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slightly. The condition, with n = 2, applies, for example, to
some combined-powers nonlinearities f(u) = uP +Au? —u with
suitable exponents p > ¢ > 1 and coefficient A > 0.
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1. Introduction and main results

We consider the semilinear elliptic equation
N

Au+uyy+f(u) :07 (x,y) €eR XRv (11)

where N > 2, A is the Laplace operator in € RV, and f : R — R is a C! function
satisfying

F(0) =0, £(0) < 0. (1.2)

We are mainly interested in positive solutions of this equation which decay to 0 in the
x-variables uniformly in y:

lim supu(z,y) =0. (1.3)
|z| =00 yeR

Henceforth, we refer to solutions satisfying (1.3) as partially localized solutions.

Partially localized solutions include in particular solutions which decay in the y vari-
able as well, so they are fully localized. Positive fully localized solutions, frequently
referred to as ground states of (1.1), are well understood: they are radially symmet-
ric about some center in RV*1 and radially decreasing away from that center (see [18]).
For basic results on the existence and nonexistence of ground states we refer the reader
to [4]; theorems on uniqueness (up to translations) and nonuniqueness can be found in
[1,8-11,14,25,26,29,32-34,38,42].

A different class of partially localized solutions of (1.1) is obtained from ground states
of the equation on R,
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Au+ f(u) =0, ze€RY, (1.4)

if they exist, by extending them to functions on RY x R constant in 3. This is a rather
trivial remark, but ground states of (1.4) will play an important role below.

More interesting partially localized positive solutions which are not fully localized are
solutions periodic (and nonconstant) in y. Their existence, as well as some structural
properties, have been established in [2,12,28] for a large class of nonlinearities including
the power nonlinearity f(u) =u? —u with 1 <p < (N +2)/(N — 2).

Looking beyond periodic solutions, and considering that equation (1.1) has a formal
Hamiltonian structure (cp. [20,30,36]), one naturally asks if positive partially localized
solutions which are quasiperiodic (and not periodic) in y may exist for some nonlinearities
I

Let us recall the definition of a quasiperiodic solution. Given an integer n > 2, we say

that a vector w = (w1, ...,w,) € R™ is nonresonant, or, equivalently, that the numbers
w1, ... ,wy are rationally independent, if
w-a#0 (aeZ™\{0}). (1.5)

Here w - a is the usual dot product. A real function u(z,y) on RV x R is said to
be quasiperiodic in y if there exist an integer n > 2, a nonresonant vector w* =
(wi,...,w*) € R™, and an injective function U defined on T™ (the n-dimensional torus)
with values in the space of real-valued functions on R such that

u(z,y) =U(wiy,...,wiy)(z) (€ RY, y e R). (1.6)

The vector w* is called a frequency vector and its components the frequencies of u. Note
that the nonresonance of the frequency vector is a part of our definition. In particular,
a quasiperiodic function is not periodic and, if it has some regularity properties, then
the image of the map y — u(-,y) is dense in an n-dimensional manifold diffeomorphic to
T™.

The question whether positive quasiperiodic partially localized solutions can exist in
equations of the above type was first addressed in our earlier paper [37]. We proved that
for a carefully designed nonlinearity, equation (1) does have such quasiperiodic solutions
with 2 frequencies. Restricting the number of frequencies to 2 in this result was not a
matter of choice; the method used in the proof works in that case only. The nonlinearity
f was found in [37] by an elaborate construction which served well the given purpose—
finding quasiperiodic solutions for some nonlinearity satisfying (1.2)—but did not give
any feasible way of showing the existence of quasiperiodic solutions in specific equations.

These shortcomings motivated our research documented in the present paper. In our
new existence result, there is no restriction on the number of frequencies of quasiperiodic
solutions. Moreover, what is perhaps more significant, we have found tangible sufficient
conditions for the existence of positive quasiperiodic partially localized solutions of (1.1).
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This result allows us, among other applications, to find quasiperiodic solutions for non-
linearities which are arbitrarily small perturbations of some specific functions, such as
the combined-powers nonlinearity f(u) = u? + Au? — u for suitable exponents p > ¢ > 1
and coefficient A. Under some natural conditions, we are also able to find such solutions
within a specific class of equations (without needing a small perturbation).

We now give statements of our main results, starting with the following theorem
addressing the possible number of frequencies of quasiperiodic solutions of (1.1). In this
and the other three theorems stated in the introduction, the dimension N is fixed and
it is assumed that N > 2.

Theorem 1.1. Given any integer n > 2, there is a C*° function f: R — R with f(0) =
0 > f'(0) such that equation (1.1) has a positive solution u satisfying (1.3) which is
radially symmetric in x and quasiperiodic in y with n frequencies.

A hypothesis in our second theorem involves a ground state of equation (1.4) (the
equation in one less dimension). We need to recall some definitions. As noted above,
any ground state ¢ is radially symmetric, so, possibly after a shift in R, we can write
¢ = ¢(r), r = |z|. Consider now the Schrodinger operator A(¢) = —A — f(¢(r)),
viewed as a self-adjoint operator on L2 ;(R¥), the space consisting of all radial L?(R™)-
functions, with domain H?(RY) N L2 ,(RY). Since the potential f’(¢(r)) has the limit
J(¢(0)) = f/(0) < 0, the essential spectrum of A(¢) is contained in [—f'(0),c0)
(cp. [40]). Therefore, the spectrum in (—oo,0] consists of a finite number of isolated
eigenvalues; these eigenvalues are all simple due to the radial symmetry. The Morse
index of ¢ is defined as the number of negative eigenvalues of A(¢). We remark that
we allow 0 to be an eigenvalue of A(¢), but only (strictly) negative eigenvalues count
toward the Morse index. If 0 is an eigenvalue, the ground state is said to be degenerate,
otherwise it is nondegenerate.

We will assume that for some integer n > 2 the following holds.

(G) Equation (1.4) has a ground state ¢ of Morse index n.

For a C* function g : R — R, we denote

lglly == sup{lg(w)l, g (w)] : u € R}.

Theorem 1.2. Assume that f: R — R is a C' function with f(0) =0 > f'(0) such that
(G) is satisfied for some n > 2. Then for any € > 0 there is a C* function f such that
I/ = fll <€ and equation (1.1) with f replaced by f has a positive solution u satisfying
(1.3) which is radially symmetric in x and quasiperiodic in y with n frequencies.

We emphasize that hypothesis (G) is a condition on the eigenvalues of the linearization
at a ground state. Unlike the construction in [37], the hypothesis involves neither the
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corresponding eigenfunctions nor higher-order terms of the Taylor expansion of f at the
ground state ¢. This makes Theorem 1.2 much easier to apply; we show some interesting
applications in a moment. On the other hand, the construction in [37] has its advantages
when it does apply. Namely, it yields an uncountable family of positive partially localized
quasiperiodic solutions (disregarding translations) of an equation of the form (1.1). Our
present results do not have such a multiplicity statement (see Remark 2.4(iv) for an
explanation). This is a relatively small price to pay for a much broader applicability of
the new results.

We now give some applications of Theorem 1.2; the first one is a proof of Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 follows directly from Theorem 1.2 and a theorem of
[34] which says that for any n > 2 (and N > 2) there is a smooth function f: R — R
satisfying conditions (1.2) and (G). O

Besides [34], examples of functions satisfying conditions (1.2) and (G) (with n = 2)
can also be found in [11,14]. The most explicit among these examples is the combined-
powers nonlinearity

flu) =uP 4+ Auf — u, (1.7)

where 1 < ¢ < p < 5 and A > 0. As shown in [14], fixing a sufficiently large A and
then taking p sufficiently close to 5—mnote that 5 is the critical Sobolev exponent (N +
2)/(N — 2) in dimension N = 3—one achieves that equation (1.4) with N = 3 has a
ground state with Morse index 2 (in addition to two other ground states with Morse
index 1). Thus, by Theorem 1.2, one can find quasiperiodic partially localized positive
solutions for equation (1.1), where f is an arbitrarily small perturbation of a function of
the form (1.7).

It is an interesting question whether partially localized quasiperiodic solutions can also
be found for a combined-powers nonlinearity itself, that is, without a small perturbation.
We believe that our techniques can be used to give a positive answer, although most
exponents p, ¢ have to be excluded due to smoothness requirements in our method. We
state here one theorem for analytic nonlinearities (a related result for C* nonlinearities
with & large enough is given in the next section) and then discuss its possible applicability
to combined-powers nonlinearities.

Consider an equation of the form (1.1) involving a real parameter A > 0:

Au+uy, + fu;A) =0, (z,y) € RY x R. (1.8)
Here, f is an analytic function on R x J, J being an open interval in R, such that
F(O;0) =0, fu(0;0) <0 (AelJ). (1.9)

Also consider the corresponding equation for the ground states on R”:
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Au+ f(u;2) =0, xRN, (1.10)
We assume that for some constants Ag, 5\0 € J with \g < 5\0 the following holds:

(GP) For each A € [Ag, \o) equation (1.10) has a ground state ¢* such that the following
conditions are satisfied:

(c1) The map A — ¢* : [Ao, Ao) — L>®(RY) is continuous;
(c2) for each X\ € (Ao, 5\0), ¢ is a nondegenerate ground state with Morse index 2;
(c3) @™ is a degenerate ground state with Morse index 1.

What we have in mind here is that there is a branch (¢*,\), A € (Ao, Ag), of ground
states of (1.8) of Morse index 2 emanating from a “bifurcation point” (¢*°, \g) (note
that the linearization of the equation at the degenerate ground state ¢ has 0 as the
second eigenvalue, as the Morse index of ¢*° is 1).

Theorem 1.3. Assume that f is an analytic function on R x J satisfying (1.9), and (GP)
holds for some /\0,5\0 € J with \g < :\0. Then there is a dense subset A of the interval
(Xos Xo) such that for each X € A equation (1.8) has a positive solution u satisfying (1.3)
which is radially symmetric in x and quasiperiodic in y with 2 frequencies.

Note that this is not a local result: we are not making the given interval [\, 5\0)
smaller in the conclusion. We are able to make such a global statement due to the
analyticity assumption. In the next section, we give a local version of this result for
finitely differentiable nonlinearities f(u;\).

Parameter dependent functions satisfying (c1)—(c3) are not difficult to find (an exam-
ple of a smooth function with these properties is used in [37]). In fact, they are likely to
arise when one considers suitable homotopies between two equations of the form (1.4):
one with a nondegenerate ground state of Morse index 2 and the other one with a unique
ground state of Morse index 1. The nondegenerate ground state can often be continued
up to a bifurcation point with a degenerate ground state, so there is a good chance that
a part of the homotopy will give a function f(u; A) with the desired properties. We spec-
ulate that such a scenario plays out in equations with some nonlinearities (1.7) when A
is decreased or increased from a fixed value A = \g for which a nondegenerate ground
state of Morse index 2 exists. The analysis in [14] strongly suggests that this is indeed
the case for suitable p < 5, p ~ 5, and N = 3. Note, however, that to make use of Theo-
rem 1.3 we need f to be analytic, hence we are bound to take integer exponents p and
q. With p = 5 (the critical exponent) and ¢ = 2, say, [14] still provides some evidence,
partly numerical in this case, that the family of ground states as in (GP) exists. If this
is confirmed, Theorem 1.3 yields quasiperiodic partially localized positive solutions of
some equations with combined-powers nonlinearities.

As will become transparent in Subsection 2.3, the only role of the degenerate ground
state ¢*° in (GP)(c3) is to ensure that a certain function of A is nonconstant, and this
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nonconstancy can be used in place of condition (¢3). Specifically, assuming conditions (c1)
and (c2) in (GP), let p1(N) < p2(N) be the two negative eigenvalues of the Schrédinger
operator —A — f,(¢*(x); \) (acting on L2 4(RN)), for A € (Ao, Ao). They are defined due
o0 (c2). Now assume the following condition.

(¢3)’ The function A — g1 (\)/p2(A) is nonconstant on (Ao, o).

Theorem 1.4. Theorem 1.3 remains valid if condition (c3) in (GP) is replaced by condi-
tion (c3) .

It is not difficult to show that condition (c3) implies condition (c3)’ (see Subsection
2.3). We have stated one of our theorems with (¢3) as a hypothesis because it is more
explicit than (c3)’, and, as indicated above, it may be relatively easy to verify for equa-
tions of the form (1.1) for which one has some information about their ground states.
Condition (c3)’, on the other hand, is more general, and it only involves nondegenerate
ground states. For this reason, (¢3)’ appears to be a robust condition which is likely to
hold in a “typical” application. Its verification in specific equations may not be easy,
however.

It is clear from the above results and discussion that the existence of a ground state
of (1.4) with Morse index greater than 1 is an essential prerequisite for our results on
quasiperiodic partially localized solutions. Now, for some important classes of nonlinear-
ities, including for instance the function f(u) = u? —u with any p > 1, the ground state
of (1.4) is unique up to translations if it exists (see [8,10,25,26,33,42]). In that case, there
is no ground state of (1.4) with Morse index greater than 1 (see [11] or the introduction
in [34] for a discussion of this point). The same goes for any equation (1.1) if N = 1.
By elementary considerations, the ground state of (the ordinary differential equation)
(1.4) is unique up to translations and has Morse index 1. The problem whether positive
quasiperiodic partially localized solutions can exist in such equations cannot be resolved
by our current method.

We remark that it is likely that all positive partially localized solutions are radially
symmetric in 2 about some center in R, cp. [6,17,21], although this has not been proved
in full generality yet. In our theorems, we only consider solutions that are radial in x.

Positive partially localized solutions are but one class of solutions of (1.1) which are not
fully localized, and other types of interesting solutions have been studied by a number of
authors. We mention saddle-shaped and multiple-end solutions [7,13,15,16,23], solutions
with infinitely many bumps and/or fronts formed along some directions [28,41], solutions
periodic and/or discretely symmetric in the z-variables with homoclinic or heteroclinic
transitions in the y variable [3,31,39], solutions whose limit profiles at infinity are given
by ground states in lower dimensions [27], as well as solutions periodic in at least one
variable and quasiperiodic in another variable [35].

We have organized the rest of this paper as follows. In the next section, we consider
equations depending on parameters and give sufficient conditions for the existence of
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partially localized quasiperiodic solutions. In the same section, we give a proof of Theo-
rems 1.3, 1.4, and related results in finite-differentiability settings. Theorem 1.2 is proved
in Section 3.

2. Equations with parameters

In this section, we first recall a result from [35] dealing with a class of (possibly non-
homogeneous) elliptic problems with parameters. The theorem gives sufficient conditions
for the existence of partially localized quasiperiodic solutions. We then show how equa-
tion (1.1) can be put in the context of such elliptic problems via the linearization of
(1.1), or its parameter dependent version, at a ground state. We examine the behavior of
negative eigenvalues of such a linearization as parameters are varied, which is a crucial
ingredient in the proofs of our theorems. Finally, we specifically consider the case of
a single parameter and prove existence of quasiperiodic solutions with 2 frequencies in
some settings.

When considering a radial function & on RY | we often abuse the notation slightly and
use the same symbol h in h = h(z) (viewing h as a function of x € RY) as well as in
h = h(r) (viewing h as a function of r = |z|).

2.1. A general setup
Consider the following equation with a parameter s € R?, s ~ 0:
Au+ uyy +a(z;s)u+ fi(z,u;s) =0, z€RY, yeR. (2.1)

Here f; is a function on RY x R x B, B being an open neighborhood of the origin in
R?, such that

fl(a:,O;s):(,%fl(x,u;s)‘uzozo (x eRY, s € B). (2.2)

To formulate our hypotheses on the functions a and g, we need to introduce some nota-
tion. We denote by Cp,(R”) the space of all continuous bounded (real-valued) functions
on RY and by CF(RY) the space of functions on RY with continuous bounded deriva-
tives up to order k, k € N := {0,1,2,...}. By Craa(RY), C% ,(RY) we denote the
subspaces of C,(RY) and CF(RY), respectively, consisting of the functions which are
radially symmetric in @; L2 ;(R”) is the space of all radial L?(R")-functions, and for
ke N, HE (RN) ;= H¥RN) N L2 (RY) is the space of all radial H*(R™Y)-functions.
When needed, we assume that these spaces are equipped with the usual norms and take
the induced norms on the subspaces.

Given integers n > 1 and d > n — 1, let B be an open neighborhood of the origin in
R<. We assume that the functions a and f; satisfy the following hypotheses with some
integers
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N
K>dn+1, m> . (2.3)

(S1) a(+;s) € CIY(RY) for each s € B, and the map s € B + a(-;s) € CTIHRY) is
of class CK+1,

(S2) f1 € CE+m+4 RN x R x B), and for each ¥ > 0 the function f; is bounded on
RY x [—1,9] x B together with all its partial derivatives up to order K + m + 4.

Also, (2.2) holds and fi(z,u; s) is radially symmetric in x.

The next hypotheses concern the Schrodinger operator A;(s) := —A — a(x; s) acting
on L2 (RY) with domain H2 j(RY).

rad

(Al)(a) There exists L < 0 such that

limsupa(z;s) < L (s € B).

|z]— 00

(A1)(b) For all s € B, A;(s) has exactly n nonpositive eigenvalues,

pua(s) < pa(s) <+ < pin(s), (2.4)
and p,(s) < 0.

Hypotheses (Al)(a) and (Al)(b) will collectively be referred to as (Al). Hypothesis
(Al)(a) guarantees that for all s the essential spectrum oes5(A1(s)) is contained in
[—L,00) (see [40]). Since we work in the radially symmetric setting, the eigenvalues (2.4)
are all simple, while —L > 0, hypothesis (S1) and the simplicity of the eigenvalues in
(A1)(b) imply that p1(s),. .., i, (s) are CEF! functions of s (see [22]).

We further assume the following nondegeneracy condition. Consider the map s
w(s) = (wi(s),...,wn(s))T (w(s) is a column vector), where

wj(s) ==/l (s)l, G =1,....n. (2.5)

(ND) The n x (d + 1) matrix [ Vw(0) w(0)] has rank n.

The following theorem is a minor reformulation of Theorem 2.5 of [35]. (We remark
that condition (ND) also appears in a theorem of [43] on quasiperiodic solutions of elliptic
equations on a 2-dimensional strip.)

Theorem 2.1. Let K and m be as in (2.3). Assume that hypotheses (S1), (S2), (Al),
(ND) are satisfied. Then there is an uncountable set W C R™ consisting of ratio-
nally independent vectors, no two of them being linearly dependent, such that for every
(Wi, ...,0n) € W the following holds: equation (2.1) has for some s € B a solution u
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such that (1.3) holds, and u(x,y) is radially symmetric in x and quasiperiodic in y with
frequencies wy, ..., wy,.

2.2. Spatially homogeneous equations

In this subsection, we assume that n, d, and ¢ are fixed integers satisfying
n>1, d>n—-1, £>N/24+4n+7. (2.6)
Denoting by Bs the open ball around the origin in R? of radius §, we also assume

for some 6 >0, f: R x Bs — R is a C* function such that

(2.7)
f(0;8) =0, fu(0;8) <0 (s€ By).

Our goal is to show how Theorem 2.1 can be applied in the spatially homogeneous
equation

Au+uyy + f(u;s) =0, (z,y) € RN (2.8)

where s € Bj serves as a parameter. The associated equation for the ground states on
RN is

Au+ f(u;8) =0, xRN, (2.9)

We formulate two additional hypotheses. The first one concerns the equation for s =0
only.

(G0) Equation (2.9) with s = 0 has a nondegenerate ground state ¢° with Morse index
n.

To formulate our second hypothesis, which involves equation (2.9) for s ~ 0, we need
some preparation. Denote by Craq,0(RY) the closed subspace of Craq(RY) consisting of
the functions converging to 0 as |z| — oo; as usual we assume the induced norm (the
supremum norm) on Craq0(R?Y). Condition (G0) implies, upon an application of the
implicit function theorem, that the following statement is valid (see Lemma 2.3 below
for a more detailed statement), possibly after the radius ¢ > 0 is shrunk.

(Gs) There is neighborhood U of ¢ in Crad,o(RN) such that for each s € Bs equation
(2.9) has a unique ground state ¢° in U; this ground state is nondegenerate with
Morse index n; and the map s +— ¢° : Bs — C’md,o(RN) is of class C*.

The fact that the ground states ¢° are nondegenerate and have Morse index n means
that for each s € Bs the Schrodinger operator —A — f,,(¢%(z); s) (acting on L2 4 (RY)

rad
with domain H2 ,(RY)) has exactly n negative eigenvalues
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1(s) < ia(s) < -+ < pin(s), (2.10)

and 0 is not its eigenvalue. The eigenvalues are of class C*~! as functions of s € Bs.
Consider now the n x (d + 1) matrix

M(s) := [Vw(s) w(s)], s€ Bs, (2.11)

where w(s) = (wi(s),...,wn(s))T and w;(s) := /—p;(s) (5 = 1,...,n). We impose
on this matrix the same condition as in the previous subsection; this is our second
hypothesis:

(NDO) The matrix M(0) has rank n.

The main result of this subsection is the following theorem.

Theorem 2.2. Assume thatn, d, and ¢ satisfy (2.6), f satisfies (2.7), and (GO) and (NDO)
hold. Then there is an uncountable set W C R"™ consisting of rationally independent
vectors, no two of them being linearly dependent, such that for every (wn,...,w,) € W
equation (2.8) has for some s € Bjs a solution u such that (1.3) holds, and u(x,y) is
radially symmetric in x and quasiperiodic in y with frequencies iy, . ..,Wy.

For the proof of the theorem, we need some regularity statements from the following
lemma (the analyticity statement in this lemma will be needed in the next subsection).

Lemma 2.3. Assume that n, d, and ¢ satisfy (2.6), f satisfies (2.7), and (GO) holds. Then,
possibly after § > 0 is made smaller, there is a neighborhood U of ¢° in Craa o(RY) and
a family ¢°, s € Bs such that the following statements are valid:

(i) For each s € Bs, ¢° is a unique ground state of (2.9) in U.
(ii) The map s + ¢° € Craqo(RY) is of class C* and it is analytic if the function
f:R x Bs — R is analytic.
(iii) The function (x,s) — ¢*(x) is of class C*, and it is bounded on RN x Bs together
with all its partial derivatives up to order £.
(iv) For each s € By, the ground state ¢° is nondegenerate and has Morse index n.

Proof. Set a(x) = f.(¢"(x);0). By (GO), the operator —A — a(z) (considered on
Lfad(]RN )) has exactly n negative eigenvalues, all simple, and 0 is not its eigenvalue.
Also, due to the decay of the ground states, a(z) — f,(0;0) < 0 as |z| — oo, so the
essential spectrum of —A — a(z) is contained in a half-line (x, c0) for some x > 0. These
properties are preserved under small L°° perturbations of the function a. Therefore,

statement (iv) is a direct consequence of statement (ii), once the latter is established.
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We now consider the operator —A — a(z) in a different setting, namely, as a closed
operator on the space X := Cpaq,0(R”Y). The X-realization of —A — a(z) is the operator
L with domain

D(L) := {u € Nps 1 W2P(RY) : u, Au € X}
given by Lv = —Aw — av. For this realization, it is still true that 0 is not in its spectrum
(the essential spectrum is still away from 0 and 0 is not an eigenvalue by elliptic regu-

larity), so L~! is a bounded linear operator on X. We now rewrite equation (2.9) as an
equation for v € X:

H(u;s) :=u — L™ (f(u;8) — au) = 0, (2.12)

where f is the Nemytskii operator of the function f:

fu;s)(x) == f(u(z);s) (u€ X, s€ Bs, x € RY).

It is well-known (and straightforward to prove) that the assumptions on f imply that
f: X x By — X is of class C*. Moreover, if f is analytic, so is f. This can be easily
verified (cp. [5]) using bounds on the derivatives of analytic functions and the fact that
the ranges of all functions contained in any ball in X are contained in a compact subset of
R. Clearly, H(¢";0) = 0 and D, H(¢°;0) is the identity on X. Thus, the implicit function
theorem applies to H, which yields a neighborhood U of ¢° in Ciaq,0(RY) and—making
0 > 0 smaller if necessary—a family ¢°, s € Bs, such that statements (i) and (ii) hold.

We now show by induction in &k = 0,1,..., ¢ that the following statement is valid. The
function ¢*(z) is of class C* on RY x Bs and all its partial derivatives of order k are
bounded on RN x B; (with § > 0 made smaller if necessary). This will prove statement
(iii) and complete the proof of the theorem.

For k = 0, the statement follows immediately from (ii).

Assume the statement is valid for some k < £. Let ¢ stand for any partial derivative
with respect to z1,...,ZN,S1,...,Sq of order k; that is, 6 is a “product” of k elements
from {0z, 0zy,0s,,---0s,}. All we need to show is that the function 0¢®(z) is of
class C! and has bounded first-order partial derivatives on R x Bs.

We use an integral representation of the solutions of the equation v — Au = h(z) on
RY. Let G(z) be the Green function for the elliptic operator I — A on RY. An explicit
form (for dimensions N = 2, 3) or a Bessel potential form of G are available, but are not
needed here. We recall some properties of G which are relevant for us. The function G
is smooth in RY \ {0}, and the functions G, 9,,G, i = 1,..., N (classical derivatives on
RN\ {0}) are integrable on R¥. For any bounded continuous function h, the convolution
integral

u(w) = [ Glo b dy = [ Gt~ y)dy (213
RN RN
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defines a continuous function u which is a unique bounded weak solution of the equation
u— Au = h on RY. Moreover, u € CL(RY) and for i = 1,..., N one has

O, u(z) = / 85, Gz — y)h(y) dy. (2.14)
RN

Except perhaps for the last statement, these are standard properties of Green’s functions
of general elliptic operators with constant coefficients (see, for example, [24, Chapter 1]).
For the proof of (2.14) and the C' property of u, one can use the estimates on the
derivatives of G (see Corollary 1.5.1 and Theorem 1.7.1 in [24]) and follow the arguments
given in the proof of [19, Lemma 4.1].

Denoting

h(x;s) = f(¢°(z); s) + °(2), (2.15)

and applying the above to ¢*, a bounded solution of u — Au = f(u; s) + u, we obtain
0*@) = [ Gla=phtys)dy= [ Glohte—yis) dy (2.16)
RN RN

Note that the induction hypothesis implies that h is of class C* on RY x Bs and has all
its partial derivatives of order k bounded on RY x Bj.

Let us now return to the function §¢* (z). Clearly, due to the integrability of G, we
can differentiate the second integral in (2.16) to obtain

5% (2) = / G(y)ih(z — y;s)dy = / Gz — y)3h(y; s) dy.

RN RN

By the above remarks, we can next take the derivatives with respect to z;,i € {1,..., N},
to obtain

0, 00" (x) = / 0z, G (z — y)oh(y; s) dy = / 02,G(y)oh(x — y; 5) dy.
RN RN

Using the integrability of 0,,G, the continuity and boundedness properties of 6h, and
the dominated convergence theorem, one shows easily that &Hggés (z) is continuous and
bounded on RY x Bs.

We now deal with the derivatives O, Sgbs(x), j = 1,...,d. We obtain the desired
continuity and boundedness of these derivatives directly from statement (ii) if $ contains
no derivatives with respect to the variables z, ..., zy. Otherwise, if 0 contains at least
one derivative §,, for some i, we have, changing the order of the partial derivatives
in 0 if necessary, 0¢°(z) = 5%3(;55(1:), where 4 is a partial derivative of order k — 1.
Differentiating as above, we obtain, first,
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56" / 01, G(y)Sh(x ;) dy,

and then

8815(15 /ap,G )Os 5h(x—y, s)dy.
RN

Arguing as above, we obtain the desired continuity and boundedness properties of these
functions as well. O

Proof of Theorem 2.2. Modifying the nonlinearity f(u;s) in {(u,s) : u < 0} only, we
will assume that the following additional condition holds:

flu;8) >0 (u<0, s€ Bs). (2.17)

This is at no cost to generality as positive solutions are unaffected by such a modification.
What we gain from this extra assumption is that all bounded solutions of (2.8) are
nonnegative, as one can easily show by employing negative constant subsolutions. By
the strong maximum principle, any nonnegative solution is either identical to zero or
strictly positive.

With ¢° as in (Gs), set

a(x;s) := fu(¢®(2); 5), (2.18)
fi(@,u;5) = f(9°(2) + us ) = f(9°(2); 8) — alz; s)u. (2.19)

We verify that these functions satisfy the hypotheses of Theorem 2.1 with K := 4n + 2,
m:=4{€—4n —T7 > N/2 (cp. (2.6), (2.3)). Obviously, f1 satisfies (2.2). Since ground
states are radially symmetric in x, so are the functions a and f;. Our choices of K and
m yield ¢ = K + m + 5; the regularity assumption on f and Lemma 2.3(iii) imply the
regularity properties in (S1), (S2) with B = Bg/s (so that B C Bj;). The decay of the
ground states and the second condition in (2.7) imply that (A1)(a) holds, possibly after
0 > 0 is made smaller. Condition (A1)(b) holds, as already noted before the theorem
(cp. (2.10)), and (NDO), which is a hypothesis of this theorem, is equivalent to (ND).
Thus, the hypotheses of Theorem 2.1 are all satisfied.

Now, with a and f; as in (2.18), (2.19), v = u(x,y) is a solution of (2.8) for some
s € By if (and only if) u = ¢° + 4 for a solution @ of (2.1) (with the same s). Since
¢® is a radial (in x) function, independent of y and satisfying ¢*(x) — 0 as |z| — oo,
the function w(z,y) is quasiperiodic in y, radially symmetric in 2, and decaying to 0
as || — oo uniformly in y, if @ has all these properties. In this case, u and @ share
the quasiperiodicity frequencies. Therefore, the conclusion of Theorem 2.2 follows from
Theorem 2.1; we just need to note that the solutions obtained this way are positive.
Indeed, they are bounded hence nonnegative due to (2.17), and, being quasiperiodic in
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the sense of our definition (in particular, not periodic), they are nonzero, hence strictly
positive. O

Remark 2.4.

(i) Note that hypotheses (G0), (NDO) are “local” (in fact, they are conditions on ¢°
and M(s) at s = 0 only, but because of the gradient involved in the definition of
M (s), we need to consider w(s) for s ~ 0). Therefore, the conclusion of the theorem
remains valid when § > 0 is shrunk arbitrarily. This is useful for density results such
as Theorems 1.2 and 1.3.

(ii) The assumption that M (0) has rank n can be replaced by the assumption that there
is a sequence s; converging to the origin such that M (s;) has rank n for j = 1,2,....
The conclusion of Theorem 2.2 and the previous remark remain valid under this
weaker assumption. To see this, simply apply Theorem 2.2 for j = 1,2,..., with s;
taking up the role of the origin, that is, with the function f(u;s; + s) in place of
flu;s).

(iii) In this paper, we do not have much use of the property that no two vectors in the
frequency set W are linearly dependent. This is more meaningful in some scaling
invariant problems, such as those considered in [35].

(iv) While Theorems 2.1, 2.2 state that an uncountable set of quasiperiodic solutions
(whose frequencies form an uncountable set W) can be found within a given para-
metric family of equations, the theorems do not say anything about the multiplicity
of solutions for any single equation. Since the parameters can take uncountably
many values, the existence of uncountably many solutions for any single one of
them is not guaranteed. This is the reason for the lack of any multiplicity statement
in Theorems 1.1, 1.2.

For the verification of condition (NDO) in applications, some understanding of the
partial derivatives of the functions s — pu;(s) at s = 0 is needed. The rest of this
subsection is devoted to a computation of these derivatives.

Denote by ©1(+;8),...,1¥,(+;s) the eigenfunctions of the operator —A — f,,(¢°(x); s)

2 (R™M)) associated with the eigenvalues p;(s), ..., un(s), respectively, all

(acting on Lz, 4

normalized in the L?(R") norm. This determines the eigenfunctions uniquely up to a
sign. The signs can be chosen in such a way that the eigenfunctions are of class C' as
H?2 | (R™N)-valued functions of s € Bs, and this is what we will assume below. We derive
the following formulas:

Proposition 2.5. Under the hypotheses of Theorem 2.2, the following relations hold for
i=1,....d,j=1,...,n:

I (s)
(981'

= — / (Fuu (8 (@); 001 () + g1(8° (2))) (5(:0))? d, (2.20)

RN
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where

gi(u) = afgz? 5) |, (weR, i=1,..,d), (2.21)

and ¢; € H?2 (RYN) is the unique solution of the equation

Ad; + fu(¢°(2);0)d; + gi(¢° () = 0. (2.22)

We remark that the existence and uniqueness of the solution ¢; is a consequence of
the nondegeneracy of the ground state ¢°. Note that g;(0) = 0 and g; € C*~!, which
implies that g;(¢°(x)) decays exponentially as |z| — oo, just like ¢°(x), and is therefore
in L2 ,(RN).

Proof of Proposition 2.5. We first simplify the notation slightly. Clearly, it is sufficient
to consider the case d = 1 of just one parameter s (the others being fixed). Also, since
only the first derivative of f(u;s) with respect to s at s = 0 enters the computation and
f is of class C* in all its arguments, it is sufficient to take the nonlinearity f(u;s) in
(2.9) in the form f(u) + sg(u), where we have written g1 = g.

Substituting v = ¢° in (2.9), we differentiate the equation with respect to s at s =
0, noting that this operation can be performed thanks to Lemma 2.3. We obtain the
equation for ¢ = dcﬁs/ds‘szo, which reads as (2.22) (with g; = g):

Ad+ f(¢°(2) + g(¢°(x)) = 0. (2.23)

Next, consider the equation for the eigenfunction ,(-; s):

Ap; + (f'(¢°(x)) + 59'(¢°(x)) )1 + pj(s)v; = 0. (2.24)
Differentiating with respect to s at s = 0, we obtain
A+ f1(8%(x)dh; + 15 (0)¢;
+ (0" (2))d(x) + ' (¢°(x))) w5 (w; 0) + j1j¢p; (25 0) = 0, (2.25)
where

di;(+; ) . dpy(s)
7’Z)j = ]dis|s:0’ Ky = C;S |s:0'

Also, by the L? normalization of ;(-; s),

/ ¥;(;0)1h; () de = 0.
RN
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Multiplying equation (2.25) by 1;(z;0) and integrating by parts over RY, we obtain

/ (F"(°@)d(x) + g/ (@) (3 (2; 0))? dax + i = 0.

RN

This verifies formula (2.20). O

In the radial variable, the integrals in (2.20) read as follows:

Opj(s) ’
0s; 5=0

(fuu(8°(r); 0)6i(r) + gi(6°(r)) (w5 (r; 0))*rV " dr, (2.26)

:O'N

where oy is the surface area of the unit sphere in RV,

Remark 2.6. Clearly, condition (NDO) is satisfied if the matrix [ Vw(0) | has rank n, and
this is the case, due to the relations w;(s) 1= \/—p;(s), if the n x d matrix

p;(s) |
(981‘ s=0 ji ’

whose entries are given in (2.26), has rank n.

2.83. Two frequencies, one parameter

Obviously, for the matrix in (2.11) to have rank n the number of parameters has to
be at least n — 1, thus the assumption d > n — 1 in the previous subsection. When
n = 2, that is, when quasiperiodic solutions with two frequencies are sought, just one
parameter is sufficient, which has some advantages. In this subsection, we prove a few
results, including Theorem 1.3, specific to the case n = 2.

For now, we continue to assume the hypotheses from the first paragraph of the previous
section (cp. (2.6), (2.7)), taking n = 2 and d = 1. Also, we assume condition (G0), define
the eigenvalues p1(s), po(s) as in (2.10), and take w;(s) == /—p;(s) (j =1,2).

Consider first of all the determinant of the 2 x 2 matrix M (s) in (2.11):

det M(s) = det [ wi(‘” wi(s) } _ on(s)wa(s) (wi(s) B wg<s>)

wy(s)  wals) wi(s)  wa(s)

—n(5hon(s) (1o wl(s))/ (2.27)

wa(s)
_ M1(52)M2(8) <log Z;g)/

In view of this expression, Theorem 2.2 for n = 2 implies the following result.
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Theorem 2.7. Assume that the hypotheses of Theorem 2.2 are satisfied withn =2, d = 1,
and with (NDOQ) replaced by the following condition: the function s — u1(s)/p2(s) is not
constant on any interval (—e, €) with € € (0,8). Then there is a sequence 5; — 0 such that
for j=1,2,... the following holds. Equation (2.8) with s = 5; has a positive solution u
satisfying (1.3) such that u(z,y) is radially symmetric in x and quasiperiodic in y (with
2 frequencies).

Proof. By (2.27), the assumption on the function s +— pq(s)/ps(s) implies that there is
a sequence s; — 0 such that det M (s;) # 0, that is, M(s;) has rank 2. The conclusion
of the theorem now follows from Theorem 2.2 and Remarks 2.4(i), (ii): we choose a
sequence 6; — 0, with 0 < §; < 0 and apply Theorem 2.2 with f(u;s;+s), d; in place of
f(u;s), 9, respectively. We then take 5; to be any number s € Bs, as in the conclusion
of Theorem 2.2. O

Using the previous theorem, we now prove Theorems 1.3, 1.4, and related local results
for C* nonlinearities.

We consider equations (1.8), (1.10) with f(u; \) satisfying (1.9). Assume for now that
f(u; A) is of class C* with £ > N/2+15 (as in (2.6)), and the following assumption (GP),
copied here from the introduction, is satisfied:

(GP) There are positive constants Ao < Ao such that for each A € [Ag, Ao) equation (1.10)
has a ground state ¢* such that the following conditions are satisfied:

(c1) The map X — ¢* : [Ao, Ao) — L®(RY) is continuous;
(c2) for each A € (A\g, \g), ¢ is a nondegenerate ground state with Morse index 2;
(c3) ¢ is degenerate ground state with Morse index 1.

Theorem 2.8. Under the above assumptions, there is a sequence j\j in (Mo, 5\0) such that
5\]- — Xo and for j = 1,2,... the following holds. Equation (1.8) with A\ = 5\]- has
a positive solution u satisfying (1.3) such that u(x,y) is radially symmetric in x and

quasiperiodic in y.

Proof. Denote by fi1()), ji2(A), with 11 (X) < fi2(A), the two nonpositive eigenvalues of
the Schrédinger operator —A — f, (¢ (x); A) (acting on L2, ;). By (c2) and (¢3), jiz(\) < 0
for A € (Ao, \o) and fia(A) = 0. By (c1), fi1(\), fiz(\) are continuous as functions of A,
on the interval [Ag, 5\0). Moreover, there is a constant v < 0 such that fi;(\) <~ < 0.
In view of the nondegeneracy of the ground states in (GP) and the continuity in (c1),
the implicit function theorem implies (cp. Lemma 2.3) that the map in (cl) is of class
C* on the open interval (\o, 5\0), which in turn implies that the map A +— f,(¢*(-); \) €
Cp(RY) is of class C*~1. It then follows that the functions ji;()), fi2()\) are of class
C*1 on (Ao, Ag). These functions being continuous on [Ag, Ag), the relations iy (\) < 7,
fiz(Ao) = 0, and Jig(A) < 0 for A € (Ao, Ag) clearly imply that there is a sequence \;
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in (N, :\0) such that A; — Ag and fi1(A\)/f2(X) has a nonzero derivative at A = \;, for
7 =1,2,.... Hence, for each j, Theorem 2.7 applies to the equation

Au+uyy + flusAj+5) =0, (z,y) € RN xR, (2.28)

s ~ 0. Indeed, the eigenvalues p1(s), p2(s) of —A — f, (¢ F5(z); A + s) clearly coincide
with 11 (A +5), fi2(A; +s), so the hypotheses of Theorem 2.7 are satisfied. Denote by 3,
k=1,2,..., the sequence from Theorem 2.7. Passing to a subsequence, we may assume

that §§ — 0 as j — oo. Choosing the resulting approximating values /_\j =\ + &

50
- - J
that |A\; — A;| — 0, we obtain a sequence A; for which the conclusion of the theorem
holds. O

Note that the only use of condition (¢3) in the previous proof was to guarantee the
existence of a sequence A; in (Ao, Ao) such that Aj = Ao and fi1(N)/2(X) has a nonzero
derivative at A = A;, for j = 1,2,.... Obviously, this is also guaranteed if instead of (¢3)
one assumes the following condition:

(¢3)” For any e € (0,A\g — \o) the function A\ — fi;(\)/fi2()\) is nonconstant on the
interval (Ag, Ao + €).

Thus, we obtain the following local version of Theorem 1.4:

Theorem 2.9. Theorem 2.8 remains valid if condition (c3) in (GP) is replaced by condi-
tion (c3)”.

We conclude this section with the proof of Theorems 1.3, 1.4.

Proof of Theorems 1.3, 1.4. We use similar arguments as in the proof of Theorem 2.8
combined with the analyticity of f(u;\).

Under the analyticity assumption, the functions i1 (\), fi2(A) are analytic on (Ao, Ag).
As in the proof of Theorem 2.8, the assumption (GP) of Theorem 1.3 implies that the
function fi;(\)/fi2()) is not constant on (Ao, Ag); in Theorem 1.4 this is assumed directly
in condition (c3)’. In either case, by the analyticity, i1 (A\)/f2()) is not constant on any
interval. Therefore, we can again apply Theorem 2.7 to equation (2.28), only this time
we can take arbitrary A; € (Ao, 5\0). This implies that there indeed exists a dense subset
A C (Mo, o) as in the conclusion of Theorem 1.3. O

3. Proof of Theorem 1.2

Assuming that f : R — R satisfies the hypotheses of Theorem 1.2, we prove the
conclusion of the theorem in two steps carried out in the following two subsections. First,
we show that f can be perturbed slightly (with respect to the C'* norm) in such a way that
after the perturbation condition (G) is still satisfied, with the same n, and in addition
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the ground state in (G) is nondegenerate. After a further perturbation, maintaining the
previous properties, we can also assume that f is of class C'°°. In the second step, we put f
in an n-parameter family of functions f(u)+s191(u)+- -+ sngn(u), s = (51,...,5,) = 0.
We show that smooth functions ¢, ..., g, can always be chosen such that the matrix
M(0) defined as in Subsection 2.2 has rank n. This will make Theorem 2.2 applicable
and the desired conclusion will follow.

We remark that in our approach, the two nondegeneracy properties—the nondegen-
eracy of the ground state in condition (G) and the full-rank property of the matrix in
(NDO)—are obtained by a direct perturbation argument. An alternative approach could
be to prove that such properties are in some sense generic for functions f in the consid-
ered class. Typically, the parametric Smale-Sard theorem, or transversality theorem, is
used in such an approach (see, for example, [12, Section 4], for an application of transver-
sality in the verification of a nondegeneracy condition in a bifurcation problem involving
elliptic equations with a similar structure). The question whether the genericity of the
two nondegeneracy properties can be established in our setting could be of independent
interest, but we have not pursued it. One of the reasons we decided to take the direct
perturbation route is that not only did we need to achieve that an approximation f of
a given function f has nondegenerate ground states, we had to make sure that one of
those ground states has the same Morse index as ¢, the ground state given in condition
(G). This would not be guaranteed by the genericity result.

3.1. Nondegeneracy of the ground state

Throughout this subsection we assume that f : R — R is a C'!' function satisfying
conditions (1.2) and (G) for some n > 2. We also recall the notation introduced in
Section 1: gl = sup{lg(u)l,|g'(w)| : u € R}.

Lemma 3.1. For any e > 0 there is a C* function f such that f(0) =0 > f/(0), ||f—fl1 <
€, and condition (G) is satisfied with [ replaced by f and with the additional property
that the ground state in (G) is nondegenerate.

We prepare the proof of this lemma by some preliminary observations. Let ¢ be a
ground state of (1.4), as in (G). In spherical coordinates, the (radial) function ¢ satisfies
the equation

N -1
d)rr + qur + f(¢) = O, r > 0. (3.1)
Also, ¢,(0) =0, ¢,-(r) < 0 for r > 0, and ¢(r), ¢,(r) decay exponentially to 0 as r — oco.

Differentiating (3.1), we see that W := —¢, satisfies

N -1 N -1
Wyp + ——w, + | a(r) — o w= 0, r>0, (3.2)
T
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with

a(r) :== f'(é(r)). (3.3)

Further, by the above properties of ¢, we have W (0) =0, W(r) = —¢,.(r) > 0 for r > 0,
and W(r) decays exponentially to 0 as r — oo. The last property and equation (3.2)
imply that W,. decays exponentially as well. Note that lim,_,~ a(r) = f/(0) < 0. We will
keep the notation a and W for the functions introduced above in the remainder of this
subsection.

The function W can viewed as an eigenfunction (corresponding to the eigenvalue
v =0) of the following (singular) eigenvalue problem in the radial variable r:

N -1 N -1
Wy + T'Wr + <a(7’) — ’]"2 + V) w = 07 r> 07 (34)

w(0) =0, w(r)—0asr— oo. (3.5)

In the variable z € RY, W also represents an eigenfunction of a (regular) eigenvalue
problem. Namely, the function V(z) := W (|z|)x1/|x| = —¢s, () is a positive eigenfunc-
tion of the operator —A —a(r) on the half-space RY := {z € R" : z; > 0} with Dirichlet
boundary condition on ORY; equivalently, V(x) can be viewed as an eigenfunction of
the operator —A — a(r) considered on the closed subspace LZ(R™) of L?(RY) consisting
of all functions odd in z; with domain HZ(RY) := H?(R") N LZ(RY). We also define
v(x) := w(|x|)z1/|z| where w is a constant multiple of W such that v is positive on the
half space RY and v is normalized in the L?(R¥)-norm. The functions v and w defined
this way are assumed to be fixed in the rest of this subsection.

Now, the ground state ¢ is degenerate if and only if 0 is also an eigenvalue of —A—a(r)
in the radial space. The main idea of the proof of Lemma 3.1 consists in the following. We
first find a perturbation a of the function a such that the perturbed operator —A — a(r)
still has 0 as an eigenvalue for the operator on L2(R™), but 0 is no longer an eigenvalue
in the radial space. We then use a reverse construction, finding a nonlinearity f and a
ground state ¢ of

Au+ f(u) =0, zecRY, (3.6)

such that a(r) = f'(4(r)). The resulting function f will have all the desired properties
if a is close enough to a.
The reverse construction is described in the following results of [34].

Lemma 3.2. Assume the following hypotheses.

(a) a(r) is a continuous function on [0, 00) which converges to a negative limit asr — oo.
(b) w € CL([0,00)) is a positive solution of (3.2), with a replaced by @, which satisfies
the following conditions:
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(i) @(0) =0, w,(0) >0,
(ii) e’ (r) — 0, e, (r) — 0 as r — oo for some 3 > 0.

Then

o0

o(r) == /711(15) dt, r=lx| >0, (3.7)

T

defines a ground state of (3.6) for a C* function f that satisfies (1.2) and for which

fl(@(r) =a(r) (r=0). (3.8)

On the interval [0, $(0)], f is given explicitly by

where & : [0,00) — (0, $(0)] is the inverse of ¢.

Of course, we need to guarantee that the function f resulting from the reverse con-
struction is a small perturbation of f if a(r) is a small perturbation of a(r) = f/(4(r)).
This is the purpose of the following lemma.

Lemma 3.3. Given any € > 0 there is § > 0 such that the following statement is valid.
Let a be any function satisfying the hypotheses of Lemma 3.2 together with the relation
la — allL=(0,00) < 9, and let the positive solution w in Lemma 3.2(b) be normalized so
that

/ B(r) dr = 6(0). (3.10)

Then, with ¢ and f as in (3.7), (3.9), the function f can be extended from [0, $(0)] to R
in such a way that || f — f|l1 <e.

In the proof of Lemma 3.3, and then again in the proof of Lemma 3.4, we will use
some perturbation results from [37, Section 4], which we now recall.

As noted above, v = 0 is an eigenvalue of the operator —A — a(r) considered on
LZ(RY) with domain H2(R"). The corresponding eigenfunction —¢,, is positive in RY,
which means that v = 0 is the principal eigenvalue. Here and below, the principal eigen-
value refers to an eigenvalue below the essential spectrum admitting an eigenfunction
which is positive in the half space Rf . It is well known that, if it exists, such an eigen-
value is unique and simple (also, being below the essential spectrum, it is an isolated
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eigenvalue). Therefore, if U is a sufficiently small neighborhood of @ in Craq(RY), then
for each @ € U the principal eigenvalue v(a) of the operator —A — a(r) on L2(RY) (with
domain H2(RY)) is well defined, and the corresponding eigenfunction—referred to as
the principal eigenfunction—is defined uniquely up to a scalar multiple. Denoting by
v(@) the principal eigenfunction which is normalized in the L?(R")-norm and positive
in Rf , the functions

arv@) U —R, ar—wv@):U— H(RY)

are both smooth. Combining this result with elliptic regularity, we obtain that, for any
p > 2, v(a) depends continuously (and smoothly) on @ € U as a W2P(RY)-valued
function, and therefore also as a C}(R”)-valued function.

Since we are dealing with radial potentials, the above results can be interpreted in
terms of the eigenvalue problem

N-—1 N -1
ww+7wr+<&(r)— = +u>w—0, r>0, (3.11)

w(0) =0, w(r)—0asr— co. (3.12)

Indeed, using separation of variables in spherical coordinates on the eigenvalue problem
Av + a(|z)v +vv = 0 in RY, one shows that the principal eigenfunction v(a) (positive
and normalized in the L?(R")-norm, as above) can be written as

v(a)(x) = —w(a)(r) (z=(r1,...,2N) € RN, = |z| > 0), (3.13)

where w(a) satisfies (3.11), (3.12) with v = v(a). Obviously, the function w(a) in (3.13)
is determined uniquely by v(a).

On the other hand, if we are given a positive solution @ of (3.11), (3.12) with a
close enough to a and v close enough to 0, then necessarily v = v(a) and w is a scalar
multiple of the function w(a) defined by w(a)(r) = v(a)(r,0,...,0) (so that relation
(3.13) holds). To verify this statement, note that suitable proximity relations a ~ a and
v =~ 0 in particular guarantee that a + v is bounded from above by a negative constant
on an interval [R, 00). This implies that the solution of (3.11), (3.12) is unique up to a
scalar multiple and it decays exponentially to 0 as r — oo together with its derivative @’.
The function v(z) = w(|z|)x1/|z| then gives an eigenfunction of the operator —A — a(r)
on L2(RY) with the eigenvalue v and the positivity of @ implies the relations v = v/(a)
and w = cw(a) for some ¢ > 0.

Below, for @ ~ a (the function in (3.3)), the principal eigenvalue of (3.11), (3.12)
refers to the eigenvalue v(a). Also, the aforementioned fixed functions v and w satisfy
v=uv(a), w=w(a) = —d,.

Proof of Lemma 3.3. Note that the normalization (3.10) implies that ¢(0) = ¢(0). It
is clearly sufficient to prove that |f — f|, |f’ — f'| are uniformly small on the interval
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[0,(0)]; an extension of f such that |f — f|, |f' — f’| are uniformly small on R is then
easy to construct.

To estimate | f/(u)— f' (u)| for u € [0, ¢(0)], we can instead estimate | f'(¢(r))— f'(o(r))]
for r € [0, 00).

First, we estimate Hd)*q;”zloc(()’m). By assumption, the function w is a positive solution
of (3.11), (3.12) with v = 0. As noted above, this means, if [|@ — al| o (0,00) 15 small
enough, that (v(a) = 0 and) w = cw(a), where w(a) is the function introduced in
(3.13) and the constant factor ¢ is determined from the normalization (3.10). By the
continuous dependence of w(a) on @, ||w(a) — w| g (0,00) is small if [|@ — a||f(0,00) < &
with a sufficiently small d. In addition, we have the following universal estimate

w(a)(r) < e "w(a)(R) (r>R) (3.14)
if 6 > 0 is small enough. Here § and R are positive constants independent of a (they
depend on ¢). This follows from an easy computation which shows that for some 6§, R > 0

the function e 9"

is a supersolution of equation (3.11) on [R, 00), provided ||a—al| Lo (0,50
is small enough and v is close enough to 0. Using (3.14) and the smallness of ||w(a) —
Wl oo (0,00) I (3.7), one shows easily that for any ¢; > 0 there is 6 > 0 such that
1@ — al| Lo 0,00) < & implies [|¢ — || L (0,00) < €1-

Now,

/(@) = F' (@) < If(9(r)) = F(@m)] + ' (6(r)) = F((r))]
=11"(@(r)) = f'(6(r))] + la(r) — a(r)].

By the uniform continuity of f’ on [0, $(0)] = [0, #(0)], the last sum can be made arbi-
trarily small by choosing § > 0 small enough.

We have thus obtained the desired smallness estimate on |f’(u)— f’(u)|. The smallness
of | f(u)— f(u)| now follows from the mean value theorem and the relations f(0) = f(0) =
0. O

We now construct a suitable approximation of the function a(r) = f/(¢(r)) in the
case that the ground state ¢ is degenerate.

Lemma 3.4. Assume that the ground state ¢ is degenerate. Then for any 6 > 0 there
is a function a satisfying the hypotheses of Lemma 3.2 together with the relation ||a —
all L (0,00) < & such that the Schrédinger operator —A — a(r) acting on L2 4(RY) (with
domain Hfad(]RN)) has ezactly n negative eigenvalues and 0 is not its eigenvalue.

Proof. Since ¢ is a degenerate ground state of Morse index n, the operator —A — a(r)

acting on L2

Let 9,11 be an eigenfunction corresponding to the eigenvalue 0. Thus, in the radial

(RY) has exactly n negative eigenvalues and 0 is its (n + 1)th eigenvalue.

variable, 1,1 satisfies the equation
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N-1
Yrrt ——tr +a(r)p =0, r>0. (3.15)

Comparing this equation to (3.2), it is clear that the functions 4,1, w—and thus also
the functions 2 |, w*—are linearly independent over any interval in (0, 00). Therefore,
we can choose a smooth function b(r) on (0, 00) with compact support such that

/b(r) 2 ()N ldr <0, /b(r)wz(r)rN_l dr =0. (3.16)
0 0

Fixing such a function b, we take a(r) 4 7b(r) as a perturbed potential. First consider

2
rad

the operator —A — a(r) — 7b(r) acting on L2 (R¥). By standard perturbation results,
there is €9 > 0 such that for all sufficiently small 7 the spectrum of this operator in
the interval (—oo,€p) consists of n + 1 eigenvalues py(7) < po(7) < ... pnt1(7), these
eigenvalues depend smoothly on 7, and ji,,41(0) = 0. The derivative p;,,,(0) is com-
puted by differentiating the equation for the corresponding eigenfunction, similarly as
the derivatives of the functions y;(s) were computed in the proof of Proposition 2.5. We
obtain (cp. [37, Lemma 4.5]) that, up to a positive scalar factor, —u;, ,,(0) is given by
the first integral in (3.16).

Next consider the principal eigenvalue v(7) := v(a + 7b) of (3.11), (3.12) with a =
a+ 7b. We have v(0) = 0 and, as computed in [37, Lemma 4.5], —/(0) is given, up to a
positive scalar factor, by the second integral in (3.16).

Thus, conditions (3.16) give p;, 1(0) > 0 = v/(0). Therefore, for all sufficiently small
7> 0 we have pin41(7) > v(7).

Take now the shifted potential a(r) := a(r) + 7b(r) — v(7). Clearly, the principal
eigenvalue of (3.11), (3.12) is 0. The corresponding positive solution w(a)(r) of (3.11),
(3.12) satisfies conditions (b) of Lemma 3.2. For small 7, condition (a) of Lemma 3.2 is
obviously satisfied as well. Further, for 7 small enough the first n + 1 eigenvalues of the
operator —A — a(r) (on L2, ) are

pa (1) =v(7r) < < (1) = v(T) < g (7) — v(7)

and they exhaust the spectrum of this operator in (—oo, €9/2). Since 1, (0) < pir11(0) =0
and v(0) = 0, for sufficiently small 7 > 0 we have p,(7) — v(7) < 0 < pp41(7) — V(7).
So a has all the properties required in the conclusion of Lemma 3.4, and, of course, @ is
close (in L*>-norm) to a for 7 =~ 0. The proof is complete. O

Proof of Lemma 3.1. There is nothing to prove if the ground state ¢ itself is nondegen-
erate, simply take f = f. If ¢ is degenerate, we take a function @ as in Lemma 3.4 to
construct f as in Lemma 3.2, and we extend it to [0,00) using Lemma 3.3. This function
f satisfies all the given requirements. O
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3.2. Completion of the proof

Assume that f: R — R is a given C! function satisfying conditions (1.2) and (G) for
some n > 2. We are seeking a perturbation of f satisfying the conclusion of Theorem 1.2.

Due to Lemma 3.1, perturbing f slightly we may assume without loss of generality that
the ground state in (G) is nondegenerate. By the implicit function theorem, further small
(in the C'-norm) perturbations of f will not alter condition (G) or the nondegeneracy
property. Thus, again without loss of generality, we may assume that f also satisfies the
following conditions:

f € C*(R) and for some a > 0, o > 0 one has f(u) = —au (Ju| < ). (3.17)

A function f with all the above properties is assumed to be fixed for the remainder of
this subsection.

We will find a perturbation f of this function f, as needed for the proof of Theorem 1.2,
among functions of the form

flu) + Z 8i9i(u), (3.18)

where the g;, to be specified below, are C'* functions on R vanishing at v = 0 and
s =(81,...,8n) = 0 € R". We take the nonlinearity (3.18) in equations (2.8), (2.9) in
lieu of f(u;s). This clearly fits the framework of Subsection 2.2 with d = n. Our goal
is to apply Theorem 2.2, hence we want to choose the functions g; in such a way that
condition (NDO) holds. We will work with the sufficient condition for (NDO) as given in
Remark 2.6. In the present case—with the nonlinearity f(u;s) in (2.8), (2.9) replaced by
(3.18)—the sufficient condition requires that the n x n matrix with the following entries
is nonsingular:

[ (#@bitr) + g0) ()P ig =1 (319

Here, ¢ is the ground state as in (Gs), v¥1,...,1, are the normalized eigenfunctions of
the operator —A— f/(¢(z)) (acting on L2 ;(R™Y)) associated with its negative eigenvalues

p < oo < i, and, fori =1,...,n, ¢; € H2 ;(RY) is the unique solution of the equation

Ad; + f'(¢(x))s + gi(¢(@)) = 0 (3.20)

(cp. Proposition 2.5). Functions g; with the all desired properties are provided by the
following lemma.

Lemma 3.5. There exist functions g; € C°(R), i = 1,...,n, each with compact support
contained in (0, (0)), such that the n x n matriz with entries (3.19) is nonsingular.
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Before proving this lemma, we will use it to prove Theorem 1.2.

Proof of Theorem 1.2. Taking functions g; as in Lemma 3.5, Theorem 2.2 applies to the
nonlinearity (3.18). This implies (cp. Remark 2.4(i)), that we can find arbitrarily small
81,...,8p such that the function

fu) = f(u)+ Z si9i(w)
i=1

satisfies the conclusion of Theorem 1.2, save possibly for the smallness (in the C'! norm)
of f — f. Since the g; are compactly supported, we can make Ilf— f |1 arbitrarily small
by taking si,...,s, smaller if necessary. The theorem is thus proved. O

The rest of this section is devoted to the proof of Lemma 3.5. We first reformulate
the desired properties of the functions g; in terms of the following functions on (0, co):

bi(r) :=gi(p(r)) (i=1,...,n). (3.21)

Note that since ¢/(r) < 0, the functions g; can be determined from (3.21) if b; are defined
first, and that is how we will proceed in the proof.

Proof of Lemma 3.5. Suppose for a while that by,...,b, are smooth, compactly sup-
ported functions on (0, 00) such that the following conditions are satisfied:

(B1) For i = 1,...,n, denoting by ¢; € H?2 (R™) the unique solution of the equation
Adi + f'(d(x))di + bi(lz]) = 0, (3.22)

the supports of the functions ¢;(r) and f”(¢(r)) (both viewed as functions of r € (0, c0))
are disjoint.

(B2) The n x n matrix with entries

/

bi(r)
¢r(r)

W (r)>rNrdr, i j=1,...n, (3.23)

is nonsingular.

Then there are uniquely defined smooth functions g;, with compact support in (0, ¢o(0)),
satisfying relations (3.21), namely g;(u) = b;(£(u)), where £ : (0,¢(0)] — R is the inverse
function to ¢. For such functions g;,

gi(d(r)) = —==,
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and, in view of (B1), the integrals (3.19) coincide with (3.23). Therefore, the functions
g; have all the properties stated in Lemma 3.5.

It remains to prove the existence of smooth functions b; on (0,00) with compact
supports such that conditions (B1), (B2) are satisfied.

Fix two numbers r; > rg > 0, where 7 is sufficiently large so that 0 < ¢(rg) < do
with dp as in (3.17) (recall that ¢(r) — 0 as r — o). Note that

fl(@(r) =—a, f'(¢(r) =0 (r=r). (3.24)

The functions b; will be chosen such that their supports are contained in (rg,71).
Let us first reformulate condition (B1) in a more explicit way. The homogeneous
equation corresponding to equation (3.22) reads, in the radial variable, as follows

vy + ?vr b)) =0, >0, (3.25)

We choose two linearly independent solutions ¢(r), 1 (r) of this equation such that
P(r) = 0, |p(r)] — oo as r — oo. The existence of such solutions follows from the
behavior of f'(¢(r)). In fact, by (3.24), f'(¢(r)) = —« for r € (rg,00), and therefore we
can choose () to coincide on (rg,c0) with the function rl_N/QKN/Q,l(r\/a), where
K /21 is the modified Bessel function of the second kind. This function has the following
asymptotics as r — oo:

Knjo-1(rv/a) = Ce ™Vor=12(14+ O(1/r)) (3.26)
with some positive constant C. For ¢(r) we choose a linearly independent solution with
ro (W(ro)¢! (ro) — ¥’ (ro)(r0)) = 1.

Note that this implies that the Wronskian of the two solutions satisfies
PN () (r) = ' (r)e(r) =1 (r>0)

(as one can easily verify by differentiation).
Consider now the solution v; of the nonhomogeneous equation

N -1

Upp + v+ f(¢(r))v = =bi(r), >0, (3.27)

satisfying the initial conditions v;(rg) = v.(r¢) = 0. By the variation of constants formula,
this solution is given by

wi(r) = B(r) / b)) di — o(r) / N dr. (3.28)
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If

r1

/ i (m)ep(n) di = 0 (3.20)

)
and the support of b; is contained in (rg, 1), then on the interval (ry,o0)

T1

vilr) = 9(r) / ™ 1bi () p(n) dy (3.30)

o

and thus v;(r) decays to zero exponentially due to the decay of 1; and on the interval
(0,79], where b; = 0, the initial conditions imply that v; = 0. This means that, first, v;
(RN) of (3.22); and, second, this solution
has its support disjoint from the support of the function f”(¢(r)), as required in (B1).

coincides with the unique solution ¢; € H2,

So conditions (3.29), ¢ = 1,...,n, are sufficient for (B1); we take these conditions
as requirements on the functions b; to be met together with condition (B2). First, we
use integration by parts in (3.29), so both (B2) and (3.29) are stated in terms of the
derivatives b:

/bg(r) /nN—lw(n) dn | dr=0. (3.31)

We are now ready to define the functions b;. It is more convenient to first choose
the derivatives of these functions. We thus need to choose smooth functions b; with
supports in (rg, 1) such that conditions (3.31) and (B2) hold with b/ replaced by b; and,
in addition,

/?)i(r)drzo Gi=1,....n). (3.32)

(Note that this last condition guarantees that b; = b} for a smooth function b; with
compact support in (rg,71).) Let us explain why such a choice of functions b; is possible.
We will verify shortly that the functions

r

()2
i [t dn %W,jl,...,n; (3.33)

o

are linearly independent over the interval [rg,71]. Therefore, we can choose functionals
on L?(rg,r1), represented by functions b € L?(rg,7m1),i=1,...,n (which we extend as
0 outside (ro,r1)), taking the following values at the functions in (3.33):
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[o a0 oy o
O/bz(r) rwe dr =06, (i,j=1,...,n), (3.34)

ks T1

/Bi(r) /nN*1¢(n) dn | dr = /Bi(r) dr =0, (3.35)

To "0 To

0;; being the Kronecker symbol. Relations (3.34) mean, in other words, that the matrix
with entries

>

i i(r) (N NN, 0, = n
J@vﬁ%”) dr, g =1om,

is actually the identity matrix. By approximations, one now easily shows the existence
of smooth functions b;, i = 1,...,n, with supports in (ro, 1) which are still L?(r,r1)-
orthogonal to the first two functions in (3.33) and such that condition (B2) holds with
b; replaced by b;. Such functions b; have all the needed properties.

To show that the functions (3.33) are linearly independent, first observe that by (3.24)
the equations satisfied by the eigenfunctions v;, j = 1, ..., n, reduce on (19, 00) to

N —
pt— N (3.36)

Thus, similarly as the function ¢ above (see the paragraph containing (3.25)), the func-
tion v, coincides on (rg,00) with a nonzero scalar multiple of the function

Tl*N/QKN/2_1 (7’\/ *,uj + Oé) .

The function ¢, is a negative decaying solution of equation (3.2) with a(r) = f/(4(r)).
On (79, 00) this equation coincides with the equation

N -1 N -1
Wyp + —— Wy + | —x — 5 w = 0.
r r

Therefore, on (rg, 00), ¢, is a nonzero scalar multiple of the function r'=N/2 K o (r\/a).
The modified Bessel function Ky /o has the same asymptotics (3.26) as Ky /o_1.

Tt follows that the functions (3.33) are analytic on (rg, 00) and, except for the constant
function 1, they decay to 0 exponentially with different exponential rates. Using this,
it is easy to show that these functions are linearly independent over (rg,o0), hence, by
analyticity, over any subinterval of (rg,00). Indeed, take a linear combination of the
functions in (3.33) and assume it is identical to zero. Then clearly the coefficient of the
function with the slowest decay must be zero. Applying this reasoning inductively, each
coefficient of the linear combination can be shown to be equal to zero. This implies the
linear independence of the functions (3.33). O
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