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Disorder-free localization is a recently discovered phenomenon of nonergodicity that can emerge in
quantum many-body systems hosting gauge symmetries when the initial state is prepared in a superpo-
sition of gauge superselection sectors. Thermalization is then prevented up to all accessible evolution
times despite the model being nonintegrable and translation invariant. In a recent work [Halimeh et al.,
arXiv:2111.02427 (2021)], it has been shown that terms linear in the gauge-symmetry generator stabilize
disorder-free localization in U(1) gauge theories against gauge errors that couple different superselec-
tion sectors. Here, we show in the case of Z2 gauge theories that disorder-free localization can not
only be stabilized, but also enhanced by the addition of translation-invariant terms linear in a local Z2
pseudogenerator that acts identically to the full generator in a single superselection sector, but not nec-
essarily outside of it. We show analytically and numerically how this leads through the quantum Zeno
effect to the dynamical emergence of a renormalized gauge theory with an enhanced local symmetry,
which contains the Z2 gauge symmetry of the ideal model, associated with the Z2 pseudogenerator. The
resulting proliferation of superselection sectors due to this dynamically emergent gauge theory creates
an effective disorder greater than that in the original model, thereby enhancing disorder-free localization.
We demonstrate the experimental feasibility of the Z2 pseudogenerator by providing a detailed read-
ily implementable experimental proposal for the observation of disorder-free localization in a Rydberg
setup.

DOI: 10.1103/PRXQuantum.3.020345

I. INTRODUCTION

Gauge theories are a powerful framework allowing the
description of the laws of nature through local constraints
that must be satisfied at every point in space and time
[1]. They are fundamental in the description of interac-
tions between elementary particles as mediated through

*jad.halimeh@physik.lmu.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

gauge bosons, and dictate an intrinsic relation between
charged matter and the surrounding electromagnetic field
[2]. In quantum electrodynamics, this is manifest in the
famed Gauss’s law, which protects salient features such as
a massless photon and a long-ranged Coulomb law [3].

The crucial property of a gauge theory Ĥ 0 is its under-
lying gauge symmetry, which defines an extensive set of
local constraints. Restricting our discussion to Abelian
gauge theories, the gauge symmetry has a generator Ĝj
defined at the site j , where matter fields reside, and its
adjacent links, where gauge fields lie. Gauge invariance
is embodied in the commutation relation [Ĥ 0, Ĝj ] = 0
for all j . The eigenvalues gj of Ĝj are so-called back-
ground charges, and a set of them over the entire volume
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of the system defines a gauge-invariant superselection
sector. In recent years, lattice gauge theories [4,5] have
witnessed considerable effort in their experimental realiza-
tion in low-energy table-top setups of quantum synthetic
matter [6–17]. These experiments have allowed for explor-
ing fundamental high-energy physics phenomena, such as
the particle-antiparticle creation [6], Coleman’s phase tran-
sition [8,10,16,18], and the thermalization dynamics of
gauge theories [17], to name a few, and they hold the
promise of probing exotic far-from-equilibrium behavior
in strongly correlated matter [19–21].

Recent research in far-from-equilibrium quantum many-
body systems has unraveled intriguing phenomena in their
relaxation dynamics [22]. Whereas quench dynamics prop-
agated by integrable models will not thermalize but instead
relax to a generalized Gibbs ensemble arising from the
plethora of local integrals of motion [23,24], generic non-
integrable systems are expected to thermalize according
to the eigenstate thermalization hypothesis (ETH) [25].
In the presence of quenched disorder in interacting mod-
els, many-body localization (disorder MBL) arises [26],
which violates ETH and leads to localized dynamics in
local observables. Disorder MBL has been the subject of
intense theoretical investigation recently [27,28] and has
been experimentally probed in various quantum synthetic
matter setups [29–36].

Even without quenched disorder, many-body localized
behavior can still arise in interacting nonintegrable mod-
els [37–48]. For example, the quench dynamics of a chain
of interacting spinless fermions in the presence of a con-
stant electric field will exhibit Stark MBL [42], and this has
been experimentally demonstrated using superconducting
qubits [49,50]. The concept of disorder-free localization
has also been extended to lattice gauge theories, through
the quench dynamics of translation-invariant product states
that form a superposition of gauge superselection sectors
[37,41]. This superposition dynamically induces an effec-
tive disorder over the background charges associated with
the superselection sectors, leading to a strong violation
of ETH and indefinite delay of thermalization. The cor-
responding quench dynamics is restricted to within each
sector, and there is no coupling between different superse-
lection sectors. With quantum synthetic matter realizations
of gauge theories, it now becomes a realistic possibility
to probe disorder-free localization. However, even though
gauge symmetry is postulated to be a fundamental prop-
erty of nature, in quantum simulator realizations it has to
be engineered. Indeed, implementations of gauge theories
with dynamical matter and gauge fields will always present
a certain degree of gauge-breaking errors [20]. Such errors
create transitions between different superselection sectors,
which undermines disorder-free localization; see Fig. 1. In
the case of perturbative errors, it becomes a prethermal
phase, but regardless of the error strength, the system will
thermalize eventually [40].
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FIG. 1. The concept of local-pseudogenerator protection of
disorder-free localization and its enhancement through dynam-
ically emergent local symmetries. (a) An ideal gauge theory Ĥ 0
of L matter fields and L gauge fields hosts a gauge symme-
try with local generator Ĝj whose eigenvalues are gj , a set of
which over all local constraints defines a superselection sector
g = (g1, g2, . . . , gL) with projector P̂g (yellow blocks). Gauge
invariance is encoded in the commutation relation [Ĥ 0, Ĝj ] =
0 for all j . Disorder-free localization emerges in the quench
dynamics of an initial state prepared in a superposition of super-
selection sectors. A typical quantum synthetic matter realization
of Ĥ 0 will include gauge-breaking errors λĤ 1 of strength λ that
will couple the different superselection sectors g, and undermine
localized behavior (off-diagonal red blocks). (b) The local pseu-
dogenerator Ŵj acts identically to Ĝj in a given superselection
sector (congruent yellow and green blocks), but not necessar-
ily outside of it. The addition of the term VĤ W = V

∑
j cj Ŵj

of strength V, with cj a properly chosen sequence (see the main
text), will suppress transitions between different superselection
sectors g, thereby protecting localization due to the quantum
Zeno effect. At sufficiently large V, errors are suppressed and the
dynamics is effectively propagated by the emergent gauge theory
Ĥ QZE = VĤ W +

∑
w P̂w(Ĥ 0 + λĤ 1)P̂w, which has an enhanced

local symmetry associated with Ŵj , and contains the original
Z2 gauge symmetry generated by Ĝj . The eigenvalues wj of
Ŵj define emergent superselection sectors w = (w1, w2, . . . , wL)

with projectors P̂w (green blocks). The initial state is a super-
position of the superselection sectors w, leading to a greater
effective disorder over superselection sectors, thereby enhanc-
ing disorder-free localization under Ĥ QZE. (c) Starting in a
translation-invariant bosonic domain-wall state that is a super-
position over all gauge superselection sectors, the dynamics of
the imbalance under Ĥ 0 will retain memory of the initial state
(yellow curve). Errors λĤ 1 cause the system to thermalize (red
curve). Adding VĤ W in the large-V limit dynamically induces
the emergent theory Ĥ QZE with an enriched local symmetry,
thereby enhancing disorder-free localization (green curve; see
Sec. III).

020345-2



ENHANCING DISORDER-FREE LOCALIZATION... PRX QUANTUM 3, 020345 (2022)

Several methods based on energetic constraints have
been proposed to control gauge-breaking errors in the
context of quench dynamics starting in a given gauge-
invariant superselection sector [51–68]. A scheme based
on a translation-invariant linear sum in the generators
Ĝj [65], which employs the concept of quantum Zeno
subspaces [69–72], has recently been extended to reli-
ably stabilize disorder-free localization [73] in spin-S U(1)
quantum link models [74–76]. The concept works based on
the quantum Zeno effect (QZE): at sufficiently large pro-
tection strength, the linear gauge protection term becomes
analogous to an external system continually measuring
each superselection sector independently of the others,
reliably suppressing intersector dynamics up to times at
least polynomial in the protection strength (see Sec. IV for
details). Hence, the quantum Zeno effect is not only able to
protect a single, e.g., ground state, gauge sector [65], but in
the case of disorder-free localization an extensive number
thereof.

In this work, we generalize this approach to Z2 lat-
tice gauge theories through the use of local pseudogen-
erators Ŵj , recently introduced as a powerful tool for
gauge protection in these models [68]. The pseudogen-
erator commutes with the full generator of the gauge
theory, [Ŵj , Ĝl] = 0 for all j , l, but not with the gauge the-
ory itself, [Ŵj , Ĥ 0] != 0, and hence Ŵj is not an actual
symmetry generator for Ĥ 0. Remarkably, we find that a
translation-invariant alternating sum of these pseudogener-
ators not only protects disorder-free localization [73], but
also enhances it through the dynamical emergence of an
effective gauge theory that hosts an enhanced local sym-
metry containing the original Z2 gauge symmetry. This
enhanced local symmetry is due to the Z2 pseudogener-
ator Ŵj , whose eigenvalues can now be used to define the
emergent superselection sectors; see Fig. 1. We analyti-
cally show how this effective theory emerges dynamically
from the concept of quantum Zeno subspaces [69]. Tak-
ing advantage of the experimental feasibility of the Z2
local pseudogenerator, we further propose a readily real-
izable scheme for the detection of disorder-free localiza-
tion within accessible timescales of modern Rydberg and
superconducting qubit setups.

The rest of the paper is organized as follows. In Sec.
II, we introduce the Z2 lattice gauge theory, which will
be the focus of our analysis, along with its local gen-
erator and pseudogenerator. In Sec. III, we present our
exact diagonalization results on the quench dynamics of
local observables, superselection-sector projectors, and the
midchain entanglement entropy; we establish the enhance-
ment of disorder-free localization here. In Sec. IV, we
provide the analytic framework of the quantum Zeno sub-
spaces from which we derive the emergent gauge theory.
We discuss features of the local-pseudogenerator pro-
tection scheme in Sec. V. In Sec. VI, we present an

experimental proposal for the detection of disorder-free
localization in a Rydberg setup based on our scheme. We
conclude and provide a future outlook in Sec. VII. In addi-
tion, we supplement our main conclusions with supporting
exact diagonalization results for different errors and larger
system sizes in Appendix A, discuss the thermal ensembles
we have used in Appendix B, and provide a discussion of
a linear protection scheme based on the local generator in
Appendix C.

II. MODEL AND (PSEUDO)GENERATORS

Drawing inspiration from recent experimental [13]
and theoretical [77,78] work, we consider the (1 + 1)-
dimensional Z2 lattice gauge theory given by the Hamil-
tonian [79–82]

Ĥ 0 =
L∑

j =1

[J (â†
j τ̂

z
j ,j +1âj +1 + H.c.) − hτ̂ x

j ,j +1], (1)

where â(†)
j is the hard-core bosonic annihilation (creation)

operator on matter site j , and n̂j = â†
j âj is the correspond-

ing number operator. The electric (gauge) field on the link
between matter sites j and j + 1 is represented by the Pauli
matrix τ̂ x(z)

j ,j +1. The generator of the Z2 gauge symmetry is

Ĝj = (−1)n̂j τ̂ x
j −1,j τ̂

x
j ,j +1 (2)

with eigenvalues gj = ±1, and it defines a local con-
straint over the matter site j and its adjacent links. The
gauge invariance of Ĥ 0 is encoded in the commutation
relation [Ĥ 0, Ĝj ] = 0 for all j . A set of eigenvalues g =
(g1, g2, . . . , gL) across local constraints in a gauge the-
ory with L matter sites defines a superselection sector
with projector P̂g. Disorder-free localization is known to
occur in this model when quenching an initial state in a
superposition of superselection sectors [40].

In typical quantum synthetic matter implementations of
gauge theories with dynamical matter and gauge fields,
gauge-breaking errors are in practice unavoidable, and
these undermine disorder-free localization. For the sys-
tem we consider, experimentally relevant gauge-breaking
terms are of the form

λĤ 1 = λ

L∑

j =1

{[â†
j âj +1(η1τ̂

+
j ,j +1 + η2τ̂

−
j ,j +1 + 1) + H.c.]

+ (η3n̂j − η4n̂j +1 + 1)τ̂ z
j ,j +1}, (3)

where [Ĥ 0, Ĥ 1] != 0 and [Ĝj , Ĥ 1] != 0 for all j . The coef-
ficients η1, η2, η3, η4 are real numbers that depend on a
dimensionless driving parameter χ employed in the Flo-
quet setup of Ref. [13], and they are normalized such
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that they sum to 1. Unless otherwise specified, for the
results presented in this work, we have chosen an exper-
imentally friendly value χ = 1.84 set in the experiment
of Ref. [13], which yields η1 = 0.5110, η2 = −0.4953,
η3 = 0.7696, and η4 = 0.2147. However, we have checked
that other generic values of these coefficients do not alter
the conclusions of our work.

A state |ψ〉 is said to be in a chosen target sector
denoted by gtar

j if and only if Ĝj |ψ〉 = gtar
j |ψ〉 for all j .

If we initialize our system in such a state, and probe the
ensuing quench dynamics under the faulty gauge theory
Ĥ = Ĥ0 + λĤ 1 + VĤ W, we will find gauge violations sup-
pressed at about λ2/V2 for sufficiently large V using the
local-pseudogenerator (LPG) gauge protection

Ĥ W =
∑

j

cj Ŵj , (4a)

Ŵj = τ̂ x
j −1,j τ̂

x
j ,j +1 + 2gtar

j n̂j , (4b)

where cj is a sequence of appropriately chosen coefficients
[68]. The LPG Ŵj acts identically to the full generator
Ĝj in the target sector, but is experimentally much easier
to implement, as it consists of at most two-body single-
species terms in contrast to Ĝj , which hosts three-body
two-species terms. It is important to emphasize that Ŵj is
not an actual gauge-symmetry generator of Ĥ 0, and it is
easy to check that [Ĥ 0, Ŵj ] != 0.

It is interesting to note that the Z2 generator Ĝj and the
LPG Ŵj are related according to

1̂ + 2gtar
j Ŵj − Ŵ2

j = 2gtar
j Ĝj . (5)

As such, it is clear that any Hamiltonian Ĥ ′ that commutes
with Ŵj must necessarily commute with Ĝj ,

[Ĥ ′, Ŵj ] = 0 for all j =⇒ [Ĥ ′, Ĝj ] = 0 for all j .
(6)

This relation states that if the Hamiltonian Ĥ ′ hosts a local
symmetry associated with Ŵj then it will surely host the Z2

gauge symmetry generated by Ĝj . In other words, the local
symmetry associated with Ŵj contains the Z2 gauge sym-
metry generated by Ĝj . Note that the converse of relation
(6) is not necessarily true, and Ĥ 0 is one counterexample.

For the rest of our discussion and without loss of gener-
ality, we set gtar

j = 1 in Eq. (4b)—we have checked that
our conclusions remain the same for other values of it.
Moreover, we use the sequence cj = [6(−1)j + 5]/11 [68]
unless otherwise specified.

III. QUENCH DYNAMICS

We now demonstrate how LPG protection can be
employed to not only stabilize disorder-free localization,

j j + 1

j = 1 2 3 4 1

|ψz
0〉

|ψx
0 〉

4433333

jjjjjj ++ 111

â†
j τ̂j,j+1

FIG. 2. The two initial states considered in this work. Both
are domain walls on a periodic chain from the perspective of
hard-core bosons, with matter sites on the left half of the chain
singly occupied (red filled circles), while those on the right half
are empty (open circles). The main difference lies in the orien-
tation of the electric field on the links between matter sites. In
the case of |ψx

0 〉, the electric fields are oriented along the positive
or negative x direction such that Ĝj |ψx

0 〉 = |ψx
0 〉 for all j , making

this initial state gauge invariant. In contrast, the electric fields are
aligned along the positive z direction in the case of |ψ z

0〉, render-
ing the latter a translation-invariant gauge-noninvariant super-
position of gauge-invariant superselection sectors (see Table I).
Note that both these initial states are product states, and are
thus relatively easily implementable in quantum synthetic matter
setups.

but also to enhance it through a dynamically emergent
enhanced local symmetry associated with the LPG and
containing the original Z2 gauge symmetry.

A. Imbalance
To probe disorder-free localization, we calculate in

exact diagonalization the quench dynamics, as propagated
by the faulty theory Ĥ , of the spatiotemporally averaged
imbalance in the boson number between both halves of the
chain, defined as

I(t) = 1
Lt

∫ t

0
ds

L∑

j =1

pj 〈ψ(s)| n̂j |ψ(s)〉 , (7)

where pj = 2 〈ψ0| n̂j |ψ0〉 − 1, |ψ0〉 = |ψx,z
0 〉 is one of the

two initial states we consider in this work (see Fig. 2),
L is the number of matter sites (and also the number of
gauge links as we employ periodic boundary conditions),
and |ψ(t)〉 = e−iĤ t |ψ0〉. For the following results, we set
L = 4, while relegating results for larger system sizes to
Appendix A.

Let us first prepare our system in the initial state |ψx
0 〉 in

the superselection sector Ĝj |ψx
0 〉 = |ψx

0 〉 for all j , such that
it is a domain-wall state at half-filling from the perspective
of hard-core bosons; see Fig. 2 and Table I. In the wake
of a quench with Ĥ = Ĥ 0 + λĤ 1 + VĤ W, the system is
expected to thermalize, and indeed we find that the imbal-
ance relaxes to zero as predicted by the corresponding
thermal ensembles; see Fig. 3 and Appendix B.
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TABLE I. The accessible superselection sectors g and the
expectation values of their projectors P̂g relative to the initial
states of Fig. 2. The gauge-invariant initial state |ψx

0 〉 resides
within a single superselection sector gj = +1 for all j , while
the gauge-noninvariant initial state |ψ z

0〉 is an equal-weight
superposition over all accessible superselection sectors.

g = (g1, g2, g3, g4) 〈ψx
0 | P̂g |ψx

0 〉 〈ψ z
0 | P̂g |ψ z

0〉
(−1, −1, −1, −1) 0 0.125
(−1, −1, +1, +1) 0 0.125
(−1, +1, −1, +1) 0 0.125
(−1, +1, +1, −1) 0 0.125
(+1, −1, −1, +1) 0 0.125
(+1, −1, +1, −1) 0 0.125
(+1, +1, −1, −1) 0 0.125
(+1, +1, +1, +1) 1 0.125

Let us now investigate what happens when the system
is initialized in |ψ z

0〉, which is also a domain-wall state in
the hard-core bosons, but its electric fields all point in the
positive z direction, creating an equal-weight superposi-
tion over all physical superselection sectors corresponding
to Ĝj ; see Fig. 2 and Table I. Such an initial state is
known to lead to disorder-free localization [40]. Indeed,
we see in Fig. 4 that in the absence of gauge-breaking
errors, the system retains memory of the initial state up
to all accessible evolution times (yellow curve), with the
imbalance relaxing to a value of approximately 0.1, despite
the corresponding thermal ensembles predicting a van-
ishing imbalance. However, once gauge-breaking errors
are present, disorder-free localization becomes a prether-
mal phase as shown in Fig. 4(a), reminiscent of staircase
prethermalization, which has previously been observed in
gauge theories in a different setting [73,83,84]. In partic-
ular, we find that at a given value of the error strength λ,
the imbalance leaves the error-free plateau at a timescale ∝
1/λ, after which it enters a second prethermal plateau and

FIG. 3. Quench dynamics under Ĥ = Ĥ 0 + λĤ 1 + VĤ W of
the imbalance (7) starting in the gauge-invariant domain-wall
state |ψx

0 〉; see Fig. 2. As predicted by the corresponding thermal
ensembles, the system thermalizes with the imbalance vanishing
regardless of what values λ and V take.

finally decays to zero, as predicted by the corresponding
thermal ensembles, at a timescale ∝ J/λ2.

Fixing the error strength to λ = 0.01J , we now study
the efficacy of the LPG gauge protection (4a) in stabiliz-
ing disorder-free localization for a quench by Ĥ starting in
the initial state |ψ z

0〉. Remarkably, as shown in Fig. 4(b),
not only is the disorder-free localization prolonged with
larger V, it is also enhanced, with the prethermal disorder-
free localization plateaus exhibiting greater memory of the
initial state by taking on larger values than the ideal case
(yellow curve) before thermalization.

Specifically, we find that up to a timescale ∝ V/J 2, the
dynamics of the imbalance is effectively described by the
emergent gauge theory Ĥ QZE =

∑
w P̂w(Ĥ 0 + λĤ 1)P̂w,

which hosts an enhanced local symmetry associated with
the LPG Ŵj . As a result of relation (6), this local sym-
metry contains the Z2 gauge symmetry generated by Ĝj .
Indeed, Ĥ QZE can be derived through the quantum Zeno
effect [69–72], as we demonstrate in Sec. IV, and sat-
isfies [Ĥ QZE, Ĝj ] = [Ĥ QZE, Ŵj ] = 0 for all j . Here, w =
(w1, w2, . . . , wL) are superselection sectors of Ŵj with pro-
jectors P̂w. We see that the timescale of this emergent
theory does not seem to depend on λ, and this is because
the dominant gauge-breaking term for the emergent local
symmetry is Ĥ 0 (see Sec. IV for further details). After
this timescale, another effective gauge theory emerges with
only the Z2 gauge symmetry that persists up to a timescale
∝ V2/(λ2J ), as can be discerned from Figs. 4(b) and
4(c), after which thermalization occurs and the imbalance
vanishes.

In the absence of gauge-breaking errors, we observe
in Fig. 4(d) the same behavior up to a timescale ∝
V/J 2, where Ĥ QZE =

∑
w P̂wĤ 0P̂w faithfully reproduces

the dynamics as analytically predicted in Sec. IV. How-
ever, after this timescale once again an emergent Z2 gauge
theory arises that lasts indefinitely. We note that we have
checked that the thermal ensembles corresponding to a
quench of |ψ z

0〉 by Ĥ 0 + VĤ W predict a vanishing imbal-
ance, and therefore the nonzero-imbalance plateaus in
Fig. 4(d) cannot be thermal, but rather are a signature of
localized dynamics.

This leads to the remarkable conclusion that employing
LPG protection not only preserves the original gauge sym-
metry of the ideal theory up to a timescale ∝ V2/(λ2J ),
thereby protecting disorder-free localization, but it also
dynamically induces an emergent local symmetry up to a
timescale ∝ V/J 2 that further enhances disorder-free local-
ization. This is possible because the initial state can be
viewed as a superposition over the superselection sectors
of Ŵj as well as those of Ĝj (see Table II). When the
dynamics is propagated by only Ĥ 0, only the superposition
over the superselection sectors g will induce an effective
disorder since [Ĥ 0, Ĝj ] = 0 for all j , but [Ĥ 0, Ŵj ] != 0. On
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(a) (b)

(c) (d)

FIG. 4. Quench dynamics under the faulty theory Ĥ = Ĥ 0 + λĤ 1 + VĤ W of the imbalance (7) starting in |ψ z
0〉, a bosonic domain-

wall state where the electric flux on each link is a superposition of both its possible configurations, rendering |ψ z
0〉 a superposition over

all physical superselection sectors. (a) This state leads to disorder-free localization up to all accessible times when there are no gauge-
breaking errors. In the presence of the latter, disorder-free localization exhibits staircase prethermalization, and the system eventually
thermalizes with a vanishing imbalance. (b)–(d) Introducing LPG protection prolongs the prethermal disorder-free localization plateau,
and even enhances it. We find that initially an emergent gauge theory Ĥ QZE =

∑
w P̂w(Ĥ 0 + λĤ 1)P̂w, with an enhanced local symme-

try associated with Ŵj and containing the original Z2 gauge symmetry, effectively describes the dynamics up to a timescale ∝ V/J 2,
after which another effective Z2 gauge theory emerges lasting (b),(c) up to a timescale ∝ V2/(λ2J ) in the presence of gauge-breaking
errors, and (d) indefinitely when there are no errors.

the other hand, once the dynamics is propagated by the
faulty theory Ĥ = Ĥ 0 + λĤ 1 + VĤ W at sufficiently large
V, one can derive through the quantum Zeno effect that the
dynamics is effectively reproduced by

Ĥ QZE = VĤ W +
∑

w

P̂w(Ĥ 0 + λĤ 1)P̂w, (8)

up to an error with an upper bound ∝ tV2
0L2/V [68], where

V0 is an energetic term that is roughly a linear sum in J , λ,
and h; cf. Sec. IV. This emergent gauge theory enhances
disorder-free localization through its enhanced local sym-
metry associated with Ŵj , because now the superposition
over the superselection sectors w will induce a further
effective disorder in addition to that due to the superpo-
sition over the superselection sectors g. We note that our
exact diagonalization results show that the term VĤ W is
inconsequential to the dynamics of the local observables
under Eq. (8), which is why we have neglected this term in
Ĥ QZE for Fig. 4. The enhancement of disorder-free local-
ization through LPG protection is a main result of this
work, which we analyze in more detail below.

B. Superselection-sector projectors
In order to get a deeper understanding of the behavior

and timescales exhibited in Fig. 4, we study the expectation

values of the projectors P̂g and P̂w onto the superselec-
tion sectors g and w, respectively. The corresponding data
are shown in Figs. 5(a) and 5(c) for g = (−1, +1, +1, −1)
and w = (+1, +3, +1, −1), respectively, at a fixed gauge-
breaking error λ = 0.01J . Under the effective Hamiltonian
Ĥ QZE, the expectation values of both P̂g and P̂w will

TABLE II. The superselection sectors w of the gauge symme-
try generated by Ŵj , and the expectation values of their projec-
tors relative to the initial states of Fig. 2. The gauge-invariant
initial state |ψx

0 〉 resides within a single superselection sector
wj = gj = +1 for all j , while the gauge-noninvariant initial state
|ψ z

0〉 is an equal-weight superposition over various superselec-
tion sectors w that are equivalent to the superselection sectors in
Table I.

w = (w1, w2, w3, w4) 〈ψx
0 | P̂w |ψx

0 〉 〈ψ z
0 | P̂w |ψ z

0〉
(+1, +1, −1, −1) 0 0.125
(+1, +1, +1, +1) 1 0.125
(+1, +3, −1, +1) 0 0.125
(+1, +3, +1, −1) 0 0.125
(+3, +1, −1, +1) 0 0.125
(+3, +1, +1, −1) 0 0.125
(+3, +3, −1, −1) 0 0.125
(+3, +3, +1, +1) 0 0.125

020345-6



ENHANCING DISORDER-FREE LOCALIZATION... PRX QUANTUM 3, 020345 (2022)

(a) (b)

(c) (d)

FIG. 5. Quench dynamics of the projectors onto (a),(b) the superselection sectors g of Ĝj and (c),(d) the superselection sectors w of
Ŵj . (a),(b) The quench dynamics of P̂g under the faulty theory Ĥ = Ĥ 0 + λĤ 1 + VĤ W restores its original value with larger V up to
a timescale ∝ V2/(λ2J ), which exceeds the analytic prediction from the quantum Zeno effect (see Sec. IV). The timescale up to which
〈P̂g〉 retains its initial value matches that at which the imbalance leaves its second prethermal plateau and begins to thermalize to zero,
as shown in Fig. 4(b). The quench dynamics of P̂w at (c) λ = 0.01J and (d) λ = 0 indicate a common timescale ∝ V/J 2 at which 〈P̂w〉
deviates from its initial value, showing that it depends more strongly on Ĥ 0 than the gauge-breaking term λĤ 1. These results confirm
that up to a timescale ∝ V/J 2, an emergent gauge theory Ĥ QZE faithfully reproduces the quench dynamics, where this theory hosts
an enhanced local symmetry associated with Ŵj that contains the Z2 gauge symmetry of Ĥ 0. After this timescale, the enhanced local
symmetry reduces to the original Z2 gauge symmetry, and a new renormalized Z2 gauge theory emerges.

always be equal to their initial values, because Ĥ QZE hosts
an enhanced local symmetry associated with Ŵj , and this
local symmetry contains the Z2 gauge symmetry gener-
ated by Ĝj . In other words, Ĥ QZE restricts the dynamics of
the total system to intrasector dynamics, and does not cou-
ple different sectors. The dynamics under the faulty theory
Ĥ = Ĥ 0 + λĤ 1 + VĤ W can be shown analytically to be
well reproduced by Ĥ QZE up to timescales linear in V (see
Sec. IV). Therefore, we can expect that 〈P̂g〉 and 〈P̂w〉 will
remain controllably near their initial values until at least
such timescales, and indeed this is what we see in Fig. 5.
Interestingly though, we see that 〈P̂w〉 deviates from its
initial value much earlier than 〈P̂g〉. This is not surprising
because enhanced local symmetry associated with Ŵj is
subjected not only to the errors λĤ 1, but also to the more
dominant Ĥ 0, which is an error term from the viewpoint of
this local symmetry. As such, the enhanced local symme-
try is expected to reduce to the Z2 gauge symmetry before
the latter is also broken by λĤ 1 at sufficiently long times.

This revelation also allows us to understand exactly
what is happening in the results of Figs. 4(b) and 4(d).
The quench dynamics of the imbalance under Ĥ is ini-
tially reproduced by Ĥ QZE up to timescales linear in V,

but then this plateau decays into one lower in value. This
occurs at the same timescale 〈P̂w〉 leaves its initial value
in Fig. 5(c) at finite λ, and also in Fig. 5(d) for the error-
free case. As such, we find that at sufficiently large V, a
dynamically induced effective gauge theory arises up to
timescales ∝ V/J 2 that has an enhanced local symmetry
associated with Ŵj , and as a consequence, also hosts the Z2

gauge symmetry generated by Ĝj . The latter is subjected
to only one gauge-breaking term λĤ 1, while the former
is undermined by two gauge-breaking terms Ĥ 0 + λĤ 1.
After a timescale ∝ V/J 2, the emergent gauge theory is
replaced by a renormalized gauge theory with only the
original Z2 gauge symmetry intact, which is further com-
promised at a timescale ∝ V2/(λ2J ) [see Figs. 5(a) and
5(b)], as in Figs. 4(b) and 4(c). However, this numeri-
cally obtained timescale also depends on the error term
(see Appendix. A).

C. Midchain entanglement entropy
We now look at disorder-free localization through the

midchain entanglement entropy SL/2(t). Its dynamics is
shown in Figs. 6(a) and 6(b) for quenches with the faulty
Hamiltonian Ĥ = Ĥ 0 + λĤ 1 + VĤ W using the error in
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Eq. (3) and for the error-free case when λ = 0. Both
cases yield qualitatively identical behavior at large V,
which is indeed to be expected since the effective Hamilto-
nian Ĥ QZE is dominated by VĤ W (at short times mostly)
and

∑
w P̂wĤ 0P̂w (at later times). The dynamics in the

presence of errors in Fig. 6(a) shows that the midchain
entanglement entropy of the unprotected case grows to its
maximal possible value, well approximated by the mid-
chain entanglement entropy of a random pure state. Even
though in the protected case at finite V the entangle-
ment entropy will always eventually reach this maximal
value, this process is delayed linearly in V when the lat-
ter is sufficiently large. Specifically, the dynamics is well
reproduced by the effective gauge theory Ĥ QZE = VĤ W +∑

w P̂w
(
Ĥ 0 + λĤ 1

)
P̂w up to a timescale ∝ V/J 2, just as

in the case of the imbalance and superselection-sector pro-
jectors. After this timescale, we find that the entanglement
entropy grows again before settling into an intermediate
plateau, which signifies the emergence of a renormalized
gauge theory up to a timescale ∝ V2/(λ2J ), which pre-
serves only the Z2 gauge symmetry generated by Ĝj , but
not the enhanced local symmetry of Ĥ QZE associated with
Ŵj . Indeed, comparing the duration and timescale of this
plateau for V = 104J in Fig. 6(a), we find that they roughly
match their counterparts in Fig. 4(b) for the imbalance and
Fig. 5(a) for 〈P̂g〉.

In the absence of errors, the quench dynamics of the
entanglement entropy under Ĥ 0 saturates to a value lower
than that of a random pure state, since disorder-free local-
ization is not compromised. Upon adding LPG protection
at sufficiently large V, the localization at long times is
strengthened. Up to times linear in V, the dynamics of
the entanglement entropy is well-reproduced by the effec-
tive gauge theory Ĥ QZE = VĤ W +

∑
w P̂wĤ 0P̂w. After

this timescale, the entanglement entropy grows again and
saturates near the value under Ĥ 0.

It is interesting to note in Fig. 6 how the entanglement
entropy grows faster at very early times in the presence of
LPG protection than in the unprotected case. Rigorously, in
the large-V limit, the QZE Hamiltonian should involve the
protection term itself, in addition to the projector part; see
Eq. (8) and Sec. IV. In the case of the spin-S U(1) quan-
tum link models [73], the protection term, composed of the
local generator Ĝj , induces dynamics only in the sectors in
which the initial state is prepared, and so it will not lead
on its own to any significant increase in the entanglement
entropy at early times. In the case of the Z2 lattice gauge
theory, on the other hand, the LPG protection involves
strong dynamics at large V in the superselection sectors
of the gauge symmetry generated by Ŵj . This will lead
to a faster growth of entanglement entropy at short times
as the involved dynamics is not pure intrasector dynam-
ics from the viewpoint of the superselection sectors of the
Z2 gauge symmetry generated by Ĝj . In a way, this is a

(a)

(b)

R

R

FIG. 6. Quench dynamics of the midchain von Neumann
entanglement entropy under Ĥ = Ĥ 0 + λĤ 1 + VĤ W, where
λĤ 1 is given by Eq. (3), (a) in the presence of errors at λ =
0.01J and (b) without errors, λ = 0. (a) Without protection, the
error leads to the entanglement entropy growing to its max-
imal value (red curve) such that it equals the entanglement
entropy of a random pure state (dotted gray line). Upon adding
LPG protection (shades of blue), we see that with larger V
the entanglement entropy takes longer to reach this maximal
value. At sufficiently large V, the dynamics of the entanglement
entropy is well reproduced by the effective Hamiltonian Ĥ QZE =
VĤ W +

∑
w P̂w(Ĥ 0 + λĤ 1)P̂w up to timescales linear in V, after

which a renormalized Z2 gauge theory takes over, leading to a
plateau in the entanglement entropy lasting up to the timescale
∝ V2/(λ2J ), after which the entanglement entropy grows to its
maximal value. Under Ĥ QZE, the entanglement entropy saturates
to a value much smaller than the unprotected case (green curve).
(b) In the error-free case, the entanglement entropy without LPG
protection reaches a maximal value lower than that of a ran-
dom pure state due to intact disorder-free localization (yellow
curve). Upon adding LPG protection, disorder-free localization
is enhanced at sufficiently large V, leading to an entanglement
entropy well reproduced up to timescales linear in V by Ĥ QZE =
VĤ W +

∑
w P̂wĤ 0P̂w, under which the entanglement entropy

saturates at a much smaller value than the case without LPG
protection. After this linear-in-V timescale, the entanglement
entropy saturates to a value lower than that of a random pure
state for all accessible times. For the dynamics under Ĥ QZE, we
have set V = 104J in Eq. (8) for these results.

small price to pay: adding new local-symmetry sectors due
to the LPG protection that the dynamics can now explore
leads to a faster entanglement-entropy growth at very early
times due to VĤ W, but also brings about greater localiza-
tion at intermediate to late times, where the projector part∑

w P̂wĤ 0P̂w is dominant. Indeed, as we have seen for the
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imbalance and superselection-sector projectors, the term
VĤ W is inconsequential to their dynamics under Ĥ QZE.

IV. QUANTUM ZENO SUBSPACES

To put an analytic footing on the numerical results we
have presented in our work, we now employ the QZE
to build an effective model that can faithfully reproduce
the disorder-free localization due to the LPG protection.
In the limit of large V, the dynamics under the faulty
theory Ĥ = Ĥ 0 + λĤ 1 + VĤ W is limited to the nonde-
generate “decoherence-free” subspaces of the LPG pro-
tection operator Ĥ W. Let us denote these quantum Zeno
subspaces by their projectors P̂α , which will satisfy the
relation Ĥ WP̂α = εαP̂α , where the εα are unique for every
α, i.e., εα = εα ⇐⇒ α = α′. The time-evolution operator
ÛV(t) = e−iĤ t can be shown to be diagonal in the basis of
Ĥ W in the limit of V → ∞, such that [ÛV→∞(t), P̂α] = 0.

To prove this [69], let us go into the interaction picture
of Ĥ 0 + λĤ 1, which we denote by the superscript I . The
Schrödinger equation then reads

i∂tÛI
V(t) = VĤ I

W(t)ÛI
V(t). (9)

In the large-V limit, this is identical to an adiabatic
evolution with V corresponding to large time. In the
V → ∞ limit, the intertwining property ÛI

V→∞(t)P̂I
α(0) =

P̂I
α(t)ÛI

V→∞(t) is satisfied. This means that ÛI
V→∞(t) maps

the Hilbert subspace HP̂I
α(0) of P̂I

α(0) exactly into the sub-
space HP̂I

α(t) of P̂I
α(t). In the Schrödinger picture, this

translates to

|φ(0)〉 ∈ HP̂α ⇐⇒ |φ(t)〉 ∈ HP̂α , (10)

meaning that any state |φ(0)〉 initially in the subspace
HP̂α will undergo dynamics restricted within that subspace
when V → ∞. Indeed, the formalism of the adiabatic
theorem yields the effective time-evolution operator

ÛV→∞(t) = e−i[VĤW+
∑
α P̂α(Ĥ0+λĤ1)P̂α ]t, (11)

up to an error with an upper bound ∝ tV2
0L2/V [70]. The

energetic term V0 is roughly a linear sum of J , h, and λ.
The relation between the quantum Zeno projectors P̂α

and the superselection projectors P̂w and P̂g intimately
depends on the choice of the sequence cj in Eq. (4a).
It may be possible to engineer a sequence such that the
spectral decomposition of Ĥ W is exactly such that each
quantum Zeno subspace with projector P̂α corresponds to
one and only one superselection sector P̂w, and vice versa.
Equivalently, this means that

Ĥ WP̂w = εwP̂w with εw = εw′ ⇐⇒ w = w′. (12)

However, in such a case it may be unavoidable to have
a highly fine-tuned spatially inhomogeneous sequence

cj that is unfeasible experimentally and scales with L.
Nevertheless, and as our exact diagonalization results
show, a simple translation-invariant sequence such as cj =
[6(−1)j + 5]/11 will still offer reliable protection and
enhancement of disorder-free localization. Such simple
sequences may in general not guarantee the relation (12),
and then a quantum Zeno subspace will be a union of a few
superselection sectors, i.e., P̂α =

∑
{w;

∑
j cj wj =εα} P̂w. But

with the appropriate sequence, all sets {w;
∑

j cj wj = εα}
will only contain a few sectors w for each α, and, more
importantly, each set will have sectors that do not couple
up to first order in Ĥ 0 + λĤ 1. Once this is satisfied, then
in the regime of validity of the quantum Zeno effect, the
time-evolution operator can be written directly as

ÛV→∞ = e−iĤQZEt, (13)

where the emergent gauge theory, Ĥ QZE given in Eq. (8), is
what we have used in our exact diagonalization results. It
is worth noting that Ĥ QZE has an enhanced local symmetry
that contains the original Z2 gauge symmetry generated by
Ĝj . This enhanced local symmetry is associated with the
Z2 LPG Ŵj . This is embodied in the commutation relations
[Ĥ QZE, Ĝj ] = [Ĥ QZE, Ŵj ] = 0 for all j .

So far, we have understood how the gauge protection
VĤ W leads to quantum Zeno subspaces that are roughly
equivalent to the superselection sectors w, thereby sup-
pressing transitions between these sectors up to timescales
∝ V/(V0L)2. But in general, the sectors w and g are not
the same since Ŵj != Ĝj . However, the occupied sectors w
and g that constitute the initial superposition state |ψ z

0〉 are
equivalent (see Tables I and II), and at large V the sectors
w are actual local-symmetry sectors since the dynamics
is effectively propagated by Ĥ QZE. Despite being equiv-
alent, the superselection sectors w and g generally have
different background charges, which leads to a greater
effective disorder in the ensuing dynamics, thus enhancing
disorder-free localization. Interestingly, the local symme-
try due to Ŵj is subjected to the errors Ĥ 0 + λĤ 1, while
the gauge symmetry due to Ĝj is only subjected to the
errors λĤ 1. This is the reason why the timescale over
which the local symmetry associated with Ŵj is preserved
is shorter than that for the Z2 gauge symmetry. Let us
consider the Z2 sector g = (+1, +1, −1, −1). This cor-
responds to the Ŵj sectors w = (+1, +1, −1, −1), w′ =
(+1, +1, −1, +3), w′′ = (+1, +1, +3, −1), and w′′′ =
(+1, +1, +3, +3). However, when the system is prepared
in |ψ z

0〉, only the sector w = (+1, +1, −1, −1) is occupied
at t = 0. The Z2 Hamiltonian Ĥ 0 can only lead to transi-
tions between w, w′, w′′, and w′′′, but no other Ŵj sectors,
as then this would mean transitions between g and other Z2

sectors, which is not possible since [Ĥ 0, Ĝj ] = 0 for all j .
As such, we see that after the timescale ∝ V/J 2 the local
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symmetry due to Ŵj is broken by Ĥ 0 in a special way that
still guarantees the conservation of the Z2 gauge symmetry
up to the timescale ∝ V2/(λ2J ). However, at long enough
times, λĤ 1 will be the dominant error, and then both local
symmetries will be completely broken in the dynamics.

V. DISCUSSION

It is worth discussing further details regarding the nature
of the LPG protection sequence and the local symmetry
arising due to the LPG protection, which we do in the
following.

A. LPG protection sequence
As explained in Sec. III and derived in Sec. IV, an

effective gauge theory emerges dynamically based on the
principle of quantum Zeno subspaces [69]. This requires
an appropriate choice of the sequence cj that penalizes
the majority of transitions between different superselection
sectors. In principle, if cj is completely random then this
will give rise to optimal performance in LPG protection,
and in fact the system will not thermalize for all accessi-
ble evolution times even in the presence of gauge-breaking
errors when starting in a superposition initial state such as
|ψ z

0〉, as shown in Fig. 7(a). Even though the dynamics is
qualitatively identical to the case of the translation invari-
ant cj employed in Fig. 4(b) up to a timescale ∝ V/J 2,
where the effective gauge theory Ĥ QZE =

∑
w P̂w(Ĥ 0 +

λĤ 1)P̂w emerges, after this timescale the dynamics is fun-
damentally different, as the second plateau, which only
lasts up to a timescale ∝ V2/(λ2J ) for cj = [6(−1)j +
5]/11, persists indefinitely for a random sequence cj at a
value not predicted by the corresponding thermal ensem-
ble. Even though one may no longer legitimately be able
to claim disorder-free localization with a random cj , this
still would not be typical disorder MBL, since a random
cj does not allow LPG protection to create disorder when
starting in |ψx

0 〉, for example, as shown in Fig. 7(b).
Furthermore, we emphasize that LPG protection does

not trivially “freeze” dynamics in the superselection sec-
tors g. All the sectors constituting the superposition of |ψ z

0〉
will still undergo dynamics, as illustrated in Table III. The
projectors P̂g of the relevant superselection sectors g show
a finite 2-norm when acting on Ĥ 0. We see that in the
large-V limit where the protected dynamics is effectively
propagated by

∑
w P̂wĤ 0P̂w, the 2-norm of the projected

parts of this term by P̂g are nonzero but just renormalized.

B. Enriched local symmetry due to the LPG
Even though the concept of LPG protection has already

been introduced in Ref. [68], it is important to stress here
that the enriched local symmetry due to LPG protection
introduced in this work could not have been present in

(a)

(b)

FIG. 7. LPG protection with a translation-noninvariant
sequence cj ∈ (−1, 1) of random real numbers. (a) When
starting in the superposition initial state |ψ z

0〉, the LPG pro-
tection at sufficiently large V leads to localized dynamics
that is well reproduced by the same effective gauge theory
Ĥ QZE =

∑
w P̂w(Ĥ 0 + λĤ 1)P̂w that emerges in the case of

a translation invariant cj , up to a timescale polynomial in V.
However, the renormalized gauge theory that emerges after this
timescale, which conserves only the Z2 gauge symmetry, persists
over all accessible evolution times in exact diagonalization,
which is not the case when cj is translation invariant, where
the imbalance eventually thermalizes to zero; see Fig. 4(b). (b)
Starting in the gauge-invariant initial state |ψx

0 〉, LPG protection
with a random cj does not protect localized behavior regardless
of λ and V.

the setup of Ref. [68]. The reason is that in Ref. [68]
the main objective is to stabilize dynamics within a single
target gauge superselection sector, for which the LPG is

TABLE III. The 2-norm of the projections of Ĥ 0 and∑
w P̂wĤ 0P̂w onto the superselection sectors g constituting the

superposition initial state |ψ z
0〉 (see Table I). The nonzero renor-

malized norms show that LPG protection does not trivially freeze
dynamics, but that rather in its presence there is renormalized
dynamics in the relevant sectors g.

g = (g1, g2, g3, g4) ||P̂gĤ 0P̂g|| ||
∑

w P̂gP̂wĤ 0P̂wP̂g||
(−1, −1, −1, −1) 2.8914 0.6
(−1, −1, +1, +1) 3.1253 1.344
(−1, +1, −1, +1) 3.284 1.2
(−1, +1, +1, −1) 3.1253 1.344
(+1, −1, −1, +1) 3.1253 1.344
(+1, −1, +1, −1) 3.284 1.2
(+1, +1, −1, −1) 3.1253 1.344
(+1, +1, +1, +1) 2.8914 2.8914
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engineered such that it acts identically to the full local gen-
erator within that target sector. In other words, the LPG and
the full local generator are impossible to distinguish in the
target sector, and therefore one cannot resolve any enriched
local symmetry in that setup; see the case in Fig. 1(b)
where the yellow block (sector due to the full local gen-
erator) and the green block (sector due to the LPG) fully
overlap. Indeed, the effective Zeno Hamiltonian when
working only within a target superselection sector is [68]

Ĥ tar
QZE = Ĥ 0 + λP̂gtarĤ 1P̂gtar , (14)

which is a reduced version of Eq. (8), and where gtar = wtar

is the target sector. Starting in an initial state |ψ tar
0 〉 in

the target sector, one cannot distinguish as to whether its
dynamics is propagated by Eq. (8) or (14), simply because
P̂g |ψ tar

0 〉 != 0 ⇐⇒ g = gtar. On the other hand, starting
in a superposition initial state, as we have done in the
main results of this work, will lead to fundamentally differ-
ent dynamics whether the quench Hamiltonian is Eq. (8)
or (14), whereby only in the former case can enhanced
disorder-free localization emerge due to the enriched local
symmetry.

This highlights the intimate connection between gauge
invariance and disorder-free localization. Restricting to
one superselection sector will not resolve the local sym-
metry of the model, as no information is available on
the structure of the other gauge-symmetry sectors. But a
superposition initial state allows resolving the full struc-
ture of the local symmetry, and this will therefore lead
to localized dynamics, where an emergent disorder over
the background charges associated with the superselec-
tion sectors arises, even though the system and the initial
state themselves are translation invariant and disorder-free.
In the case of LPG protection, we have shown how this
local symmetry is enhanced with respect to that of the
original model. In this case, the initial state is a super-
position over a larger number of superselection sectors,
thereby effecting a greater emergent disorder over the asso-
ciated background charges, and hence leading to stronger
disorder-free localization.

VI. EXPERIMENTAL PROPOSAL

In this section, we propose a readily feasible exper-
imental scheme to observe disorder-free localization in
an analog quantum simulation platform. In the follow-
ing, we focus on Rydberg atom arrays [85], although the
proposed scheme can similarly be adapted for supercon-
ducting qubits [86]. The difficulty lies in the implementa-
tion of a gauge-invariant Hamiltonian such as Eq. (1). To
circumvent the explicit construction of involved Z2 gauge-
invariant dynamical schemes [13,78], which involve three-
body interactions, we only implement two-body LPG
terms (4b) in the Hamiltonian while driving the system,

as we elaborate in the following. The key idea is that
strong LPG terms create well-defined energy subspaces,
which are the symmetry sectors, and integrating out the
weak drive yields the following two interactions. (1) States
within the same symmetry sector are energetically on res-
onance but not coupled directly by single-body driving
terms. Nevertheless, virtually coupling to other sectors
can induce effective interactions such as Eq. (1) after a
Schrieffer-Wolff transformation. (2) Two states in differ-
ent energy sectors can be coupled by single-body driving
terms but are not on resonance. Therefore, these effective
couplings, which can be considered as gauge symmetry-
breaking terms, are suppressed by strong LPG terms.

Here, the goal is not to implement the exact Hamiltonian
(1) but instead we only argue that the dynamics is governed
by an effective Hamiltonian Ĥ eff with [Ĥ eff, Ŵj ] = 0 for all
j . Regardless of the microscopic details of Ĥ eff, we find
qualitatively the same disorder-free localizing behavior as
discussed above.

For the experimental setup, both matter and link degrees
of freedom are individually mapped onto qubits realized
by single atoms or superconducting qubits. The matter
site has two local basis states described by the unoc-
cupied state |g〉j and the occupied state |r〉j = â†

j |g〉j ,
where |g〉j (|r〉j ) is the ground (Rydberg) state at site j ;
see Fig. 8(a). Similarly, the local Hilbert space on the
link between matter sites j and j + 1 is described by the
two electric field configurations |g〉j ,j +1 for τ x

j ,j +1 = −1
and |r〉j ,j +1 = â†

j ,j +1 |g〉j ,j +1 for τ x
j ,j +1 = +1, and there-

fore the electric field configurations can be written as
hard-core bosonic occupations of the link qubit n̂j ,j +1 =
â†

j ,j +1âj ,j +1 = (τ̂ x
j ,j +1 + 1̂j ,j +1)/2.

The microscopic Hamiltonian we propose to implement
is given by

Ĥ mic =
∑

j

[
Vn̂j −1,j n̂j ,j +1 + γ n̂j (n̂j −1,j + n̂j ,j +1)

+ (h − V)n̂j ,j +1 +
(

µ + V
2

)
n̂j

++(âj + âj ,j +1 + H.c.)
]

. (15)

The terms with coupling strengths ∝ V comprise the
LPG protection terms in the qubit basis. The density-
density interaction terms can be implemented by density-
dependent Rydberg-Rydberg interactions and controlled
by their relative distance, e.g., in tweezer atom arrays;
see Fig. 8(b). Additionally, we require an on-site drive
+ coupling the ground and Rydberg states, |g〉 ↔ |r〉, for
each qubit. In the rotating frame of the qubits, the drive
yields to the creation and annihilation of qubit excitations
while the detuning from the bare qubit frequency gives rise
to single-body terms ∝ n̂j and ∝ n̂j ,j +1. Moreover, µ is
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matter electric field

emergent gauge symmetry
..
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(a) (b)
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(e)

FIG. 8. (a) The matter and gauge degrees of freedom can be mapped onto qubits, where the two energy levels are, e.g., given by the
ground and Rydberg states in an ultracold-atom setup. Likewise, superconducting qubits can also be used in our experimental proposal.
Here, gray (red) circles depict the matter (electric) fields on the sites (links) of the one-dimensional lattice. The qubits have to be driven
at strength + and detuning V. We note that the detuning is chosen to have the same strength as the LPG protection. (b) In the case
of atomic tweezer arrays, the density-density interaction can be controlled by the interatomic distance r and scales as r−6. The shown
setup is a possible configuration to implement Hamiltonian (15). In our proposal, we require V = 2/3γ . (c) The LPG protection terms
∝ V separate the different Ŵj sectors energetically. Furthermore, the terms ∝ γ stabilize the system against errors, where two sectors
are lifted up and down in energy. The drive + couples between different sectors and hence induces the desired dynamics within the
energy sectors in higher-order perturbation theory. (d) We plot the raw (temporally nonaveraged) imbalance for different initial states
(solid lines) and fit the result with an exponential function (dashed lines). The gauge-noninvariant superposition state |ψ z

0〉 shows a
prethermal localizing behavior that is distinctly different from the thermalization of the gauge-invariant initial state to zero imbalance.
We use experimentally realistic parameters γ = 2π × 4.5 MHz, V = 2π × 3 MHz, and + = 2π × 1 MHz, which leads to interesting
dynamics within experimentally feasible timescales of approximately 3 µs. (e) As in (d), we fit the imbalance for different driving
strengths V/+ and extract the t → ∞ value. We find two different regimes with and without disorder-free localization that emphasize
the emergent gauge symmetry in the limit of weak driving V/+ ! 1.

the chemical potential for matter excitations and h is the
electric field.

Note that the LPG term in Eq. (4b) has the form (for
cj = gj = +1 for all j )

V
∑

j

(τ̂ x
j −1,j τ̂

x
j ,j +1 + 2n̂j )

= 2V
∑

j

(2n̂j −1,j n̂j ,j +1 − 2n̂j ,j +1 + n̂j ) + const. (16)

Comparing Eqs. (15) and (16) shows that the interaction
strength has been adapted (4V → V) in order to set the
Rydberg-Rydberg interaction as the natural energy scale
in the system.

Additionally, we introduce interactions between elec-
tric field and matter qubits with strength γ . On the one
hand, this density-density interaction γ ensures that the
desired intersite correlation is built up because, for γ = 0,
the matter and gauge fields would be decoupled. On the

other hand, we want to work with cj = +1 for all j , which
leads to more fragility of the wj = gj = +1 sector against
errors. This can be seen by considering the eigenvalues
wj ∈ {−1, +1, +3} of the LPG term. Assume that the sys-
tem is initially prepared in a state with wi = wj = +1
for two sites i and j . Then a gauge-symmetry breaking
error can resonantly couple to a sector with wi = −1 and
wj = +3, which have the same energy under LPG pro-
tection. This resonance can be lifted by choosing γ != 0
and large γ . +. In general, this would also lead to a
splitting of the wj = +1 manifold. However, by choosing
µ = −γ we can compensate the undesired splitting of the
wj = +1 manifold while the resonance with other sectors
caused by gauge-symmetry breaking errors is effectively
suppressed because only the wj = +3 is modified by γ
terms, as indicated in Fig. 8(c).

Moreover, for experimental simplicity, it is convenient
to have uniform driving strength and detuning. Hence, the
condition (h − V) = (µ + V/2) shall be fulfilled, which
requires V/γ = 2/3 for h = 0 and µ = −γ .
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The main advantage of our proposed scheme is that no
direct implementation of gauge-invariant three-body cou-
pling terms ∝ (â†

j τ̂
z
j ,j +1âj +1 + H.c.) is required. To relate

Hamiltonian (15) to our above findings, we consider the
following: the LPG protection terms enforce a large energy
splitting between the local-symmetry superselection sec-
tors associated with Ŵj ; see Fig. 8(c). In the limit of
a weak local on-site drive + / V, γ the gauge-invariant
coupling terms in the Hamiltonian are then induced in
third-order perturbation theory. Therefore, the perturbative
dynamics to leading order in +/V, which we denote by
the Hamiltonian Ĥ eff, is enforced to act within the symme-
try sectors given by Ŵj , i.e., [Ĥ eff, Ŵj ] = 0 for all j . From
relation (6), this automatically means that [Ĥ eff, Ĝj ] = 0
for all j .

As shown in Fig. 8(c), the drive + couples between
Ŵj sectors that are separated in energy by O(V, γ ).
Hence, dispersive energy shifts ∝ n̂j and ∝ τ̂ x

j ,j +1
arise in second-order perturbation theory with strengths
O(+2V−1,+2γ−1). Moreover, the desired three-body cou-
pling terms only appear in third-order processes and
thus their coupling strength is of order O(+3V−2,+3γ−2,
+3V−1γ−1). Additionally, error terms of the same order
as the gauge-invariant three-body couplings are induced,
leading to ergodic behavior for long times since the
emergent local symmetry is violated. Because the gauge-
symmetry breaking terms are nonresonant processes, we
expect the amplitudes of the error terms to be much smaller
than the gauge-invariant effective couplings. Moreover,
as we have discovered in Secs. III and IV, the pres-
ence of strong LPG protection terms not only stabilizes
but also enhances disorder-free localization. This enhance-
ment makes it possible to observe this phenomenon on
experimentally relevant timescales.

In the following, we want to consider a regime of
equal drive and equal detuning on all matter and link
sites, i.e., in particular V/γ , µ/γ = −1, and h = 0. We
emphasize that this regime is appealing for experimental
purposes since, e.g., in Rydberg atom arrays only a sin-
gle driving laser with fixed detuning and strength for all
qubits is required. Figure 8(b) shows a possible arrange-
ment of Rydberg atoms in real space. Here, we neglect
long-range interactions beyond those in Hamiltonian (15)
since the interactions decay as r−6 between two Rydberg
atoms.

We study the quench dynamics for a system of L = 4
matter sites and L = 4 gauge links with periodic bound-
ary conditions using exact diagonalization. The system is
initialized in the gauge-(non)invariant product state |ψx

0 〉
(|ψ z

0〉), shown in Fig. 2, and then time-evolved under
Hamiltonian (15) in the limit of weak driving +/V = 1/3.
In an experimental setup, the initial states can be prepared
by rotating individual qubits into the product states |r〉 or
(|g〉 + |r〉)/

√
2 at time t = 0. Explicitly, the initial states

take the form

|ψx
0 〉 = |g〉1,2

⊗

j =2,3,4

|r〉j ,j +1

⊗

j =1,2

|r〉j |g〉j +2 , (17a)

|ψ z
0〉 =

⊗

j =1,...,4

|g〉j ,j +1 + |r〉j ,j +1√
2

⊗

j =1,2

|r〉j |g〉j +2 . (17b)

In Fig. 8(d), the temporally nonaveraged imbalance [32]
(IL − IR)/(IL + IR) is plotted using experimentally real-
istic parameters [8]. Here, IL (IR) measures the occupation
of matter sites on the left, j = 1, 2 (right, j = 3, 4), half
of the system (see Fig. 2). The proposed scheme clearly
shows a localization of the domain wall for the gauge-
noninvariant superposition state |ψ z

0〉 while the gauge-
invariant initial state |ψx

0 〉 quickly delocalizes the domain
wall across the entire system, leading to a vanishing
imbalance in congruence with thermalization.

To emphasize the importance of a gauge symmetry for
disorder-free localization and how that gauge symmetry
arises in our perturbative scheme, we compare the sys-
tem in the weak and strong driving regimes, i.e., in a
regime with and without emergent local symmetry, respec-
tively. To this end, we fit the imbalance and plot its
extracted prethermal steady-state value for different driv-
ing strengths V/+, as shown in Fig. 8(e). In the limit
of a strong drive, V/+ " 1, the system has no gauge
symmetry and we find that both initial states thermalize
with a vanishing imbalance. When the driving strength is
decreased, V/+ ! 1, an emergent local symmetry from
LPG protection governs the dynamics of the system. The
dynamics then distinguishes between the two initial states,
and the gauge-noninvariant superposition state |ψ z

0〉 leads
to a localization of the domain wall on experimentally rel-
evant timescales, while |ψx

0 〉 will still result in a vanishing
imbalance. The emergent gauge structure with nontrivial
dynamics in the weak driving regime is consistent with our
picture that well-defined energy subspaces are required to
suppress error terms while gauge-invariant dynamics Ĥ eff
is induced by virtual processes.

VII. CONCLUSIONS AND OUTLOOK

In this work, we have extended the concept of gauge
protection based on local pseudogenerators to the phe-
nomenon of disorder-free localization in Z2 lattice gauge
theories. This type of protection involves a translation-
invariant alternating sum of the local pseudogenerators,
which suppresses transitions between different superse-
lection sectors based on the quantum Zeno effect up to
timescales polynomial in the protection strength. This
preserves localized behavior over these timescales and
even enhances it due to the dynamical emergence of an
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enhanced local symmetry associated with the local pseu-
dogenerator, and which contains the Z2 gauge symmetry
of the ideal theory. The initial state that is a superpo-
sition over the superselection sectors of the original Z2
gauge symmetry is also a superposition over the supers-
election sectors of the emergent local symmetry. Because
of the local-pseudogenerator protection scheme, this leads
to a greater effective disorder over superselection sec-
tors, thereby creating stronger localization in the dynam-
ics.

We have provided numerical results from exact diago-
nalization showing clear protection of disorder-free local-
ization based on local-pseudogenerator protection through
the quench dynamics of the imbalance, superselection-
sector projectors for both the original Z2 gauge symmetry
and the emergent local symmetry, and the midchain entan-
glement entropy. All these results indicate clear timescales
over which disorder-free localization is stabilized and
enhanced.

Given the experimental feasibility of the local pseudo-
generator, this makes the prospect of realizing an exper-
iment exhibiting stable disorder-free localization a realis-
tic one. We have therefore provided a proposal for such
an experiment using Rydberg atoms, where the local-
pseudogenerator protection terms are naturally imple-
mented through Rydberg interactions. Driving between
the ground and Rydberg states, gauge-invariant dynam-
ics is then perturbatively induced. When starting in an
initial state that is a superposition of superselection sec-
tors, experimentally feasible parameters will then give
rise to disorder-free localization in the dynamics of the
imbalance within experimentally accessible lifetimes. Vice
versa, it appears conceivable to introduce local pseudo-
generators to further protect topologically ordered systems
that can be realized experimentally and already feature
emergent discrete gauge theories. This could lead to an
enhanced robustness of the corresponding quantum mem-
ories.

Even though in this work we have applied our protection
scheme to Z2 lattice gauge theories, we emphasize that our
method can be generalized to other Abelian gauge theo-
ries. Indeed, a local pseudogenerator can be engineered for
any gauge-symmetry generator such that it acts identically
to the latter within only a chosen target sector. This con-
struction is not restricted to local generators of Z2 gauge
symmetries, and hence our results can be readily extended.

Several immediate future directions emerge from this
work. It would be interesting to see how well linear gauge
protection in general will work in higher dimensions.
Disorder-free localization has been shown to also exist in
(2 + 1) dimensions [45], and our scheme may be a viable
way to stabilize it.

With regards to dynamically emergent symmetries due
to local-pseudogenerator protection, it would be interest-
ing to investigate whether the concepts we have introduced

in this work can be extended to non-Abelian gauge theo-
ries, which are currently of great interest to implement in
systems of quantum synthetic matter [20].
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APPENDIX A: SUPPORTING NUMERICAL
RESULTS

Here, we provide supplemental numerical evidence that
support the main conclusions of our work.

1. Different error terms
Let us simplify the error term in Eq. (3) by removing

from it the terms ∝ η1...4, leaving us with the error term

λĤ 1 = λ

L∑

j =1

(â†
j âj +1 + âj â†

j +1+τ̂ z
j ,j +1), (A1)

In this case, the timescale at which 〈P̂g〉 deviates from its
initial value is ∝ V/λ2, as shown in Fig. 9 for the imbal-
ance, and the projectors onto the superselection sectors g
and w. Once again, we see by comparing Figs. 9(a) and
9(b) that the second plateau of the imbalance begins to
thermalize towards zero around the same time 〈P̂g〉 leaves
its initial value, which signifies that the dynamics of this
plateau is effectively under a renormalized theory with only
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(a)

(b)

(c)

FIG. 9. Quench dynamics with the gauge-breaking term given
in Eq. (A1), which involves no gauge-invariant processes. (a)
The time evolution of the imbalance is qualitatively identical
to the case of error (3) of Fig. 4(b) except for the timescale
of the second prethermal plateau, which ends at t ∝ V/λ2, in
agreement with the analytic earliest-time prediction, rather than
t ∝ V2/(λ2J ) as in the case of error (3). (b) Same as Fig. 5(a)
but for the error given in Eq. (A1). The same qualitative differ-
ence occurs as in the second plateau of the imbalance, with 〈P̂g〉
deviating from its initial value at a timescale ∝ V/λ2 rather than
∝ V2/(λ2J ). This makes sense as the second prethermal plateau
of the imbalance signifies an effective theory with only the Z2
gauge symmetry conserved. (c) Same as Fig. 5(c) but with the
gauge-breaking term (A1). The result is qualitatively unchanged
since 〈P̂w〉 is only weakly dependent on λĤ 1, since Ĥ 0 is the
main term that breaks the enhanced local symmetry associated
with Ŵj .

the Z2 gauge symmetry preserved. Comparing Figs. 9(a)
and 9(c), we find that the imbalance dynamics leaves its
first plateau, which is well approximated by Ĥ QZE up to
a timescale V/J 2, around the time 〈P̂w〉 deviates from its
initial value. This is because Ĥ QZE hosts an enhanced local
symmetry associated with Ŵj .

It is worth noting about Fig. 9 that the error involved,
given in Eq. (A1), involves no gauge-invariant processes,
unlike the error of Eq. (3). This may explain why the

second plateau, i.e., the one describing a renormalized Z2
gauge theory, is longer lived in the case of error (3) com-
pared to that of error (A1). Note that the timescale of the
first plateau is largely independent of the nature of λĤ 1 (at
least for small λ), and seems to be mostly dependent on Ĥ 0
and the LPG protection strength.

2. Dependence on system size
From the concept of quantum Zeno subspaces, we have

been able to derive in Sec. IV an emergent gauge the-
ory Ĥ QZE with an enhanced local symmetry associated
with the pseudogenerator Ŵj that faithfully reproduces the
dynamics of the faulty theory up to an earliest timescale
∝ V/(V0L)2. Our exact diagonalization results have con-
firmed this prediction and even exceeded it in certain cases
for a fixed value of L. However, the question remains as
to whether increasing the system size will quantitatively
reduce this timescale at a given value of V and λ.

To answer this question, let us double our system size,
while keeping only two bosons on the lattice for reasons of
numerical overhead. If we prepare our system in a gauge-
invariant state |ψx

0 〉, shown in Fig. 10, and quench with the
faulty theory Ĥ = Ĥ 0 + λĤ 1 + VĤ W with λĤ 1 given in
Eq. (3), we observe no disorder-free localization, and the
system thermalizes with a vanishing imbalance regardless
of the values of λ and V; see Fig. 10(a). On the other hand,
if once again we prepare our system in a superposition of
superselection sectors g then quenching the corresponding
state |ψ z

0〉 shown in Fig. 10(b) by Ĥ 0 will lead to disorder-
free localization that persists for all accessible times, and
there is roughly the same ratio of memory retention as
in the case of L = 4 matter sites. Upon adding gauge-
breaking errors, disorder-free localization is compromised
and the system thermalizes with a monotonous decay to
zero, as shown in Fig. 10(b). However, once LPG pro-
tection is turned on, disorder-free localization is restored,
and at sufficiently large V we find that the dynamics of the
imbalance is faithfully reproduced by the emergent gauge
theory Ĥ QZE up to a timescale ∝ V/J 2. We see little depen-
dence on system size, when comparing to Fig. 4(b), in the
quantitative value of this timescale for a given value of V.
This is encouraging for future large-scale experiments on
disorder-free localization.

APPENDIX B: THERMAL ENSEMBLES

Because of the spatial homogeneity and translation
invariance of our system, it is intuitive to expect that the
imbalance will thermalize to zero in case thermalization
does take place. To check this, we look at the prediction
due to both the microcanonical and canonical ensembles.

The microcanonical ensemble ρ̂ME is constructed as fol-
lows. Let |En〉 be the eigenstates with eigenenergies En of
the quench Hamiltonian Ĥ . For an initial state |ψ0〉, the
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j 1

j = 1 2 3 4 1

|ψz
0〉

|ψx
0 〉

4433333

111

â†
j τ̂j,j+1

5 6 7 8 1888777

(a) (b)

FIG. 10. (a) Same as Fig. 3 but for a system with L = 8 matter sites and L = 8 gauge links at quarter filling in the bosons, with
the gauge-invariant initial state |ψx

0 〉 given on top. Disorder-free localization is absent and the system thermalizes with a vanishing
imbalance regardless of the values of λ and V. (b) Same as Fig. 4(b) but for a system with L = 8 matter sites and L = 8 gauge links
at quarter filling in the bosons, with the gauge-noninvariant superposition initial state |ψ z

0〉 given on top. LPG protection stabilizes
disorder-free localization, where the dynamics at sufficiently large V is faithfully reproduced by an emergent gauge theory Ĥ QZE =∑

w P̂w(Ĥ 0 + λĤ 1)P̂w, which hosts an enhanced local symmetry associated with the LPG and that includes the original Z2 gauge
symmetry, up to a timescale ∝ V/J 2. After this timescale, a renormalized gauge theory with only the original Z2 gauge symmetry
emerges up to timescales polynomial in V, after which thermalization occurs and the imbalance vanishes.

quench energy is Equench = 〈ψ0| Ĥ |ψ0〉. Then we can write

ρ̂ME = 1
N.E

∑

En∈W
|En〉 〈En| , (B1)

where N.E is the number of eigenstates |En〉 in the energy
window W = [Equench −.E/2, Equench +.E/2]. In our
code, we have set .E = 0.1J , but we find that our results
are not sensitive to its exact value.

The thermal canonical ensemble is given by

ρ̂CE = e−βĤ

Z , (B2)

where Z = Tr{e−βĤ } is the partition function. The only
unknown in Eq. (B2) is the inverse temperature β, which
can be determined using, e.g., Newton’s method to solve

〈ψ0| Ĥ |ψ0〉 = Tr{ρ̂CEĤ }, (B3)

which states that the initial quench energy is conserved
in the unitary dynamics, and that if the system thermal-
izes, the canonical ensemble should correctly predict this
energy.

We find that if our initial state is |ψ0〉 = |ψx,z
0 〉

(see Fig. 2) then Tr{ρ̂MEÎ} = Tr{ρ̂CEÎ} = 0, where Î =∑L
j =1 pj n̂j /L for generic values of λ and V. This agrees

with the unitary dynamics we calculate in exact diag-
onalization for the case of the initial state |ψx

0 〉, which
thermalizes, but not |ψ z

0〉, which leads to disorder-free
localization.

APPENDIX C: LINEAR PROTECTION IN THE
LOCAL GENERATOR

The principle of quantum Zeno subspaces will also
work when employing the actual local generator Ĝj in the
protection term

VĤ G = V
∑

j

cj Gj , (C1)

where we again use cj = [6(−1)j + 5]/11. Let us now
quench |ψ z

0〉 with the faulty theory Ĥ = Ĥ 0 + λĤ 1 +
VĤ G, with λĤ 1 given in Eq. (3), and calculate the ensu-
ing dynamics of the imbalance, shown in Fig. 11. The
protection works remarkably well, except it is now fun-
damentally different from the LPG protection in that it
cannot induce an enhanced local symmetry. The emergent
gauge theory in this case is Ĥ QZE = Ĥ 0 + λ

∑
g P̂gĤ 1P̂g

[73], and it reproduces the dynamics under Ĥ up to times
polynomial in V, in accordance with the quantum Zeno
effect. This effective gauge theory has only the original
Z2 gauge symmetry due to Ĥ 0. As such, VĤ G only sta-
bilizes disorder-free localization but does not enhance it
(see Fig. 11). Such a protection scheme has also been
demonstrated to reliably stabilize disorder-free localization
in spin-S U(1) quantum link models [73].

Despite the theoretical efficacy of such a protection
term, the implementation of the actual generators Ĝj in a
quantum synthetic matter setup is quite challenging as they
involve multispecies three-body terms, which are at least
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FIG. 11. Quench dynamics of imbalance (7) under Ĥ 0 +
λĤ 1 + VĤ G with error term (3) and cj = [6(−1)j + 5]/11. The
protection term VĤ G = V

∑
j cj Ĝj does not dynamically induce

any new symmetries, but rather only protects the original Z2
symmetry of Ĥ 0 through quantum Zeno dynamics.

as difficult to implement as Ĥ 0. The local pseudogenerator
Ŵj , on the other hand, comprises at most single-species
two-body terms, which are easier to implement than the
ideal gauge theory itself [68].
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