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We study positive partially localized solutions of the elliptic 
equation

∆xu+ uyy + f(u) = 0, (x, y) ∈ R
N × R, (1)

where N ≥ 2 and f is a C1 function satisfying f(0) = 0
and f ′(0) < 0. By partially localized solutions we mean 
solutions u(x, y) which decay to zero as |x| → ∞ uniformly 
in y. Our main concern is the existence of positive partially 
localized solutions which are quasiperiodic in y. The fact 
that such solutions can exist in equations of the above form 
was demonstrated in our earlier work: we proved that the 
nonlinearity f can be designed in such a way that equation (1) 
possesses positive partially localized quasiperiodic solutions 
with 2 frequencies. Our main contributions in the present 
paper are twofold. First, we improve the previous result 
by showing that positive partially localized quasiperiodic 
solutions with any prescribed number n ≥ 2 of frequencies 
exist for some nonlinearities f . Second, we give a tangible 
sufficient condition on f which guarantees that equation (1) 
has such quasiperiodic solutions, possibly after f is perturbed 
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slightly. The condition, with n = 2, applies, for example, to 
some combined-powers nonlinearities f(u) = up+λuq −u with 
suitable exponents p > q > 1 and coefficient λ > 0.
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1. Introduction and main results

We consider the semilinear elliptic equation

∆u+ uyy + f(u) = 0, (x, y) ∈ R
N × R, (1.1)

where N ≥ 2, ∆ is the Laplace operator in x ∈ R
N , and f : R → R is a C1 function 

satisfying

f(0) = 0, f ′(0) < 0. (1.2)

We are mainly interested in positive solutions of this equation which decay to 0 in the 

x-variables uniformly in y:

lim
|x|→∞

sup
y∈R

u(x, y) = 0. (1.3)

Henceforth, we refer to solutions satisfying (1.3) as partially localized solutions.

Partially localized solutions include in particular solutions which decay in the y vari-

able as well, so they are fully localized. Positive fully localized solutions, frequently 

referred to as ground states of (1.1), are well understood: they are radially symmet-

ric about some center in RN+1 and radially decreasing away from that center (see [18]). 

For basic results on the existence and nonexistence of ground states we refer the reader 

to [4]; theorems on uniqueness (up to translations) and nonuniqueness can be found in 

[1,8–11,14,25,26,29,32–34,38,42].

A different class of partially localized solutions of (1.1) is obtained from ground states 

of the equation on RN ,
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∆u+ f(u) = 0, x ∈ R
N , (1.4)

if they exist, by extending them to functions on RN × R constant in y. This is a rather 

trivial remark, but ground states of (1.4) will play an important role below.

More interesting partially localized positive solutions which are not fully localized are 

solutions periodic (and nonconstant) in y. Their existence, as well as some structural 

properties, have been established in [2,12,28] for a large class of nonlinearities including 

the power nonlinearity f(u) = up − u with 1 < p < (N + 2)/(N − 2).
Looking beyond periodic solutions, and considering that equation (1.1) has a formal 

Hamiltonian structure (cp. [20,30,36]), one naturally asks if positive partially localized 

solutions which are quasiperiodic (and not periodic) in y may exist for some nonlinearities 

f .

Let us recall the definition of a quasiperiodic solution. Given an integer n ≥ 2, we say 
that a vector ω = (ω1, . . . , ωn) ∈ R

n is nonresonant, or, equivalently, that the numbers 

ω1, . . . , ωn are rationally independent, if

ω · α Ó= 0 (α ∈ Z
n \ {0}). (1.5)

Here ω · α is the usual dot product. A real function u(x, y) on R
N × R is said to 

be quasiperiodic in y if there exist an integer n ≥ 2, a nonresonant vector ω∗ =

(ω∗
1 , . . . , ω∗

n) ∈ R
n, and an injective function U defined on T n (the n-dimensional torus) 

with values in the space of real-valued functions on RN such that

u(x, y) = U(ω∗
1y, . . . , ω∗

ny)(x) (x ∈ R
N , y ∈ R). (1.6)

The vector ω∗ is called a frequency vector and its components the frequencies of u. Note 

that the nonresonance of the frequency vector is a part of our definition. In particular, 

a quasiperiodic function is not periodic and, if it has some regularity properties, then 

the image of the map y Ô→ u(·, y) is dense in an n-dimensional manifold diffeomorphic to 

T
n.

The question whether positive quasiperiodic partially localized solutions can exist in 

equations of the above type was first addressed in our earlier paper [37]. We proved that 

for a carefully designed nonlinearity, equation (1) does have such quasiperiodic solutions 

with 2 frequencies. Restricting the number of frequencies to 2 in this result was not a 

matter of choice; the method used in the proof works in that case only. The nonlinearity 

f was found in [37] by an elaborate construction which served well the given purpose—

finding quasiperiodic solutions for some nonlinearity satisfying (1.2)—but did not give 

any feasible way of showing the existence of quasiperiodic solutions in specific equations.

These shortcomings motivated our research documented in the present paper. In our 

new existence result, there is no restriction on the number of frequencies of quasiperiodic 

solutions. Moreover, what is perhaps more significant, we have found tangible sufficient 

conditions for the existence of positive quasiperiodic partially localized solutions of (1.1). 
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This result allows us, among other applications, to find quasiperiodic solutions for non-

linearities which are arbitrarily small perturbations of some specific functions, such as 

the combined-powers nonlinearity f(u) = up + λuq − u for suitable exponents p > q > 1

and coefficient λ. Under some natural conditions, we are also able to find such solutions 

within a specific class of equations (without needing a small perturbation).

We now give statements of our main results, starting with the following theorem 

addressing the possible number of frequencies of quasiperiodic solutions of (1.1). In this 

and the other three theorems stated in the introduction, the dimension N is fixed and 

it is assumed that N ≥ 2.

Theorem 1.1. Given any integer n ≥ 2, there is a C∞ function f : R → R with f(0) =

0 > f ′(0) such that equation (1.1) has a positive solution u satisfying (1.3) which is 

radially symmetric in x and quasiperiodic in y with n frequencies.

A hypothesis in our second theorem involves a ground state of equation (1.4) (the 

equation in one less dimension). We need to recall some definitions. As noted above, 

any ground state φ is radially symmetric, so, possibly after a shift in RN , we can write 

φ = φ(r), r = |x|. Consider now the Schrödinger operator A(φ) = −∆ − f ′(φ(r)), 

viewed as a self-adjoint operator on L2
rad(R

N ), the space consisting of all radial L2(RN )-

functions, with domain H2(RN ) ∩ L2
rad(R

N ). Since the potential f ′(φ(r)) has the limit 

f ′(φ(∞)) = f ′(0) < 0, the essential spectrum of A(φ) is contained in [−f ′(0), ∞)
(cp. [40]). Therefore, the spectrum in (−∞, 0] consists of a finite number of isolated 

eigenvalues; these eigenvalues are all simple due to the radial symmetry. The Morse 

index of φ is defined as the number of negative eigenvalues of A(φ). We remark that 

we allow 0 to be an eigenvalue of A(φ), but only (strictly) negative eigenvalues count 

toward the Morse index. If 0 is an eigenvalue, the ground state is said to be degenerate, 

otherwise it is nondegenerate.

We will assume that for some integer n ≥ 2 the following holds.

(G) Equation (1.4) has a ground state φ of Morse index n.

For a C1 function g : R → R, we denote

‖g‖1 := sup{|g(u)|, |g′(u)| : u ∈ R}.

Theorem 1.2. Assume that f : R → R is a C1 function with f(0) = 0 > f ′(0) such that

(G) is satisfied for some n ≥ 2. Then for any ǫ > 0 there is a C∞ function f̃ such that 

‖f − f̃‖1 < ǫ and equation (1.1) with f replaced by f̃ has a positive solution u satisfying 

(1.3) which is radially symmetric in x and quasiperiodic in y with n frequencies.

We emphasize that hypothesis (G) is a condition on the eigenvalues of the linearization 

at a ground state. Unlike the construction in [37], the hypothesis involves neither the 
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corresponding eigenfunctions nor higher-order terms of the Taylor expansion of f at the 

ground state φ. This makes Theorem 1.2 much easier to apply; we show some interesting 

applications in a moment. On the other hand, the construction in [37] has its advantages 

when it does apply. Namely, it yields an uncountable family of positive partially localized 

quasiperiodic solutions (disregarding translations) of an equation of the form (1.1). Our 

present results do not have such a multiplicity statement (see Remark 2.4(iv) for an 

explanation). This is a relatively small price to pay for a much broader applicability of 

the new results.

We now give some applications of Theorem 1.2; the first one is a proof of Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 follows directly from Theorem 1.2 and a theorem of 

[34] which says that for any n ≥ 2 (and N ≥ 2) there is a smooth function f : R → R

satisfying conditions (1.2) and (G). 2

Besides [34], examples of functions satisfying conditions (1.2) and (G) (with n = 2) 

can also be found in [11,14]. The most explicit among these examples is the combined-

powers nonlinearity

f(u) = up + λuq − u, (1.7)

where 1 < q < p < 5 and λ > 0. As shown in [14], fixing a sufficiently large λ and 

then taking p sufficiently close to 5—note that 5 is the critical Sobolev exponent (N +

2)/(N − 2) in dimension N = 3—one achieves that equation (1.4) with N = 3 has a 

ground state with Morse index 2 (in addition to two other ground states with Morse 

index 1). Thus, by Theorem 1.2, one can find quasiperiodic partially localized positive 

solutions for equation (1.1), where f is an arbitrarily small perturbation of a function of 

the form (1.7).

It is an interesting question whether partially localized quasiperiodic solutions can also 

be found for a combined-powers nonlinearity itself, that is, without a small perturbation. 

We believe that our techniques can be used to give a positive answer, although most 

exponents p, q have to be excluded due to smoothness requirements in our method. We 

state here one theorem for analytic nonlinearities (a related result for Ck nonlinearities 

with k large enough is given in the next section) and then discuss its possible applicability 

to combined-powers nonlinearities.

Consider an equation of the form (1.1) involving a real parameter λ > 0:

∆u+ uyy + f(u;λ) = 0, (x, y) ∈ R
N × R. (1.8)

Here, f is an analytic function on R × J , J being an open interval in R, such that

f(0;λ) = 0, fu(0;λ) < 0 (λ ∈ J). (1.9)

Also consider the corresponding equation for the ground states on RN :



6 P. Poláčik, D.A. Valdebenito / Journal of Functional Analysis 282 (2022) 109457

∆u+ f(u;λ) = 0, x ∈ R
N . (1.10)

We assume that for some constants λ0, ̂λ0 ∈ J with λ0 < λ̂0 the following holds:

(GP) For each λ ∈ [λ0, ̂λ0) equation (1.10) has a ground state φλ such that the following 

conditions are satisfied:

(c1) The map λ Ô→ φλ : [λ0, ̂λ0) → L∞(RN ) is continuous;

(c2) for each λ ∈ (λ0, ̂λ0), φ
λ is a nondegenerate ground state with Morse index 2;

(c3) φλ0 is a degenerate ground state with Morse index 1.

What we have in mind here is that there is a branch (φλ, λ), λ ∈ (λ0, ̂λ0), of ground 

states of (1.8) of Morse index 2 emanating from a “bifurcation point” (φλ0 , λ0) (note 

that the linearization of the equation at the degenerate ground state φλ0 has 0 as the 

second eigenvalue, as the Morse index of φλ0 is 1).

Theorem 1.3. Assume that f is an analytic function on R ×J satisfying (1.9), and (GP) 

holds for some λ0, ̂λ0 ∈ J with λ0 < λ̂0. Then there is a dense subset Λ of the interval 

(λ0, ̂λ0) such that for each λ ∈ Λ equation (1.8) has a positive solution u satisfying (1.3)

which is radially symmetric in x and quasiperiodic in y with 2 frequencies.

Note that this is not a local result: we are not making the given interval [λ0, ̂λ0)

smaller in the conclusion. We are able to make such a global statement due to the 

analyticity assumption. In the next section, we give a local version of this result for 

finitely differentiable nonlinearities f(u; λ).

Parameter dependent functions satisfying (c1)–(c3) are not difficult to find (an exam-

ple of a smooth function with these properties is used in [37]). In fact, they are likely to 

arise when one considers suitable homotopies between two equations of the form (1.4): 

one with a nondegenerate ground state of Morse index 2 and the other one with a unique 

ground state of Morse index 1. The nondegenerate ground state can often be continued 

up to a bifurcation point with a degenerate ground state, so there is a good chance that 

a part of the homotopy will give a function f(u; λ) with the desired properties. We spec-

ulate that such a scenario plays out in equations with some nonlinearities (1.7) when λ

is decreased or increased from a fixed value λ = λ̂0 for which a nondegenerate ground 

state of Morse index 2 exists. The analysis in [14] strongly suggests that this is indeed 

the case for suitable p < 5, p ≈ 5, and N = 3. Note, however, that to make use of Theo-

rem 1.3 we need f to be analytic, hence we are bound to take integer exponents p and 

q. With p = 5 (the critical exponent) and q = 2, say, [14] still provides some evidence, 

partly numerical in this case, that the family of ground states as in (GP) exists. If this 

is confirmed, Theorem 1.3 yields quasiperiodic partially localized positive solutions of 

some equations with combined-powers nonlinearities.

As will become transparent in Subsection 2.3, the only role of the degenerate ground 

state φλ0 in (GP)(c3) is to ensure that a certain function of λ is nonconstant, and this 
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nonconstancy can be used in place of condition (c3). Specifically, assuming conditions (c1) 

and (c2) in (GP), let µ1(λ) < µ2(λ) be the two negative eigenvalues of the Schrödinger 

operator −∆ −fu(φ
λ(x); λ) (acting on L2

rad(R
N )), for λ ∈ (λ0, ̂λ0). They are defined due 

to (c2). Now assume the following condition.

(c3)’ The function λ Ô→ µ1(λ)/µ2(λ) is nonconstant on (λ0, ̂λ0).

Theorem 1.4. Theorem 1.3 remains valid if condition (c3) in (GP) is replaced by condi-

tion (c3)’.

It is not difficult to show that condition (c3) implies condition (c3)’ (see Subsection 

2.3). We have stated one of our theorems with (c3) as a hypothesis because it is more 

explicit than (c3)’, and, as indicated above, it may be relatively easy to verify for equa-

tions of the form (1.1) for which one has some information about their ground states. 

Condition (c3)’, on the other hand, is more general, and it only involves nondegenerate 

ground states. For this reason, (c3)’ appears to be a robust condition which is likely to 

hold in a “typical” application. Its verification in specific equations may not be easy, 

however.

It is clear from the above results and discussion that the existence of a ground state 

of (1.4) with Morse index greater than 1 is an essential prerequisite for our results on 

quasiperiodic partially localized solutions. Now, for some important classes of nonlinear-

ities, including for instance the function f(u) = up − u with any p > 1, the ground state 

of (1.4) is unique up to translations if it exists (see [8,10,25,26,33,42]). In that case, there 

is no ground state of (1.4) with Morse index greater than 1 (see [11] or the introduction 

in [34] for a discussion of this point). The same goes for any equation (1.1) if N = 1. 

By elementary considerations, the ground state of (the ordinary differential equation) 

(1.4) is unique up to translations and has Morse index 1. The problem whether positive 

quasiperiodic partially localized solutions can exist in such equations cannot be resolved 

by our current method.

We remark that it is likely that all positive partially localized solutions are radially 

symmetric in x about some center in RN , cp. [6,17,21], although this has not been proved 

in full generality yet. In our theorems, we only consider solutions that are radial in x.

Positive partially localized solutions are but one class of solutions of (1.1) which are not 

fully localized, and other types of interesting solutions have been studied by a number of 

authors. We mention saddle-shaped and multiple-end solutions [7,13,15,16,23], solutions 

with infinitely many bumps and/or fronts formed along some directions [28,41], solutions 

periodic and/or discretely symmetric in the x-variables with homoclinic or heteroclinic 

transitions in the y variable [3,31,39], solutions whose limit profiles at infinity are given 

by ground states in lower dimensions [27], as well as solutions periodic in at least one 

variable and quasiperiodic in another variable [35].

We have organized the rest of this paper as follows. In the next section, we consider 

equations depending on parameters and give sufficient conditions for the existence of 
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partially localized quasiperiodic solutions. In the same section, we give a proof of Theo-

rems 1.3, 1.4, and related results in finite-differentiability settings. Theorem 1.2 is proved 

in Section 3.

2. Equations with parameters

In this section, we first recall a result from [35] dealing with a class of (possibly non-

homogeneous) elliptic problems with parameters. The theorem gives sufficient conditions 

for the existence of partially localized quasiperiodic solutions. We then show how equa-

tion (1.1) can be put in the context of such elliptic problems via the linearization of 

(1.1), or its parameter dependent version, at a ground state. We examine the behavior of 

negative eigenvalues of such a linearization as parameters are varied, which is a crucial 

ingredient in the proofs of our theorems. Finally, we specifically consider the case of 

a single parameter and prove existence of quasiperiodic solutions with 2 frequencies in 

some settings.

When considering a radial function h on RN , we often abuse the notation slightly and 

use the same symbol h in h = h(x) (viewing h as a function of x ∈ R
N ) as well as in 

h = h(r) (viewing h as a function of r = |x|).

2.1. A general setup

Consider the following equation with a parameter s ∈ R
d, s ≈ 0:

∆u+ uyy + a(x; s)u+ f1(x, u; s) = 0, x ∈ R
N , y ∈ R. (2.1)

Here f1 is a function on RN × R × B, B being an open neighborhood of the origin in 

R
d, such that

f1(x, 0; s) =
∂

∂u
f1(x, u; s)

∣

∣

u=0
= 0 (x ∈ R

N , s ∈ B). (2.2)

To formulate our hypotheses on the functions a and g, we need to introduce some nota-

tion. We denote by Cb(R
N ) the space of all continuous bounded (real-valued) functions 

on RN and by Ck
b(R

N ) the space of functions on RN with continuous bounded deriva-

tives up to order k, k ∈ N := {0, 1, 2, . . . }. By Crad(R
N ), Ck

rad(R
N ) we denote the 

subspaces of Cb(R
N ) and Ck

b (R
N ), respectively, consisting of the functions which are 

radially symmetric in x; L2
rad(R

N ) is the space of all radial L2(RN )-functions, and for 

k ∈ N, Hk
rad(R

N ) := Hk(RN ) ∩ L2
rad(R

N ) is the space of all radial Hk(RN )-functions. 

When needed, we assume that these spaces are equipped with the usual norms and take 

the induced norms on the subspaces.

Given integers n > 1 and d ≥ n − 1, let B be an open neighborhood of the origin in 

R
d. We assume that the functions a and f1 satisfy the following hypotheses with some 

integers
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K > 4n+ 1, m >
N

2
. (2.3)

(S1) a(·; s) ∈ Cm+1
rad (RN ) for each s ∈ B, and the map s ∈ B Ô→ a(·; s) ∈ Cm+1

rad (RN ) is 

of class CK+1.

(S2) f1 ∈ CK+m+4(RN × R × B), and for each ϑ > 0 the function f1 is bounded on 

R
N × [−ϑ, ϑ] × B together with all its partial derivatives up to order K +m + 4. 

Also, (2.2) holds and f1(x, u; s) is radially symmetric in x.

The next hypotheses concern the Schrödinger operator A1(s) := −∆ − a(x; s) acting 

on L2
rad(R

N ) with domain H2
rad(R

N ).

(A1)(a) There exists L < 0 such that

lim sup
|x|→∞

a(x; s) ≤ L (s ∈ B).

(A1)(b) For all s ∈ B, A1(s) has exactly n nonpositive eigenvalues,

µ1(s) < µ2(s) < · · · < µn(s), (2.4)

and µn(s) < 0.

Hypotheses (A1)(a) and (A1)(b) will collectively be referred to as (A1). Hypothesis 

(A1)(a) guarantees that for all s the essential spectrum σess(A1(s)) is contained in 

[−L, ∞) (see [40]). Since we work in the radially symmetric setting, the eigenvalues (2.4)

are all simple, while −L > 0, hypothesis (S1) and the simplicity of the eigenvalues in 

(A1)(b) imply that µ1(s), . . . , µn(s) are C
K+1 functions of s (see [22]).

We further assume the following nondegeneracy condition. Consider the map s Ô→
ω(s) := (ω1(s), . . . , ωn(s))

T (ω(s) is a column vector), where

ωj(s) :=
√

|µj(s)|, j = 1, . . . , n. (2.5)

(ND) The n × (d + 1) matrix 
[

∇ω(0) ω(0) 
]

has rank n.

The following theorem is a minor reformulation of Theorem 2.5 of [35]. (We remark 

that condition (ND) also appears in a theorem of [43] on quasiperiodic solutions of elliptic 

equations on a 2-dimensional strip.)

Theorem 2.1. Let K and m be as in (2.3). Assume that hypotheses (S1), (S2), (A1),

(ND) are satisfied. Then there is an uncountable set W ⊂ R
n consisting of ratio-

nally independent vectors, no two of them being linearly dependent, such that for every 

(ω̄1, . . . , ω̄n) ∈ W the following holds: equation (2.1) has for some s ∈ B a solution u
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such that (1.3) holds, and u(x, y) is radially symmetric in x and quasiperiodic in y with 

frequencies ω̄1, . . . , ω̄n.

2.2. Spatially homogeneous equations

In this subsection, we assume that n, d, and ℓ are fixed integers satisfying

n > 1, d ≥ n − 1, ℓ > N/2 + 4n+ 7. (2.6)

Denoting by Bδ the open ball around the origin in Rd of radius δ, we also assume

for some δ > 0, f : R × Bδ → R is a Cℓ function such that

f(0; s) = 0, fu(0; s) < 0 (s ∈ Bδ).
(2.7)

Our goal is to show how Theorem 2.1 can be applied in the spatially homogeneous 

equation

∆u+ uyy + f(u; s) = 0, (x, y) ∈ R
N+1, (2.8)

where s ∈ Bδ serves as a parameter. The associated equation for the ground states on 

R
N is

∆u+ f(u; s) = 0, x ∈ R
N . (2.9)

We formulate two additional hypotheses. The first one concerns the equation for s = 0

only.

(G0) Equation (2.9) with s = 0 has a nondegenerate ground state φ0 with Morse index 

n.

To formulate our second hypothesis, which involves equation (2.9) for s ≈ 0, we need 

some preparation. Denote by Crad,0(R
N ) the closed subspace of Crad(R

N ) consisting of 

the functions converging to 0 as |x| → ∞; as usual we assume the induced norm (the 

supremum norm) on Crad,0(R
N ). Condition (G0) implies, upon an application of the 

implicit function theorem, that the following statement is valid (see Lemma 2.3 below 

for a more detailed statement), possibly after the radius δ > 0 is shrunk.

(Gs) There is neighborhood U of φ0 in Crad,0(R
N ) such that for each s ∈ Bδ equation 

(2.9) has a unique ground state φs in U ; this ground state is nondegenerate with 

Morse index n; and the map s Ô→ φs : Bδ → Crad,0(R
N ) is of class Cℓ.

The fact that the ground states φs are nondegenerate and have Morse index n means 

that for each s ∈ Bδ the Schrödinger operator −∆ − fu(φ
s(x); s) (acting on L2

rad(R
N )

with domain H2
rad(R

N )) has exactly n negative eigenvalues
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µ1(s) < µ2(s) < · · · < µn(s), (2.10)

and 0 is not its eigenvalue. The eigenvalues are of class Cℓ−1 as functions of s ∈ Bδ. 

Consider now the n × (d + 1) matrix

M(s) :=
[

∇ω(s) ω(s)
]

, s ∈ Bδ, (2.11)

where ω(s) = (ω1(s), . . . , ωn(s))
T and ωj(s) :=

√

−µj(s) (j = 1, . . . , n). We impose 

on this matrix the same condition as in the previous subsection; this is our second 

hypothesis:

(ND0) The matrix M(0) has rank n.

The main result of this subsection is the following theorem.

Theorem 2.2. Assume that n, d, and ℓ satisfy (2.6), f satisfies (2.7), and (G0) and (ND0) 

hold. Then there is an uncountable set W ⊂ R
n consisting of rationally independent 

vectors, no two of them being linearly dependent, such that for every (ω̄1, . . . , ω̄n) ∈ W

equation (2.8) has for some s ∈ Bδ a solution u such that (1.3) holds, and u(x, y) is 

radially symmetric in x and quasiperiodic in y with frequencies ω̄1, . . . , ω̄n.

For the proof of the theorem, we need some regularity statements from the following 

lemma (the analyticity statement in this lemma will be needed in the next subsection).

Lemma 2.3. Assume that n, d, and ℓ satisfy (2.6), f satisfies (2.7), and (G0) holds. Then, 

possibly after δ > 0 is made smaller, there is a neighborhood U of φ0 in Crad,0(R
N ) and 

a family φs, s ∈ Bδ such that the following statements are valid:

(i) For each s ∈ Bδ, φs is a unique ground state of (2.9) in U .

(ii) The map s Ô→ φs ∈ Crad,0(R
N ) is of class Cℓ and it is analytic if the function 

f : R × Bδ → R is analytic.

(iii) The function (x, s) Ô→ φs(x) is of class Cℓ, and it is bounded on RN × Bδ together 

with all its partial derivatives up to order ℓ.

(iv) For each s ∈ Bδ, the ground state φs is nondegenerate and has Morse index n.

Proof. Set a(x) := fu(φ
0(x); 0). By (G0), the operator −∆ − a(x) (considered on 

L2
rad(R

N )) has exactly n negative eigenvalues, all simple, and 0 is not its eigenvalue. 

Also, due to the decay of the ground states, a(x) → fu(0; 0) < 0 as |x| → ∞, so the 
essential spectrum of −∆ − a(x) is contained in a half-line (κ, ∞) for some κ > 0. These 

properties are preserved under small L∞ perturbations of the function a. Therefore, 

statement (iv) is a direct consequence of statement (ii), once the latter is established.
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We now consider the operator −∆ − a(x) in a different setting, namely, as a closed 

operator on the space X := Crad,0(R
N ). The X-realization of −∆ − a(x) is the operator 

L with domain

D(L) := {u ∈ ∩p>1W 2,p
loc (R

N ) : u,∆u ∈ X}.

given by Lv = −∆v − av. For this realization, it is still true that 0 is not in its spectrum 

(the essential spectrum is still away from 0 and 0 is not an eigenvalue by elliptic regu-

larity), so L−1 is a bounded linear operator on X. We now rewrite equation (2.9) as an 

equation for u ∈ X:

H(u; s) := u − L−1(f̃(u; s)− au) = 0, (2.12)

where f̃ is the Nemytskii operator of the function f :

f̃(u; s)(x) := f(u(x); s) (u ∈ X, s ∈ Bδ, x ∈ R
N ).

It is well-known (and straightforward to prove) that the assumptions on f imply that 

f̃ : X × Bδ → X is of class Cℓ. Moreover, if f is analytic, so is f̃ . This can be easily 

verified (cp. [5]) using bounds on the derivatives of analytic functions and the fact that 

the ranges of all functions contained in any ball in X are contained in a compact subset of 

R. Clearly, H(φ0; 0) = 0 and DuH(φ0; 0) is the identity on X. Thus, the implicit function 

theorem applies to H, which yields a neighborhood U of φ0 in Crad,0(R
N ) and—making 

δ > 0 smaller if necessary—a family φs, s ∈ Bδ, such that statements (i) and (ii) hold.

We now show by induction in k = 0, 1, . . . , ℓ that the following statement is valid. The 

function φs(x) is of class Ck on RN × Bδ and all its partial derivatives of order k are 

bounded on RN × B̄δ (with δ > 0 made smaller if necessary). This will prove statement 

(iii) and complete the proof of the theorem.

For k = 0, the statement follows immediately from (ii).

Assume the statement is valid for some k < ℓ. Let δ̃ stand for any partial derivative 

with respect to x1, . . . , xN , s1, . . . , sd of order k; that is, δ̃ is a “product” of k elements 

from {δx1
, . . . , δxN

, δs1
, . . . , δsd

}. All we need to show is that the function δ̃φs(x) is of 

class C1 and has bounded first-order partial derivatives on RN × Bδ.

We use an integral representation of the solutions of the equation u −∆u = h(x) on 

R
N . Let G(x) be the Green function for the elliptic operator I −∆ on RN . An explicit 

form (for dimensions N = 2, 3) or a Bessel potential form of G are available, but are not 

needed here. We recall some properties of G which are relevant for us. The function G

is smooth in RN \ {0}, and the functions G, ∂xi
G, i = 1, . . . , N (classical derivatives on 

R
N \{0}) are integrable on RN . For any bounded continuous function h, the convolution 

integral

u(x) =

∫

RN

G(x − y)h(y) dy =

∫

RN

G(y)h(x − y) dy (2.13)
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defines a continuous function u which is a unique bounded weak solution of the equation 

u −∆u = h on RN . Moreover, u ∈ C1
b(R

N ) and for i = 1, . . . , N one has

∂xi
u(x) =

∫

RN

∂xi
G(x − y)h(y) dy. (2.14)

Except perhaps for the last statement, these are standard properties of Green’s functions 

of general elliptic operators with constant coefficients (see, for example, [24, Chapter 1]). 

For the proof of (2.14) and the C1 property of u, one can use the estimates on the 

derivatives of G (see Corollary 1.5.1 and Theorem 1.7.1 in [24]) and follow the arguments 

given in the proof of [19, Lemma 4.1].

Denoting

h(x; s) := f(φs(x); s) + φs(x), (2.15)

and applying the above to φs, a bounded solution of u −∆u = f(u; s) + u, we obtain

φs(x) =

∫

RN

G(x − y)h(y; s) dy =

∫

RN

G(y)h(x − y; s) dy. (2.16)

Note that the induction hypothesis implies that h is of class Ck on RN × Bδ and has all 

its partial derivatives of order k bounded on RN × Bδ.

Let us now return to the function δ̃φs(x). Clearly, due to the integrability of G, we 

can differentiate the second integral in (2.16) to obtain

δ̃φs(x) =

∫

RN

G(y)δ̃h(x − y; s) dy =

∫

RN

G(x − y)δ̃h(y; s) dy.

By the above remarks, we can next take the derivatives with respect to xi, i ∈ {1, . . . , N}, 
to obtain

∂xi
δ̃φs(x) =

∫

RN

∂xi
G(x − y)δ̃h(y; s) dy =

∫

RN

∂xi
G(y)δ̃h(x − y; s) dy.

Using the integrability of ∂xi
G, the continuity and boundedness properties of δ̃h, and 

the dominated convergence theorem, one shows easily that ∂xi
δ̃φs(x) is continuous and 

bounded on RN × Bδ.

We now deal with the derivatives ∂sj
δ̃φs(x), j = 1, . . . , d. We obtain the desired 

continuity and boundedness of these derivatives directly from statement (ii) if δ̃ contains 

no derivatives with respect to the variables x1, . . . , xN . Otherwise, if δ̃ contains at least 

one derivative δxi
for some i, we have, changing the order of the partial derivatives 

in δ̃ if necessary, δ̃φs(x) = δxi
δ̂φs(x), where δ̂ is a partial derivative of order k − 1. 

Differentiating as above, we obtain, first,
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δ̃φs(x) =

∫

RN

∂xi
G(y)δ̂h(x − y; s) dy,

and then

∂sj
δ̃φs(x) =

∫

RN

∂xi
G(y)∂sj

δ̂h(x − y; s) dy.

Arguing as above, we obtain the desired continuity and boundedness properties of these 

functions as well. 2

Proof of Theorem 2.2. Modifying the nonlinearity f(u; s) in {(u, s) : u < 0} only, we 
will assume that the following additional condition holds:

f(u; s) > 0 (u < 0, s ∈ Bδ). (2.17)

This is at no cost to generality as positive solutions are unaffected by such a modification. 

What we gain from this extra assumption is that all bounded solutions of (2.8) are 

nonnegative, as one can easily show by employing negative constant subsolutions. By 

the strong maximum principle, any nonnegative solution is either identical to zero or 

strictly positive.

With φs as in (Gs), set

a(x; s) := fu(φ
s(x); s), (2.18)

f1(x, u; s) := f(φs(x) + u; s)− f(φs(x); s)− a(x; s)u. (2.19)

We verify that these functions satisfy the hypotheses of Theorem 2.1 with K := 4n + 2, 

m := ℓ − 4n − 7 > N/2 (cp. (2.6), (2.3)). Obviously, f1 satisfies (2.2). Since ground 

states are radially symmetric in x, so are the functions a and f1. Our choices of K and 

m yield ℓ = K +m + 5; the regularity assumption on f and Lemma 2.3(iii) imply the 

regularity properties in (S1), (S2) with B = Bδ/2 (so that B̄ ⊂ Bδ). The decay of the 

ground states and the second condition in (2.7) imply that (A1)(a) holds, possibly after 

δ > 0 is made smaller. Condition (A1)(b) holds, as already noted before the theorem 

(cp. (2.10)), and (ND0), which is a hypothesis of this theorem, is equivalent to (ND). 

Thus, the hypotheses of Theorem 2.1 are all satisfied.

Now, with a and f1 as in (2.18), (2.19), u = u(x, y) is a solution of (2.8) for some 

s ∈ Bδ if (and only if) u = φs + ũ for a solution ũ of (2.1) (with the same s). Since 

φs is a radial (in x) function, independent of y and satisfying φs(x) → 0 as |x| → ∞, 
the function u(x, y) is quasiperiodic in y, radially symmetric in x, and decaying to 0 

as |x| → ∞ uniformly in y, if ũ has all these properties. In this case, u and ũ share 

the quasiperiodicity frequencies. Therefore, the conclusion of Theorem 2.2 follows from 

Theorem 2.1; we just need to note that the solutions obtained this way are positive. 

Indeed, they are bounded hence nonnegative due to (2.17), and, being quasiperiodic in 
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the sense of our definition (in particular, not periodic), they are nonzero, hence strictly 

positive. 2

Remark 2.4.

(i) Note that hypotheses (G0), (ND0) are “local” (in fact, they are conditions on φs

and M(s) at s = 0 only, but because of the gradient involved in the definition of 

M(s), we need to consider ω(s) for s ≈ 0). Therefore, the conclusion of the theorem 

remains valid when δ > 0 is shrunk arbitrarily. This is useful for density results such 

as Theorems 1.2 and 1.3.

(ii) The assumption that M(0) has rank n can be replaced by the assumption that there 

is a sequence sj converging to the origin such that M(sj) has rank n for j = 1, 2, . . . . 

The conclusion of Theorem 2.2 and the previous remark remain valid under this 

weaker assumption. To see this, simply apply Theorem 2.2 for j = 1, 2, . . . , with sj

taking up the role of the origin, that is, with the function f(u; sj + s) in place of 

f(u; s).

(iii) In this paper, we do not have much use of the property that no two vectors in the 

frequency set W are linearly dependent. This is more meaningful in some scaling 

invariant problems, such as those considered in [35].

(iv) While Theorems 2.1, 2.2 state that an uncountable set of quasiperiodic solutions 

(whose frequencies form an uncountable set W ) can be found within a given para-

metric family of equations, the theorems do not say anything about the multiplicity 

of solutions for any single equation. Since the parameters can take uncountably 

many values, the existence of uncountably many solutions for any single one of 

them is not guaranteed. This is the reason for the lack of any multiplicity statement 

in Theorems 1.1, 1.2.

For the verification of condition (ND0) in applications, some understanding of the 

partial derivatives of the functions s Ô→ µj(s) at s = 0 is needed. The rest of this 

subsection is devoted to a computation of these derivatives.

Denote by ψ1(·; s), . . . , ψn(·; s) the eigenfunctions of the operator −∆ − fu(φ
s(x); s)

(acting on L2
rad(R

N )) associated with the eigenvalues µ1(s), . . . , µn(s), respectively, all 

normalized in the L2(RN ) norm. This determines the eigenfunctions uniquely up to a 

sign. The signs can be chosen in such a way that the eigenfunctions are of class C1 as 

H2
rad(R

N )-valued functions of s ∈ Bδ, and this is what we will assume below. We derive 

the following formulas:

Proposition 2.5. Under the hypotheses of Theorem 2.2, the following relations hold for 

i = 1, . . . , d, j = 1, . . . , n:

∂µj(s)

∂si

∣

∣

s=0
= −

∫

RN

(

fuu(φ
0(x); 0)φ̇i(x) + g′

i(φ
0(x))

)

(ψj(x; 0))
2 dx, (2.20)
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where

gi(u) =
∂f(u; s)

∂si

∣

∣

s=0
(u ∈ R, i = 1, . . . , d), (2.21)

and φ̇i ∈ H2
rad(R

N ) is the unique solution of the equation

∆φ̇i + fu(φ
0(x); 0)φ̇i + gi(φ

0(x)) = 0. (2.22)

We remark that the existence and uniqueness of the solution φ̇i is a consequence of 

the nondegeneracy of the ground state φ0. Note that gi(0) = 0 and gi ∈ Cℓ−1, which 

implies that gi(φ
0(x)) decays exponentially as |x| → ∞, just like φ0(x), and is therefore 

in L2
rad(R

N ).

Proof of Proposition 2.5. We first simplify the notation slightly. Clearly, it is sufficient 

to consider the case d = 1 of just one parameter s (the others being fixed). Also, since 

only the first derivative of f(u; s) with respect to s at s = 0 enters the computation and 

f is of class Cℓ in all its arguments, it is sufficient to take the nonlinearity f(u; s) in 

(2.9) in the form f(u) + sg(u), where we have written g1 = g.

Substituting u = φs in (2.9), we differentiate the equation with respect to s at s =

0, noting that this operation can be performed thanks to Lemma 2.3. We obtain the 

equation for φ̇ = dφs/ds
∣

∣

s=0
, which reads as (2.22) (with gi = g):

∆φ̇+ f ′(φ0(x))φ̇+ g(φ0(x)) = 0. (2.23)

Next, consider the equation for the eigenfunction ψj(·; s):

∆ψj +
(

f ′(φs(x)) + sg′(φs(x))
)

ψj + µj(s)ψj = 0. (2.24)

Differentiating with respect to s at s = 0, we obtain

∆ψ̇j + f ′(φ0(x))ψ̇j + µj(0)ψ̇j

+
(

f ′′(φ0(x))φ̇(x) + g′(φ0(x))
)

ψj(x; 0) + µ̇jψj(x; 0) = 0, (2.25)

where

ψ̇j =
dψj(·; s)

ds

∣

∣

s=0
, µ̇j =

dµj(s)

ds

∣

∣

s=0
.

Also, by the L2 normalization of ψj(·; s),
∫

RN

ψj(x; 0)ψ̇j(x) dx = 0.
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Multiplying equation (2.25) by ψj(x; 0) and integrating by parts over RN , we obtain

∫

RN

(

f ′′(φ0(x))φ̇(x) + g′(φ0(x))
)

(ψj(x; 0))
2 dx+ µ̇j = 0.

This verifies formula (2.20). 2

In the radial variable, the integrals in (2.20) read as follows:

∂µj(s)

∂si

∣

∣

s=0
= σN

∞
∫

0

(

fuu(φ
0(r); 0)φ̇i(r) + g′

i(φ
0(r))

)

(ψj(r; 0))
2rN−1 dr, (2.26)

where σN is the surface area of the unit sphere in RN .

Remark 2.6. Clearly, condition (ND0) is satisfied if the matrix 
[

∇ω(0) 
]

has rank n, and 

this is the case, due to the relations ωj(s) :=
√

−µj(s), if the n × d matrix

[

∂µj(s)

∂si

∣

∣

s=0

]

j,i

,

whose entries are given in (2.26), has rank n.

2.3. Two frequencies, one parameter

Obviously, for the matrix in (2.11) to have rank n the number of parameters has to 

be at least n − 1, thus the assumption d ≥ n − 1 in the previous subsection. When 

n = 2, that is, when quasiperiodic solutions with two frequencies are sought, just one 

parameter is sufficient, which has some advantages. In this subsection, we prove a few 

results, including Theorem 1.3, specific to the case n = 2.

For now, we continue to assume the hypotheses from the first paragraph of the previous 

section (cp. (2.6), (2.7)), taking n = 2 and d = 1. Also, we assume condition (G0), define 

the eigenvalues µ1(s), µ2(s) as in (2.10), and take ωj(s) :=
√

−µj(s) (j = 1, 2).

Consider first of all the determinant of the 2 × 2 matrix M(s) in (2.11):

detM(s) = det

[

ω′
1(s) ω1(s)

ω′
2(s) ω2(s)

]

= ω1(s)ω2(s)

(

ω′
1(s)

ω1(s)
− ω′

2(s)

ω2(s)

)

= ω1(s)ω2(s)

(

log
ω1(s)

ω2(s)

)′

=

√

µ1(s)µ2(s)

2

(

log
µ1(s)

µ2(s)

)′
.

(2.27)

In view of this expression, Theorem 2.2 for n = 2 implies the following result.
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Theorem 2.7. Assume that the hypotheses of Theorem 2.2 are satisfied with n = 2, d = 1, 

and with (ND0) replaced by the following condition: the function s Ô→ µ1(s)/µ2(s) is not 

constant on any interval (−ǫ, ǫ) with ǫ ∈ (0, δ). Then there is a sequence s̄j → 0 such that 

for j = 1, 2, . . . the following holds. Equation (2.8) with s = s̄j has a positive solution u

satisfying (1.3) such that u(x, y) is radially symmetric in x and quasiperiodic in y (with 

2 frequencies).

Proof. By (2.27), the assumption on the function s Ô→ µ1(s)/µ2(s) implies that there is 

a sequence sj → 0 such that detM(sj) Ó= 0, that is, M(sj) has rank 2. The conclusion 

of the theorem now follows from Theorem 2.2 and Remarks 2.4(i), (ii): we choose a 

sequence δj → 0, with 0 < δj < δ and apply Theorem 2.2 with f(u; sj + s), δj in place of 

f(u; s), δ, respectively. We then take s̄j to be any number s ∈ Bδj
as in the conclusion 

of Theorem 2.2. 2

Using the previous theorem, we now prove Theorems 1.3, 1.4, and related local results 

for Cℓ nonlinearities.

We consider equations (1.8), (1.10) with f(u; λ) satisfying (1.9). Assume for now that 

f(u; λ) is of class Cℓ with ℓ > N/2 +15 (as in (2.6)), and the following assumption (GP), 

copied here from the introduction, is satisfied:

(GP) There are positive constants λ0 < λ̂0 such that for each λ ∈ [λ0, ̂λ0) equation (1.10)

has a ground state φλ such that the following conditions are satisfied:

(c1) The map λ Ô→ φλ : [λ0, ̂λ0) → L∞(RN ) is continuous;

(c2) for each λ ∈ (λ0, ̂λ0), φ
λ is a nondegenerate ground state with Morse index 2;

(c3) φλ0 is degenerate ground state with Morse index 1.

Theorem 2.8. Under the above assumptions, there is a sequence λ̄j in (λ0, ̂λ0) such that 

λ̄j → λ0 and for j = 1, 2, . . . the following holds. Equation (1.8) with λ = λ̄j has 

a positive solution u satisfying (1.3) such that u(x, y) is radially symmetric in x and 

quasiperiodic in y.

Proof. Denote by µ̄1(λ), µ̄2(λ), with µ̄1(λ) < µ̄2(λ), the two nonpositive eigenvalues of 

the Schrödinger operator −∆ −fu(φ
λ(x); λ) (acting on L2

rad). By (c2) and (c3), µ̄2(λ) < 0

for λ ∈ (λ0, ̂λ0) and µ̄2(λ) = 0. By (c1), µ̄1(λ), µ̄2(λ) are continuous as functions of λ, 

on the interval [λ0, ̂λ0). Moreover, there is a constant γ < 0 such that µ̄1(λ) ≤ γ < 0.

In view of the nondegeneracy of the ground states in (GP) and the continuity in (c1), 

the implicit function theorem implies (cp. Lemma 2.3) that the map in (c1) is of class 

Cℓ on the open interval (λ0, ̂λ0), which in turn implies that the map λ Ô→ fu(φ
λ(·); λ) ∈

Cb(R
N ) is of class Cℓ−1. It then follows that the functions µ̄1(λ), µ̄2(λ) are of class 

Cℓ−1 on (λ0, ̂λ0). These functions being continuous on [λ0, ̂λ0), the relations µ̄1(λ) < γ, 

µ̄2(λ0) = 0, and µ̄2(λ) < 0 for λ ∈ (λ0, ̂λ0) clearly imply that there is a sequence λj
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in (λ0, ̂λ0) such that λj → λ0 and µ̄1(λ)/µ̄2(λ) has a nonzero derivative at λ = λj , for 

j = 1, 2, . . . . Hence, for each j, Theorem 2.7 applies to the equation

∆u+ uyy + f(u;λj + s) = 0, (x, y) ∈ R
N × R, (2.28)

s ≈ 0. Indeed, the eigenvalues µ1(s), µ2(s) of −∆ − fu(φ
λj+s(x); λj + s) clearly coincide 

with µ̄1(λj+s), µ̄2(λj+s), so the hypotheses of Theorem 2.7 are satisfied. Denote by s̄j
k, 

k = 1, 2, . . . , the sequence from Theorem 2.7. Passing to a subsequence, we may assume 

that s̄j
j → 0 as j → ∞. Choosing the resulting approximating values λ̄j := λj + s̄j

j so 

that |λj − λ̄j | → 0, we obtain a sequence λ̄j for which the conclusion of the theorem 

holds. 2

Note that the only use of condition (c3) in the previous proof was to guarantee the 

existence of a sequence λj in (λ0, ̂λ0) such that λj → λ0 and µ̄1(λ)/µ̄2(λ) has a nonzero 

derivative at λ = λj , for j = 1, 2, . . . . Obviously, this is also guaranteed if instead of (c3) 

one assumes the following condition:

(c3)” For any ǫ ∈ (0, ̂λ0 − λ0) the function λ Ô→ µ̄1(λ)/µ̄2(λ) is nonconstant on the 

interval (λ0, λ0 + ǫ).

Thus, we obtain the following local version of Theorem 1.4:

Theorem 2.9. Theorem 2.8 remains valid if condition (c3) in (GP) is replaced by condi-

tion (c3)”.

We conclude this section with the proof of Theorems 1.3, 1.4.

Proof of Theorems 1.3, 1.4. We use similar arguments as in the proof of Theorem 2.8

combined with the analyticity of f(u; λ).

Under the analyticity assumption, the functions µ̄1(λ), µ̄2(λ) are analytic on (λ0, ̂λ0). 

As in the proof of Theorem 2.8, the assumption (GP) of Theorem 1.3 implies that the 

function µ̄1(λ)/µ̄2(λ) is not constant on (λ0, ̂λ0); in Theorem 1.4 this is assumed directly 

in condition (c3)’. In either case, by the analyticity, µ̄1(λ)/µ̄2(λ) is not constant on any 

interval. Therefore, we can again apply Theorem 2.7 to equation (2.28), only this time 

we can take arbitrary λj ∈ (λ0, ̂λ0). This implies that there indeed exists a dense subset 

Λ ⊂ (λ0, ̂λ0) as in the conclusion of Theorem 1.3. 2

3. Proof of Theorem 1.2

Assuming that f : R → R satisfies the hypotheses of Theorem 1.2, we prove the 

conclusion of the theorem in two steps carried out in the following two subsections. First, 

we show that f can be perturbed slightly (with respect to the C1 norm) in such a way that 

after the perturbation condition (G) is still satisfied, with the same n, and in addition 
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the ground state in (G) is nondegenerate. After a further perturbation, maintaining the 

previous properties, we can also assume that f is of class C∞. In the second step, we put f

in an n-parameter family of functions f(u) +s1g1(u) +· · ·+sngn(u), s = (s1, . . . , sn) ≈ 0. 
We show that smooth functions g1, . . . , gn can always be chosen such that the matrix 

M(0) defined as in Subsection 2.2 has rank n. This will make Theorem 2.2 applicable 

and the desired conclusion will follow.

We remark that in our approach, the two nondegeneracy properties—the nondegen-

eracy of the ground state in condition (G) and the full-rank property of the matrix in 

(ND0)—are obtained by a direct perturbation argument. An alternative approach could 

be to prove that such properties are in some sense generic for functions f in the consid-

ered class. Typically, the parametric Smale-Sard theorem, or transversality theorem, is 

used in such an approach (see, for example, [12, Section 4], for an application of transver-

sality in the verification of a nondegeneracy condition in a bifurcation problem involving 

elliptic equations with a similar structure). The question whether the genericity of the 

two nondegeneracy properties can be established in our setting could be of independent 

interest, but we have not pursued it. One of the reasons we decided to take the direct 

perturbation route is that not only did we need to achieve that an approximation f̃ of 

a given function f has nondegenerate ground states, we had to make sure that one of 

those ground states has the same Morse index as φ, the ground state given in condition 

(G). This would not be guaranteed by the genericity result.

3.1. Nondegeneracy of the ground state

Throughout this subsection we assume that f : R → R is a C1 function satisfying 

conditions (1.2) and (G) for some n ≥ 2. We also recall the notation introduced in 

Section 1: ‖g‖1 = sup{|g(u)|, |g′(u)| : u ∈ R}.

Lemma 3.1. For any ǫ > 0 there is a C1 function f̃ such that f̃(0) = 0 > f̃ ′(0), ‖f−f̃‖1 <

ǫ, and condition (G) is satisfied with f replaced by f̃ and with the additional property 

that the ground state in (G) is nondegenerate.

We prepare the proof of this lemma by some preliminary observations. Let φ be a 

ground state of (1.4), as in (G). In spherical coordinates, the (radial) function φ satisfies 

the equation

φrr +
N − 1

r
φr + f(φ) = 0, r > 0. (3.1)

Also, φr(0) = 0, φr(r) < 0 for r > 0, and φ(r), φr(r) decay exponentially to 0 as r → ∞. 
Differentiating (3.1), we see that W := −φr satisfies

wrr +
N − 1

r
wr +

(

a(r)− N − 1
r2

)

w = 0, r > 0, (3.2)
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with

a(r) := f ′(φ(r)). (3.3)

Further, by the above properties of φ, we have W (0) = 0, W (r) = −φr(r) > 0 for r > 0, 

and W (r) decays exponentially to 0 as r → ∞. The last property and equation (3.2)

imply that Wr decays exponentially as well. Note that limr→∞ a(r) = f ′(0) < 0. We will 

keep the notation a and W for the functions introduced above in the remainder of this 

subsection.

The function W can viewed as an eigenfunction (corresponding to the eigenvalue 

ν = 0) of the following (singular) eigenvalue problem in the radial variable r:

wrr +
N − 1

r
wr +

(

a(r)− N − 1
r2

+ ν

)

w = 0, r > 0, (3.4)

w(0) = 0, w(r)→ 0 as r → ∞. (3.5)

In the variable x ∈ R
N , W also represents an eigenfunction of a (regular) eigenvalue 

problem. Namely, the function V (x) :=W (|x|)x1/|x| = −φx1
(x) is a positive eigenfunc-

tion of the operator −∆ −a(r) on the half-space RN
+ := {x ∈ R

N : x1 > 0} with Dirichlet 

boundary condition on ∂R
N
+ ; equivalently, V (x) can be viewed as an eigenfunction of 

the operator −∆ − a(r) considered on the closed subspace L2
o(R

N ) of L2(RN ) consisting 

of all functions odd in x1 with domain H2
o (R

N ) := H2(RN ) ∩ L2
o(R

N ). We also define 

v(x) := w(|x|)x1/|x| where w is a constant multiple of W such that v is positive on the 

half space RN
+ and v is normalized in the L2(RN )-norm. The functions v and w defined 

this way are assumed to be fixed in the rest of this subsection.

Now, the ground state φ is degenerate if and only if 0 is also an eigenvalue of −∆ −a(r)

in the radial space. The main idea of the proof of Lemma 3.1 consists in the following. We 

first find a perturbation ã of the function a such that the perturbed operator −∆ − ã(r)

still has 0 as an eigenvalue for the operator on L2
o(R

N ), but 0 is no longer an eigenvalue 

in the radial space. We then use a reverse construction, finding a nonlinearity f̃ and a 

ground state φ̃ of

∆u+ f̃(u) = 0, x ∈ R
N , (3.6)

such that ã(r) = f̃ ′(φ̃(r)). The resulting function f̃ will have all the desired properties 

if ã is close enough to a.

The reverse construction is described in the following results of [34].

Lemma 3.2. Assume the following hypotheses.

(a) ã(r) is a continuous function on [0, ∞) which converges to a negative limit as r → ∞.

(b) w̃ ∈ C1([0, ∞)) is a positive solution of (3.2), with a replaced by ã, which satisfies 

the following conditions:
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(i) w̃(0) = 0, w̃r(0) > 0,

(ii) eβrw̃(r) → 0, eβrw̃r(r) → 0 as r → ∞ for some β > 0.

Then

φ̃(r) :=

∞
∫

r

w̃(t) dt, r = |x| ≥ 0, (3.7)

defines a ground state of (3.6) for a C1 function f̃ that satisfies (1.2) and for which

f̃ ′(φ̃(r)) = ã(r) (r ≥ 0). (3.8)

On the interval [0, φ̃(0)], f̃ is given explicitly by

f̃(z) =

z
∫

0

ã(ξ(τ))dτ, (3.9)

where ξ : [0, ∞) → (0, φ̃(0)] is the inverse of φ̃.

Of course, we need to guarantee that the function f̃ resulting from the reverse con-

struction is a small perturbation of f if ã(r) is a small perturbation of a(r) = f ′(φ(r)). 

This is the purpose of the following lemma.

Lemma 3.3. Given any ǫ > 0 there is δ > 0 such that the following statement is valid. 

Let ã be any function satisfying the hypotheses of Lemma 3.2 together with the relation 

‖ã − a‖L∞(0,∞) < δ, and let the positive solution w̃ in Lemma 3.2(b) be normalized so 

that

∞
∫

0

w̃(r) dr = φ(0). (3.10)

Then, with φ̃ and f̃ as in (3.7), (3.9), the function f̃ can be extended from [0, φ̃(0)] to R

in such a way that ‖f − f̃‖1 < ǫ.

In the proof of Lemma 3.3, and then again in the proof of Lemma 3.4, we will use 

some perturbation results from [37, Section 4], which we now recall.

As noted above, ν = 0 is an eigenvalue of the operator −∆ − a(r) considered on 

L2
o(R

N ) with domain H2
o (R

N ). The corresponding eigenfunction −φx1
is positive in RN

+ , 

which means that ν = 0 is the principal eigenvalue. Here and below, the principal eigen-

value refers to an eigenvalue below the essential spectrum admitting an eigenfunction 

which is positive in the half space RN
+ . It is well known that, if it exists, such an eigen-

value is unique and simple (also, being below the essential spectrum, it is an isolated 
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eigenvalue). Therefore, if U is a sufficiently small neighborhood of a in Crad(R
N ), then 

for each ã ∈ U the principal eigenvalue ν(ã) of the operator −∆ − ã(r) on L2
o(R

N ) (with 

domain H2
o (R

N )) is well defined, and the corresponding eigenfunction—referred to as 

the principal eigenfunction—is defined uniquely up to a scalar multiple. Denoting by 

v(ã) the principal eigenfunction which is normalized in the L2(RN )-norm and positive 

in RN
+ , the functions

ã Ô→ ν(ã) : U → R, ã Ô→ v(ã) : U → H2
o (R

N )

are both smooth. Combining this result with elliptic regularity, we obtain that, for any 

p ≥ 2, v(ã) depends continuously (and smoothly) on ã ∈ U as a W 2,p(RN )-valued 

function, and therefore also as a C1
b(R

N )-valued function.

Since we are dealing with radial potentials, the above results can be interpreted in 

terms of the eigenvalue problem

wrr +
N − 1

r
wr +

(

ã(r)− N − 1
r2

+ ν

)

w = 0, r > 0, (3.11)

w(0) = 0, w(r)→ 0 as r → ∞. (3.12)

Indeed, using separation of variables in spherical coordinates on the eigenvalue problem 

∆v + ã(|x|)v + νv = 0 in RN
+ , one shows that the principal eigenfunction v(ã) (positive 

and normalized in the L2(RN )-norm, as above) can be written as

v(ã)(x) =
x1

r
w(ã)(r) (x = (x1, . . . , xN ) ∈ R

N , r = |x| > 0), (3.13)

where w(ã) satisfies (3.11), (3.12) with ν = ν(ã). Obviously, the function w(ã) in (3.13)

is determined uniquely by v(ã).

On the other hand, if we are given a positive solution w̃ of (3.11), (3.12) with ã

close enough to a and ν close enough to 0, then necessarily ν = ν(ã) and w̃ is a scalar 

multiple of the function w(ã) defined by w(ã)(r) = v(ã)(r, 0, . . . , 0) (so that relation 

(3.13) holds). To verify this statement, note that suitable proximity relations ã ≈ a and 

ν ≈ 0 in particular guarantee that ã+ ν is bounded from above by a negative constant 

on an interval [R, ∞). This implies that the solution of (3.11), (3.12) is unique up to a 

scalar multiple and it decays exponentially to 0 as r → ∞ together with its derivative w̃′. 

The function v(x) = w̃(|x|)x1/|x| then gives an eigenfunction of the operator −∆ − ã(r)

on L2
o(R

N ) with the eigenvalue ν and the positivity of w̃ implies the relations ν = ν(ã)

and w̃ = cw(ã) for some c > 0.

Below, for ã ≈ a (the function in (3.3)), the principal eigenvalue of (3.11), (3.12)

refers to the eigenvalue ν(ã). Also, the aforementioned fixed functions v and w satisfy 

v = v(a), w = w(a) = −φr.

Proof of Lemma 3.3. Note that the normalization (3.10) implies that φ̃(0) = φ(0). It 

is clearly sufficient to prove that |f − f̃ |, |f ′ − f̃ ′| are uniformly small on the interval 



24 P. Poláčik, D.A. Valdebenito / Journal of Functional Analysis 282 (2022) 109457

[0, φ(0)]; an extension of f̃ such that |f − f̃ |, |f ′ − f̃ ′| are uniformly small on R is then 

easy to construct.

To estimate |f ′(u) −f̃ ′(u)| for u ∈ [0, φ(0)], we can instead estimate |f ′(φ̃(r)) −f̃ ′(φ̃(r))|
for r ∈ [0, ∞).
First, we estimate ‖φ −φ̃‖L∞(0,∞). By assumption, the function w̃ is a positive solution 

of (3.11), (3.12) with ν = 0. As noted above, this means, if ‖ã − a‖L∞(0,∞) is small 

enough, that (ν(ã) = 0 and) w̃ = cw(ã), where w(ã) is the function introduced in 

(3.13) and the constant factor c is determined from the normalization (3.10). By the 

continuous dependence of w(ã) on ã, ‖w(ã) − w‖L∞(0,∞) is small if ‖ã − a‖L∞(0,∞) < δ

with a sufficiently small δ. In addition, we have the following universal estimate

w(ã)(r) ≤ e−θrw(ã)(R) (r ≥ R) (3.14)

if δ > 0 is small enough. Here θ and R are positive constants independent of ã (they 

depend on δ). This follows from an easy computation which shows that for some θ, R > 0

the function e−θr is a supersolution of equation (3.11) on [R, ∞), provided ‖ã−a‖L∞(0,∞)

is small enough and ν is close enough to 0. Using (3.14) and the smallness of ‖w(ã) −
w‖L∞(0,∞) in (3.7), one shows easily that for any ǫ1 > 0 there is δ > 0 such that 

‖ã − a‖L∞(0,∞) < δ implies ‖φ − φ̃‖L∞(0,∞) < ǫ1.

Now,

|f ′(φ̃(r))− f̃ ′(φ̃(r))| ≤ |f ′(φ̃(r))− f ′(φ(r))|+ |f ′(φ(r))− f̃ ′(φ̃(r))|
= |f ′(φ̃(r))− f ′(φ(r))|+ |a(r)− ã(r)|.

By the uniform continuity of f ′ on [0, φ(0)] = [0, φ̃(0)], the last sum can be made arbi-

trarily small by choosing δ > 0 small enough.

We have thus obtained the desired smallness estimate on |f ′(u) −f̃ ′(u)|. The smallness 
of |f(u) −f̃(u)| now follows from the mean value theorem and the relations f(0) = f̃(0) =

0. 2

We now construct a suitable approximation of the function a(r) = f ′(φ(r)) in the 

case that the ground state φ is degenerate.

Lemma 3.4. Assume that the ground state φ is degenerate. Then for any δ > 0 there 

is a function ã satisfying the hypotheses of Lemma 3.2 together with the relation ‖ã −
a‖L∞(0,∞) < δ such that the Schrödinger operator −∆ − ã(r) acting on L2

rad(R
N ) (with 

domain H2
rad(R

N )) has exactly n negative eigenvalues and 0 is not its eigenvalue.

Proof. Since φ is a degenerate ground state of Morse index n, the operator −∆ − a(r)

acting on L2
rad(R

N ) has exactly n negative eigenvalues and 0 is its (n +1)th eigenvalue. 

Let ψn+1 be an eigenfunction corresponding to the eigenvalue 0. Thus, in the radial 

variable, ψn+1 satisfies the equation
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ψrr +
N − 1

r
ψr + a(r)ψ = 0, r > 0. (3.15)

Comparing this equation to (3.2), it is clear that the functions ψn+1, w—and thus also 

the functions ψ2
n+1, w

2—are linearly independent over any interval in (0, ∞). Therefore, 
we can choose a smooth function b(r) on (0, ∞) with compact support such that

∞
∫

0

b(r)ψ2
n+1(r)r

N−1 dr < 0,

∞
∫

0

b(r)w2(r)rN−1 dr = 0. (3.16)

Fixing such a function b, we take a(r) + τb(r) as a perturbed potential. First consider 

the operator −∆ − a(r) − τb(r) acting on L2
rad(R

N ). By standard perturbation results, 

there is ǫ0 > 0 such that for all sufficiently small τ the spectrum of this operator in 

the interval (−∞, ǫ0) consists of n + 1 eigenvalues µ1(τ) < µ2(τ) < . . . µn+1(τ), these 

eigenvalues depend smoothly on τ , and µn+1(0) = 0. The derivative µ′
n+1(0) is com-

puted by differentiating the equation for the corresponding eigenfunction, similarly as 

the derivatives of the functions µj(s) were computed in the proof of Proposition 2.5. We 

obtain (cp. [37, Lemma 4.5]) that, up to a positive scalar factor, −µ′
n+1(0) is given by 

the first integral in (3.16).

Next consider the principal eigenvalue ν(τ) := ν(a + τb) of (3.11), (3.12) with ã =

a + τb. We have ν(0) = 0 and, as computed in [37, Lemma 4.5], −ν′(0) is given, up to a 

positive scalar factor, by the second integral in (3.16).

Thus, conditions (3.16) give µ′
n+1(0) > 0 = ν′(0). Therefore, for all sufficiently small 

τ > 0 we have µn+1(τ) > ν(τ).

Take now the shifted potential ã(r) := a(r) + τb(r) − ν(τ). Clearly, the principal 

eigenvalue of (3.11), (3.12) is 0. The corresponding positive solution w(ã)(r) of (3.11), 

(3.12) satisfies conditions (b) of Lemma 3.2. For small τ , condition (a) of Lemma 3.2 is 

obviously satisfied as well. Further, for τ small enough the first n + 1 eigenvalues of the 

operator −∆ − ã(r) (on L2
rad) are

µ1(τ)− ν(τ) < · · · < µn(τ)− ν(τ) < µn+1(τ)− ν(τ)

and they exhaust the spectrum of this operator in (−∞, ǫ0/2). Since µn(0) < µn+1(0) = 0

and ν(0) = 0, for sufficiently small τ > 0 we have µn(τ) − ν(τ) < 0 < µn+1(τ) − ν(τ). 

So ã has all the properties required in the conclusion of Lemma 3.4, and, of course, ã is 

close (in L∞-norm) to a for τ ≈ 0. The proof is complete. 2

Proof of Lemma 3.1. There is nothing to prove if the ground state φ itself is nondegen-

erate, simply take f̃ ≡ f . If φ is degenerate, we take a function ã as in Lemma 3.4 to 

construct f̃ as in Lemma 3.2, and we extend it to [0, ∞) using Lemma 3.3. This function 
f̃ satisfies all the given requirements. 2
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3.2. Completion of the proof

Assume that f : R → R is a given C1 function satisfying conditions (1.2) and (G) for 

some n ≥ 2. We are seeking a perturbation of f satisfying the conclusion of Theorem 1.2.

Due to Lemma 3.1, perturbing f slightly we may assume without loss of generality that 

the ground state in (G) is nondegenerate. By the implicit function theorem, further small 

(in the C1-norm) perturbations of f will not alter condition (G) or the nondegeneracy 

property. Thus, again without loss of generality, we may assume that f also satisfies the 

following conditions:

f ∈ C∞(R) and for some α > 0, δ0 > 0 one has f(u) = −αu (|u| < δ0). (3.17)

A function f with all the above properties is assumed to be fixed for the remainder of 

this subsection.

We will find a perturbation f̃ of this function f , as needed for the proof of Theorem 1.2, 

among functions of the form

f(u) +
n

∑

i=1

sigi(u), (3.18)

where the gi, to be specified below, are C∞ functions on R vanishing at u = 0 and 

s = (s1, . . . , sn) ≈ 0 ∈ R
n. We take the nonlinearity (3.18) in equations (2.8), (2.9) in 

lieu of f(u; s). This clearly fits the framework of Subsection 2.2 with d = n. Our goal 

is to apply Theorem 2.2, hence we want to choose the functions gi in such a way that 

condition (ND0) holds. We will work with the sufficient condition for (ND0) as given in 

Remark 2.6. In the present case—with the nonlinearity f(u; s) in (2.8), (2.9) replaced by 

(3.18)—the sufficient condition requires that the n × n matrix with the following entries 

is nonsingular:

∞
∫

0

(

f ′′(φ(r))φ̇i(r) + g′
i(φ(r))

)

(ψj(r))
2rN−1 dr, i, j = 1, . . . , n. (3.19)

Here, φ is the ground state as in (Gs), ψ1, . . . , ψn are the normalized eigenfunctions of 

the operator −∆ −f ′(φ(x)) (acting on L2
rad(R

N )) associated with its negative eigenvalues 

µ1 < · · · < µn, and, for i = 1, . . . , n, φ̇i ∈ H2
rad(R

N ) is the unique solution of the equation

∆φ̇i + f ′(φ(x))φ̇i + gi(φ(x)) = 0 (3.20)

(cp. Proposition 2.5). Functions gi with the all desired properties are provided by the 

following lemma.

Lemma 3.5. There exist functions gi ∈ C∞(R), i = 1, . . . , n, each with compact support 

contained in (0, φ(0)), such that the n × n matrix with entries (3.19) is nonsingular.
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Before proving this lemma, we will use it to prove Theorem 1.2.

Proof of Theorem 1.2. Taking functions gi as in Lemma 3.5, Theorem 2.2 applies to the 

nonlinearity (3.18). This implies (cp. Remark 2.4(i)), that we can find arbitrarily small 

s1, . . . , sn such that the function

f̃(u) = f(u) +
n

∑

i=1

sigi(u)

satisfies the conclusion of Theorem 1.2, save possibly for the smallness (in the C1 norm) 

of f − f̃ . Since the gi are compactly supported, we can make ‖f − f̃‖1 arbitrarily small 
by taking s1, . . . , sn smaller if necessary. The theorem is thus proved. 2

The rest of this section is devoted to the proof of Lemma 3.5. We first reformulate 

the desired properties of the functions gi in terms of the following functions on (0, ∞):

bi(r) := gi(φ(r)) (i = 1, . . . , n). (3.21)

Note that since φ′(r) < 0, the functions gi can be determined from (3.21) if bi are defined 

first, and that is how we will proceed in the proof.

Proof of Lemma 3.5. Suppose for a while that b1, . . . , bn are smooth, compactly sup-

ported functions on (0, ∞) such that the following conditions are satisfied:

(B1) For i = 1, . . . , n, denoting by φ̄i ∈ H2
rad(R

N ) the unique solution of the equation

∆φ̄i + f ′(φ(x))φ̄i + bi(|x|) = 0, (3.22)

the supports of the functions φ̄i(r) and f ′′(φ̄(r)) (both viewed as functions of r ∈ (0, ∞)) 
are disjoint.

(B2) The n × n matrix with entries

∞
∫

0

b′
i(r)

φr(r)
(ψj(r))

2rN−1 dr, i, j = 1, . . . , n, (3.23)

is nonsingular.

Then there are uniquely defined smooth functions gi, with compact support in (0, φ0(0)), 

satisfying relations (3.21), namely gi(u) = bi(ξ(u)), where ξ : (0, φ(0)] → R is the inverse 

function to φ. For such functions gi,

g′
i(φ(r)) =

b′
i(r)

φr(r)
,
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and, in view of (B1), the integrals (3.19) coincide with (3.23). Therefore, the functions 

gi have all the properties stated in Lemma 3.5.

It remains to prove the existence of smooth functions bi on (0, ∞) with compact 

supports such that conditions (B1), (B2) are satisfied.

Fix two numbers r1 > r0 > 0, where r0 is sufficiently large so that 0 < φ(r0) < δ0
with δ0 as in (3.17) (recall that φ(r) → 0 as r → ∞). Note that

f ′(φ(r)) = −α, f ′′(φ(r)) = 0 (r ≥ r0). (3.24)

The functions b̃i will be chosen such that their supports are contained in (r0, r1).

Let us first reformulate condition (B1) in a more explicit way. The homogeneous 

equation corresponding to equation (3.22) reads, in the radial variable, as follows

vrr +
N − 1

r
vr + f ′(φ(r))v = 0, r > 0. (3.25)

We choose two linearly independent solutions ϕ(r), ψ(r) of this equation such that 

ψ(r) → 0, |ϕ(r)| → ∞ as r → ∞. The existence of such solutions follows from the 

behavior of f ′(φ(r)). In fact, by (3.24), f ′(φ(r)) = −α for r ∈ (r0, ∞), and therefore we 

can choose ψ(r) to coincide on (r0, ∞) with the function r1−N/2KN/2−1(r
√

α), where 

KN/2−1 is the modified Bessel function of the second kind. This function has the following 

asymptotics as r → ∞:

KN/2−1(r
√

α) = Ce−r
√

αr−1/2(1 +O(1/r)) (3.26)

with some positive constant C. For ϕ(r) we choose a linearly independent solution with

rN−1
0 (ψ(r0)ϕ

′(r0)− ψ′(r0)ϕ(r0)) = 1.

Note that this implies that the Wronskian of the two solutions satisfies

rN−1(ψ(r)ϕ′(r)− ψ′(r)ϕ(r)) = 1 (r > 0)

(as one can easily verify by differentiation).

Consider now the solution vi of the nonhomogeneous equation

vrr +
N − 1

r
vr + f ′(φ(r))v = −bi(r), r > 0, (3.27)

satisfying the initial conditions vi(r0) = v′
i(r0) = 0. By the variation of constants formula, 

this solution is given by

vi(r) = ψ(r)

r
∫

r0

ηN−1bi(η)ϕ(η) dη − ϕ(r)

r
∫

r0

ηN−1bi(η)ψ(η) dη. (3.28)
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If

r1
∫

r0

ηN−1bi(η)ψ(η) dη = 0 (3.29)

and the support of bi is contained in (r0, r1), then on the interval (r1, ∞)

vi(r) = ψ(r)

r1
∫

r0

ηN−1bi(η)ϕ(η) dη (3.30)

and thus vi(r) decays to zero exponentially due to the decay of ψ; and on the interval 

(0, r0], where bi ≡ 0, the initial conditions imply that vi ≡ 0. This means that, first, vi

coincides with the unique solution φ̄i ∈ H2
rad(R

N ) of (3.22); and, second, this solution 

has its support disjoint from the support of the function f ′′(φ(r)), as required in (B1).

So conditions (3.29), i = 1, . . . , n, are sufficient for (B1); we take these conditions 

as requirements on the functions bi to be met together with condition (B2). First, we 

use integration by parts in (3.29), so both (B2) and (3.29) are stated in terms of the 

derivatives b′
i:

r1
∫

r0

b′
i(r)





r
∫

r0

ηN−1ψ(η) dη



 dr = 0. (3.31)

We are now ready to define the functions bi. It is more convenient to first choose 

the derivatives of these functions. We thus need to choose smooth functions b̃i with 

supports in (r0, r1) such that conditions (3.31) and (B2) hold with b′
i replaced by b̃i and, 

in addition,

r1
∫

r0

b̃i(r) dr = 0 (i = 1, . . . , n). (3.32)

(Note that this last condition guarantees that b̃i = b′
i for a smooth function bi with 

compact support in (r0, r1).) Let us explain why such a choice of functions b̃i is possible. 

We will verify shortly that the functions

1;

r
∫

r0

ηN−1ψ(η) dη;
(ψj(r))

2

φr(r)
rN−1, j = 1, . . . , n; (3.33)

are linearly independent over the interval [r0, r1]. Therefore, we can choose functionals 

on L2(r0, r1), represented by functions b̂i ∈ L2(r0, r1), i = 1, . . . , n (which we extend as 

0 outside (r0, r1)), taking the following values at the functions in (3.33):
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∞
∫

0

b̂i(r)
(ψj(r))

2

φr(r)
rN−1 dr = δij (i, j = 1, . . . , n), (3.34)

r1
∫

r0

b̂i(r)





r
∫

r0

ηN−1ψ(η) dη



 dr =

r1
∫

r0

b̃i(r) dr = 0, (3.35)

δij being the Kronecker symbol. Relations (3.34) mean, in other words, that the matrix 

with entries

∞
∫

0

b̂i(r)

φr(r)
(ψj(r))

2rN−1 dr, i, j = 1, . . . , n,

is actually the identity matrix. By approximations, one now easily shows the existence 

of smooth functions b̃i, i = 1, . . . , n, with supports in (r0, r1) which are still L2(r0, r1)-

orthogonal to the first two functions in (3.33) and such that condition (B2) holds with 

b′
i replaced by b̃i. Such functions b̃i have all the needed properties.

To show that the functions (3.33) are linearly independent, first observe that by (3.24)

the equations satisfied by the eigenfunctions ψj , j = 1, ..., n, reduce on (r0, ∞) to

ψ′′
j +

N − 1
r

ψ′ + (µj − α)ψ = 0. (3.36)

Thus, similarly as the function ψ above (see the paragraph containing (3.25)), the func-

tion ψj coincides on (r0, ∞) with a nonzero scalar multiple of the function

r1−N/2KN/2−1

(

r
√

−µj + α
)

.

The function φr is a negative decaying solution of equation (3.2) with a(r) = f ′(φ(r)). 

On (r0, ∞) this equation coincides with the equation

wrr +
N − 1

r
wr +

(

−α − N − 1
r2

)

w = 0.

Therefore, on (r0, ∞), φr is a nonzero scalar multiple of the function r
1−N/2KN/2(r

√
α). 

The modified Bessel function KN/2 has the same asymptotics (3.26) as KN/2−1.

It follows that the functions (3.33) are analytic on (r0, ∞) and, except for the constant 
function 1, they decay to 0 exponentially with different exponential rates. Using this, 

it is easy to show that these functions are linearly independent over (r0, ∞), hence, by 
analyticity, over any subinterval of (r0, ∞). Indeed, take a linear combination of the 

functions in (3.33) and assume it is identical to zero. Then clearly the coefficient of the 

function with the slowest decay must be zero. Applying this reasoning inductively, each 

coefficient of the linear combination can be shown to be equal to zero. This implies the 

linear independence of the functions (3.33). 2
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