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We observe experimentally the spontaneous formation of star-shaped surface patterns in driven Bose-
Einstein condensates. Two-dimensional star-shaped patterns with l-fold symmetry, ranging from quadru-
pole (l ¼ 2) to heptagon modes (l ¼ 7), are parametrically excited by modulating the scattering length near
the Feshbach resonance. An effective Mathieu equation and Floquet analysis are utilized, relating the
instability conditions to the dispersion of the surface modes in a trapped superfluid. Identifying the resonant
frequencies of the patterns, we precisely measure the dispersion relation of the collective excitations. The
oscillation amplitude of the surface excitations increases exponentially during the modulation. We find that
only the l ¼ 6 mode is unstable due to its emergent coupling with the dipole motion of the cloud. Our
experimental results are in excellent agreement with the mean-field framework. Our work opens a new
pathway for generating higher-lying collective excitations with applications, such as the probing of exotic
properties of quantum fluids and providing a generation mechanism of quantum turbulence.
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Introduction.—Spontaneous pattern formation is fre-
quently encountered in various research fields, including
chemistry, biology, nonlinear optics, and cosmology [1–3].
Faraday waves constitute one of the earliest and most
celebrated examples thereof that can be observed when a
fluid in a vessel is subject to a vertical periodic modulation
[4]. The underlying mechanism of these phenomena is the
existence of instabilities, manifested in the related non-
linear hydrodynamic equations. The instabilities character-
ize a dominant wavelength that breaks the spatial and
temporal symmetries of the system [1]. This has applica-
tions in measuring the intrinsic properties of fluids like
density and surface tension [5,6]. Moreover, recent experi-
ments with tracer particles in the Faraday waves have
revealed the emergence of two-dimensional (2D) turbu-
lence [7–9] and self-organization of flows with various
patterns [10], thus extending the research scope of para-
metrically driven systems.
Bose-Einstein condensates (BECs) of atomic gases offer

a fertile platform for transferring the relevant knowledge of
nonlinear dynamics in classical settings to the realm of
quantum many-body systems [11–16]. One-dimensional
Faraday waves have been indeed observed in BECs under
the periodic modulation of the transverse trap frequency of
an elongated condensate [11] or of the s-wave scattering
length near the magnetic Feshbach resonance [12].

Increasing the modulation strength with low driving fre-
quency, irregular patterns (granulation) are generated char-
acterized by fairly sizable quantum fluctuations [12], and
bearing features of quantum turbulence [17]. However, the
majority of experimental efforts has been performed in one
dimension [11,12]. As such, various correlation patterns
emerging from nonlinear wave mixing [13], surface exci-
tations either from parametrically driven multicomponent
systems [18] or from quantum fluctuations, such as
quantum capillary waves in optical lattices [19], and the
relation of Faraday waves to turbulent behavior in higher
dimensions [16,20] are yet a largely unexplored territory.
In this Letter, we report the controlled generation of

surface modes of different wavenumbers in atomic quan-
tum fluids. Specifically, 2D regular polygons exhibiting an
l-fold symmetry (from l ¼ 2 to l ¼ 7) develop from
radially symmetric condensates by modulating the atomic
interactions near the Feshbach resonance. The observed
surface patterns have no preferred orientation and oscillate
sinusoidally according to the modulation frequency. The
associated spatial and temporal symmetry breaking phe-
nomenon can be understood in terms of the hydrodynamic
(parametric) instability, where an effective Mathieu equa-
tion describes the stability boundaries of the individual
patterns. Probing the instability regions, we accurately
measure the dispersion relation of the surface modes of
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the harmonically trapped superfluid. The experimental
results show an excellent agreement with the predictions
of the three-dimensional (3D) mean-field Gross-Pitaevskii
equation (GPE), demonstrating that BECs represent an
ideal platform to emulate a number of classical fluid
phenomena. Our findings should be valuable in conducting
future experiments to measure several fundamental proper-
ties such as surface tension in quantum fluids [18] and to
estimate the dynamical response through structure forma-
tion [21]. Additionally, they should assist in quantifying the
generation of quantum turbulence and in enabling the
realization of discrete-time crystals [22,23].
Experimental and theoretical setup.—The experiment is

initiated by producing a BEC of 7Li atoms in the
jF ¼ 1; mF ¼ 1i state near the Feshbach resonance [24].
The scattering length is set to abg ¼ 138ð6ÞaB (aB is the
Bohr radius). The condensate resides in a highly aniso-
tropic harmonic trap consisting of a tight confining optical
trap in the axial direction [25] and a weak magnetic trap
constituting the radially symmetric confinement [Fig. 1(a)].
The trap frequencies are measured to be ½ωr;ωz% ¼
2π × ½29.4ð2Þ; 725ð5Þ% Hz. Then, we apply a sinusoidally
oscillating magnetic field to the pancake-shaped conden-
sate, which modulates the scattering length asðtÞ of the
atoms [Fig. 1(a)]. Following a modulation time t, we take
in situ absorption images under the Feshbach magnetic
field and measure the atomic density distribution.
After 1 s of modulation, the condensate boundary is

strongly deformed, displaying 2D regular polygon patterns

along the xy plane [Figs. 1(b)–1(g)]. The generation of the
surface modes is mostly driven by the scattering length
modulation as the oscillation amplitude of the radial trap
frequency is very weak (or insignificant), i.e., of about
0.3%. Moreover, the regular polygons show no preferred
orientation in the horizontal plane, manifesting the spatio-
temporal symmetry breaking phenomenon [Fig. 1(h)].
These surface modes are equally reproduced within the

full 3D GPE framework [Figs. 1(i)–1(j)] which reads
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z . Also, m and
λ ¼ ωz=ωr represent the atomic mass and the aspect ratio of
the trap. To emulate the thermal fraction in the present
experiment (less than 10%), we consider a weak amplitude
perturbation to the ground state, ΨGðx; y; zÞ, of the BEC.
The initial wave function Ψinðx; y; zÞ ¼ ΨGðx; y; zÞ½1þ
εδðx; y; zÞ% [26,27]. Here, δðx; y; zÞ is a Gaussian random
distribution having zero mean and variance unity produced
by using the so-called Box-Mueller algorithm [26,28] and
ε ≪ 1 mimics the thermal fraction being, herein, of the
order of ε ∼ 0.1, see the Supplemental Material [29].
Subsequently, we let the system [described by Eq. (1)]

evolve upon considering a periodic modulation of the
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FIG. 1. Experimental observation of star-shaped condensates. (a) A BEC of 7Li atoms is prepared in a pancake-shaped trap consisting
of a red-detuned optical trap for the axial confinement and a magnetic trap, induced by Feshbach magnetic field curvature, for the radial
confinement. The scattering length is modulated by oscillating the magnetic field near the Feshbach resonance. The mean modulation
amplitude ām is defined as the average of upper (aþm) and lower (a−m) modulation peaks, ām ¼ ðaþm þ a−mÞ=2. (b)–(g) Representative in
trap images (single shots) of the ensuing regular polygons with Dl symmetry triggered by the periodic modulation. The modulation
frequencies are 84 Hz (D2), 104 Hz (D3), 119 Hz (D4), 132 Hz (D5), 147 Hz (D6), and 161 Hz (D7), respectively. The mean modulation
amplitude ām ¼ 19aB (aþm ¼ 21aB and a−m ¼ 17aB). The scale bar in the l ¼ 2 mode represents 100 μm. (h) The orientation angle ϕ'

for pentagon-shaped BECs, defined in (e), is measured with 400 consecutive experimental runs. The histogram displays the
corresponding occurrence of the angle with bin size of 3°. (i) Hexagon and (j) heptagon-shaped patterns obtained by solving the 3D GPE
(see main text).
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scattering length of the form asðtÞ ¼ abg þ ām cosðωmtÞ,
where ām and ωm are the mean modulation amplitude
and frequency, dictated by the experiment. Figures 1(i)
and 1(j) show characteristic density profiles, nðx; y; tÞ ¼
R

dzjΨðx; y; z; tÞj2, of the D6 and D7 star patterns, respec-
tively, obtained within the GPE framework. In the simu-
lations, the surface modes are robust to the experimental
imperfections, such as anisotropy in the radial confinement
(∼3%), oscillations of the radial curvature (0.3%), and high
harmonics in the scattering length modulation protocol.
Results and discussion.—To understand the underlying

mechanism of the surface deformation, we study the
frequency dependence of the surface modes at a fixed
mean modulation amplitude ām ¼ 19aB. We characterize
the polygon-shaped BECs with Dl symmetry, shown in
Figs. 1(b)–1(g), by the Fourier amplitude F l of the
condensate radius over the azimuthal angle. The F l

quantifies the displacement of the condensate boundary
with l-fold symmetry [29]. The Dl shaped BECs varying
from ellipses (l ¼ 2) to regular heptagons (l ¼ 7) can be
identified. Figure 2(a) displays the spectral peak F l of each

mode under various modulation frequencies. The surface
modes (l ¼ 2–7) are only excited at certain driving fre-
quency intervals, in a way strongly reminiscent of the
tongues in the Mathieu equation [48]. The resonance curves
are asymmetric, resembling the response of a Duffing
oscillator, which is well represented for l ≤ 4 modes.
When we reduce the modulation amplitude, the resonance
spectra become more symmetric and acquire a narrower
width [29], highlighting the role of nonlinear interactions
during the surface deformation.
The onset of resonance behavior of the surface excita-

tions can be unveiled by a Mathieu equation analysis for the
amplitude of the density deformation, see details in
Ref. [29]. Since the observed surface modes have no radial
nodes, we assume a density disturbance of the form
δn ¼ ζlðtÞrleilϕ. At short modulation times the deforma-
tion is small, and we arrive at the Mathieu equation for ζl
after linearizing the hydrodynamic equations of the
superfluid,

ζ̈lðtÞ þ ω2
l

#

1þ
ām
abg

cosðωmtÞ
$

ζlðtÞ ¼ 0; ð2Þ

where ωl ¼
ffiffi

l
p

ωr. This equation represents a parametri-
cally driven oscillator with a natural frequency ωl, having a
series of resonances at ωm ¼ 2ωl=n, where n is an integer.
Within Floquet theory, a solution ζlðtÞ ¼

eðsþiαωmÞt
P

∞
k¼−∞

ζ
ðkÞ
l eikωmt is sought, where s is its growth

rate and α is the Floquet exponent [49]. For s > 0 the
system is dynamically unstable and pattern formation takes
place at the surface. Setting s ¼ 0, we provide the marginal
stability boundaries of the Dl symmetric patterns in
Fig. 2(b). The stability diagram is composed of a series
of resonant tongues, where the system exhibits star-shaped
patterns if ām and ωm reside inside or at the boundaries of a
specific tongue. Otherwise, the BEC cloud solely performs
a collective breathing motion. The spectrum in Fig. 2(a) can
be interpreted as the intersection of the instability tongues
at modulation strength Γ ¼ ām=abg ≃ 0.14.
Notice the not only qualitative but also quantitative

match of the instability tongues between theoretical analy-
sis, numerical findings, and experimental results and the
weak deviation of the latter two when the nonlinear effects
become more prominent as discussed above. Including a
dissipative term γ _ζl to Eq. (2) lifts the tongues, suppressing
pattern formation under a threshold amplitude. The dis-
sipation rate γ ¼ 2π × 1.8 Hz, best matching the exper-
imentally measured threshold amplitudes, is used. The
temporal dynamics from the 3D GPE presents subharmonic
oscillations ωm=2 of the surface modes, leading to the
Floquet exponent α ¼ 1=2.
The theoretical investigations provide a deeper insight

into the spontaneous pattern formation. The natural fre-
quency (ωl ¼

ffiffi

l
p

ωr) of the Mathieu equation is the
dispersion of the surface excitation modes of superfluids
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FIG. 2. Hydrodynamic instability of the surface excitations.
(a) Spectral peak of various l-fold star patterns, created after 1 s of
modulation, as a function of the modulation frequency. The
spectral peak for the hexagon (l ¼ 6 mode) is taken after
t ¼ 0.3 s due to the involved dipole instability (see main text).
The filled circles designate the experimental results and solid
lines refer to the GPE predictions; notice the very good agreement
between the two. Each data point is averaged over 5–10
independent experimental realizations, and the error bars denote
the standard deviation of the mean. (b) Floquet stability tongues
for different modulation strengths ām=abg and frequencies
ωm=ð2πÞ characterizing distinct l-fold patterns.
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in a harmonic potential [50]. It indicates that the observed
star-shaped BECs subject to driving originate from the
parametric excitation of the surface mode with high multi-
polarity. In other words, one can infer the dispersion laws by
studying the resonance spectrum of each mode. To measure
the resonance frequencies of the surface excitations, we
investigate the surface mode spectrum with marginal mean
modulation amplitude ðām ¼ 8–9aBÞ and sufficient con-
densate atom number ½N ¼ 4.1ð2Þ × 106%. Figure 3 depicts
the measured resonance frequencies ωresðlÞ of different
modes up to l ¼ 7, which show a remarkable agreement
with the predicted square-root scaling dispersion.Within the
parameter regime that we operate, other effects from beyond
mean-field [51], dipolar interactions [52], and finite particle
number [29,50,51] are negligible. The observed small
deviations (∼2%) might be attributed to the impact of the
modulation on the resonance spectrum [29] and trap
imperfections such as anharmonicity of the optical dipole
trap [53].
Another characteristic feature of the parametric excitations

is the exponential growth of the associated unstablemodes as
described by the solution of Eq. (2). Focusing on the l ¼ 3

triangular mode, as a representative example of this phe-
nomenology,we investigate the time evolution of the spectral
peak F 3ðtÞ at resonance driving ωm ¼ 2π × 104 Hz.
Initially, small amplitude fluctuations of the condensate
radius build up with no clear patterns, having F 3 ≃ 0.
After 300msofmodulation, the azimuthal angular symmetry
of the condensate boundary breaks, rapidly forming a regular
triangle with sharp edges at t ¼ 600 ms. Averaging the
spectral peak within one period of oscillation hF 3i, we
observe a clear manifestation of the parametric instability via

the exponential growth dynamics [Fig. 4(a), inset], where the
characteristic growth rate increases for higher l symmetry
modes and driving amplitude [29].
As the evolution settles into a periodic pattern, the

triangular surface mode undergoes a regular oscillation
characterized by the external driving frequency [Fig. 4(b)].
The actual dynamics is subharmonic, a fact that is also
confirmed within the GPE calculations. The peaks oscillate
90° out of phase with respect to the driving field, reflecting
the dynamics of the Mathieu equation under resonant
frequency driving.When turning off the periodicmodulation
after the development of the surface mode, the latter
experiences a relaxation towards a symmetric shape. The
dynamics follows a damped oscillatory motion, and the
associated damping rate increaseswith themode number and
thermal fraction [54,55]; see details in [29].We also note that
higher-fold surface structures are created for increasing
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FIG. 4. Time evolution of the triangular surface mode.
(a) Dynamics of the growth rate of the triangular mode under
a 104 Hz modulation. The fluctuations of the spectral peak
(l ¼ 3) increase exponentially in the course of time. Each data
point is a single experimental realization. Inset: the averaged
spectral peak hF 3i over a single oscillation time interval,
½t; tþ 9.5% ms. Dashed line designates an exponential fit to the
data (dark blue circle), and the solid line is obtained from the GPE
simulation. (b) Zooming in at 1 s reveals the oscillation of the
surface mode with 104 Hz driving frequency. Each data point
corresponds to the mean over four independent experimental
runs, and the error bars indicate the standard deviation of the
mean. Inset: absorption images during the first oscillation period.
The oscillation frequency is subharmonic, a result that is
confirmed by the GPE calculations, see also Ref. [29].
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ωm=ð2πÞ, e.g., the D15 at ωm=ð2πÞ ¼ 232 Hz, while for
ωm=ð2πÞ > 240 Hz bulk patterns [21] in the form of star
shapes and squarelike arrangements arise, see also [29].
Lastly, we would like to comment on the dynamics of the

hexagon mode (D6 pattern). Unlike the other surface
excitations, this mode is found to be unstable due to its
emergent coupling with the dipole motion of the cloud. This
behavior is also found by the mean-field simulations. In the
present study, we focus on the dispersion law of the surface
modes, such that the resonance spectra in Fig. 2(a) and
Fig. 3 are obtained for relatively short evolution times
(t ≈ 300 ms) and in particular before the dipole motion
destabilizes the hexagonal pattern. Further details of the
long-time dynamics ofD6 patterns are provided in Ref. [29].
This observation motivates further efforts to unveil possible
signatures of turbulent properties of the surface modes.
Conclusions.—We observe experimentally and analyze

theoretically the generation of star-shaped surface patterns
in a BEC due to the Faraday wave instability induced by the
periodic modulation of the scattering length. Quantitative
monitoring of the patterns enables us to identify the growth
rate of the parametric instability and to measure the
dispersion relation of the surface excitations of superfluids
in a harmonic trap, in very good agreement with theoretical
predictions and numerical computations. Since our exper-
imental method does not require special engineering to
shape the condensates, it can be applied to various quantum
fluids in a broad context, such as Fermi gases [53,56] and
dipolar quantum fluids [57], as well as exciton-polariton
BECs [58]. Moreover, relevant ideas extend to binary
mixtures or quantum droplets, where the resonance spec-
trum can be utilized to extract the interfacial tension of the
superfluid boundary [18]. By increasing the modulation
strength, a transition to granulation and turbulent behavior,
of interest in its own right [17], can be also studied in a two-
dimensional condensate.
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