case of weak gII

and strong gBI corresponding to regime (I) in Fig. 3(a) the
impurities coalesce in a similar manner as described above
(see also Ref. [32]). However, as the impurity-impurity inter-
action strength becomes large enough or the impurity-medium
repulsion sufficiently small, regime (III) is accessed in which
the impurities spatially separate. This is identified by the
exclusive population of the off diagonals of ρ (2)

II (xI
1, xI

2) [cf.
corresponding inset of Fig. 3(a)]. Turning to strongly attrac-
tive impurity-medium interaction strengths assigned as regime
(IV) in Fig. 3(a), a localization of the impurities in the barrier
of the double well is observed [see in particular the elongation
of ρ (2)

II (xI
1, xI

2) along its diagonal]. This property is related to
the formation of a bipolaron, referring to a dimer bound state
consisting of two polarons [35,36,39]. We base our argument
of bipolaron formation on the following observations which
have also been used in Ref. [36] to expose the existence of
such states in three dimensions. The continuous decrease of
the so-called bipolaron energy EBP = E2 − E1 + E0 has been
verified for increasing impurity-medium attraction, where Ei

denotes the total energy of the bosonic gas containing i =
0, 1, 2 impurities. In the same manner, also the size of the

dimer state quantified in our case by 1/
√

〈r̂2
II〉 increases for

larger gBI (not shown here).
Concluding, let us mention in passing that similarly to the

case of a box-confined medium, the main requirements for the
formation of Bose polarons are also fulfilled in the presence
of a harmonic trap. The only exception consists of the region
of phase separation among the impurities and the medium
at gBI > gBB. Thus, the impurities’ response, to be presented
below, can be interpreted as the counterflow-correlated dy-
namics of two quasiparticles, here Bose polarons.

V. COLLISIONAL MANY-BODY DYNAMICS FOR A

BOX-CONFINED MEDIUM

Next, we investigate the time evolution of the composite
system upon suddenly ramping down the central barrier of the
impurities’ double-well potential such that they are henceforth
externally confined in a harmonic oscillator and, thus, their
counterflow dynamics is triggered. In a decoupled mixture
(gBI = 0) this quench results in an undamped periodic im-
purities motion where they collide and subsequently expand
repeatedly. Turning to finite impurity-medium couplings the

053314-6



COUNTERFLOW DYNAMICS OF TWO CORRELATED … PHYSICAL REVIEW A 105, 053314 (2022)

FIG. 4. Time evolution of the one-body density of [(a1)–(c1)] the

harmonically trapped impurities and [(a2)–(c2)] the bath particles

confined in a box potential. Each column represents the dynamics for

a fixed impurity-medium interaction strength which is from left to

right: gBI/g̃box = −0.2, 1.5, 5.0. In all cases, the impurity-impurity

coupling is gII/g̃box = 0.2. [(a3)–(c3)] Snapshots of the impurities’

two-body density at different time instants (see legends). The insets

depict the two-body densities at the same time instants and scales, but

for two strongly interacting impurities, i.e., gII/g̃box = 2.0. At those

time instants, the one-body densities for two weakly and strongly

interacting impurities reveal similar features, thus allowing the com-

parison on the two-body density level.

response is substantially altered and depends strongly on the
trapping potential of the medium, as we will argue below.

A. Response through the time evolution of the density

We monitor the counterflow dynamics of two impuri-
ties coupled via gBI to a bosonic medium trapped in a box
potential. After ramping down the potential barrier of the
double well, the impurities are left to evolve in the resulting
harmonic trap. As a first step, we categorize the emer-
gent dynamical response regimes by inspecting the one-body
densities ρ (1)

I (x, t ) and ρ (1)
B (x, t ) depicted in Figs. 4(a1)–

4(c1) and 4(a2)–4(c2), respectively. The impurity-impurity
coupling is kept fixed at gII/g̃box = 0.2 and only the impurity-
medium interaction is varied. We are able to identify four
distinct dynamical response regimes taking place at strongly
attractive (gBI/g̃box < −0.8), weakly attractive and repul-
sive (−0.8 " gBI/g̃box < 0.8), intermediate repulsive (0.8 "
gBI/g̃box " 2.0), and strongly repulsive (2 < gBI/g̃box) values
of gBI . These dynamical regimes are, of course, inherently
related to the corresponding phases unraveled in the ground
state of the system [see Fig. 2(a)]. Note that the behaviors
of the one-body densities in the respective regions do not
qualitatively alter for varying gII from small to large repulsive
values at least in the range of 0 ! gII/g̃box ! 2.0 considered
herein. Only inspecting higher-body observables, such as the

reduced two-body density, reveals significant alterations of the
impurities’ response regarding variations of gII .

B. Dynamics for weakly attractive and repulsive

impurity-medium couplings

In the case of either weakly attractive or repulsive gBI

the impurities’ one-body densities feature a periodic motion
consisting of a collision and an expansion of their cloud [cf.
Fig. 4(a1) for gBI/g̃box = −0.2]. As a consequence, the bath
is only weakly perturbed from its initial homogeneous profile
showing small amplitude distortions at the instantaneous loca-
tion of the impurities [see Fig. 4(a2)]. This response emerges
when considering initial configurations corresponding to the
interaction regimes (II) and (III) discussed in Fig. 2(a). Inter-
estingly, the time evolution of the one-body density does not
depend strongly on variations of the impurity-impurity inter-
action strength [88]. Therefore, one has to rely on two-body
observables, such as the two-body density ρ (2)

II (xI
1, xI

2), e.g.,
presented in Fig. 4(a3) for gBI/g̃box = −0.2 and gII/g̃box =
0.2 at t/t̃box = 10.5 and in the respective inset for two
strongly interacting impurities with gII/g̃box = 2.0. In the for-
mer case, the two weakly interacting impurities are initially
and throughout the evolution delocalized over both sites of
the double well since both the diagonal and the off-diagonal
elements of ρ (2)

II (xI
1, xI

2) are nonvanishing.
However, for strongly interacting impurities we find that

in the course of the evolution a pronounced correlation hole
occurs [39]; i.e., solely the off diagonal of ρ (2)

II (xI
1, xI

2) is
populated [cf. inset of Fig. 4(a3)]. In other words, due to the
strong repulsion the impurities reside at spatially opposite po-
sitions and avoid each other during the dynamical evolution.
The respective dynamics of the impurities is characterized by
the periodic expansion and contraction of their cloud around
the trap center while avoiding residing at the same location
[see the correlation hole of ρ (2)

II (xI
1, xI

2)]. However, indepen-
dently of gII the impurities remain within the medium, thus
forming a polaron due to the finite gBI .

C. Time evolution for intermediate interspecies repulsions

Increasing the impurity-medium repulsion to intermedi-
ate values (gBI/g̃ " 2.0) and, thereby, entering regime (I) in
Fig. 2(a), a comparatively altered response is realized. Indeed,
once the two impurities collide at the trap center, they remain
localized [89] [see Fig. 4(b1) for gBI/g̃box = 1.5]. Conse-
quently, because of the repulsive character of the employed
gBI , the bath is pushed towards the edges of the box with
each density branch undergoing weak amplitude oscillations
due to its reflection from the walls of the confining box
[Fig. 4(b2)]. Simultaneously, the bosonic medium becomes
highly depleted, meaning that higher-lying natural orbitals
[being the eigenvalues of the reduced one-body density matrix
ρ (1)

B (x, x′, t )] are macroscopically populated. Accordingly, the
bosonic gas is correlated and deviates from a perfect Bose-
Einstein condensate. This behavior is in contrast to the case of
gBI/g̃box < 0.8 where the first orbital is dominantly occupied.

However, the corresponding two-body density ρ (2)
II (xI

1, xI
2)

when the impurities collide at the trap center at t/t̃box = 4.5
is shown in Fig. 4(b3). The elongated shape of ρ (2)

II (xI
1, xI

2)
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along the diagonal indicates the presence of an attractive in-
teraction between the impurities induced by the coupling with
the bath [32,39,50]. Apparently the strength of this induced
attraction is larger than for gBI/g̃box = 0.2. Moreover, by com-
paring this case to the one of strongly interacting impurities
(gII/g̃box = 2.0), we find once again significant differences
only in the behavior of their two-body density. At t = 0, the
shape of ρ (2)

II (xI
1, xI

2) corresponds to two coalesced impurities
whose density peaks lay on its diagonal and are fragmented
[cf. inset of Fig. 2(a)]. In the course of the dynamics the im-
purities collide at the center where they remain in the course
of the evolution [see inset of Fig. 4(b3)]. Thereby, the strong
repulsion between the impurities hinders a population at the
exact diagonal of the two-body density. Notice their small
spatial overlap with the bath hinting towards their suppressed
dressing [90].

D. Dynamical response for strong impurity-medium repulsions

For even stronger impurity-medium repulsions (gBI/g̃ >
2.0), once the impurities collide around x = 0 they drift
apart from each other and collide again [see Fig. 4(c1) for
gBI/g̃box = 5.0]. This behavior is repeated in the course of
time with a damped collision amplitude. Thereby, the pop-
ulation on the diagonal of ρ (2)

II (xI
1, xI

2) becomes narrower as
compared to the case of intermediate repulsive gBI , indicating
the presence of an even stronger strength of induced interac-
tions [cf. Fig. 4(c3)]. Again two strongly repulsive impurities
fragment along the diagonal of ρ (2)

II (xI
1, xI

2) [see the inset of
Fig. 4(c3)] with the two respective density fragments exhibit-
ing each four faint maxima which persist until an evolution
time of t/t̃box = 8. During the evolution the one-body density
of the bath allocates at the edges of the box when the impuri-
ties collide and reoccupies the trap center when the latter drift
apart (see also below for a more detailed discussion).

We attribute the impurities’ density splitting for large gBI ,
even though the induced attractive interaction is higher in this
case than for intermediate repulsive couplings, to the finite
size of the considered box potential. In order to elucidate
the underlying mechanism, we show in Fig. 5(a) the time-
dependent spatial variance of the medium, 〈X̂ 2

B 〉(t ), which
serves as a measure for the instantaneous spatial extension
of the medium’s cloud [19,91]. At t = 0 and for sufficiently
strongly repulsive gBI the impurities reside both either at the
right or at the left site of the double well while the bath
particles avoid these pairs [cf. regime (I) in Fig. 2(a)], leading
for larger gBI to an increased 〈X̂ 2

B 〉(t = 0) [see Fig. 5(a)].
Subsequently, after ramping down the barrier of the dou-

ble well, the impurities collide around x = 0, enforcing the
medium to depopulate the trap center, a process that results in
the increase of 〈X̂ 2

B 〉(t ). To facilitate further our discussion, we
provide specific profiles of the impurities’ one-body density
and their effective potential [24,39,92]. The effective poten-
tial is constructed from the superposition of the impurities’
(postquench) harmonic oscillator and the one-body density of
the bath weighted by the impurity-medium coupling strength.
It reads

V eff (xI , t ) = V dw
I (xI ) + NBgBIρ

(1)
B (xI , t ). (7)

FIG. 5. (a) Dynamics of the width of the medium cloud [captured

by the spatial variance 〈X̂ 2
B 〉(t )] and internal interaction energy of the

bath particles 〈ĤBB〉 for different impurity-medium couplings (see

legend) and fixed impurity-impurity interaction strength gII/g̃box =
0.2. [(b)–(d)] Profiles of the impurities’ one-body density ρ (1)

I (xI , t )

are shown together with their effective potential (gray lines) for

specific time instants (see legends). In (b) gII/g̃box = 1.5 while in

(c) and (d) gII/g̃box = 5.0. The time and interaction are expressed in

units of t̃box and g̃box, respectively.

A maximum of 〈X̂ 2
B 〉(t ) is reached, i.e., the spatial extent

of the medium is largest, when the impurities allocate at the
trap center [see Figs. 5(b) and 5(c)]. Thereby, the impuri-
ties transfer energy to the medium, leading to an increased
interaction energy between the particles of the latter; i.e.,
〈ĤBB〉 = 〈gBB

∑

i< j δ(xB
i − xB

j )〉 is maximized [cf. Fig. 5(a)].

After reaching a maximum of 〈ĤBB〉 the bath reoccupies the
trap center as indicated by the reduction of 〈X̂ 2

B 〉(t ) and the
impurities’ density splits again, a behavior that is repeated in
the course of time. As argued below, this dynamical response
can be attributed to finite size effects stemming from the size
of the medium’s box potential.

E. Impact of the barrier height, atom number, and box size on

the impurity dynamics

In order to check the robustness of the observed dynamical
response regimes of the impurities against the system parame-
ters we have additionally varied the height of the double well,
hI , the size of the box potential, LB, and the number of bath
particles, NB. For small gBI and fixed gII/g̃box = 0.2, increas-
ing the height of the double well from hI/Ẽboxx̃−1

box = 2 to 7
leads to a crossover of the impurities, i.e., from a superfluid
to a Mott-insulating phase. The former phase corresponds to a
two-body density ρ (2)

II (xI
1, xI

2) where in all quarters prominent
density peaks are present. In the latter case only the off diago-
nal of ρ (2)

II (xI
1, xI

2) is populated [compare with the ground-state
configurations in regime (III) of Fig. 2(a)]. Further increasing
the impurity-medium coupling to intermediate repulsive val-
ues the impurities coalesce again independently of the barrier
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height of the double well. Thereby, the impurities’ ground
state corresponds to the one of regime (I) depicted in Fig. 2(a).
Regarding the dynamical response of the above-described sys-
tem, we did not find a qualitatively different behavior when hI

is varied but rather a shifting of the identified regimes towards
a larger value of gBI .

In Sec. IV C it was mentioned that the ground-state phase
diagram is altered with respect to variations of gBB and NB.
As such, also the dynamical response of the system is af-
fected upon tuning these parameters by means that the specific
dynamical features are realized for smaller values of gBI . This
is attributed to the fact that the impurities feature an enhanced
magnitude of attractive induced interactions for either a de-
creased gBB (e.g., gBB/g̃box = 0.1 and especially in the interval
|gBI | < gBB) or an increased NB (for instance at NB = 30).
Consequently, they localize around the trap center after their
first collision for a smaller gBI than for gBB/g̃box = 0.5 or
a larger NB such as NB = 30. This effect is arguably more
prominent in the former scenario and during the dynamics
manifests by the enhanced impurities localization at the trap
center.

An opposite behavior is observed for varying only the size
of the medium’s box potential LB. In this case, an increasing
LB broadens the medium such that the impurities are less
affected by the presence of bath particles which, eventually,
for intermediate repulsive gBI increases the relative distance
between the impurities for a larger LB (not shown here).
However, when the box size is of the order of the distance of
the double-well minima, the bath particles localize at the trap
center (between the two double-well sites) for intermediate re-
pulsive impurity-medium interaction strengths. Additionally,
for strongly repulsive gBI an increasing box size leads to the
localization of the impurities around x = 0 and a dynamical
response similar to the one observed in Fig. 4(c1) is absent.
This holds also when we simultaneously increase the number
of bath particles and the size of the box potential while keep-
ing the ratio NB/LB fixed [93].

VI. IMPURITY DYNAMICS FOR THE HARMONICALLY

TRAPPED BATH

Next, we examine the counterflow dynamics (induced by
the same quench protocol) of the two impurities coupled to
a harmonically confined bath. Since in this case the medium
tends to localize at the trap center a phase separation be-
tween the two species is facilitated for intermediate to strongly
repulsive impurity-medium interaction strengths which even-
tually prohibits a subsequent dynamical mixing of the species.
Indeed, we find that for values larger than gBI/g̃ho = 0.6 >
gBB/g̃ho, corresponding to a vanishing spatial overlap at t = 0
[cf. Fig. 3(b)], the initial phase separation between the im-
purities and the medium persists also in the course of the
propagation. However, for gBI/g̃ < 0.6 an intriguing response
is observed.

A. Collision features in terms of the one-body density

Figure 6 illustrates the time evolution of ρ (1)
B (x, t )

and ρ (1)
I (x, t ) for weak impurity-impurity couplings, i.e.,

gII/g̃ho = 0.2, and for varying impurity-medium interaction

FIG. 6. Spatiotemporal evolution of the one-body densities for

two weakly interacting impurities (gII/g̃ho = 0.2) and a weakly in-

teracting bath (gBB/g̃ho = 0.5) trapped in a harmonic oscillator. The

dynamics is induced by ramping down the barrier of the double well

in which the impurities initially reside. In each column a different

impurity-medium interaction strength is considered, which is from

left to right gBI/g̃ho = −0.2, 0.2, 0.6.

strength. As it can be exemplarily inferred from Figs. 6(a1)
and 6(b1) for weakly attractive or repulsive gBI the impuri-
ties perform a periodic motion within the harmonic trap and
induce only small deformations to the bath density associated
with sound-wave emission of the latter [Figs. 6(a2) and 6(b2)].
In the former case, a persisting breathing dynamics of the ini-
tially localized impurities takes place being somewhat similar
to the one which has been previously discussed for a medium
confined in a box potential [Fig. 4(a1)]. In the latter scenario
corresponding to Fig. 6(b2), the originally spatially separated
impurities collide around x = 0 and then split in a periodic
fashion (see also the discussion below).

Moreover, we show the respective density evolution in the
phase-separation regime, i.e., for gBI/g̃ho = 0.6 > gBB/g̃ho

[Figs. 6(c1) and 6(c2)]. It can be readily deduced that here
the impurities are already initially phase separated with the
bath and remain in this state also in the course of the evo-
lution while performing small amplitude oscillations due to
their collisions with the bath edges [94]. In particular, for
gBI/g̃ho > 0.6 the impurities remain in the coalescence regime
if the initial chosen values for gBI and gII coincide with regime
(I) [Fig. 3(a)] and are spatially separated if the values for gBI

and gII correspond to regime (III) [Fig. 3(a)]. Furthermore,
for very strong attractive gBI the impurities and the medium
localize together at the trap center where they remain through-
out the time evolution (not shown) (see also Ref. [95] for a
similar dynamics). We finally remark that, as in the case of a
box-confined medium, increasing the number of bath atoms,
e.g., to NB = 30, does not lead to significant alterations of the
observed dynamical response.

B. Two-body density evolution for weak impurity-medium

repulsions

Let us now focus on the dynamical properties of two im-
purities which are weakly repulsively coupled to the medium,
e.g., via gBI/g̃ho = 0.2 and interacting among each other with
gII/g̃ho = 0.2 [Fig. 6(b1)]. Specifically, we are interested in
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FIG. 7. Dynamical evolution of the impurities’ two-body den-

sity ρ (2)
II (xI

1, xI
2) for gBI/g̃ho = 0.2 and gII/g̃ho = 0.2 at specific time

instants (see legends) in units of t̃ho. Following the quench the im-

purities perform a periodic motion consisting of their collision at the

trap center and a subsequent expansion. Panel (b) corresponds to a

collision event of the impurities, while the other panels refer to time

instants at which the impurities expand [cf. Fig. 6(b1)].

the dynamical evolution of the impurities’ reduced two-body
density ρ (2)

II (xI
1, xI

2) depicted in Fig. 7. At t = 0, corresponding
to the ground state in which the two impurities are confined
in a double well, their two-body density exhibits two domi-
nant density peaks across its off-diagonal and two suppressed
peaks at its diagonal elements [see Fig. 7(a)]. Considering
the two diagonal peaks as sufficiently small, this two-body
configuration can be interpreted as the probability for the
impurities to occupy opposite double-well sites. Following the
quench, the impurities collide at the trap center and their cloud
starts to contract and expand with a frequency corresponding
to the periodic motion of the one-body density [Fig. 6(b1)]. In
the course of this periodic motion the two-body configuration
alters from a two-body superposition state where both diago-
nals and off-diagonal elements are populated [Fig. 7(c)] upon
expansion of the cloud to a diagonal structure when featuring
contraction [see Fig. 7(d)] and vice versa [Fig. 7(f)]. Notice
that this dynamical response is inherently related to a process
which is hidden on the one-body level [cf. Fig. 6(b1)].

C. Single-particle dynamical excitation processes

To obtain insights into the underlying microscopic pro-
cesses in the course of the impurity dynamics we project
the many-body wave function onto basis functions consisting
of the generalized Wannier functions φI

i (xI ) of the initially
considered (prequenched) double-well potential [96,97]. In
this way we can retrieve the probabilities for the impurities
to occupy certain localized states of this basis and distinguish
between the left and right double-well sites. The Wannier
functions are constructed as a superposition from the six ener-
getically lowest eigenfunctions of the one-body Hamiltonian

Ĥ (1),dw = − h̄2

2mI

∂2

(∂xI )2 + V dw
I (xI ) and are provided in Fig. 8(a)

together with their associated eigenenergies εi. In particular,
the Wannier state corresponding to i = 1 (i = 2) is the en-
ergetically lowest one at the left (right) site. Analogously,
i = 3, 5 (i = 4, 6) signify the first and second excited Wannier
states at the left (right) site. Note that, even though for the

FIG. 8. (a) Wannier states corresponding to the first six energet-

ically lowest eigenfunctions of the one-body Hamiltonian consisting

of the double-well potential. [(b)–(d)] Temporal evolution of the

two-body probabilities P(2)
i, j (t ) for the impurities to simultaneously

occupy the ith and jth Wannier states for different sets of interaction

strengths (gBI , gII ), which are (b) (0.2, 0.2), (c) (0.0, 0.2), and (d) (0.2,

2.0), expressed in units of g̃ho. Probabilities involving either the

fifth or the sixth Wannier states are suppressed, having at most an

amplitude of 0.05, and are shown in gray. The dynamics is induced

by ramping down the barrier of the impurities’ double-well potential.

analysis a basis of a double-well potential is utilized, the
impurities’ dynamics still takes place within a harmonic oscil-
lator. The respective two-body probabilities for the impurities
to simultaneously occupy the ith and jth Wannier state are
given by

P(2)
i, j (t ) =

〈

&MB(t )
∣

∣1B ⊗
∣

∣φI
i

〉 〈

φI
i

∣

∣ ⊗
∣

∣φI
j

〉 〈

φI
j

∣

∣ &MB(t )
〉

. (8)

Here 1B is the unit operator defined in the subspace of the bath
and |φI

i 〉 〈φI
i | are the one-body projectors of the ith Wannier

state acting on a single impurity. The quality of the basis
is tested by summing up all probabilities P(2)

i, j (t ) for each

time instant and verifying that
∑

i, j P(2)
i, j (t ) > 0.97 holds until

t/t̃ho = 70.
The above-described two-body probabilities for gBI/g̃ho =

0.2 and gII/g̃ho = 0.2 are presented in Fig. 8(b). All probabil-
ities show an oscillatory behavior stemming from the periodic
collision and expansion of the impurities [cf. Fig. 6(b)]. Be-
yond this rapid motion, a decay and revival of P(2)

1,2 (t ) takes

place at longer time scales, where P(2)
1,2 (t ) corresponds to

the probability of finding one impurity in the energetically
lowest left-site Wannier state while the other one occupies
the right-site Wannier state. On the other hand, when the
envelope of P(2)

1,2 (t ) reaches a minimum the probability of

finding two impurities both in the left P(2)
1,1 (t ) [right P(2)

2,2 (t )]
Wannier state is maximized as demonstrated in Fig. 6(b). This
observation implies that a single-particle intraband excitation
process takes place. Moreover, also energetically higher-lying
Wannier states contribute to the ground-state configuration
of the impurities as well as to their dynamical response. For
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FIG. 9. (a) Time evolution of the fidelity between the many-

body wave function for gBI/g̃ho = 0.2 and gII/g̃ho = 0.2 and the

excited states of the effective two-body Hamiltonian Ĥ (2),eff [see also

Eq. (7)]. (b) Sum of the impurity-medium interaction energy 〈ĤBI〉
and the energy of the impurities 〈ĤI〉 in the many-body approach

for the ground state as a function of the impurity-medium coupling

(blue line) depicted together with the eigenenergies of Ĥ (2),eff (grey

horizontal dashed lines). The two-body density of the ground state

and the first three excited eigenstates are provided in (c)–(f).

instance, the second and third (first and fourth) Wannier states
contribute with P2,3(0) = P1,4(0) = 19% to the ground-state
configuration. Therefore, the initial state is a superposition of
different single-particle states. This is to be contrasted with
the discussion below (see Fig. 9) where a two-body basis is
employed, accounting in a more natural way for effects stem-
ming from impurity-impurity interactions and the coupling to
the bath.

For comparison the case of two weakly interacting im-
purities gII/g̃ho = 0.2 which are decoupled from the bath
(gBI = 0) is showcased in Fig. 8(c). It can be readily seen
that the impurities do not perform a state transfer similar to
the one depicted in Fig. 8(b) but rather retain their delocalized
configuration. In particular, at time instants corresponding to
an expansion of the impurities cloud the two-body probabil-
ities associated with the energetically lowest Wannier states
lying at opposite and the same sites significantly contribute
to the impurities’ many-body wave function, thus confirm-
ing the former statement. Otherwise, the impurities’ response
is characterized by excitations to energetically higher-lying
states. Next, we inspect the case of strongly interacting im-
purities (gII/g̃ho = 2.0) which are weakly coupled to the bath
(gBI/g̃ = 0.2) [Fig. 8(d)]. The dynamics begins with initially
separated impurities, viz., P(2)

1,2 (t ) obtains a maximum at t = 0,
and continues with the collision of the impurities at the trap
center where they both dominantly populate the same energet-
ically lowest left or right Wannier state [cf. P(2)

1,1 (t ) = P(2)
2,2 (t )].

Subsequently, the strong impurity-impurity repulsion enforces

the impurities to occupy again opposite double-well sites. This
scheme repeats itself during the evolution and, in particular,
lasts until T/t̃ho = 200. Again a state transfer process occurs
as it can be seen from the competition of P(2)

1,2 (t ) and P(2)
1,1 (t ).

However, in this case the transfer is less transparent and not
as dominant as for gII/g̃ho = 0.2, implying that an increasing
gII/g̃ho results in the suppression of this process.

Therefore, the intraband excitation process observed for
gBI/g̃ho = 0.2 and gII/g̃ho = 0.2 proves to be sensitive to
the impurity-impurity interaction strength and, most impor-
tantly, requires a finite impurity-medium coupling. In this
manner, we can conclude that this state transfer of the impu-
rities is induced by the presence of the bath. Moreover, we
have verified the absence of this mechanism for a species
mean-field ansatz [D = 1 in Eq. (2)], i.e., when the entan-
glement is not taken into account. Thus, we can deduce that
many-body effects and, in particular, the impurity-medium
entanglement play a crucial role for the realization of such
processes.

D. Effective two-body impurity mechanisms

To further understand the participating excitation processes
we consider a projection of the many-body wave function
onto a two-body basis set. In particular, we choose for this
investigation the ground state and the first four energetically
lowest excited states of an effective Hamiltonian. This ef-
fective Hamiltonian Ĥ (2),eff describes two weakly interacting
impurities (gII/g̃ho = 0.2) trapped in the effective potential
defined in Eq. (7) with gBI/g̃ho = 0.2. In this manner, we
take the back-action induced by the medium into account. In
Figs. 9(c)–9(f) we present the impurities’ two-body density
for the ground state as well as the first three excited states |-I

i 〉
of Ĥ (2),eff . As such, we associate the ground state (i = 0) with
the two-body state (|LR〉 + |RL〉)/

√
2 where |L〉 (|R〉) repre-

sents a single-particle state corresponding to the left (right)
site of the double well. Analogously, we refer to the first
(i = 1) and second (i = 2) excited states as the configurations
(|LL〉 − |RR〉)/

√
2 and (|LL〉 + |RR〉)/

√
2, respectively. The

corresponding eigenenergies are shown in Fig. 9(b). Note that
the first (i = 1) and second (i = 2) excited eigenstates are
approximately degenerate. In order to support the validity of
this two-body approach for two impurities coupled to a larger
medium, we additionally provide the sum of the impurity
energy and the interaction energy (〈ĤI〉 + 〈ĤBI〉) at t = 0 as
predicted within the many-body approach, namely, when the
impurities are still trapped in a double-well potential. Since
this energy matches at gBI/g̃ho = 0.2 the ground-state energy
of the effective approach [cf. intersection of 〈ĤI〉 + 〈ĤBI〉
with i = 0 in Fig. 9(b)] we conclude that the effective poten-
tial adequately accounts for the presence of the medium at
t = 0.

As a next step, we calculate the fidelity of the two-body
eigenstates |-I

i 〉 with the time-dependent species functions of
the impurities being coupled to the medium. In this way, the
probabilities of the contributing two-body configurations are
revealed. Therefore, we estimate the absolute square of the

projection of
∑D

j=1 |&B
j (t )〉 ⊗ |-I

i 〉 on the many-body wave
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function |&MB(t )〉 defined in Eq. (2), which reads as

F
ex
i (t ) =

∣

∣

∣

∣

∣

D
∑

j=1

√

λ j (t )
〈

-I
i

∣

∣&I
j (t )

〉

∣

∣

∣

∣

∣

2

. (9)

The dynamics of the fidelity with respect to the ground
state and the first four excited eigenstates of Ĥ (2),eff is pro-
vided in Fig. 9(a). Analogously with the analysis regarding
the Wannier states, we observe besides a fast periodic mo-
tion a slower decay and revival of the ground state |-I

0〉
associated with two separated impurities. This behavior is
accompanied by a complementary increase of the second
excited state |-I

2〉 = (|LL〉 + |RR〉)/
√

2 associated with the
coalescence of the impurities. Since the first excited state,
corresponding to the antisymmetric configuration (|LL〉 −
|RR〉)/

√
2, is strongly suppressed we conclude that the im-

purities undergo the two-body state transfer from (|LR〉 +
|RL〉)/

√
2 to (|LL〉 + |RR〉)/

√
2. Moreover, we note that dur-

ing the impurities’ collision an appreciable amount of higher
excited states need to be taken into account as indicated, for
instance, by the non-negligible occupation of the third exited
state |-I

3〉.
Concluding, we have explicated the microscopic mech-

anisms on both the one- and the two-body level taking
place during the collision dynamics of interacting impuri-
ties coupled to a harmonically confined bath. For instance,
the single-particle intraband excitation process appears to be
sensitive with respect to the impurity-impurity interaction
strength and requires a finite coupling to the bath. Moreover,
an analysis with respect to a two-body basis deciphered the
transitions among particular two-body configurations.

VII. CONCLUSIONS AND OUTLOOK

We have investigated the ground state and correlated dy-
namics of two interacting bosonic impurities confined in a
double well and immersed in a bosonic medium. The latter
either experiences a box potential or it is confined in a har-
monic trap. We establish the phase diagram of the ground state
for varying impurity-impurity and impurity-medium coupling
strengths. Thereby, the emergent ground states have been
characterized with the aid of the two-body densities and
impurity-medium entanglement. An analysis of the impact
of different trapping geometries on the formation of these
phases has been performed. For instance, we explicate that the
coalescence of the impurities at strong (repulsive or attractive)
impurity-medium interaction strengths is preserved for differ-
ent impurity-impurity repulsions when the bath is in a box.
However, in the case of a harmonically trapped bath the im-
purities separate from each other for strong impurity-impurity
repulsion residing in a Mott-type configuration. Moreover,
in the latter scenario, we observe at strong impurity-medium
attractions indications for the formation of a bipolaron.

Focusing on a specific interaction-dependent ground-state
configuration we trigger the dynamics by suddenly ramping
down the potential barrier of the impurities’ double well. First,
the dynamical response regimes of the impurities coupled to
a box-confined medium are unraveled with respect to their
associated one- and two-body densities. In particular, for in-
termediate impurity-medium repulsions a localization of the

impurities at the trap center after the original collision is
realized. The impurities’ two-body density features an elon-
gated shape along the diagonal for weak impurity-impurity
repulsion which suggests the presence of attractive induced
interactions mediated by the bath. This induced localization
of the impurities persists also when the coupling strength
between the impurities is further increased. This observation
together with the existence of a spatial overlap for finite
impurity-medium interaction strengths support the formation
of quasiparticles, i.e., two interacting polarons. We have at-
tested the robustness of the above phenomena with respect
to variations of the number of bath particles and the size of
the box potential. However, for strong repulsions finite size
effects of the medium’s box potential come into play and
govern the dynamical response of the system. Essentially,
after the impurities’ collision at the trap center they drift apart
and then the medium reoccupies the center.

By considering a harmonically confined bath the impu-
rities’ response is qualitatively altered. Due to the spatial
localization of the bath at the trap center the impurities and
the medium undergo a phase separation already for inter-
mediate impurity-medium repulsions as it was also observed
on the ground-state level. The response becomes especially
intriguing for weak impurity-medium couplings where the
impurities are able to perform a breathing motion within the
bath. Specifically, for weak impurity-medium repulsions we
observe a state transfer of the impurities starting with two
spatially separated ones located at different double-well sites
and evolving into a coalesced configuration, i.e., the impuri-
ties cluster. Interestingly, this state transfer process does not
emerge for strongly interacting impurities and, most impor-
tantly, requires a finite impurity-medium interaction strength;
viz., it is induced by the coupling to the bath. Moreover, it is
shown that this mechanism can be well understood in terms of
a single-particle Wannier basis of the double well. Addition-
ally, we reveal the participating two-body states in this process
using an analysis in terms of a two-body basis which consists
of the low-lying excited states of a corresponding effective
two-body Hamiltonian.

There are several possible extensions of our results. An
immediate one will be to investigate the collision features of
the impurities immersed in a spatially extended bosonic gas
with the aim to unveil their possible damping mechanisms and
appreciate the corresponding drag force. In another context, it
would be worth including a spin degree of freedom for the
impurities. Here, the dynamics of the emergent spin-spin cor-
relations is of interest especially when the impurities localize
around the trap center. Moreover, it would be intriguing to
consider two impurities with different masses, e.g., a light and
heavy one, coupled to a background. This way it would be fea-
sible to investigate the influence of the mass on the emergent
collisional aspects of the impurities and their induced interac-
tions as well as trigger specific population transfer channels
by considering a Rabi coupling term.
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FIG. 10. Ground-state relative distance between the impurities

〈rII〉 (in units of x̃ho) with respect to the impurity-medium interaction

strength gBI for different impurity-impurity couplings (see legend).

The relative difference .〈rII〉 between the impurity-impurity dis-

tance predicted within the many-body approach (〈rII〉) and the

effective Hamiltonian of Eq. (7) with V dw
I (xI ) = 0 (〈reff

II 〉) is also

provided (see main text).
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APPENDIX A: BATH CONFINED IN A BOX POTENTIAL:

RELATIVE DISTANCE BETWEEN THE IMPURITIES

In the following, we examine the impurities’ relative dis-
tance 〈rII〉 which can serve as an indicator for the existence
of their induced interactions mediated by the bath [38,39,98].
This quantity, which is accessible through in situ spin-resolved
single-shot measurements on the impurities state [99], reads

〈rII〉(t ) = 1

NI (NI − 1)

∫

dxI
1dxI

2

∣

∣xI
1 − xI

2

∣

∣ρ (2)
II

(

xI
1, xI

2

)

. (A1)

The impurities’ relative distance is presented in Fig. 10 for
the ground state of the system (t = 0) for varying impurity-
medium interaction strength and different impurity-impurity
couplings. In the case of two weakly interacting impurities
as well as for two strongly interacting ones we observe that
with an increasing absolute value of gBI the relative dis-
tance between the impurities reduces. This behavior implies
an induced attraction mediated by the coupling to the bath.
Furthermore, it is evident that for larger impurity-impurity
interactions 〈rII〉 is enhanced when compared to the one of
weakly interacting impurities. This behavior is caused by the
increased intraspecies impurities’ direct repulsion compensat-
ing their induced attraction.

To further justify the presence of induced interactions, we
compare the resulting impurities’ relative distance as obtained
using the many-body approach (〈rII〉) with the one (〈reff

II 〉) pre-
dicted within the effective two-body Hamiltonian H̄ (2),eff . The
latter was introduced in Sec. VI for a harmonically confined
medium. Notice that here this effective Hamiltonian describes
the interplay between two interacting particles confined in an

effective potential constructed by the one-body density of a
box-trapped medium [see Eq. (7)]. As such, the entanglement
between the impurities and the medium is neglected while
effects stemming from the back-action to the bath are taken
into account. By comparing 〈rII〉 between these two methods
we can determine whether the decrease of 〈rII〉 for increasing
|gBI | (see Fig. 10) originates from an entanglement-assisted
induced interaction or if it is due to an alteration of the effec-
tive potential.

Inspecting .〈rII〉 = (〈reff
II 〉 − 〈rII〉)/〈reff

II 〉 depicted in
Fig. 10, a large deviation among 〈rII〉 and 〈reff

II 〉 becomes
evident for increasing |gBI |. This confirms the presence of
attractive induced interactions between the impurities. The
fact that .〈rII〉 is finite can be traced back to the shape of
the impurities’ two-body densities as obtained within the
aforementioned approaches for large gBI [corresponding to
regime (I) in Fig. 2(a)]. While in the many-body scenario the
impurities coalesce [namely, only the diagonal of ρ (2)

II (xI
1, xI

2)
is occupied], in the effective potential case both the diagonal
and the off-diagonal elements of ρ (2)

II (xI
1, xI

2) are equally
populated. This naturally leads to a larger relative distance.
Concluding, the comparison with the effective model
underlies the importance of considering correlations in
the system and reveals the presence of attractive induced
interactions between the impurities (see more details in
Refs. [39,100]).

APPENDIX B: COLLISIONAL PROPERTIES OF TWO

HEAVY IMPURITIES

Throughout this work we have considered a system
consisting of 87Rb bath particles and 133Cs impurities cor-
responding to a mass ratio of mI = 133/87mB. Below, we
employ a mixture characterized by a mass ratio m′

I = 5mB in
order to elaborate on the dynamical response of two heavy
impurities [38] immersed in a bath confined in a box poten-
tial [101]. The time evolution of the corresponding one- and
two-body densities of the impurities and the bath particles is
depicted in Figs. 11(a1)–11(c1) and 11(a2)–11(c2) for interac-
tion parameters as the ones employed in the main text (Fig. 4).
In particular, we assume two weakly interacting impurities
(gII/g̃box = 0.2) and vary the impurity-medium interaction
strength gBI . Regarding the one-body density evolution we
do observe a qualitatively similar behavior as compared to
the case of lighter impurities. Only in the case of weak
attractive gBI [Fig. 11(a1)] do the heavy impurities perform
a more pronounced breathing oscillation with a larger oscil-
lation period. Inspecting a two-body density snapshot reveals
that the impurities are spatially separated from each other and
oscillate along the off diagonal of ρ (2)

II (xI
1, xI

2) [cf. Fig. 11(a3)].
Therefore, they are not delocalized as their lighter counter-
parts [Fig. 4(a3)], and this behavior persists for two strongly
interacting impurities [cf. inset of Fig. 11(a3)].

Additionally, for intermediate impurity-medium repul-
sions, i.e., gBI/g̃box = 1.5, the one-body densities of the
impurities and the medium [Figs. 11(b1) and 11(b2)] as well
as the impurities’ two-body density [Fig. 11(b3) and its inset]
do not reveal a qualitatively different response with respect to
the case of lighter impurities [cf. Figs. 4(b1)–4(b3)]. Indeed
the impurities remain very close throughout the time evolu-
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FIG. 11. Time evolution of the one-body density of [(a1)–

(c1)] two heavy impurities and [(a2)–(c2)] a box-confined bosonic

bath. Each column represents the dynamics for a fixed impurity-

medium interaction strength which is from left to right gBI/g̃box =
−0.2, 1.5, 5.0. The impurity-impurity coupling remains constant, be-

ing gII/g̃box = 0.2. [(a3)–(c3)] Snapshots of the impurities’ two-body

density. The insets show the two-body densities at the same time in-

stants, but for two strongly interacting impurities, i.e., gII/g̃box = 2.0.

tion, exhibiting a more pronounced localization trend around
the trap center as compared to lighter ones. The same holds
also for the case of strong impurity-medium interactions [see
Figs. 11(c1)–11(c3) for gBI/g̃box = 5.0] where the impurities
feature multiple collisions with a dissipative amplitude. Only,
the fragmentation in terms of the diagonal of the two-body
density for gII/g̃box = 2.0 is more prominent in the case of
heavy impurities than for lighter ones [cf. inset of Fig. 11(c3)]
and becomes visible even on the one-body density level (not
shown here).

APPENDIX C: IMPURITY DYNAMICS AFTER A LINEAR

RAMP OF THEIR DOUBLE-WELL POTENTIAL

In the following we address the robustness of the impu-
rities’ dynamical response when ramping down their barrier
height hI in a time-dependent manner and not suddenly as
in the main text. Specifically, we apply the following linear
protocol: h̃I (t ) = hI − hIt/τ if 0 ! t ! τ while h̃I (t ) = 0 as
long as τ < t . The ramp time τ is defined as the one at
which the barrier height vanishes, i.e., when h̃I (τ ) = 0. For
our purposes, we restrict our study to finite values of τ which
deviate from the instantaneous quench but also do not refer to
an adiabatic linear ramping.

To visualize the impact of the time-dependent protocol on
the impurities’ collision process we present in Fig. 12 the
time evolution of the von Neumann entanglement entropy
[Eq. (5)] and the impurities’ one-body density. We follow a
linear ramp of the impurities’ barrier height characterized by a
finite ramp time τ/t̃box = 30. Notice that the latter appreciably
deviates from the quench scenario (τ/t̃box = 0). Moreover,

FIG. 12. (a) Time evolution of the von Neumann entropy upon

linearly ramping down the barrier height hI of the double well for

different ramp times τ (see legend). The impurities are weakly inter-

acting with gII/g̃box = 0.2 and are coupled to a box-confined medium

with an interspecies coupling gBI/g̃box = 1.5. An increasing ramp

time maintains an almost constant magnitude of entanglement until

the impurities’ collision. (b) The corresponding one-body density

evolution of the impurities for τ/t̃box = 30. As it can be seen the lin-

ear ramp delays the impurities’ first collision event when compared

to Fig. 4(b1), referring to the corresponding quench dynamics.

we exemplarily invoke the system where the medium is con-
fined in a box potential while the relevant interactions are
gBB/g̃box = 0.5, gII/g̃box = 0.2, and gBI/g̃box = 1.5. Recall
that in the main text it has been shown that in this regime
the impurities localize at the trap center after their first col-
lision event [see also Fig. 4(b1)]. As it can be readily seen
[Fig. 12(b)], the impurities’ dynamical response in terms of
ρ (1)

I (x, t ) remains qualitatively unchanged as compared to the
quench [Fig. 4(b1)]. The most prominent difference regards
the timescale at which the impurities collide and subsequently
localize at the trap center. As expected the initial collision
can be delayed for an increasing ramp time. Turning to
the evolution of the respective von Neumann entropies for
varying ramp times we observe an interesting behavior. At
short timescales the impurities and the medium are highly
entangled [Fig. 12(a)]. The magnitude of the entanglement
is maintained in the course of the evolution until the impu-
rities collide and then localize at the trap center, where it
suddenly decreases. This drop of the entanglement depends
strongly on the ramp time and in particular it takes place
faster for smaller τ since in this case the collision event is
accelerated.
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Concluding, we remark that the linear protocol affects the
remaining response regimes, occurring for other interspecies
interaction strengths, in a similar vein. Namely, the main
features as described in Sec. V are not substantially altered
but rather the underlying timescales change. For instance,
considering weak attractive or repulsive gBI referring to the
impurities’ breathing motion [Fig. 4(a1)], we find a decreasing

tendency of the breathing amplitude and frequency for larger
τ (not shown). This is attributed to the fact that for increasing
τ the collision of the impurities is less violent, thus producing
a less pronounced breathing. Analogous effects are observed
for a harmonically trapped medium where, for instance, also
in this case the amplitude and frequency of the underlying
breathing motion depend strongly on the ramp time τ .
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