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Polaritonic Hofstadter butterfly and cavity control of the quantized Hall conductance
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In a previous work [Rokaj et al., Phys. Rev. Lett. 123, 047202 (2019)] a translationally invariant framework
called quantum-electrodynamical Bloch (QED-Bloch) theory was introduced for the description of periodic
materials in homogeneous magnetic fields and strongly coupled to the quantized photon field in the optical
limit. For such systems, we show that QED-Bloch theory predicts the existence of fractal polaritonic spectra as a
function of the cavity coupling strength. In addition, for the energy spectrum as a function of the relative magnetic
flux we find that a terahertz cavity can modify the standard Hofstadter butterfly. In the limit of no quantized
photon field, QED-Bloch theory captures the well-known fractal spectrum of the Hofstadter butterfly and can be
used for the description of two-dimensional materials in strong magnetic fields, which are of great experimental
interest. As a further application, we consider Landau levels under cavity confinement and show that the cavity
alters the quantized Hall conductance and that the Hall plateaus are modified as σxy = e2ν/h(1 + η2) by the
light-matter coupling η. Most of the aforementioned phenomena should be experimentally accessible, and
corresponding implications are discussed.
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I. INTRODUCTION

The study of two-dimensional systems perpendicular to
a strong homogeneous magnetic field has given rise to a
plethora of macroscopic quantum phenomena known as the
quantum Hall effects [1]. This fundamental branch of con-
densed matter physics was ignited by the discovery of the
integer Hall effect in 1980 [2], where the macroscopic Hall
conductance σxy exhibits quantized plateaus whose values de-
pend solely on the fundamental charge e, Planck’s constant h,
and the filling factor ν in the picture of noninteracting Landau
levels, σxy = e2ν/h. In the four decades after the fundamental
discovery of the integer Hall effect, a great number of related
phenomena like the fractional quantum Hall effect [3,4], the
quantum spin Hall effect [5], the quantum anomalous Hall
effect [6], and more recently the light-induced anomalous Hall
effect [7] have been observed and studied theoretically, as they
provide a unique platform to address strongly correlated elec-
tronic phases, topology, and strong light-matter phenomena.
All these exciting developments have been reviewed in an
paper celebrating the 40-year anniversary of the quantum Hall
effect [1].
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In this cornucopia of phenomena offered by the quantum
Hall setting there is another important phenomenon which
stands out due to its fundamental nature, aesthetic beauty, and
the connections that it provides between different branches
of mathematics and physics, namely, the Hofstadter butterfly
[8]. The Hofstadter butterfly is a fractal pattern that describes
the energies of electrons on a periodic lattice perpendicular
to a homogeneous magnetic field as a function of the relative
magnetic flux $/$0, where $ is the magnetic flux through
the fundamental unit cell of the lattice and $0 = h/e is the
magnetic flux quantum. It was predicted by Hofstadter in 1976
[8] and it was proven to be a fractal by Avila and Jitomirskaya
[9]. In recent years, due to the advent of moiré materials
[10,11], it has become possible to probe it experimentally,
and signatures of the fractal spectrum have been observed
in the magnetotransport properties of moiré systems [12–14].
Further, the physics of the Hofstadter butterfly has also been
realized with ultracold atoms in optical lattices [15,16].

Another pillar of modern quantum physics is quantum
electrodynamics (QED), which describes the interaction of
charged particles with photons [17–19]. In the last decade
there has been a great interest in the regime of strong and ul-
trastrong light-matter interactions [20], where light and matter
lose their individual character and form hybrid quasiparticles
known as polaritons [21]. Many different platforms and routes
have been explored to reach strong light-matter coupling and
several unprecedented phenomena involving polaritonic states
have been observed. Modifications of chemical properties and
chemical reactions have been achieved through coupling to
vacuum fields in polaritonic chemistry [22–29]. Cavity control
of excitons has been studied [30,31] and exciton-polariton
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FIG. 1. Cartoon depiction of a two-dimensional periodic mate-
rial confined inside a cavity with mirrors of length L and area S = L2.
The distance between the cavity mirrors is Lz. The whole system is
placed perpendicular to a classical homogeneous magnetic field Bext.
We note that typically in experimental setups the space between the
2D material and the cavity is filled with a dielectric medium.

condensation has been achieved [32,33]. It has been suggested
that light-matter interactions modify the electron-phonon cou-
pling and the critical temperature of superconductors [34–37],
with the first experimental evidence already at hand [38].
Further, the implications of coupling to chiral electromagnetic
fields is currently investigated [39–43], and the possibil-
ity of cavity-induced ferroelectric phases has been proposed
[44,45].

As a synthesis of QED and the quantum Hall setting,
quantum Hall systems under cavity confinement have been
studied both experimentally and theoretically, in the integer
[46–50] and the correlated fractional [51,52] regime, and ul-
trastrong coupling to the photon field and modifications of
their transport properties [53] have been demonstrated. Re-
cently, a theoretical mechanism for a cavity-mediated hopping
in the integer regime was also proposed [54] and the break-
down of the topological protection of the integer Hall effect
due to cavity vacuum fields was demonstrated experimentally
[55].

In this paper, we focus on this emerging field of quantum
Hall systems strongly coupled to the quantized photon field
originating from a cavity (see Fig. 1). To be more precise,
we investigate the modification of two particular phenom-
ena due to strong vacuum fluctuations inside a cavity: (i)
the Hofstadter butterfly and (ii) the quantization of the Hall
conductance in the integer regime. To describe these quantum
Hall systems and phenomena in the cavity setting, we em-
ploy the recently introduced quantum-electrodynamical Bloch
(QED-Bloch) theory [47,56]. QED-Bloch theory solves the
longstanding problem of broken translational invariance due
to an external magnetic field and provides a translationally
symmetric framework for periodic systems in the presence
of a homogeneous magnetic field and strongly coupled to the
quantized photon field in the optical limit (or dipole approxi-
mation). Our main findings are as follows:

(i) Polaritonic Hofstadter butterfly. For a two-dimensional
(2D) periodic system perpendicular to a homogeneous mag-

netic field and under cavity confinement we find that for the
energy spectrum a self-similar pattern emerges as a function
of the light-matter coupling η as depicted in Fig. 2(d). This
is an extension of the standard Hofstadter butterfly [8] to the
polaritonic (light-matter) setting of cavity QED which intro-
duces the concept of polaritonic fractal spectra. We call this
phenomenon the polaritonic Hofstadter butterfly. In addition,
we compute the energy spectrum for a periodic material as
a function of the relative magnetic flux and find that for a
terahertz cavity [49,50,53] the standard Hofstadter butterfly
gets modified due to the strong vacuum fluctuations of the
photon field [see Fig. 3(c)].

(ii) Periodic materials in homogeneous magnetic fields. In
the semiclassical limit of no quantized field our QED-Bloch
theory recovers the standard results of condensed matter sys-
tems in strong magnetic fields like the Hofstadter butterfly [8],
the Landau levels [57], and the quantization of the Hall con-
ductance [2,58] and provides a first-principles framework for
the description of periodic materials in strong magnetic fields.
In addition, a dual relation between the minimal-coupling
Hamiltonian and the tight-binding models with the Peierls
substitution is established (see Fig. 7).

(iii) Cavity modification of the integer Hall effect. For a
2D electron gas consisting of Landau levels strongly coupled
to the cavity field we find that the quantized Hall conductance
gets modified. The Hall plateaus inside the cavity depend on
the light-matter coupling constant η as σxy = e2ν/h(1 + η2).
This modification is a consequence of the formation of hybrid
quasiparticle states between the Landau levels and the cavity
photons known as Landau polaritons [46,47,49,53].

Outline of the paper. In Sec. II we recapitulate the basic
steps of the construction of QED-Bloch theory and the restora-
tion of translational symmetry. In Sec. III we construct the
QED-Bloch ansatz which we use for the description of peri-
odic materials in strong magnetic fields and strongly coupled
to the quantized photon field and we derive the QED-Bloch
central equation. In Sec. IV we show that for periodic mate-
rials in strong magnetic fields and under cavity confinement
there exists a polaritonic fractal spectrum as a function of the
light-matter coupling constant. In Sec. V we demonstrate that
there is a duality between the minimal-coupling Hamiltonian
and the tight-binding models with the Peierls phase. In Sec. VI
we compute the Hall conductance for noninteracting Landau
levels coupled to the cavity field and we show that the cavity
modifies the quantization of the Hall conductance. Finally, in
Sec. VII we conclude and highlight the future perspectives of
this work.

II. QED-BLOCH THEORY

The description of periodic materials in the presence of a
homogeneous magnetic field has been a longstanding problem
for condensed matter physics. The problem arises due to the
fact that, although the magnetic field is homogeneous through-
out the whole material, in the minimally coupled Schrödinger
equation the electrons couple to the spatially inhomogeneous
vector potential of the electromagnetic field. Thus, transla-
tional symmetry is broken and Bloch theory is not applicable.

Recently, a translationally invariant, quantum-
electrodynamical framework for the description of periodic
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FIG. 2. Energy spectra as a function of the light-matter coupling η for the square cosine potential and for different values of the relative
magnetic flux $/$0. The inset in Fig. 2(a) displays the spatial profile of the applied square cosine lattice potential. (a) Energy spectrum as
a function of the light-matter coupling η = ωp/ωc for magnetic flux ratio $/$0 = 0.1. (b) Energy spectrum as a function of the light-matter
coupling η = ωp/ωc for magnetic flux ratio $/$0 = 0.2. (c) Energy spectrum as a function of the light-matter coupling η = ωp/ωc for
magnetic flux ratio $/$0 = 1. (d) Energy spectrum as a function of the light-matter coupling η = ωp/ωc for magnetic flux ratio $/$0 = 1.

solids in homogeneous magnetic fields was introduced by
the authors [47]. Due to the fact that in this framework
translational symmetry is restored in the higher-dimensional
configuration space of both electrons and photons, in
which Bloch’s theorem can still be applied, it was named
quantum-electrodynamical Bloch (QED-Bloch) theory.
Before we proceed with the application of this framework
we would like to briefly recapitulate the basic steps in the
construction of QED-Bloch theory.

Our starting point is the Pauli-Fierz Hamiltonian for N
interacting electrons in a periodic potential and in the pres-
ence of a classical, homogeneous magnetic field and further
coupled to the quantized photon field [17,19,59],

Ĥ =
N∑

j=1

[
1

2me
(ih̄∇ j + eÂ(r j ) + eAext(r j ))2 + vext(r j )

]

+ 1
4πε0

N∑

j<k

e2

|r j − rk|
+

∑

κ,λ

h̄ω(κ)
[

â†
κ,λâκ,λ + 1

2

]
, (1)

where we neglected the Pauli (Stern-Gerlach) term σ̂ · B̂(r)
as it is commonly done for the description of the Hofstadter

butterfly [8] and the Landau levels in the quantum Hall effect
[57,58]. Here Aext(r) is the external vector potential which
gives rise to the homogeneous magnetic field Bext = ∇ ×
Aext(r) = ezB in the z direction and Aext(r) is chosen to be in
the Landau gauge Aext(r) = −exBy [57]. The quantized vec-
tor potential Â(r) of the electromagnetic field in the Coulomb
gauge is [19,60]

Â(r) =
∑

κ,λ

√
h̄

ε0V 2ω(κ)
[âκ,λSκ,λ(r) + â†

κ,λS∗
κ,λ(r)], (2)

with κ = (κx, κy, κz ) the wave vectors of the photon field,
ω(κ) = c|κ| the allowed frequencies in the quantization vol-
ume V = L2Lz, λ = 1, 2 the two transverse polarization
directions and Sκ,λ(r) the vector-valued mode functions, cho-
sen such that the Coulomb gauge is satisfied ∇ · Sκ,λ(r) = 0
[19,60]. In order for the mode functions Sκ,λ(r) to satisfy
the boundary conditions of the cavity, the wave vectors of
the photon field can only take the values κ = (κx, κy, κz ) =
(2πnx/L, 2πny/L,πnz/Lz ) with n = (nx, ny, nz ) ∈ Z3. The
operators âκ,λ and â†

κ,λ are the annihilation and creation op-
erators of the photon field and obey the bosonic commutation
relations [âκ,λ, â†

κ′,λ′ ] = δκκ′δλλ′ . We note that the annihilation
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FIG. 3. Energy spectra for the square cosine potential as a func-
tion of the relative magnetic flux $/$0 for different values of the
diamagnetic frequency ωp. (a) Energy spectrum as a function of the
relative magnetic flux $/$0 for ωp = 10−3 THz (weak coupling).
(b) Energy spectrum as a function of the relative magnetic flux $/$0

for ωp = 10−1 THz (intermediate coupling). (c) Energy spectrum as
a function of the relative magnetic flux $/$0 for ωp = 1 THz (strong
coupling).

and creation operators can also be defined in terms of the
displacement coordinates qκ,λ and their conjugate momenta
∂/∂qκ,λ as âκ,λ = 1√

2
(qκ,λ + ∂/∂qκ,λ) and â†

κ,λ = 1√
2
(qκ,λ −

∂/∂qκ,λ).
It is clear that in the Pauli-Fierz Hamiltonian both the quan-

tized field Â(r) defined in Eq. (2) as well as the external vector
potential Aext(r) that induces the perpendicular, homogeneous
magnetic field break translational symmetry because they are
spatially inhomogeneous. This implies that Bloch’s theorem
cannot be applied for the general Pauli-Fierz Hamiltonian.
However, a way to restore translational symmetry in the full
electron-photon configuration space was found after perform-
ing the long-wavelength limit (or dipole approximation) for
the quantized field Â(r) [47]. In the long-wavelength limit
[59,61], which has been proven adequate for cavity-QED
systems [29,62], the mode functions Sκ,λ(r) become spatially
independent vectors Sκ,λ(r) = ελ(κ) and satisfy the condi-
tion ελ(κ) · ελ′ (κ) = δλλ′ . In addition, we keep only a single
mode of the quantized field and the polarization of the dipolar
quantized field is chosen to be parallel to the external vector
potential. Under these assumptions the Pauli-Fierz Hamilto-
nian simplifies to

Ĥ =
N∑

j=1

[
1

2me
(ih̄∇ j + eÂ + eAext(r j ))2 + vext(r j )

]

+ 1
4πε0

N∑

j<k

e2

|r j − rk|
+ h̄ω

(
â†â + 1

2

)
(3)

and, respectively, the quantized field in the dipole approxima-
tion is [19]

Â =
(

h̄
ε0V

) 1
2 ex√

2ω
(â + â†). (4)

This single-mode quantized field describes the cavity mode
which is strongly coupled to the matter system. However, in
Appendix C we will also take into account the effect of many
modes for the integer Hall effect inside a cavity.

Translational symmetry can be restored for the combined
electron-photon system in the optical limit (or dipole approx-
imation) ω → 0 [47].1 To be able to perform consistently this
limit one needs to treat exactly and nonperturbatively the Â2

term of the quantized mode. To do so, we isolate the purely
photonic part of the Pauli-Fierz Hamiltonian, namely, the part
that depends only on the photonic annihilation and creation
operators â and â†,

Ĥp = h̄ω

(
â†â + 1

2

)
+ Ne2

2me
Â2. (5)

The purely photonic part can be brought into the form of the
standard harmonic oscillator as follows. The diamagnetic Â2

term renormalizes the photon frequency ω by introducing the
diamagnetic shift ωp =

√
e2ne/meε0 which depends on the

1We note that the limit ω → 0 does not imply that the photonic
Hamiltonian Ĥp is identically zero.
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electron density ne. Then we introduce the scaled coordinate
u = q

√
ω̃/ω where the dressed photon frequency ω̃ is defined

by ω̃2 = ω2 + ω2
p. In terms of the new coordinate u and its

conjugate momentum ∂u, the photonic part Ĥp takes the form
of a simple harmonic oscillator with frequency ω̃:

Ĥp = h̄ω̃

2

(
− ∂2

∂u2
+ u2

)
. (6)

The quantized photon field in terms of u is

Â =

√
h̄

ε0V ω̃
uex, (7)

and performing now the optical limit ω → 0 we find that
the dressed frequency ω̃ simply goes to the diamagnetic
frequency ωp. Substituting the expressions for the purely pho-
tonic part Ĥp = (h̄ωp/2)(−∂2

u + u2) and the vector potential

Â =
√

h̄
ε0V ωp

uex (8)

back into Eq. (3) we obtain the Pauli-Fierz Hamiltonian in the
optical limit

Ĥ =
N∑

j=1

[
1

2me
(ih̄∇ j + eÂ + eAext(r j ))2 + vext(r j )

]

+ 1
4πε0

N∑

j<k

e2

|r j − rk|
− h̄ωp

2
∂2

∂u2
. (9)

We note that in order to obtain the above expression for the
Hamiltonian, we used that h̄ωpu2/2 = Ne2Â2/2me.

Let us now check the translational properties of the Hamil-
tonian given by Eq. (9). For simplicity and to avoid specifying
a certain lattice geometry, we will consider the case of no
external potential vext(r) = 0. The Hamiltonian is not periodic
in the electronic coordinates because Aext(r) is linear in y.
However, the Hamiltonian in the optical limit is periodic under
a generalized translation in the full electronic plus photonic
configuration space,

(r j, u) −→ (r j + a, u + Bay
√

ε0V ωp/h̄), (10)

where a = (ax, ay, az ) ∈ R3 arbitrary. This is true because the
total vector potential Âtot = Â + Aext(r j ) is invariant under
the above generalized translation and obviously the kinetic
terms of the quantized mode and of the electrons are also
invariant, as well as the Coulomb interaction. The fact that
the Hamiltonian in Eq. (9) is invariant under the continuous
translations of Eq. (10) implies that Ĥ will also be invariant
under Bravais lattice translations in the case of a periodic
potential.

III. EFFECTIVE HAMILTONIAN AND QED-BLOCH
EXPANSION

Having restored translational symmetry, our goal now is to
go one step further and construct a Bloch-type ansatz in the
polaritonic (electronic plus photonic) configuration space and
to derive a Bloch-type central equation for the description of

solids in a classical, homogeneous magnetic field coupled to
a quantized electromagnetic field.

To make the problem tractable, instead of treating the un-
feasible many-body interacting Hamiltonian of Eq. (9), we
will employ the independent electron approximation which is
commonly used in condensed matter physics. We note that
this independent-electron approach is consistent with Bloch
theory, which is not a theory of a single electron in a periodic
potential but rather of many noninteracting electrons.

To incorporate the fact that the charged particles couple
collectively to the photon field, we will use an effective elec-
tron density ne and we will scale the strength of the quantized
field Â by the square root of the number of charges

√
N :

Â −→ Â =
√

NÂ =
√

h̄ωpme

e2
uex. (11)

Keeping an effective electron density and scaling the field by√
N allows us to capture the back-reaction of matter to the

photon field and to describe the emergence of quasiparticle
excitations known as Landau polaritons [47]. We would also
like to mention that the scaling of light-matter interaction by√

N is the standard argument for the description of collective
coupling in the few-level models of quantum optics [20,63–
65]. For the inclusion of any further effects, like exchange
and correlation effects, one would need the addition of effec-
tive fields as introduced in quantum-electrodynamical density
functional theory (QEDFT) [66–69].

Upon these assumptions, we obtain the following single-
particle effective Hamiltonian:

Ĥeff = 1
2me

(ih̄∇ + eÂ + eAext(r))2 − h̄ωp

2
∂2

∂u2
+ vext(r),

(12)

which was already proposed by the authors in Ref. [47] and
was applied successfully to the description of Landau polari-
ton systems. Before we continue, we would like to specify the
geometries in which we are interested in this paper.

A. Setting the geometry

Our aim here is to treat all possible 2D geometries of pe-
riodic structures. The external potential in a solid is assumed
periodic vext(r) = vext(r + Rn) where Rn is a Bravais lattice
vector with n = (n, m) ∈ Z2. The Bravais lattice vectors in
general are Rn = na1 + ma, where a1 and a2 are the primitive
vectors which lie in different directions and span the 2D
lattice. Without loss of generality we can choose the vector
a1 to be in the x direction a1 = a1ex. The second primitive
vector in this case is a2 = a2 cos θex + a2 sin θey, where θ is
the angle between the vectors a1 and a2. Thus, the Bravais
lattice vectors are

Rn = (na1 + ma2 cos θ )ex + ma2 sin θey. (13)

Then, the reciprocal lattice vectors are Gn = nb1 + mb2 with
n = (n, m) ∈ Z2. The defining relation for the vectors b1 and
b2 is bi · a j = 2πδi j with i, j = 1, 2 [70,71]. With the given
choice of primitive vectors the reciprocal primitive vectors are

b1 = 2π

a1
ex − 2π cos θ

a1 sin θ
ey and b2 = 2π

a2 sin θ
ey. (14)

205424-5



VASIL ROKAJ et al. PHYSICAL REVIEW B 105, 205424 (2022)

Thus, the reciprocal lattice vectors are

Gn = 2πn
a1

ex +
(

2πm
a2 sin θ

− 2πn cos θ

a1 sin θ

)
ey, (15)

which for convenience we will write as

Gn =
(
Gx

n, Gn
)

with Gn = −Gx
n cos θ

sin θ
+ Gy

m

sin θ

and Gx
n = 2πn

a1
, Gy

m = 2πm
a2

. (16)

With these choices we have defined our geometrical setting
and we have made clear how all possible 2D Bravais lattices
can be described.

B. Polaritonic coordinates

To continue, we introduce the cyclotron frequency ωc =
eB/me and we expand the covariant kinetic term of the effec-
tive Hamiltonian into

Ĥeff = − h̄2

2me
∇2 + ih̄ex(u

√
h̄ωp/me − yωc) · ∇ + vext(r)

+ me

2
(u

√
h̄ωp/me − yωc)2 − h̄ωp

2
∂2

∂u2
. (17)

This effective Hamiltonian is invariant under a translation that
acts on both the electronic and photonic coordinates for any
2D Bravais lattice vector Rn:

(r, u) −→ (r + Rn, u + ma2 sin θωc
√

me/h̄ωp). (18)

To describe properly this symmetry in the polaritonic space,
we will switch to a new set of coordinates. For that purpose,
we introduce the relative distance and center-of-mass coordi-
nates between rescaled versions of u and y,

w =
mpu

√
h̄ωp/me + mcωcy

√
2M

, v =
u
√

h̄ωp/me − ωcy
√

2
,

(19)

and the Hamiltonian Ĥeff simplifies to

Ĥeff = − h̄2

2me

∂2

∂x2
− h̄2

2M
∂2

∂w2
+ vext(r)

+ ih̄
√

2v
∂

∂x
+ mev

2 − h̄2

2µ

∂2

∂v2
, (20)

with the mass parameters M, µ, mp, and mc being

mp = me

ω2
p
, mc = me

ω2
c
,

M = mp + mc

2
and µ = mpmc

M
. (21)

Furthermore, by performing a square completion, the effective
Hamiltonian can be written in the compact form

Ĥeff = − h̄2

2M
∂2

∂w2
− h̄2

2µ

∂2

∂v2
+ µ-2

2

(
v + ih̄√

2me

∂

∂x

)2

+ vext(r), (22)

where the dressed frequency - is defined by

-2 = 2me

µ
= ω2

p + ω2
c . (23)

The original electronic vector r = (x, y) in the new polaritonic
coordinate system is

r = (x, y) =
(

x,
w√
2ωc

− mpv√
2Mωc

)
. (24)

It is important to note that the coordinates v and w are in-
dependent, because their respective position and momentum
operators commute. Moreover, we would like to emphasize
that since the external potential is periodic, it can be written
in terms of a Fourier series, which in terms of the polaritonic
coordinates is

vext(r) =
∑

n

VneiGn·r =
∑

n

VneiGw
n ·rw e−iGv

nv, (25)

where

Gv
n = mpGn√

2Mωc
, rw = (x,w) and

Gw
n =

(
Gx

n, Gw
n

)
=

(
Gx

n, Gn/
√

2ωc
)
. (26)

C. QED-Bloch expansion

The Hamiltonian Ĥeff of Eq. (22) is invariant under trans-
lations in the polaritonic configuration space

(x,w) −→ (x + na1 + ma2 cos θ ,w + m
√

2ωca2 sin θ ).

(27)

This implies that we can use Bloch’s theorem in the (x,w)
plane. Consequently, the eigenfunctions of Ĥeff can be written
with the ansatz

.k(rw, v) = eik·rwU k(rw, v), (28)

where rw = (x,w). Here the function U k(rw, v) is periodic
under the translations in the polaritonic space defined in
Eq. (27). The crystal momentum k = (kx, kw ) corresponds to
rw and kw is a polaritonic quantum number. Note that the
polaritonic unit cell in the w direction scales linearly with
the strength of the magnetic field. The same feature appears
also for the usual magnetic unit cell, but in this case only field
strengths which generate a rational magnetic flux through a
unit cell are allowed [72]. Contrary to that, the polaritonic unit
cell puts no restrictions on the strength of the magnetic field.

Since the function U k(rw, v) is periodic in rw we expand
it in a Fourier series in rw, while for the v-dependent part we
consider a generic function

.k(rw, v) = eik·rw

∑

n

U k
n eiGw

n ·rwφk
n (v), (29)

where Gw
n = (Gx

n, Gw
n ) are the reciprocal lattice vectors in the

(x,w) space. We substitute the above ansatz wave function
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into the Schrödinger equation with Ĥeff and we get

∑

n

U k
n ei(k+Gw

n )·rw

[
h̄2(kw + Gw

n

)2

2M
+ vext(r) − h̄2

2µ

∂2

∂v2

+ µ-

2

(
v −

h̄
(
kx + Gx

n

)
√

2me

)2

− Ek

]

φk
n (v) = 0. (30)

The Hamiltonian includes a harmonic-oscillator part Ĥv

which is shifted by the momentum in the x direction

Akx
n =

h̄
(
kx + Gx

n

)
√

2me
, (31)

written out as

Ĥv = − h̄2

2µ

∂2

∂v2
+ µ-2

2

(
v − Akx

n

)2
. (32)

The eigenfunctions of this operator are the shifted Hermite
functions φ j (v − Akx

n ) with eigenenergies

E j = h̄-
(

j + 1
2

)
= h̄

√
ω2

p + ω2
c

(
j + 1

2

)

= h̄ωc

√
1 + η2

(
j + 1

2

)
(33)

which are degenerate with respect to the momentum in the
x direction. The eigenstates φ j (v − Akx

n ), as it was shown in
Ref. [47], correspond to Landau polaritons [48] and have
many structural similarities to the well-known Landau levels
[57]. Further, the Landau polariton energy levels can be under-
stood as Landau levels modified by the coupling to the cavity

η = ωp

ωc
, (34)

which in our setting is defined as the ratio between the
two fundamental scales in the light-matter coupled system,
namely, the diamagnetic frequency ωp and the cyclotron fre-
quency ωc. For η = 0 the Landau polariton energy levels
reduce to the standard Landau levels [57].

We will now make use of the Landau polariton eigenfunc-
tions by expanding φk

n (v) in terms of this basis. Then, the
polaritonic Bloch ansatz takes the form

.k(rw, v) = eik·rw

∑

n, j

U k
n, je

iGw
n ·rwφ j

(
v − Akx

n

)
. (35)

With respect to our previous work [47] here we use shifted
Hermite functions φ j (v − Akx

n ) for the construction of our
ansatz, instead of unshifted ones. The shifted basis helps to
incorporate the degeneracy of the Landau polaritons with re-
spect to kx.

Substituting the polaritonic Bloch ansatz again into our
Schrödinger equation and making use of the Fourier expan-
sion of the external potential given in Eq. (25) we have

∑

n, j

U k
n, je

iGw
n ·rwφ j

(
v − Akx

n

)
[

h̄2(kw + Gw
n

)2

2M
+ E j − Ek

]

+
∑

n,n′, j

Vn′U k
n, je

iGw
n+n′ ·rw e−iGv

n′ vφ j
(
v − Akx

n

)
= 0. (36)

To eliminate the plane waves depending on rw we multiply
the above expression by e−iGw

q ·rw and integrate over rw:

∑

j

U k
n, jφ j

(
v − Akx

n

)
[

h̄2(kw + Gw
n

)2

2M
+ E j − Ek

]

+
∑

n′, j

Vn−n′U k
n′, je

−iGv
n−n′ vφ j

(
v − Akx

n′

)
= 0. (37)

We note that after the integration we exchanged the index q
with n again. Next, we apply the bra2 〈φi(v − Akx

n )| from the
left,

0 = U k
n,i

[
h̄2(kw + Gw

n

)2

2M
+ Ei − Ek

]

+
∑

n′, j

Vn−n′U k
n′, j

〈
φi

(
v − Akx

n

)∣∣e−iGv
n−n′ v

∣∣φ j
(
v − Akx

n′

)〉
.

(38)

The only thing left to be computed in order to obtain our QED-
Bloch central equation are the matrix elements

〈
φi

(
v − Akx

n

)∣∣e−iGv
n−n′ v

∣∣φ j
(
v − Akx

n′

)〉
. (39)

This can be performed with the use of displacement operators
and their corresponding algebra [73]. We present this deriva-
tion in Appendix A and we find

〈
φi

(
v − Akx

n

)∣∣e−iGv
n−n′ v

∣∣φ j
(
v − Akx

n′

)〉

= e−iGv
n−n′ A

kx
(n+n′ )/2〈φi|D̂(αn−n′ )|φ j〉, (40)

where D̂(αn−n′ ) is a displacement operator with the shift given
by

αn−n′ = −
√

µ-

2h̄
A0

n−n′ − i

√
h̄

2µ-
Gv

n−n′ . (41)

Further, the matrix representation of this displacement opera-
tor in the basis {φi} is [73]

〈φi|D̂(αn−n′ )|φ j〉 =
√

j!
i!

α
i− j
n−n′e−

|αn−n′ |2

2 L(i− j)
j (|αn−n′ |2), (42)

where i ! j and L(i− j)
j (|αn−n′ |2) are the associated Laguerre

polynomials. We note that for j > i one needs to take

〈φi|D̂(αn−n′ )|φ j〉 = (−1) j−i〈φ j |D̂(αn−n′ )|φi〉∗ (43)

because D̂†(α) = D̂(−α). Finally, substituting Eqs. (40) and
(42) for the matrix representation of the displacement operator
into Eq. (38), we obtain the QED-Bloch central equation

U k
n,i

[
h̄2(kw + Gw

n

)2

2M
+ Ei − Ek

]

+
∑

n′, j

Vn−n′U k
n′, j

× e−iGv
n−n′ A

kx
(n+n′ )/2〈φi|D̂(αn−n′ )|φ j〉 = 0. (44)

2We note that the standard bra and ket notation does not include
the coordinate. Here, we kept the coordinate as it will be convenient
to perform shift transformations on these states to obtain the matrix
representation of the displacement operators. See Appendix A for
this.
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The equation above is the main result of QED-Bloch the-
ory. The QED-Bloch central equation provides a unified
framework for the description of periodic materials in the
presence of homogeneous magnetic fields coupled to a quan-
tized electromagnetic field. It is important to mention that the
QED-Bloch central equation is also applicable in the case
where there is no quantized field, i.e., where the frequency
ωp is equal to zero. This implies that QED-Bloch theory
and the central equation we derived can be used also for the
description of periodic materials solely under the influence of
the homogeneous magnetic field. The semiclassical limit of
our central equation, where the quantized field is equal to zero,
is performed in detail in Appendix B. In addition, we will also
discuss this limit in the context of the Harper equation [74]
and the Hofstadter butterfly [8] in Sec. V.

IV. POLARITONIC HOFSTADTER BUTTERFLY

As a first application of our QED-Bloch theory we consider
the case where we have a 2D periodic system perpendicular
to a homogeneous external magnetic field and coupled to the
quantized mode originating from a cavity as depicted in Fig. 1.
It is important to mention that in such a cavity setting the
diamagnetic frequency ωp can be defined in terms of the 2D
electron density n2D = N/S, where S is the area of the 2D
material, and the fundamental cavity frequency ωcav = πc/Lz
as [47,75,76]

ωp =

√
e2ne

meε0
=

√
e2n2Dωcav

meε0πc
. (45)

A. Polaritonic butterfly in square lattice and polaritonic
Harper equation

In this section, as a first example, we will look into a 2D
square cosine potential. For a square-lattice potential the angle
between the lattice vectors is θ = π/2 and the two lattice
constants are equal a1 = a2 = a. We emphasize that in order
to achieve substantial fractions of the magnetic flux quantum
$0 = h/e in the magnetic flux $ = Ba2, we have to choose
the lattice constant of the potential to be 50 times larger than
the typical lattice constants in standard materials, which are
of the order of a few Ångström. Thus, for our lattice potential
the lattice constant is a = 50 × 3 Å = 15 nm. Such enlarged
lattice periodicities can be achieved with moiré materials
[10,11], and it is within such setups that the experimental
demonstration of the Hofstadter butterfly has been achieved
[12–14].

For the square cosine potential the only nonzero Fourier
components are V±1,0 = V0,±1 = V0, where V0 determines the
strength of the potential that we choose to be V0 = 3 eV.
Consequently, our 2D square-lattice potential takes the form
depicted as an inset in Fig. 2(a). For the reciprocal lat-
tice vectors of the square cosine potential it holds Gv

n =
mpGy

m/
√

2Mωc and Gw
n = Gy

m/
√

2ωc [see for this Eqs. (16)
and (25)]. To further simplify our considerations, we also con-
sider the case where only the lowest Landau polariton φ0(v −
Akx

n ) is occupied. As we will see later, restricting ourselves
to the lowest level will help us to connect to the well-known
Harper equation [74] and the Hofstadter butterfly [8]. Under
these assumptions, the QED-Bloch central equation takes the
simplified form

U kx,kw
n,m

[
h̄2

(
kw + Gy

m√
2ωc

)2

2M
+ E0 − Ekx,kw

]

+ V0U
kx,kw

n−1,me− |α1,0 |2
2

+V0U
kx,kw

n+1,me− |α−1,0 |2
2 + V0U

kx,kw

n,m−1 exp
(−impGy

1Akx
n√

2Mωc

)

× e− |α0,1 |2
2 + V0U

kx,kw

n,m+1 exp
(−impGy

−1Akx
n√

2Mωc

)
e− |α0,−1 |2

2 = 0.

(46)

For θ = π/2 and a1 = a2 = a the α matrix defined in Eq. (41)
is

αn = −2π

a

√
h̄

2me-

(
n + i

ωc

-
m

)
. (47)

Using the above expression we find for the four components
of the α matrix entering our equation

|α1,0|2 = |α−1,0|2 = 4π2

a2

h̄
2me-

= π$0

$(1 + η2)1/2 and

|α0,1|2 = |α0,−1|2 = π$0

$(1 + η2)3/2 . (48)

To obtain the above results we used the definition for µ and -
and the coupling constant η given in Eqs. (21), (23), and (34),
respectively. In addition, we use the definitions for mp, M, -,
and Akx

n given, respectively, in Eqs. (21), (23), and (31) and we
find

mp√
2Mωc

Gy
±1Akx

n = ±1
1 + η2

2π$0

$

(
akx

2π
+ n

)
. (49)

After these manipulations we obtain

[
h̄2(√2ωckw + Gy

m
)2

2me(1 + η−2)
+ E0 − Ekx,kw

]

U kx,kw
n,m + t1($, η)

(
U kx,kw

n−1,m + U kx,kw

n+1,m

)

+ t2($, η)
{

U kx,kw

n,m−1 exp
[ −i2π$0

$(1 + η2)

(
akx

2π
+ n

)]
+ U kx,kw

n,m+1 exp
[

i2π$0

$(1 + η2)

(
akx

2π
+ n

)]}
= 0, (50)

where we defined the functions t1($, η) and t2($, η), shown below, which play a similar role as the hopping matrix elements in
a tight-binding description:

t1($, η) = V0 exp
(

− π$0

2$(1 + η2)1/2

)
, t2($, η) = V0 exp

(
− π$0

2$(1 + η2)3/2

)
. (51)
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The hopping functions above depend on the relative mag-
netic flux and the light-matter coupling η. Equation (50) is a
polaritonic extension of the Harper equation. This can be un-
derstood from the fact that in the limit η → 0 the polaritonic
Harper Eq. (50) reduces to the standard Harper equation [74].
We will see how this limit can be performed and discuss this
important point in detail in Sec. V.

However, the polaritonic Harper Eq. (50) has several im-
portant differences to the standard Harper equation. First of
all, Eq. (50) does not describe simply electrons on a lattice
under the influence of a magnetic field, but it describes Landau
polaritons on a lattice. Further, there is an additional degree
of freedom kw corresponding to the polaritonic Bloch wave
in the w direction. Most importantly, the polaritonic Harper
equation does not only depend parametrically on the relative
magnetic flux $/$0, but also on the light-matter coupling
constant η = ωp/ωc. This opens the possibility of not only
having a fractal or self-similar spectrum as a function of the
relative flux, but also a fractal as a function of the light-matter
coupling constant η. The coupling constant η can be tuned
experimentally either by varying the strength of the external
magnetic field (i.e., changing the cyclotron frequency ωc) or
by varying the diamagnetic frequency ωp via the 2D electron
density and the fundamental cavity frequency, or by shaping
the cavity environment in order to achieve a smaller effective
volume [53,55].

To test the existence of this polaritonic fractal, we plot
the energy spectrum of the polaritonic Harper Eq. (50) as a
function of the light-matter coupling η for different values
of the relative magnetic flux $/$0. We note that in all the
computations performed in this and the following section the
momenta kx and kw are taken to be equal to zero. This is
done for computational simplicity and because we found that
the inclusion of different momenta throughout the Brillouin
zone has very little influence on the energy spectra and fractal
patterns.

First, we start with computing the energy spectrum as a
function of η for a relatively small magnetic flux $/$0 = 0.1.
In Fig. 2(a) the energy spectrum consists of well-separated
energy levels without much overlap between them. For small
η the gaps between the energy levels are small and as the light-
matter coupling η increases the energies fan out and the gaps
increase without any significant pattern emerging.

Subsequently, we double the magnetic flux and show in
Fig. 2(b) the respective energy spectrum. For $/$0 = 0.2 we
see that the energies broaden and each energy band demon-
strates an internal oscillatory behavior as a function of η.
However, the energy bands are still well separated and there
is not much overlap between them.

In Fig. 2(c) we increase even further the relative magnetic
flux and we plot the polaritonic energies for magnetic flux
equal to the flux quantum $/$0 = 1 and varying η. In this
case we see that a self-similar pattern emerges as a function
of the light-matter coupling, which is similar to well-known
fractal pattern of the Hofstadter butterfly [8].

In addition, we compute and plot in Fig. 2(d) the polari-
tonic energy spectrum for $/$0 = 1 but now for η ranging
from 0 to 5. With respect to η = 1 we see that on the left and
right there is self-similarity but clearly the pattern is different
on the two sides of the plot.

From these computations of the energy spectrum for
different magnetic fluxes and over different regimes of light-
matter interaction we conclude that for 2D periodic materials
strongly coupled to the quantized cavity field and placed per-
pendicular to a homogeneous magnetic field there is not only
a fractal spectrum emerging as a function of the magnetic flux,
but there is also a fractal pattern showing up as a function of
the light-matter coupling η. This implies that fractal structures
do not only appear due to the magnetic field, but also due to
the quantized cavity field and the interaction of the Landau
polariton states with the periodic potential of the material.
Thus, what we have presented here introduces the concept of
polaritonic fractals or fractal polaritons. To the best of our
knowledge such a phenomenon has not been reported before.

B. Cavity fluctuations in the Hofstadter butterfly

So far, we computed the energy spectrum for a fixed value
of the relative magnetic flux $/$0 as a function of the
light-matter coupling η and we demonstrated that a fractal
polaritonic butterfly spectrum arises. Now we will do the op-
posite, namely, fix the value for the strength of the quantized
photon field determined by the diamagnetic frequency ωp [see
Eq. (11)] and then plot the energy spectrum as a function of
the relative magnetic flux $/$0, as it was done by Hofstadter
for the purely electronic problem [8]. For our computations
we will use again the square cosine potential, whose energy
spectrum is given by the polaritonic Harper Eq. (50).

First, we compute the energy spectrum for a relatively
small value of ωp = 10−3 THz, which is a thousand times
smaller than the standard terahertz cavity modes used in the
setting of Landau polaritons [47,50,53]. In Fig. 3(a) we show
the energy spectrum as a function of the relative magnetic
flux. In the low flux regime we see the energy of the lowest
Landau level without any splitting. As the flux increases the
energy level broadens and minigaps start showing up in the re-
gion 0.25 " $/$0 " 0.5. For $/$0 > 0.5 the gaps become
much larger and the fractal pattern of the Hofstadter butterfly
emerges. Due to the small value of ωp no modification of
the butterfly spectrum is visible and we recover the standard
butterfly pattern. Only at $/$0 ≈ 0 we see a little spike
deviating from the linear Landau-level dispersion, which is
due to the fact that for small fluxes the diamagnetic frequency
ωp is larger than the cyclotron frequency ωc.

Next, in Fig. 3(b) we increase the diamagnetic frequency
by two orders of magnitude to ωp = 10−1 THz. In this case,
around $/$0 = 0 the energies of the system spread over
a wide range and the deviation from the linear dispersion
persists over a larger region of magnetic fluxes because the
diamagnetic frequency is comparable to ωc in a larger region.
However, as the magnetic flux increases, we get the linear
dispersion of the Landau level which then evolves into the
Hofstadter butterfly spectrum just like in Fig. 3(a).

Finally, we choose the diamagnetic frequency to be of the
order of one terahertz, ωp = 1 THz. As we showed in [47],
such a value for ωp is within experimental reach in Landau
polariton platforms [49,50,53] where the fundamental cavity
frequency ωcav is also in the terahertz and the 2D electron
densities are of the order n2D ∼ 1012 cm−2. In Fig. 3(c) we
plot the energy spectrum as a function of the relative magnetic
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FIG. 4. Energy spectra as a function of the light-matter coupling η for the hexagonal-cosine potential for different values of the relative
magnetic flux $/$0. The inset displays the spatial profile of the applied hexagonal-cosine lattice potential. (a) Energy spectrum as a function
of the light-matter coupling η = ωp/ωc for magnetic flux ratio $/$0 = 0.2 (b) Energy spectrum as a function of the light-matter coupling
η = ωp/ωc for magnetic flux ratio $/$0 = 1.

flux. In this case we see that in the region 0 " $/$0 " 0.5
the linear dispersion of the Landau level no longer shows
up. In this region the energy spectrum has been completely
deformed due to the formation of Landau polariton states
as a consequence of the large value of ωp [47]. The energy
spectrum in this regime consists of a set of energy levels
with finite width which spread like tentacles over the energies
from −6 eV to +6 eV. Then, as the magnetic flux increases,
the energy levels merge together and recombine to form the
fractal spectrum of the Hofstadter butterfly. Figure 3(c) shows
clearly that the fractal spectrum of the Hofstadter butterfly
gets strongly modified by the interaction with the cavity pho-
tons. This phenomenon is a prediction of QED-Bloch theory.

C. Polaritonic butterfly in hexagonal lattice

In addition to the results that we presented for the square-
lattice cosine potential we now also apply the QED-Bloch
central Eq. (44) for the case of a hexagonal cosine potential
[see the inset in Fig. 4(a)]. We note that in the case of the
hexagonal lattice the lattice constants a1 and a2 are equal and
we choose them to be the same with the square-lattice case,
a1 = a2 = 15 nm. Further, the parameter V0 which controls
the strength of the lattice potential is the same as with the
square cosine potential before V0 = 3 eV.

First, we compute the energy spectrum of the combined
electron-photon system as a function of η, for a relatively
small value of the relative magnetic flux $/$0 = 0.2. In
Fig. 4(a) we plot the energy spectrum and we see that for small
values of η the energies levels are well concentrated, but as the
light-matter coupling increases the energy levels fan out [as in
Fig. 2(a) for the square lattice] and the energy gaps increase.
However, no significant pattern emerges due to the small value
of the magnetic flux.

Subsequently, we increase the value for the relative mag-
netic flux to $/$0 = 1. In Fig. 4(b) we plot the energy
spectrum as a function of the light-matter coupling η and we
clearly see that a self-similar pattern shows up. In compari-
son to the energy spectrum for the square lattice depicted in

Fig. 2(c), we notice that for the hexagonal lattice the energy
spectrum it is not vertically symmetric. This is typical for
hexagonal lattices and was also reported for the Hofstadter
butterfly in the hexagonal-lattice case [77].

D. Connection to Floquet engineering

In the recent years, another topic of interest in the field of
2D materials in homogeneous magnetic fields has been the
Floquet driving of the Hofstadter butterfly [78–80]. Also, the
connection between Floquet driving and cavity engineering
has attracted considerable attention and has been explored
extensively [39,76,81–83]. In what follows, we will try to
compare some of the results coming from our QED-Bloch
theory to the ones obtained with Floquet driving.

A generic feature of Floquet theory is that the Floquet field
produces photonic copies, above and below the original bare
electronic bands [39,83]. The photonic Floquet copies show
up because the Floquet field generates states in the time do-
main which dress the electronic states. Then, the quasienergy
spectrum can become dense, as it was shown in Ref. [84].

Such photonic copies are also a feature of QED. However,
there is a fundamental difference between nonrelativistic QED
and Floquet theory. The Floquet Hamiltonian is unbounded
from below and produces states which have an arbitrarily neg-
ative energy. On the other hand, the Pauli-Fierz Hamiltonian
of nonrelativistic QED is bounded from below and the pho-
tons do not produce states with arbitrarily negative energies
[19]. This means that electron-photon systems in QED have a
stable ground state [19,59,85]. This is an advantage of QED
compared to semiclassical Floquet theory. Thus, in nonrela-
tivistic QED one cannot expect to obtain photonic copies of
the energy bands below the original bare electronic bands, yet
above such copies occur.

To demonstrate these two basic features, (i) the photonic
copies and (ii) denseness of the spectrum, we plot in Fig. 5(a)
the energy spectrum for the square lattice, in the small-flux
regime and for small diamagnetic frequency ωp = 10−3 THz
with four Landau polariton states included. As it is shown in
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FIG. 5. Energy spectra for the square cosine potential as a function of the relative magnetic flux $/$0 with higher Landau polariton states,
for two different values of the diamagnetic frequency ωp which correspond to weak (left) and strong (right) coupling to the cavity photons.
(a) Energy spectrum as a function of $/$0 for a small diamagnetic frequency ωp = 10−3THz with four Landau polariton states; (b) Energy
spectrum as a function of $/$0 for a large diamagnetic frequency ωp = 1THz with two Landau polariton states.

Fig. 5(a), we have indeed the higher states introducing copies
of the lowest polariton band. The copies here are well sepa-
rated without much interference, and the energy separation is
given by the Landau polariton excitation h̄-. It is important to
note that we do not work with a tensor-product basis between
the electrons and photons, like in Floquet theory, and as a
consequence the higher states are polaritonic and the energy
separation is the one of the Landau polariton. In addition, we
clearly see that the energy spectrum in the small flux-regime
becomes dense, as expected [84]. Thus, our QED-Bloch the-
ory recovers these two basic features of Floquet theory. It is
important to note that for ωp - 10−3 THz the states between
Landau polaritons which produce the dense spectrum do not
show up because we practically have no photonic contribu-
tion, and the spectrum is no longer dense, as expected in the
case of no photons.

Furthermore, in the studies of the Hofstadter butterfly un-
der Floquet driving [78–80], another interesting phenomenon
has been identified: In the regime where the frequency of
the driving field is small, such that the energy of the photon
is not much larger than the bandwidth, the Floquet copies
overlap with the original bare electronic Hofstadter butterfly
and modify the spectrum substantially [78–80].

This regime, from the perspective of cavity QED can be
understood as a strong-coupling scenario where the elec-
tronic and the photonic states mix strongly. To compare our
QED-Bloch theory to the Floquet results, we choose the dia-
magnetic frequency to be large ωp = 1 THz and we plot the
energy spectrum as a function of $/$0 for the square cosine
potential with two Landau polariton states in Fig. 5(b). As pre-
viously, the photon field introduces a copy of the Hofstadter
butterfly, but in this case the copies overlap and interfere. This
leads to a substantial modification of the result we obtained
in the case where only the lowest Landau polariton was taken
into account [see Fig. 3(c)]. As it is shown in Fig. 5(b), the
two butterflies merge together and form a new fractal pattern.
This result is in qualitative agreement with the Floquet driving
of the Hofstadter butterfly. To conclude, the results that we
presented in this section show that our QED-Bloch theory

recovers the common features of Floquet theory and of the
Floquet driving of the Hofstadter butterfly.

V. HARPER EQUATION AND MINIMAL COUPLING
PEIERLS PHASE DUALITY

Our aim in this section is to connect the polaritonic Harper
equation that we derived in Eq. (50) to the well-known Harper
equation [74] and the fractal spectrum of the Hofstadter but-
terfly [8]. Both the Harper equation and the butterfly spectrum
were derived from a one-band tight-binding model with next-
neighbor hopping in real space on a square lattice, with the
electrons coupled to the magnetic field via the Peierls substi-
tution. We note that using the Peierls substitution relies on the
assumption that the external magnetic field is weak enough
such that no mixing between different bands occurs [74,86].

The polaritonic Harper equation we derived is for a square-
lattice potential as well, and we chose the cosine potential
because it introduces only next-neighbor hopping in Fourier
space, as the only nonzero Fourier components of the potential
are V±1,0 = V0,±1 = V0. With the extra assumption of only the
lowest Landau polariton being occupied we obtained Eq. (50).
To connect now the polaritonic Harper equation to the original
Harper equation we need to take the limit of the light-matter
coupling to zero, η → 0. Then the kinetic term which depends
on the polaritonic momentum kw vanishes because η−2 goes
to infinity and the equation becomes completely independent
of kw and as a consequence also the Fourier index m can
be dropped. In addition, for η = 0, the hopping functions
t1($, η) and t2($, η) defined in Eq. (51) become equal,

t1($, η) = t2($, η) = V0e− π$0
2$ ≡ t ($). (52)

Also, in the described limit the energy of the lowest Landau
polariton E0 = h̄-/2 for zero light-matter coupling becomes
equal to the energy of the lowest Landau level E0 = h̄ωc/2.
This means that for η → 0 the polaritonic Harper equa-
tion does not describe Landau polaritons on a lattice but
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FIG. 6. Comparison between the scaled and the unscaled spectrum for the square cosine potential. The potential strength is V0 = 3 eV
and the lattice constant a = 2 Å. We use a small lattice constant to make the linear dispersion of the Landau level in Fig. 6(b) clearly visible.
(a) Scaled dimensionless energy spectrum obtained from the Harper Eq. (55) as a function of the reciprocal magnetic flux $0/$. (b) Energy
spectrum as function of the relative magnetic flux $/$0 as given by Eq. (53).

actually Landau levels on a lattice and it takes the form

U kx
n

(
h̄ωc

2
− Ekx

)
+ t ($)

{
U kx

n−1 + U kx
n+1

+ 2U kx
n cos

[
2π$0

$

(
akx

2π
+ n

)]}
= 0. (53)

In the work of Hofstadter [8] the fractal spectrum appears
not for the energy itself E , but for the unitless scaled en-
ergy E = E/t , where E is divided by the constant hopping
parameter t . Of course, this does not make a difference within
the tight-binding model because the hopping parameter t is a
constant anyway. On the contrary, for the minimal-coupling
Hamiltonian the magnetic field is part of the covariant (phys-
ical) momentum of the electron. Thus, the kinetic energy of
the electrons naturally depends on the magnetic field and
as a consequence the hopping (which represents the kinetic
energy in the tight-binding approach) should be a function
of the magnetic field as well. In our setting we have the
flux-dependent hopping parameter t ($) defined in Eq. (52)
and, as a consequence, the dimensionless scaled energies can
be defined as

Ekx = 1
t ($)

(
Ekx − h̄ωc

2

)
= e

π$0
2$

V0

(
Ekx − h̄ωc

2

)
. (54)

With this definition, we find the following equation for the
scaled, dimensionless energies of the system:

EkxU
kx
n = U kx

n−1 + U kx
n+1 + 2U kx

n cos
[

2π$0

$

(
akx

2π
+ n

)]
.

(55)

The equation above is precisely the usual Harper equa-
tion [74], and plotting the eigenenergies of this equation we
obtain the fractal spectrum of the Hofstadter butterfly [8],
which is depicted in Fig. 6(a). However, there is one important
difference: In the original Harper equation the energy spec-
trum is a function of the relative magnetic flux $/$0 and the
corresponding butterfly spectrum also appears as a function of

the relative flux $/$0. In our case, the energies are a function
of the reciprocal relative flux $0/$ and the fractal spectrum
appears with respect to the reciprocal flux $0/$. This fact that
starting from the minimal-coupling Hamiltonian one obtains
the Hofstadter butterfly as a function of the reciprocal flux
$0/$ comprises a fundamental difference to tight-binding
models with the Peierls phase, as has been shown and dis-
cussed in several publications [87–90].

Already, Langbein [88] discussed and compared the two
approaches while it was noted by Wannier [91] that it is highly
surprising for the energy spectrum to be periodic either in
the relative magnetic flux $/$0 or in the reciprocal magnetic
flux $0/$ because the minimal-coupling Hamiltonian has a
linear and a quadratic dependence with respect to the magnetic
field. Both periodic behaviors are in fact an artifact. As it
was pointed out by Wannier [91] this periodicity cannot be
physical, and the tight-binding model with the Peierls phase
cannot be trusted for magnetic fields beyond one flux quantum
because for such strong magnetic fields the original assump-
tion that each band can be treated separately and that there is
no mixing between them will be invalid.

In the case of the minimal-coupling Hamiltonian the exact
periodicity is due to the redefinition (the scaling) of the en-
ergies in Eq. (54). This redefinition of the energy spectrum
cuts out the linear dependence of the energy of the lowest
Landau level on ωc = eB/me and the exponential increase due
to the flux-dependent hopping parameter t ($). To understand
what the actual dependence of the energy spectrum is, we plot
the unscaled, dimensionful energies of our system given by
Eq. (53) in Fig. 6(b).

We see that for small fluxes we have the linear dispersion
coming from the energy of the lowest Landau level. As the
magnetic field increases, the Landau level starts to split and
gaps show up. Then, for $/$0 > 1

2 the fractal nature of
the spectrum shows up and the Hofstadter butterfly becomes
clearly visible. The Hofstadter butterfly, however, is not pe-
riodic, but it actually spreads out due to the flux-dependent
hopping t ($). Figure 6(b) reconciles the two fundamen-
tal properties of the minimal-coupling Hamiltonian: (i) the
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FIG. 7. Schematic illustration of the duality between the minimal-coupling Hamiltonian and the tight-binding model with Peierls substitu-
tion. In both models the Hofstadter butterfly emerges but in a dual fashion. Namely, in the one case as a function of the reciprocal flux while
in the other as a function of flux.

energy has to increase as a function of the magnetic field and
(ii) due to the reduced symmetry manifest in the magnetic
translation group a splitting of the energy bands for every
fractional value of the relative magnetic flux $/$0 = p/q
needs to occur, which subsequently leads to the formation of
the fractal [92–94].

Dual descriptions. The question that finally arises is as
follows: Why do the energy spectra of the minimal-coupling
Hamiltonian and the tight-binding model with the Peierls
phase differ in such a fundamental way?

In many cases, these two descriptions for electrons in pe-
riodic structures coupled to electromagnetic fields are indeed
equivalent descriptions and match at least to some certain ac-
curacy. Typically, this is true for electromagnetic fields slowly
varying within the unit cell of the solid. However, the problem
with our particular system is that although the magnetic field
is constant, the vector potential that actually couples to the
electrons is linear in space Aext = −exBy. As it was pointed
out by Luttinger, the spatial variation of the vector potential
makes the Peierls substitution questionable for large magnetic
fields [86]. This paper derives the tight-binding model with
Peierls phase starting from the minimal-coupling Hamilto-
nian. To arrive at this model, Luttinger had to drop a term
from the Hamiltonian which consequently breaks the actual
relation between the minimal-coupling Hamiltonian and the
tight-binding model with the Peierls phase.

However, this does not mean that the two descriptions are
completely disconnected. They both yield the Harper equa-
tion and the Hofstadter butterfly, with the difference that in the
one case it shows up as a function of the magnetic flux $/$0,
while in the other as a function of the reciprocal flux $0/$.
This means that the minimal-coupling Hamiltonian and the
tight-binding model with the Peierls phase are not equivalent
but they are actually dual. It is important to mention that this
duality holds only in the lowest Landau level and for a single
band, respectively.

This dual (or reciprocal) relation between the two models
can be understood on the one hand from the fact that in the
tight-binding model we have electrons with next-neighbor
hopping on a lattice in real space, while in the minimal-

coupling Hamiltonian we have next-neighbor hopping in k
space. Further, the dual relation manifests itself as a weak-
to-strong duality with respect to the strength of the magnetic
field, in the sense that the tight-binding model with the Peierls
phase mainly describes the regime of not too large fluxes and
the butterfly appears as a function of the flux, where the Peierls
substitution is still applicable. Instead, the minimal-coupling
Hamiltonian, restricted in the lowest Landau level, works
best for not too small fluxes and the butterfly shows up as a
function of the inverse flux. The two approaches match in the
regime where $/$0 ≈ $0/$ which is the region around one
flux quantum. We note that by the inclusion of higher Landau
levels also small magnitudes of the magnetic flux can be cor-
rectly described within the minimal-coupling framework. The
duality between the two approaches and the steps to obtain the
respective Hofstadter butterflies are summarized in Fig. 7.

Having established this duality between the minimal-
coupling Hamiltonian and the tight-binding model with the
Peierls phase in the semiclassical setting, we would now like
to make a connection to the tight-binding model with Peierls
phase in the case where the electrons are coupled also to the
quantized cavity field. In Sec. IV B in Fig. 3(c) we showed
how the butterfly pattern coming from the minimal-coupling
Hamiltonian gets modified due to strong coupling to a ter-
ahertz cavity. In the semiclassical case, to connect the two
approaches we applied the scaling transformation defined in
Eq. (54) to the energies of the minimal-coupling Hamiltonian.
In the light-matter setting the analogous scaling transforma-
tion is

Ekx,kw
= Ekx,kw

− h̄-/2
t1($, η) + t2($, η)

, (56)

where the hopping functions t1($, η) and t2($, η) were de-
fined in Eq. (51) and h̄-/2 is the lowest Landau polariton
energy. Using this scaling transformation on the polaritonic
energies of Fig. 3(c) we obtain the scaled energy spectrum de-
picted in Fig. 8. The scaled energy spectrum provides a hint on
how the original Hofstadter butterfly (coming from the tight-
binding model) might look when the 2D material is coupled
also to the cavity photon field in the terahertz regime. In the
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FIG. 8. Scaled dimensionless energy spectrum for the square
cosine lattice potential as a function of the magnetic flux $/$0 for
ωp = 1 THz. The unscaled physical spectrum is shown in Fig. 3(c).

region of small and intermediate fluxes, where the cavity field
dominates, we see that the butterfly pattern is dissolved into
distinct energy bands with an internal oscillatory behavior. As
the flux becomes larger than half of a flux quantum we see
that the butterfly pattern emerges. Still, at values around one
flux quantum there are modifications of the spectra and the
effect of the cavity is noticeable. There is a clear similarity
between the butterfly patterns in and outside the cavity around
one, but in contrast to the perfectly periodic spectrum (of the
Hofstadter butterfly coming from the tight-binding model) the
cavity induces a significant distortion that should be visible
experimentally.

VI. CAVITY MODIFICATION OF THE INTEGER HALL
CONDUCTANCE

QED-Bloch theory is also applicable to the case of no
external potential, which for a homogeneous magnetic field
(without a quantized field) constitutes the usual setting of non-
interacting Landau levels that describe the integer quantum
Hall effect [2,58].

The aim of this section is to study noninteracting Landau
levels under strong coupling to the cavity field, in the presence
of an external classical electric field (as shown in Fig. 9),
and to demonstrate that the cavity field modifies the plateaus
of the Hall conductance in the integer regime. Such a cavity
modification has also been measured recently experimentally
[55].

As it was shown in Ref. [47], in the case where the external
potential is zero, vext(r) = 0, the effective Hamiltonian

Ĥeff = 1
2me

(ih̄∇ + eÂ + eAext(r))2 − h̄ωp

2
∂2

∂u2
(57)

is analytically solvable. As a reminder for the reader Aext(r) =
−exBy is the vector potential describing the external magnetic
field and Â is the quantized vector potential of the cavity
defined in Eq. (11)

The energy spectrum of this system can be directly ob-
tained from the QED-Bloch central Eq. (44) by simply setting
the external potential to zero, vext(r) = 0. Since there is no
external potential, the reciprocal lattice vectors have no role

FIG. 9. Cartoon depiction of a 2D electron gas (material in black)
confined inside a cavity. The whole system is placed perpendicular to
a classical homogeneous magnetic field Bext, and an external constant
electric field Eext is applied to the 2D material.

and have to be taken equal to zero. This is done by simply
setting n = m = 0 and we get

U k
i

(
h̄2k2

w

2M
+ Ei − Ek

)
= 0. (58)

Then, from the above equation it is clear that the eigenspec-
trum of the 2D Landau levels coupled to the cavity is

Ek,i = h̄2k2
w

2M
+ h̄-

(
i + 1

2

)
. (59)

Further, the components of U k
i from the QED-Bloch ansatz

defined in Eq. (35) become trivial and we obtain the full set of
eigenfunctions corresponding to the 2D Landau levels in the
cavity:

.k,i(rw, v) = eik·rwφi

(
v − h̄kx√

2me

)
. (60)

This is the analytic solution for the noninteracting 2D Lan-
dau levels in the cavity that was found in Ref. [47]. The
eigenfunctions above are plane waves in the directions x and
w because in these directions we have translational invari-
ance. The v-dependent eigenfunctions are Hermite functions
[95] with argument v − h̄kx/

√
2me. The eigenfunctions in

Eq. (60), since they are functions of the combined polaritonic
coordinates w and v defined in Eq. (19), describe quasipar-
ticles formed between the Landau levels and the photons,
which are known as Landau polaritons. Such Landau polariton
states have been studied theoretically [46] and have been also
observed experimentally [48–50].

A. Integer Hall conductance in the cavity

Having briefly reviewed how the Landau polariton quasi-
particles emerge in QED-Bloch theory, our aim is now to
study the implications of these polaritonic quasiparticles for
the quantum Hall effect. To compute the Hall conductance of
the Landau polaritons, we need to add an external potential
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VE (r) = eφE (r) = −eEext · r = −eEy to our effective Hamil-
tonian, which generates an electric field in the y direction
Eext = −∇φE (r) = Eey. This is what was done by Laughlin
[58] for the description of the integer quantum Hall effect in
terms of noninteracting Landau levels. We note that in his
description the spin degrees of freedom of the electrons were
neglected and we do the same here.

Then, with the addition of the external potential VE (r), the
effective Hamiltonian for the 2D Landau levels coupled to
the cavity is ĤE = Ĥeff + VE (r) = Ĥeff − eEy. In terms of the
polaritonic coordinates w and v introduced in Eq. (19) ĤE
takes the simple form

ĤE = − h̄2

2M
∂2

∂w2
− eE√

2ωc
w − h̄2

2µ

∂2

∂v2

+ µ-2

2

(
v + ih̄√

2me

∂

∂x

)2

+ eEmp√
2Mωc

v. (61)

The expression above can be easily derived from Eq. (22)
and from the expression for the y coordinate in terms of the
polaritonic coordinates w and v:

y = w√
2ωc

− mpv√
2Mωc

. (62)

Due to translational invariance it is clear that the eigenfunc-
tions with respect to x are plane waves of the form f (x) =
eikxx. Applying ĤE on f (x) = eikxx and then dividing by f (x)
we obtain

ĤE [kx] ≡ 1
f (x)

ĤE f (x)

= − h̄2

2M
∂2

∂w2
− eE√

2ωc
w − h̄2

2µ

∂2

∂v2

+ µ-2

2

(
v − h̄kx√

2me

)2

+ eEmp√
2Mωc

v. (63)

The w-dependent part of the Hamiltonian is independent of
the electronic momentum kx and, as a consequence, it cannot
give any contribution to the induced current along the x di-
rection which we are interested in for the computation of the
Hall conductance σxy. Thus, for our purpose, we can safely
eliminate the w-dependent terms from the Hamiltonian and
remain with

ĤE [kx] = − h̄2

2µ

∂2

∂v2
+ µ-2

2

(
v − h̄kx√

2me

)2

+
√

2meE
B(1 + η2)

v.

(64)

In the previous equation we substituted the definitions for the
cyclotron frequency ωc = eB/me and the mass parameters M
and mp given by Eq. (21), and we introduced the light-matter
coupling η = ωp/ωc. Next we perform a square completion
and the Hamiltonian takes the form of a shifted harmonic
oscillator

ĤE [kx] = − h̄2

2µ

∂2

∂v2
+ µ-2

2

(
v − h̄kx√

2me
+ E√

2B(1 + η2)

)2

+ h̄kxE
B(1 + η2)

− me

2

(
E

B(1 + η2)

)2

. (65)

In order to obtain the above expression, we also used the
definitions for µ and - given by Eqs. (21) and (23). The
eigenfunctions of the above Hamiltonian are Hermite func-
tions φn(Z ) which depend on the variable

Z = v − h̄kx√
2me

+ E√
2B(1 + η2)

(66)

with eigenenergies

En,kx = h̄-

(
n + 1

2

)
+ h̄kxE

B(1 + η2)
− me

2

(
E

B(1 + η2)

)2

.

(67)

We note that the eigenstates φn(Z ) are Landau polariton states
shifted by the external electric field.

From the energy spectrum it is clear that the degeneracy
with respect to kx is now lifted due to the electric field. But,
here the strength of the electric field E is considered to be
much smaller than the strength of the magnetic field B, which
implies that E/B ≈ 0. As a consequence, the degeneracy with
respect to kx remains effectively the same. Further, having the
expression for the energies we can straightforwardly compute
the group velocity of the Landau polariton states in the x
direction [70]

vx = 1
h̄

∂En,kx

∂kx
= E

B(1 + η2)
. (68)

The total current of the system in the x direction Jx is obtained
by summing the velocity vx over all occupied Landau-
polariton states,

Jx = e
ν−1∑

n=0

L
2π

∫ eBL
h̄

0
vxdkx. (69)

Here we assumed that we have ν Landau-polariton states oc-
cupied, from n = 0 to n = ν − 1. Further, in order to specify
the region of integration for the electronic momentum kx,
we followed the standard procedure used in the Landau-level
setting, where the system is considered to have a finite size
in 2D with area S = L2 and the momenta kx range from 0 to
eBL/h̄ [96,97]. After integrating over kx, summing over n, and
dividing by the area of the system S = L2, we find that the
total current density jx = Jx/S induced by the electric field is

jx = e2ν

h(1 + η2)
E . (70)

From the above expression we deduce that the Hall conduc-
tance σxy of the 2D Landau levels coupled to the cavity field
is still quantized and is given by the expression

σxy = e2

h(1 + η2)
ν with ν ∈ N. (71)

The Hall conductance depends on the electron charge e, on
Planck’s constant h, on the amount of occupied Landau-
polariton states ν, and on the light-matter coupling between
the Landau levels and the cavity photons η = ωp/ωc. This
result makes clear that the cavity modifies the plateaus of
the Hall conductance in the integer regime. This is a signif-
icant result as it demonstrates that the cavity field, due to its
long-range nature, can circumvent the topological protection
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FIG. 10. Depiction of the first quantum Hall plateau as a function
of the light-matter coupling constant η. For η = 0 we obtain the
standard value of the Hall conductance. As the light-matter coupling
increases, the Hall conductance decreases. This effect can be under-
stood as a screening or renormalization effect due to the cavity. The
shaded area indicates the regime in which typically experiments are
performed.

of edge states which carry the Hall current and modify the
fundamental Hall conductance. In the limit of the light-matter
coupling going to zero, η → 0, we recover the standard result
for the quantization of the Hall conductance σxy = e2ν/h as it
is shown in Fig. 10. This is a beautiful consistency check of
our QED-Bloch theory. However, as the light-matter coupling
increases, the values of the quantum Hall plateaus decrease as
it is shown in Fig. 10. This decrease of the Hall plateaus can
be understood as a renormalization or screening effect due to
the strong vacuum fluctuations induced by the cavity field.

To gain more understanding on the behavior of the Hall
conductance inside the cavity, we would also like to plot the
cavity-modified Hall conductance given by Eq. (71) as a func-
tion of the strength of the external magnetic field B. To do so,
we rewrite the dimensionless light-matter coupling constant
η = ωp/ωc as a function of the magnetic field B by simply
using the definition for the cyclotron frequency ωc = eB/me.
Upon this substitution η takes the form

η = meωp

eB
= Bcav

B
where Bcav = meωp

e
. (72)

We note that the quantity Bcav has magnetic field dimensions
and it describes the magnetic field strength that corresponds to
the diamagnetic frequency ωp of the cavity. For ωp at the order
of 1 THz, as in the setting of Landau polaritons [49,50,53], the
strength of the cavity field is on the order of 1 T.

Substituting now the expression for η as a function of the
magnetic field, the Hall conductance takes the form

σxy = e2ν

h
1

1 + B2
cav/B2

. (73)

In Fig. 11 we plot the Hall conductance as a function of the
relative magnetic field B/Bcav. Figure 11 shows that in the
regime where the strength of the cavity field Bcav is larger
than the external magnetic field B, the cavity-modified Hall
conductance deviates strongly from the value of the Hall
plateau outside the cavity. As the strength of the external
magnetic field increases and becomes larger than the cavity
field B > Bcav (this is the common regime in experiments), the

FIG. 11. First-quantized Hall plateau as a function of the ratio
between the strength of the external magnetic field and the strength
of the cavity magnetic field B/Bcav. In the region where the cavity
strength is larger, the Hall conductance deviates strongly from its
standard value e2/h. As the external magnetic field increases and
becomes larger than the strength of the cavity we obtain the standard
quantized Hall plateau. The shaded area indicates the regime in
which typically experiments are performed.

Hall conductance approaches the value outside the cavity and
demonstrates the standard Hall plateau. This result provides
an alternative understanding, from a QED point of view, of
why strong magnetic fields are required for the formation
of an exact Hall plateau. Namely, that the external magnetic
field should reach such a value that it becomes stronger and
dominates the vacuum fluctuations of the quantized electro-
magnetic field. Finally, we note that in the case where many
modes contribute to the light-matter coupling, the strength of
the cavity magnetic field gets enhanced and renormalizes the
light-matter coupling and the Hall conductance as we show in
Appendix C.

VII. SUMMARY AND OUTLOOK

In this paper we studied two-dimensional noninteracting
quantum Hall systems strongly coupled to the quantized
photon field of a cavity in the optical limit (or dipole ap-
proximation). To do so, we employed the recently proposed
QED-Bloch theory in which the broken translational symme-
try due to an external homogeneous magnetic field is restored
by taking into account the quantum fluctuations of the photon
field [47] and which thus provides a first-principles frame-
work for the description of periodic materials in homogeneous
magnetic fields and strongly coupled to the photon field. We
reviewed the basic steps in the construction of QED-Bloch
theory and we introduced the single-particle effective Hamil-
tonian which has been successful in the description of Landau
polaritons [47]. In this general framework we constructed
a QED generalization of the Bloch ansatz (the QED-Bloch
ansatz) and we derived the respective QED-Bloch central
equation.

Subsequently, we applied the effective Hamiltonian to the
study of two particular quantum Hall systems under strong
coupling to the quantized cavity field: (i) the Hofstadter but-
terfly and (ii) the integer quantum Hall effect in the regime of
noninteracting Landau levels.
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Polaritonic Hofstadter butterfly. In the case of a nonin-
teracting 2D periodic material under cavity confinement and
in the presence of a homogeneous magnetic field we found
that for the energy spectrum of the system as a function of
the dimensionless light-matter coupling constant a self-similar
pattern emerges, which we call the polaritonic Hofstadter
butterfly [see Fig. 2(d)]. This polaritonic fractal is an exten-
sion of the standard Hofstadter butterfly [8] in cavity QED.
With the advent of moiré materials, the Hofstadter butterfly
has become now experimentally accessible through magne-
totransport measurements of the Wannier diagram (integrated
density of states) [12–14,91,98]. We believe that our predic-
tion of the existence of fractal polaritonic spectra due to strong
light-matter coupling can be observed in such moiré systems
under cavity confinement via transport measurements. Fur-
ther, the prediction of the polaritonic butterfly opens an avenue
for the exploration of fractal physics in the field of cavity
QED. This polaritonic fractal could potentially be interesting
also from a mathematical point of view, like the original
Hofstadter butterfly [8,9], and might provide new connections
between mathematics and physics [99].

Cavity engineering of the Hofstadter butterfly. In addition,
we computed the energy spectrum for a periodic material
as a function of the relative magnetic flux and we found
that for a terahertz cavity [49,50,53] the standard Hofstadter
butterfly gets modified due to the strong vacuum fluctuations
of the photon field [see Fig. 3(c)]. This phenomenon is most
prominent in the intermediate regime of not exceedingly large
magnetic fluxes, where the cavity field dominates. The modi-
fication of the Hofstadter butterfly should again be observable
via transport measurements in the respective Wannier diagram
[91]. The Wannier diagram might provide a straightforward
path to the observation of cavity effects on the Hofstadter
spectrum. Finally, we also compared our results of the cavity
engineering of the Hofstadter butterfly to the Floquet driving
of the butterfly [78–80] and we found a basic consistency
between QED-Bloch theory and Floquet theory.

Semiclassical limit of QED-Bloch theory. Further, we
showed that our QED-Bloch theory and the QED-Bloch cen-
tral Eq. (44) are applicable also in the semiclassical limit
of no quantized field. In this limit our theory recovers the
standard Hofstadter butterfly fractal spectrum and provides
a first-principles framework for its description. We believe
it can thus help to understand recent experiments performed
on moiré systems [12–14,98]. Moreover, in the semiclassical
limit, the dual relation between the minimal-coupling Hamil-
tonian and the tight-binding models with the Peierls phase
was described (see Fig. 7). This duality is of fundamental im-
portance for understanding the behavior of periodic materials
perpendicular to homogeneous magnetic fields and has been
noted in experimental studies of the Hofstadter butterfly [12].

Modification of the integer Hall effect. As a further ap-
plication of QED-Bloch theory we considered the quantum
Hall effect in the integer regime when strongly coupled to
the photon field of a cavity. In this case, our system consists
of noninteracting 2D Landau levels coupled to the cavity.
Due to the strong coupling between the cavity photons and
the Landau levels, hybrid quasiparticles emerge, known as
Landau polaritons [47,49,53]. The formation of the Landau
polaritons modifies the plateaus of the Hall conductance,

σxy = e2ν/h(1 + η2), which now depend on the dimension-
less light-matter coupling η. This is a very important result
because it demonstrates that the long-range nature of the
cavity photon field circumvents the topological protection of
the integer Hall effect and actually modifies this fundamental
phenomenon of condensed matter physics. We believe that
the modification of the Hall conductance can be measured for
a two-dimensional electron gas (2DEG) inside a cavity and
could provide further insights on the recently observed modi-
fication of the integer Hall effect [55]. In connection to these
exciting, recent experiments, we would like to mention that
the modification of the Hall plateaus in Ref. [55] is attributed
to the presence of impurities and disorder in the 2DEG. The
cavity field benefits from the presence of impurities and me-
diates a hopping mechanism which breaks the topological
protection of the Hall effect [54]. In the absence of impurities,
however, the proposed cavity-mediated hopping vanishes. On
the other hand, our work proposes a mechanism for the mod-
ification of the Hall plateaus in the absence of impurities, for
a clean 2DEG, without any disorder. Our prediction should be
interpreted as a renormalization effect (analogous to a Lamb
shift [100]) of the Hall plateaus or equivalently as a screening
effect on the external magnetic field by the internal magnetic
field of the cavity (see Fig. 11). It is important to emphasize
that the two approaches, i.e., the cavity-mediated hopping and
our renormalization effect, are not contradictory but rather
complementary as they apply to different physically relevant
settings. In conclusion, our findings provide insights and pave
the way for the exploration of quantum Hall physics, in the
integer and the fractional regimes, embedded in the field of
cavity QED.
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APPENDIX A: DISPLACEMENT OPERATOR ALGEBRA

The aim of this Appendix is to show how the matrix ele-
ments defined in Eq. (39) can be computed and how the result
in Eq. (40) was obtained. The matrix elements that we are
interested in computing are

〈
φi

(
v − Akx

n

)∣∣e−iGv
n−n′ v

∣∣φ j
(
v − Akx

n′

)〉
. (A1)

To calculate these matrix elements we will first perform a
change of coordinates, s = v − Akx

n , which will give us an
overall phase independent of the integration, and we have for
the matrix elements of Eq. (A1)

e−iAkx
n Gv

n−n′ 〈φi(s)|e−iGv
n−n′ s

∣∣φ j
(
s + A0

n−n′
)〉
. (A2)
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In order to compute the matrix elements above, we will use
the algebra of displacement operators [73]. The plane wave
exp(−iGv

n−n′s) can be written as a displacement operator by
using the expression for the coordinate s in terms of the
annihilation and creation operators b̂, b̂† [95]:

s =

√
h̄

2µ-
(b̂ + b̂†). (A3)

Using the latter, we have for the plane wave in terms of the
displacement operator

e−iGv
n−n′ s = D̂

(

−i

√
h̄

2µ-
Gv

n−n′

)

. (A4)

In addition, the wave function φ j (s + A0
n−n′ ) can be written as

φ j
(
s + A0

n−n′
)

= T̂
(
A0

n−n′
)
φ j (s) (A5)

using the translation operator, which is given by the expres-
sion [70]

T̂
(
A0

n−n′
)

= exp
(
A0

n−n′∂s
)
. (A6)

The differential operator ∂s in terms of annihilation and cre-
ation operators is

∂s ≡ ∂

∂s
=

√
µ-

2h̄
(b̂ − b̂†). (A7)

This implies that the translation operator can also be written
as a displacement operator [73]

T̂
(
A0

n−n′
)

= D̂

(

−
√

µ-

2h̄
A0

n−n′

)

. (A8)

Using the expressions we derived in terms of the displacement
operators we obtain the following expression for the matrix
elements in Eq. (A1):

e−iAkx
n Gv

n−n′ 〈φi|D̂
(

−
i
√

h̄Gv
n−n′√

2µ-

)

D̂

(

−
√

µ-

2h̄
A0

n−n′

)

|φ j〉.

(A9)

We now use the formula from Cahill-Glauber [73]

D̂(α)D̂(β ) = D̂(α + β ) exp[(αβ∗ − α∗β )/2] (A10)

and we obtain the following result for the product of displace-
ment operators:

D̂

(

−i

√
h̄

2µ-
Gv

n−n′

)

D̂

(

−
√

µ-

2h̄
A0

n−n′

)

= D̂(αn−n′ )e
i
2 Gv

n−n′ A0
n−n′ , (A11)

where the matrix elements αn−n′ are

αn−n′ = −
√

µ-
2h̄ A0

n−n′ − i
√

h̄
2µ-

Gv
n−n′ . (A12)

We substitute the expression for the product of the displace-
ment operators into Eq. (A9) and we have

e−iGv
n−n′ A

kx
(n+n′ )/2〈φi|D̂(αn−n′ )|φ j〉. (A13)

The matrix representation of this displacement operator in the
basis {φi(s)} is given by [73]

〈φi|D̂(αn−n′ )|φ j〉 =
√

j!
i!

α
i− j
n−n′e−

|αn−n′ |2

2 L(i− j)
j (|αn−n′ |2),

(A14)

where i ! j and L(i− j)
j (|αn−n′ |2) are the associated Laguerre

polynomials. We note that for j > i one needs to take

〈φi|D̂(αn−n′ )|φ j〉 = (−1) j−i〈φ j |D̂(αn−n′ )|φi〉∗ (A15)

because D̂†(α) = D̂(−α) [73]. Finally, combining the result
that we obtained in Eq. (A13) with the previous definitions,
we obtain the expression for the matrix elements in Eq. (A1):

〈
φi

(
v − Akx

n

)∣∣e−iGv
n−n′ v

∣∣φ j
(
v − Akx

n′

)〉

= e−iGv
n−n′ A

kx
(n+n′ )/2〈φi|D̂(αn−n′ )|φ j〉. (A16)

APPENDIX B: SEMICLASSICAL LIMIT
OR NO-QUANTIZED-FIELD LIMIT

In this Appendix we are interested in performing the semi-
classical limit of no quantized field for our QED-Bloch central
Eq. (44). In this limit the 2D periodic material is only under
the influence of the external magnetic field Bext, while the
quantized field Â goes to zero. Mathematically, this limit can
be performed by taking the diamagnetic frequency to zero,
ωp → 0, because the quantized field Â is proportional to ωp
[see Eq. (11)]. This limit is equivalent to taking the light-
matter coupling η to zero, η → 0. Our QED-Bloch central
Eq. (44) was

U k
n,i

[
h̄2(kw + Gw

n

)2

2M
+ Ei − Ek

]

+
∑

n′, j

Vn−n′U k
n′, j e−iGv

n−n′ A
kx
(n+n′ )/2〈φi|D̂(αn−n′ )|φ j〉 = 0

(B1)

and we will take the limit ωp → 0 for all the parameters in
the above equation. First, we consider the limit ωp → 0 for
the mass parameter M defined in Eq. (21) and we find that
limωp→0 M = ∞. This implies that the kinetic term depending
on kw in the central equation vanishes and the Fourier compo-
nents of our polaritonic Bloch wave no longer depend on kw.
Due to the vanishing of the w degree of freedom, the index m
in the Bloch wave becomes redundant,

U kx,kw

n,m, j −→ U kx
n, j . (B2)

Consequently, the central equation reduces to

U kx
n,i(Ei − Ekx ) +

∑

n′,m′, j

Vn−n′,m′U kx
n′, j

× e−iGv
n−n′ ,m′ A

kx
(n+n′ )/2〈φi|D̂(αn−n′,m′ )|φ j〉 = 0. (B3)

To obtain the result above we also relabeled the index −m′ →
m′. Now what is left to be done is to perform the ωp → 0 limit
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for the rest of the parameters in the central equation which
depend on ωp. By doing so we find

lim
ωp→0

- = ωc, lim
ωp→0

µ- = 2me

ωc
, (B4)

lim
ωp→0

Gv
n−n′,m′ =

√
2

ωc
Gn−n′,m′ , (B5)

and

lim
ωp→0

αn−n′,m′ =

√
h̄

2meωc

(
− Gx

n−n′ − iGn−n′,m′
)

≡ βn−n′,m′ . (B6)

Substituting all the above results and the definition for
Akx

(n+n′ )/2 given by Eq. (31) we have

U kx
n,i

[
h̄ωc

(
i + 1

2

)
− Ekx

]
+

∑

n′,m′, j

Vn−n′,m′U kx
n′, j

× e
−ih̄(kx+ 1

2 Gx
n+n′ )Gn−n′,m′

meωc 〈φi|D̂(βn−n′,m′ )|φ j〉 = 0. (B7)

The central equation derived depends solely on electronic
parameters like the electronic crystal momentum kx, the mass
of the electron me, and the cyclotron frequency ωc = eB/me,
which is characteristic for electrons in a constant magnetic
field [57]. As a consequence, the above central equation de-
scribes consistently the physics of two-dimensional periodic
systems in the presence of a perpendicular homogeneous mag-
netic field. From this equation we can compute the energy
bands for such systems for all values of the magnetic field
because our approach is nonperturbative and does not rely on
the magnetic translation group which puts particular restric-
tions on the value of the magnetic field [92–94].

For completeness, we would also like to give the expres-
sion of the polaritonic Bloch ansatz defined in Eq. (35) in the
limit of no quantized field. The QED-Bloch ansatz depends
on the polaritonic coordinates w and v defined in Eq. (19).
Taking the no-quantized-field limit ωp → 0 the coordinate w
vanishes while the coordinate v becomes v = −ωcy. Thus, we
find that the polaritonic QED-Bloch ansatz in the limit of no
quantized field is

.kx (x, y) = eikx
∑

n, j

U kx
n, je

iGx
nφ j

(
−ωcy√

2
− Akx

n

)
. (B8)

The above wave function corresponds to a correlated expan-
sion between Bloch waves in the x coordinate and Landau
levels φ j (−ωcy/

√
2 − Akx

n ) in the y coordinate. Such an ex-
pansion has been used for the description of 2D materials in
homogeneous magnetic fields in several publications [87–90],
and central equations analogous to Eq. (B7) have been de-
rived.

APPENDIX C: THE EFFECT OF MANY MODES

In this Appendix we will look into the effect of many
modes for the strength of the light-matter coupling and the
corresponding implication for the Hall conductance. To do so,
we will not try to take into account exactly a finite amount
of modes, but we will rather follow an effective approach in
which the dependence of the single-mode coupling constant
η on the photonic momenta is introduced back, and then the
sum of the single-mode couplings over the photonic momenta
defines an effective many-mode coupling. This effective ap-
proach was also followed in Ref. [75] and it was shown that
it captures the exact running of the light-matter coupling as
a function of the photonic upper cutoff and recovers well-
known perturbative mass-renormalization results of quantum
field theory.

The single-mode coupling η depends on the cavity fre-
quency ωcav via the diamagnetic frequency ωp defined in
Eq. (45). The cavity frequency itself is a function of the
photonic momentum κz = πnz/Lz, ωcav = c|κz|, where we
take only the out-of-plane momenta into account. Substi-
tuting this expression for ωcav into the definition of η we
find η2 = e2n2D|κz|/meπε0ω

2
c . Then the effective many-mode

light-matter coupling constant is

η2(20) = e2n2D

meπε0ω2
c

π

Lz

20∑

nz=−20

|nz| =
ω2

p

ω2
c
20(20 + 1), (C1)

where the photonic momenta κz were summed up to the upper
cutoff 2 = 20π/Lz, with 20 ∈ N, which is defined as an
arbitrary multiple of the inverse of the cavity length Lz. For
large 20 0 1 we can approximately consider 20 + 1 ≈ 20
and the many-mode effective coupling takes the simple form

η2(20) = 22
0

ω2
p

ω2
c
. (C2)

The many-mode effective coupling η(20) can be rewritten as
the the ratio between the strength of the external magnetic
field B and the many-mode cavity magnetic field B(20) =
20meωp/e as η(20) = B(20)/B. We note that the many-
mode cavity field B(20) is merely a multiple of the of the
single-mode cavity magnetic field in the singe-mode case
Bcav = meωp/e. This means that the inclusion of many modes
acts as an amplifier for the strength of the cavity field. Fi-
nally, replacing the single-mode coupling η in the formula
for the cavity-modified Hall conductance in Eq. (71) with the
effective many-mode coupling η(20) one straightforwardly
obtains the effect of many modes for the modified Hall con-
ductance.
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