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1. Introduction

The main purpose of this paper is to describe a new mechanism by which Ricci-
flat metrics on K3 surfaces can degenerate. It also suggests a new general phenom-
enon that could possibly occur in the context of other canonical metrics.

Recall in 1976, Yau’s solution to the Calabi conjecture [Yau78] proved the ex-
istence of Kähler metrics with vanishing Ricci curvature, which are governed by
the Riemannian analogue of the vacuum Einstein equation, on a compact Kähler
manifold with zero first Chern class. These Calabi-Yau metrics led to the first
known construction of compact Ricci-flat Riemannian manifolds which are not flat.
Examples of such manifolds exist in abundance, and these metrics often appear
in natural families parametrized by certain complex geometric data, namely, their
Kähler class and their complex structure. As the complex geometric data degener-
ates, it is a natural question to understand the process of singularity formation of
the corresponding Ricci-flat metrics.

There is a great deal known about the limiting process of Einstein metrics under
a local volume non-collapsing assumption; see for example [And90,BKN89,Che03,

Received by the editors July 24, 2018, and, in revised form, June 5, 2020, January 15, 2021,
and January 30, 2021.

2020 Mathematics Subject Classification. Primary 53C25, 53C26, 53C55.
The first author was partially supported by NSF Grant DMS-1745517. The second author

was supported by NSF Grant DMS-1708420, an Alfred P. Sloan Fellowship, and a grant from
the Simons Foundation (�488633, S.S.). The third author was partially supported by NSF Grant
DMS-1811096. The fourth author was partially supported by NSF Grant DMS-1906265.

c©2021 American Mathematical Society

123

Licensed to Princeton Univ. Prepared on Wed Nov 10 23:32:00 EST 2021 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/jams/
https://www.ams.org/jams/
https://doi.org/10.1090/jams/978


124 H.-J. HEIN, S. SUN, J. VIACLOVSKY, AND R. ZHANG

CC97,CCT02,CD13,CN15,CN13,CT05,Tia90]. In general there is not much known
in the collapsing case. However, in the case of Einstein 4-manifolds, in a pioneering
work, Cheeger and Tian proved the first ε-regularity theorem without any non-
collapsing assumption [CT06]. This result implies that there is a Gromov-Hausorff
limit which is smooth away from finitely many points, and the sequence collapses
with uniformly bounded curvature away from the singular set. But we note that
this result does not give any information on the degeneration near the singular set.

To understand the degeneration of a sequence of metrics

(Mn
j , gj , pj)

GH−−→ (Xn
∞, d∞, p∞)

more precisely near the singular set, one studies them at an infinitesimal scale:
assuming that the curvature blows up around the points pj , we choose rescaling
factors λj → ∞ such that

(1.1) (Mn
j , λ

2
jgj , pj)

GH−−→ (Y∞, d̃∞, p̃∞)

as j → ∞ after passing to a subsequence. The limit in (1.1) can depend upon the
choice of rescaling factors λj , and we will call any such limit a bubble limit .

In this paper we focus on the case of Kähler-Einstein metrics in complex dimen-
sion 2. In fact we will only consider Ricci-flat Kähler metrics on the K3 surface, i.e.,
the oriented smooth 4-manifold underlying a simply-connected compact complex
surface with vanishing first Chern class. The Ricci-flat Kähler metrics in this case
have holonomy SU(2) ∼= Sp(1) so they are in fact hyperkähler. The main result
of this paper presents a new gluing construction of metrics of this type, relying
crucially on their hyperkähler property. We can also identify all bubble limits in
our construction, so our main result also gives some new understanding of the type
of degeneration possible near the finite singular set in the theorem of [CT06].

1.1. Gluing constructions of hyperkähler K3 surfaces. There are many
known gluing constructions of hyperkähler metrics on K3 surfaces in the litera-
ture, which we briefly review here.

1.1.1. Kummer construction. There are non-collapsing sequences of hyperkähler
metrics on the K3 surface limiting to a flat orbifold T4/Z2. There are 16 singular
points of convergence, at which Eguchi-Hanson metrics occur as bubble limits; see
[LS94,Don12] and the references therein.

1.1.2. Codimension-1 collapse. In [Fos19] Foscolo constructed a family of hyper-
kähler metrics on the K3 surface that collapses to the flat orbifold T3/Z2. The
collapse has bounded curvature away from finitely many points, and is given by
shrinking the fibers of an S1-fibration. In the simplest case, curvature blow-up
occurs at the 8 singular points of T3/Z2, where the bubble limits are given by
complete hyperkähler spaces with cubic volume growth, which in this case are
ALF-D2 spaces. Let us also point out that the results of [Fos19] have motivated
the study of codimension-1 collapse of G2-manifolds to 3-dimensional Calabi-Yau
manifolds in [FHN].

1.1.3. Codimension-2 collapse. In [GW00], Gross and Wilson constructed a family
of hyperkähler metrics on elliptic K3 surfaces with exactly 24 singular fibers of type
I1, which collapse to a singular metric d∞ on a topological sphere X2

∞ ≈ S2, which
is non-smooth at the 24 points corresponding to the singular fibers. Away from the
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NILPOTENT STRUCTURES AND COLLAPSING RICCI-FLAT METRICS 125

singular fibers, the metric is modeled on the Green-Shapere-Vafa-Yau hyperkähler
semi-flat metrics [GSVY90]. In a neighborhood of each singular fiber the metric
is modeled on the Ooguri-Vafa metric (see [GW00,OV96]), which is an incomplete
hyperkähler metric constructed using the Gibbons-Hawking ansatz which we will
recall in Section 2.

1.1.4. Codimension-3 collapse with torus fibers. In [TY90], Tian and Yau con-
structed complete non-compact hyperkähler 4-manifolds with cylindrical ends by
removing smooth fibers from rational elliptic surfaces, and were proved in [Hei12] to
converge to their R×T3 flat asymptotic models at an exponential rate. Such spaces
are known as ALH spaces in the literature. It is then possible to glue together two
ALH spaces to obtain a family of hyperkähler metrics on the K3 surface which
degenerates by developing a long neck modeled on T3 times an interval [CC20]. If
one rescales these metrics to have diameter equal to 1, then the Gromov-Hausdorff
limit is the unit interval and the bubble limits at each endpoint are the Tian-Yau
asymptotically cylindrical metrics. Gluing of asymptotically cylindrical geometric
structures is a very familiar construction in geometry; see for example [Flo91,KS01]
for anti-self-dual metrics in dimension 4, and [Kov03,HHN15] for holonomy G2 met-
rics in dimension 7.

1.2. Main results. The main result of this paper gives a new gluing construction in
which a family of hyperkähler metrics on the K3 surface collapses to a unit interval
and generically the collapse happens along a 3-dimensional Heisenberg nilmanifold
(i.e., a nontrivial S1-bundle over T2). Part of our motivation was an attempt to
understand the hyperkähler metric degenerations corresponding to Type II complex
structure degenerations of polarized complex K3 surfaces. A guiding example is
when we have a family of quartic K3 surfaces Zt in CP 3 defined by the equation
tq + f1f2 = 0, where q is a general quartic and f1 and f2 are general quadrics.
The general fiber is a smooth K3 surface while the central fiber is a union of two
quadric surfacesX1 andX2, intersecting transversally along an elliptic curve defined
by f1 = f2 = 0. We would like to understand the behavior of the Ricci-flat metrics
on Zt in the cohomology class 2πc1(O(1)|Zt

) as t tends to zero.
In 1987, R. Kobayashi proposed a conjectural mechanism for Ricci-flat metrics

on K3 surfaces to degenerate into unions of Tian-Yau and Taub-NUT spaces; see
Cases (i) and (ii) on p.223 in [Kob90]. Moreover, Kobayashi also proposed an
identification of these limits with Type II polarized degenerations of complex K3
surfaces. In this paper, we focus mainly on the Riemannian geometric aspects of
this problem, so our main result gives a verification of Kobayashi’s expectation only
at the level of hyperkähler structures. We do expect that some of our degenerations
can be used to characterize some Type II polarized degenerations of complex K3
surfaces.

Given a del Pezzo surface M and a smooth anti-canonical curve D ⊂ M , Tian-
Yau proved in [TY90] the existence of a hyperkähler metric on M \D, with interest-
ing asymptotic geometry at infinity. Namely, outside a compact set the manifold is
diffeomorphic to N× [0,∞), where N is an S1-bundle over D of degree d = c1(X)2,
and the metric is modeled on a doubly warped product so that as we move towards
infinity, the S1 fibers shrink in size while the base torus D expands. The volume
growth rate of the hyperkähler metric is 4/3 and the curvature decays quadratically.
We call such a hyperkähler metric a Tian-Yau metric throughout this paper; for
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more precise details, we refer to Section 3. The proof in [TY90] uses the Calabi
ansatz in a neighborhood of infinity and then solves a Monge-Ampère equation, so
it is not a priori clear whether these metrics are unique or canonical in a suitable
sense. Nevertheless they provide candidates for the bubble limits of the degenera-
tion that we would like to understand.

In analogy with the cylindrical ALH gluing described above, one might expect
that gluing together two Tian-Yau metrics would result in a hyperkähler K3 surface.
However, an easy Euler characteristic argument shows that one cannot naively glue
the ends of the two Tian-Yau metrics together to even match the topology of a K3
surface. Geometrically, even though the end of a Tian-Yau metric is topologically
cylindrical, the metric itself is not. So we need to construct a neck region that
approximates the Tian-Yau ends on both sides.

A key novel ingredient of this paper is the construction of such a transition
region, specifically an incomplete hyperkähler 4-manifold that can be viewed as
a doubly-periodic cousin of the Ooguri-Vafa metric. Recall that the Ooguri-Vafa
metric is the metric arising from the Gibbons-Hawking ansatz applied to a harmonic
function on S1 × R2 with a pole on S1 × {0}; or equivalently, a harmonic function
on R× R2, periodic in the first variable, and with poles along Z× {0} ⊂ R× {0}.
Our neck metric is instead constructed by applying the Gibbons-Hawking ansatz to
a harmonic function on the flat cylinder T2×R with finitely many poles (which we
call the monopole points) in T2 × R. This is equivalent to a harmonic function on
R2 ×R, doubly periodic in the first and second variables, and with poles on a rank
2 lattice. For more details of this construction we refer to Section 2. Here we point
out that in analogy with the Ooguri-Vafa case, the resulting metric is incomplete
because T2 ×R is parabolic, hence admits no globally positive harmonic functions;
moreover, the two ends of this neck metric do indeed match up closely with the
ends of the Tian-Yau metrics.

Our main theorem says that it is in fact possible to “glue together” two Tian-
Yau metrics with a suitable neck region as above to construct families of Ricci-flat
metrics on the K3 surface with a nontrivial nilpotent collapsing structure.

Theorem A. Let b+, b− and m be positive integers satisfying

1 ≤ b± ≤ 9, 1 ≤ m ≤ b+ + b−.

Then there exists a family of hyperkähler metrics ĥβ on the K3 surface which col-
lapse to the standard metric on the closed interval [0, 1], i.e.,

(K3, ĥβ)
GH−−→ ([0, 1], dt2), β → ∞.

Moreover, for each sufficiently large β � 1, there exists a finite set S ≡ {0, t1, . . . ,
tm, 1} ⊂ [0, 1] and a continuous surjective map

Fβ : K3 → [0, 1],

which is almost distance-preserving, i.e., for some constant C0 > 0 independent of
β, ∣∣∣|Fβ(p)− Fβ(q)| − dĥβ

(p, q)
∣∣∣ ≤ C0

β
, ∀p, q ∈ K3,

such that the following properties hold.

(1) (Regular collapsing regions) Denote by Tε(S) the ε-tubular neighborhood of
S and Rε ≡ [0, 1] \ Tε(S). Then for every sufficiently small ε (depending
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NILPOTENT STRUCTURES AND COLLAPSING RICCI-FLAT METRICS 127

on the minimal distance between the points in S) and k ∈ N, there exists
Ck,ε > 0 such that

sup
F−1

β (Rε)

|∇kRmĥβ
| ≤ Ck,ε,

and for each t ∈ Rε, F
−1
β (t) is diffeomorphic to an S1-fiber bundle over T2.

Furthermore,

C−1
0 β−1 ≤ Diamĥβ

(F−1
β (t)) ≤ C0β

−1, C−1
0 β−2 ≤ Diamĥβ

(S1) ≤ C0β
−2.

(2) (Bubbling regions) The preimage F−1
β (Tε(S)) can be written as the union of

different connected components S−
ε ∪

(⋃m
j=1 Sj

ε

)
∪S+

ε such that the following

properties hold.
(a) For j ∈ [1,m], there exists an xβ,j ∈ Sj

ε such that Fβ(xβ,j) → tj,

C−1
0 β4 ≤ |Rmĥβ

|(xβ,j) ≤ C0β
4

as β → ∞, and rescalings of the metrics near xβ,j converge to Taub-
NUT metrics (see Example 2.1) in the pointed Gromov-Hausdorff
sense. In fact, it is possible to have several distinct Taub-NUT bub-
bles coming out of the same component Sj

ε ; see Theorem B for a more
precise statement.

(b) There exist xβ,± ∈ S±
ε such that Fβ(xβ,−) → 0, Fβ(xβ,+) → 1,

C−1
0 β3 ≤ |Rmĥβ

|(xβ,±) ≤ C0β
3

as β → ∞, and rescalings of the metrics near xβ,± converge, in the
pointed Gromov-Hausdorff sense, to Tian-Yau metrics on a del Pezzo
surface of degree b±, minus a smooth anti-canonical curve.

Remark 1.1. The Riemannian geometry of the regular collapsing regions is actu-
ally completely understood. For each t ∈ Rε, F

−1
β (t) is a 3-dimensional Heisenberg

nilmanifold if the S1-bundle is nontrivial, and is diffeomorphic to T3 otherwise.
Furthermore, the universal cover of a regular preimage F−1

β (tj + ε, tj+1 − ε) con-

verges to a hyperkähler manifold (Ũ∞, g̃∞) with a Heisenberg or Euclidean group of
isometries according to whether the S1-bundle is nontrivial or trivial. An explicit
expression for g̃∞ in the Heisenberg case may be found in Section 2.2. In particu-
lar, our construction gives a concrete example of Lott’s recent work classifying the
regular regions in collapsing 4-manifolds with almost Ricci-flat metrics (see [Lot20]
for more details).

For the precise definition of a 3-dimensional Heisenberg nilmanifold; see Section
2.1. These are S1-bundles over T2, and thus they have a degree which is only well-
defined up to sign. However, if one specifies a projection to an oriented T2, then the
degree is a well-defined integer. We denote by Nil3b a 3-dimensional nilmanifold of
degree b, where we will always have a certain projection to an oriented T2 in mind.
Let t0 = 0, tm+1 = 1, and let dj be the degree of a nilpotent fiber Nil3dj

on the

interval (tj + ε, tj+1 − ε), j = 0, . . . ,m, with d0 = b− and dm = −b+. The following
Domain Wall Crossing Theorem describes the possible jumps of the degrees of the
nilmanifolds upon crossing the singular regions.
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128 H.-J. HEIN, S. SUN, J. VIACLOVSKY, AND R. ZHANG

Theorem B. Given any m-tuple of positive integers (w1, . . . , wm) satisfying
m∑
j=1

wj = b− + b+,

there exist examples in Theorem A with dj − dj+1 = wj+1, j = 0, . . . ,m − 1.
Furthermore, near each singular point tj, exactly wj Taub-NUT bubbles occur.

Remark 1.2. This domain wall crossing phenomenon has been studied in the physics
literature, namely, it arises in Type IIA massive superstring theory; see [Hul98].

1.3. Outline of the paper. Our proof adopts the description, originally due to
Donaldson [Don06], of a hyperkähler metric in terms of a triple of three symplectic
forms, a description which was also used, for example, in [CC20, FLS17, Fos19].
Let M4 be an oriented 4-manifold with a volume form dvol0. A triple of 2-forms
ω = (ω1, ω2, ω3) is called closed if dω1 = dω2 = dω3 = 0, and is called definite if
the matrix Q = (Qij) defined by

1

2
ωi ∧ ωj = Qij dvol0

is positive. Given a definite triple ω, the associated volume form is defined as

dvolω = (det(Q))
1
3 dvol0,

which is independent of the choice of volume form dvol0. We denote by

Qω ≡ (det(Q))−
1
3Q

the normalized matrix with unit determinant. A definite triple ω = (ω1, ω2, ω3)
is called a hyperkähler triple if it is closed and the renormalized coefficient matrix
satisfies

Qω = Id .(1.2)

Note that (1.2) is equivalent to the equation

(1.3)
1

2
ωi ∧ ωj =

1

6
δij(ω

2
1 + ω2

2 + ω2
3), 1 ≤ i ≤ j ≤ 3.

There is a well-known algebraic isomorphism of homogeneous spaces

SL(4,R)/ SO(4) ∼= SO0(3, 3)/(SO(3)× SO(3))(1.4)

(see for example [Sal89, Chapter 7]), so each definite triple ω determines a Riemann-
ian metric gω such that each ωj is self-dual with respect to gω and dvolgω = dvolω.
If moreover ω = (ω1, ω2, ω3) is a hyperkähler triple, then gω is a hyperkähler met-
ric. Furthermore, ω2+

√
−1ω3 is a holomorphic 2-form with respect to the complex

structure determined by ω1 which makes ω1 a Kähler form.
Our proof will not directly construct a Ricci-flat metric on the K3 surface. In-

stead, we will construct a manifold M and a family of closed definite triples on M,
denoted by ωM

β , all of which depend upon a gluing parameter β. The associated
Riemannian metric will be denoted by gβ . For β sufficiently large, we will then
perturb the approximate triple to obtain a hyperkähler triple, which will then yield
in particular a Ricci-flat Kähler metric. In order to carry out this perturbation,
we will use the implicit function theorem (see Lemma 10.1). As we will see in
Section 10.1, this requires finding a right inverse to the operator

(1.5) Lgβ = (Dgβ⊕Id)⊗R3 : (Ω1(M)⊕H+(M))⊗R3 −→ (Ω0(M)⊕Ω2
+(M))⊗R3,
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NILPOTENT STRUCTURES AND COLLAPSING RICCI-FLAT METRICS 129

where H+(M) denotes the space of self-dual harmonic 2-forms with respect to gβ ,
the operator Dgβ is defined by

Dgβ ≡ d∗ ⊕ d+ : Ω1(M) −→ Ω0(M)⊕ Ω2
+(M),

where d∗ is the divergence operator and d+ is the self-dual part of the exterior
derivative. We will refer to Lgβ as the linearized operator. We will require a bound
for the right inverse of Lgβ in certain weighted Hölder norms which is independent
of the gluing parameter β. We will next give an outline of the main steps required
in order to achieve this bound.

In Section 2, we give some background on the Gibbons-Hawking ansatz. We
also define the Heisenberg nilmanifolds and describe the Calabi model space used
in the Tian-Yau construction from the Gibbons-Hawking point of view. Lastly, we
construct a harmonic function whose associated Gibbons-Hawking ansatz defines
the neck region N .

The Calabi model space will be described in Section 3 from a complex geometric
perspective, which will be used to obtain the precise asymptotic behavior of the
complete hyperkähler Tian-Yau spaces. The main result is Proposition 3.4 which
roughly states that a complete Tian-Yau space is exponentially asymptotic to a
Calabi model space, up to any arbitrary order of derivatives.

In Section 4, we will establish a Liouville-type theorem for harmonic functions
which says that any harmonic function of sufficiently small exponential growth on
a complete hyperkähler Tian-Yau space has to be a constant. To prove this, the
asymptotics proved in Section 3 will be crucial. These will allow us to reduce our
problem to a question about harmonic functions on the Calabi model space, which
will be solved using separation of variables. This step is already quite involved as it
requires us to develop some new elliptic theory on a model space which is a doubly
warped product rather than just a cylinder.

A 1-form φ is said to be half-harmonic if it is in the kernel of D , i.e.,

(1.6) d∗φ = 0, d+φ = 0.

In Section 5, we will prove a Liouville theorem for half-harmonic 1-forms on a
complete hyperkähler Tian-Yau space (see Theorem 5.1). This will be crucial later
in the proof of the key uniform estimate (Proposition 9.2) required for our gluing
construction. An important observation here is that equation (1.6) is equivalent to
the (0, 1)-component of φ satisfying ∂̄∗φ0,1 = ∂̄φ0,1 = 0 for any choice of compatible
integrable complex structure. This will allow us to invoke tools from complex
geometry.

In Section 6 we will complete the construction of the neck region and construct
a closed almost hyperkähler triple on a certain manifold M. We will also describe
some topological invariants of M. Note that at this stage it would be difficult to
show directly that M is actually diffeomorphic to K3, a fact which will follow easily
once we have shown that it admits a hyperkähler metric.

Section 7 will focus on the rescaling geometry of the manifold M. This leads to
a decomposition of M (see Section 7.1 and 7.2) into 9 different regions, labeled I,
II, III, IV±, V±, VI±, with each of these regions exhibiting different regularity and
convergence behaviors. In particular, we will describe all of the rescaled Gromov-
Hausdorff limits for base points in each of the various regions.

In Sections 8 and 9, we will set up the weighted analysis package and prove some
technical results. The first step in Section 8 is to define weighted Hölder spaces
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which are consistent with the different collapsing behaviors in different regions of
M. The remainder of Section 8 will then consist of proving the weighted Schauder
estimate in Proposition 8.2. In Section 9, we will prove a uniform injectivity esti-
mate for the operator Dgβ ; see Proposition 9.2.

Existence of a bounded right inverse to the operator Lgβ for β sufficiently large
will be proved in Section 10; see Proposition 10.2. In the remainder of Section 10,
we will then complete the proofs of Theorems A and B.

2. The Gibbons-Hawking ansatz and the model space

We first recall the Gibbons-Hawking construction of 4-dimensional hyperkähler
structures with an S1 symmetry. Let (U, hU ) be a 3-dimensional parallelizable flat
manifold. Then the metric hU = e21 + e22 + dz2, where e1, e2, dz are global parallel
1-forms. Let V be a positive harmonic function on U so that ∗dV is a closed 2-form.
We assume further that the de Rham class [ 1

2π ∗dV ] lies in H2(U,Z) so that ∗dV is

the curvature form of a unitary connection −
√
−1θ on a circle bundle π : M → U .

Then

g = V π∗hU + V −1θ ⊗ θ

is a hyperkähler metric on M invariant under the S1-action. This is called the
Gibbons-Hawking ansatz. The corresponding triple of symplectic forms is given by

(2.1) ω = (ω1, ω2, ω3) = (dz ∧ θ + V e1 ∧ e2, e1 ∧ θ + V e2 ∧ dz, e2 ∧ θ + V dz ∧ e1).

The triple ω satisfies the hyperkähler triple equations (1.3).
By definition the metric g depends not only on the harmonic function V but also

on the choice of connection θ with curvature form ∗dV . One can check that gauge
equivalent connections lead to isometric metrics; so in essence g depends only on the
gauge equivalence class of θ. Different gauge equivalence classes differ by tensoring
with a flat connection, and the set of isomorphism classes of flat connections is
given by H1(U,R)/H1(U,Z).

Conversely, any 4-dimensional hyperkähler metric admitting a tri-holomorphic
Killing symmetry is locally given by the Gibbons-Hawking ansatz. To see this we
notice that in the formula above, we can intrinsically interpret V −1 as the norm-
squared of the Killing field, and the projection map π as the hyperkähler moment
map.

To get more interesting examples one often allows V to have isolated poles
Pk ≡ {p1, . . . , pk} such that near each pj , V can be written as 1

2rj
+ hj where rj is

the distance function to pj and hj is a smooth harmonic function. Then the corre-
sponding metric g is defined on a manifold M admitting a projection π : M → U ,
such that π is a circle bundle over U \ Pk and near each point pj , π is modeled on
the Hopf fibration

πH : C2 → R3, (z1, z2) �→
(
|z1|2 − |z2|2, 2Re(z1z2), 2Im(z1z2)

)
.

Example 2.1. Let U = R3. If V = σ (a positive constant), then (M, g) is a
flat product R3 × S1. If V = 1

2r , then (M, g) is flat Euclidean space R4 and the

map π is exactly the Hopf fibration. If Vσ = σ + 1
2r then (M, g) is the Taub-NUT

space. This is again diffeomorphic to R4 but has cubic volume growth and the
length of the S1 fibers approaches a positive constant at infinity. Notice that as σ
varies, these metrics are isometric up to dilation. This is most easily seen using the
above intrinsic description. We take the metric g1 constructed using V1 = 1 + 1

2r
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NILPOTENT STRUCTURES AND COLLAPSING RICCI-FLAT METRICS 131

and rescale gσ = σ−1g1. Then the length of the S1 orbits becomes (σV1)
−1/2 and

the hyperkähler moment map becomes πσ = σ−1π. Thus, gσ can be written in
Gibbons-Hawking form with potential σV1.

By taking multiple poles, we similarly obtain other hyperkähler manifolds which
are asymptotic to quotients of either R4 or Taub-NUT space by cyclic groups. These
are referred to in the literature as ALE/ALF spaces of Ak−1-type, respectively. See
[Min11] for a complete theory of ALF-Ak−1 spaces.

Example 2.2. Let U = S1 ×R2 and let V be a Green’s function with exactly one
pole on S1 × {0}. In [GW00] V is constructed by passing to the universal cover

Ũ = R3, where the lifted function Ṽ is a periodic Green’s function constructed using
a Weierstraß series. V is only positive in a certain bounded open set in U . The
corresponding hyperkähler metric on this bounded open set is called the Ooguri-
Vafa metric. With one particular choice of a compatible complex structure, M

becomes a holomorphic elliptic fibration over a disc D ⊂ R2 = C, and the singular
fiber has monodromy of type I1. The Ooguri-Vafa metric plays a crucial role in
the work of Gross-Wilson [GW00] on collapsing Calabi-Yau metrics on elliptic K3
surfaces with exactly 24 singular fibers of type I1.

In the following subsections, we will consider Gibbons-Hawking spaces (M, g)
whose base is a large open subset of a flat cylinder U ≡ T2

x,y × Rz. In Section 2.2,
we take V to be linear in z. This yields the model space at infinity of the Tian-
Yau metrics [TY90] as well as of the gravitational instantons with r4/3 volume
growth and r−2 curvature decay from [Hei12]. In this situation, M is diffeomorphic
to the product of a line and a 3-dimensional Heisenberg nilmanifold. We begin by
collecting together some useful basic facts about Heisenberg nilmanifolds in Section
2.1. In Section 2.3 we then consider a doubly-periodic analog of Example 2.2 over
T2 times a bounded interval and show that this is asymptotic to the model space
of Section 2.2 near the ends of the interval. Ultimately this new metric will serve
as the neck region in our gluing construction.

2.1. The Heisenberg nilmanifolds. The 3-dimensional Heisenberg group is

H(1,R) ≡

⎧⎨⎩
⎡⎣1 x t
0 1 y
0 0 1

⎤⎦ : x, y, t ∈ R

⎫⎬⎭ .

Fix ε > 0 and τ ∈ C with Im(τ ) �= 0 and define a lattice Λ ≡ εZ〈1, τ 〉 ⊂ R2
x,y = C.

Let τ1 = Re(τ ) and τ2 = Im(τ ). Then A = Area(R2
x,y/Λ) = ε2τ2. For b ∈ Z+, the

Heisenberg nilmanifold of degree b, denoted by Nil3b(ε, τ ), is the quotient of H(1,R)
by the left action generated by

(x, y, t) �→ (x+ ε, y, t+ εy),

(x, y, t) �→ (x+ ετ1, y + ετ2, t+ ετ1y),

(x, y, t) �→ (x, y, t+Ab−1).

Note that the forms

dx, dy, θb ≡ (2πbA−1)(dt− xdy)(2.2)

Licensed to Princeton Univ. Prepared on Wed Nov 10 23:32:00 EST 2021 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



132 H.-J. HEIN, S. SUN, J. VIACLOVSKY, AND R. ZHANG

are a basis of left-invariant 1-forms on Nil3b . Also, it is clear that Nil3b is the total
space of a degree b circle fibration

S1 −→ Nil3b
π−−→ T2 ≡ R2

x,y/Λ.(2.3)

The following result will be needed later in Proposition 6.6.

Proposition 2.3. For Nil3b with b �= 0, we have b1(Nil3b) = b2(Nil3b) = 2, and the

de Rham cohomology group H1(Nil3b) is generated by π∗dx and π∗dy.

Proof. The Gysin sequence associated to (2.3) yields

0 → H1(T2)
π∗
−→ H1(Nil3b) → H0(T2)

∪e−−→ H2(T2) → · · ·(2.4)

Since the Euler class e of the bundle is b times a generator of H2(T2), the mapping
∪e : R ∼= H0(T2) → H2(T2) ∼= R is just multiplication by b, hence is an isomor-

phism. Consequently, π∗ : H1(T2) → H1(Nil3b) is also an isomorphism. Since Nil3b
is a compact orientable 3-manifold, Poincaré duality implies that b1 = b2. �

For b ∈ Z+, we define the Heisenberg nilmanifold Nil3−b to be the quotient of
H(1,R) by the action generated by

(x, y, t) �→ (x+ ε, y, t− εy),

(x, y, t) �→ (x+ ετ1, y + ετ2, t− ετ1y),

(x, y, t) �→ (x, y, t−Ab−1).

Note that the generated action is conjugate to the previous action by the mapping
(x, y, t) �→ (−x,−y,−t), and the forms

dx, dy, θ−b ≡ (2πbA−1)(dt+ xdy)

are a basis of left-invariant 1-forms on Nil3b .

2.2. The Gibbons-Hawking model space. Consider an oriented torus T2 with
a flat metric of area A and let U = T2

x,y × Rz>0, where we have fixed a choice

of an orthogonal frame {e1, e2} on T2 such that gT2 = A(e21 + e22). Let V (z) =
2πbz · A−1 for a positive integer b > 0. Fixing a connection form θ such that
dθ = 2πb ·A−1dvolT2 , the corresponding hyperkähler Gibbons-Hawking metric g is
given by

g =
2πbz

A

(
gT2 + dz2

)
+

A

2πbz
θ2.(2.5)

As before we denote by M the underlying manifold of g. It has one complete end as
z → ∞ and one incomplete end as z → 0. Moreover, for each z0 > 0, the level set
{z = z0} is a Heisenberg nilmanifold Nil3b(ε, τ ) with a z0-dependent left-invariant
metric, where τ denotes the modulus of our flat 2-torus in the upper half-plane and
A = ε2τ2 as in Section 2.1. Making the substitution z = (3/2)s2/3 and then scaling
appropriately, the Gibbons-Hawking metric g takes the form

ds2 + s2/3gT2 + s−2/3
( A

3πb
θ
)2

.

In this form, it is easy to see that the volume growth is ∼ s4/3 and that |Rm| ∼ s−2

as s → ∞. One can also show using the Chern-Gauss-Bonnet formula that the
L2-norm of Rm is finite.
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A very convenient property for our purposes is that if we do change the con-
nection 1-form θ by a flat connection, then the associated Gibbons-Hawking metric
(2.5) actually only changes by a diffeomorphism (although this diffeomorphism nec-
essarily breaks the S1-bundle structure on M). To see this, fix any choice of θ such
that dθ = 2πbA−1 dvolT2 . Note that we can always arrange by parallel transport in
the z-direction that the dz-component of θ vanishes. Then we only need to consider

the case that θ gets changed by the pullback (under the projection M
π→ U → T2)

of a parallel 1-form η on T2. Write η = v � dvolT2 , where v is a parallel vector field

on T2. Let v̂ be the θ-horizontal lift of v toM and let f̂s be the 1-parameter group of
diffeomorphisms generated by v̂, which covers a 1-parameter group of translations
on T2. Then

d

ds
(f̂∗

s θ) = v̂ � f̂∗
s (dθ) + d(v̂ � f̂∗

s θ) = 2πbA−1(v̂ �π∗(dvolT2)) = 2πbA−1π∗η,

using the fact that df̂s|x(v̂|x) = v̂|f̂s(x) for all x ∈ M. Thus,

f̂∗
s θ = θ + 2πbsA−1π∗η.

This shows that any two possible choices of θ with vanishing dz-component differ
by the lift to M of the translation action of T2 on itself. Consequently, the corre-
sponding hyperkähler metrics (2.5) are clearly isometric as well. We note that with
the particular choice θ = θb from (2.2), these diffeomorphisms can be written down
explicitly as follows: for all p, q ∈ R, the mapping

ϕ(x, y, t, z) = (x− q, y + p, t+ px, z)

descends to a diffeomorphism of Nil3b(ε, τ )x,y,t × Rz which satisfies

ϕ∗θb = θb + 2πbA−1(pdx+ qdy).

Remark 2.4. View the flat torus T2 as an elliptic curve E of modulus τ with
respect to the complex structure J defined by Je1 = e2. Then there is exactly one
g-parallel complex structure J0 on the total space M that makes the projection
map to E holomorphic. This choice of complex structure realizes M as an open
subset of the total space of a degree b holomorphic line bundle L over E (more
precisely, as a tubular neighborhood of the zero section of L with the zero section
removed). However, we can choose a different g-parallel complex structure J1 on M

such that J1θ = zdx. With respect to J1 we can view M as a holomorphic elliptic
fibration over a punctured disc in C. The monodromy of this fibration is given by

the matrix

[
1 b
0 1

]
∈ SL(2,Z); see [Sco83, pp. 469-470] for more details. This gives

a different compactified model for M where the compactifying divisor is a singular
fiber of Kodaira type Ib. The J1-Kähler form of our hyperkähler model metric
is then given by an appropriate semi-flat ansatz [GSVY90, GW00], and provides
the model at infinity for the gravitational instantons with volume growth ∼ r4/3

and curvature decay ∼ r−2 constructed in [Hei12]. We will pursue this observation
further in [HSVZ], connecting the complete hyperkähler metrics of [TY90] and of
[Hei12] by global hyperkähler rotations.

2.3. Green’s function on a flat cylinder. The neck region in our gluing con-
struction is given by a doubly-periodic analog of the Ooguri-Vafa metric. To con-
struct this metric using the Gibbons-Hawking ansatz, we first need to construct a
Green’s function V∞ on (T2 × R, g0), where T2 is any flat 2-torus. We also need
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to determine the asymptotics of V∞ as |z| → ∞ in order to ensure that the neck
matches the Calabi model space from Section 2.2 on both ends.

It is known that the flat cylinder T2 × R is parabolic, namely, it does not admit
a positive Green’s function. In fact, Cheng and Yau proved that any complete
non-compact Riemannian manifold with Vol(BR(p)) ≤ CR2 must be parabolic; see
Theorem 1 and Corollary 1 in [CY75].

We now construct a particular sign-changing Green’s function V∞. Equip T2
x,y×

Rz with the flat product metric g0. Fix a point p on T2 × R with z(p) = 0. For
R > 0 let VR denote the unique function on T2 × [−R,R] satisfying

−Δg0VR = 2πδp, z ∈ (−R,R),

VR = 0, z = ±R.

The normalization of the right-hand side is precisely chosen in such a way that VR =
1
2r + O(1) near p, where r denotes the g0-distance to p. Thus, the 4-dimensional
Gibbons-Hawking metric associated to VR (or VR +C for any constant C) extends
smoothly across p; cf. Example 2.1. For any R > 0, VR is a positive Green’s
function that is vanishing on the boundary {z = ±R}. If R2 > R1, then applying
the maximum principle, VR2

(x) > VR1
(x) for every x ∈ BR1

(p). Let us define

CR ≡ sup
∂B1(p)

VR.

Then it follows from the parabolicity of T2 × R that CR → ∞ as R → ∞. By
[LT87, Theorem 1], VR(x, y, z)− CR converges to a function V∞(x, y, z) uniformly
on compact subsets of (T2 × R) \ {p} as R → ∞. Moreover, V∞ ≤ 0 on the
complement of B1(p) and

−Δg0V∞ = 2πδp on T2 × R.

Notice also that V∞ is symmetric in z by construction.

Theorem 2.5. Let V∞ be the sign-changing Green’s function as defined above.
Then there exists a constant c0 ∈ R such that for all k ∈ N,

|∇k
g0(V∞ − k±z − c0)| = O(e−

√
λ1|z|), z → ±∞,

where

(2.6) k− = −k+ =
π

Areag0(T
2)

> 0

and λ1 > 0 is the smallest positive eigenvalue of −ΔT2 .

Proof. Consider the fiberwise average

V∞(z) ≡ 1

Areag0(T
2)

ˆ
T2×{z}

V∞(x, y, z) dvolg0(x, y).

This is well-defined, smooth in z for z �= 0, and continuous at z = 0. For z �= 0, we
have that

(2.7) V ′′
∞(z) =

1

Areag0(T
2)

ˆ
T2×{z}

(d2V∞
dz2

)
dvolg0

= − 1

Areag0(T
2)

ˆ
T2×{z}

(ΔT2V∞) dvolg0 = 0.
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This implies that V∞(z) is a piecewise linear function. By construction,
lim|z|→+∞ V∞(x, y, z) = −∞. Then for all z > 0,

(2.8) V ′
∞(z) = constant ≡ k+ < 0.

Denote D0 ≡ Diamg0(T
2). Choose R0 > 10D0 large enough so that V∞(x, y, z) ≤

−1 on the set (T2 × R) \ BR0
(p). Then for any fixed q ∈ (T2 × R) \ B2R0

(p) and
r ∈ (2D0, 4D0), we can apply the Harnack inequality to the harmonic function V∞,
which itself is negative in the geodesic ballBr(q) ⊂ (T2×R)\BR0

(p). More precisely,
passing to the universal cover and applying the standard Harnack inequality for
positive harmonic functions on a fixed ball in R3, we see that there is a uniform
constant C0 > 0 depending only on D0 > 0 such that for all w1, w2 ∈ Br(q),

(2.9)
1

C0
≤ V∞(w1)

V∞(w2)
≤ C0.

Since the fiber average V∞(z) of V∞ is linear in z with slope k+ < 0, (2.9) yields
that

(2.10) −C2z ≤ V∞(x, y, z) ≤ −C1z

for z � 1, where the constants C1 and C2 depend only on the constants C0 and
k+.

We denote by ΛT2 = {λj}∞j=1 the positive spectrum of −ΔT2 and expand V∞
according to the eigenfunctions of ΔT2 along the torus fiber T2 ×{z} for each fixed
z > 0. This yields

V∞(x, y, z) = (k+z + c+) +

∞∑
j=1

fj(z)hj(x, y),

where k+ < 0 is the constant of (2.8) and where

f ′′
j (z) = λjfj(z), −ΔT2hj = λjhj ,

ˆ
T2

|hj |2 = 1.

Immediately,

fj(z) = cje
−
√

λjz + c∗je
√

λjz.

Notice that ˆ
T2×{z}

|V∞|2 = (k+z + c+)
2 +

∞∑
j=1

|fj(z)|2.

By the linear growth property (2.10), we see that c∗j = 0 for all j ∈ Z+. Therefore,

(2.11)

ˆ
T2×{z}

|V∞ − (k+z + c+)|2 =

∞∑
j=1

|cj |2e−2
√

λjz = O(e−2
√
λ1z) as z → +∞,

where λ1 > 0 is the minimum of ΛT2 . To see (2.11), note that the series converges for

z = 1. Applying elliptic regularity to the harmonic function V̂∞ ≡ V∞−(k+z+c+),

‖V̂∞‖W 2,2(Br/2(q)) ≤ C‖V̂∞‖L2(Br(q)) ≤ Ce−2
√
λ1z

for all balls Br(q) as above, where C depends only on the diameter and on the

injectivity radius of T2. By the 3-dimensional Sobolev embedding W 2,2 ↪→ C0, 12 ,

|V∞(x, y, z)− (k+z + c+)| = O(e−
√
λ1z) as z → +∞.
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Standard elliptic regularity then shows that for any k ∈ N,

|∇k
g0(V∞(x, y, z)− (k+z + c+))| = O(e−

√
λ1z) as z → +∞.

The same argument applies in the case z → −∞.
Now we prove the slope relation (2.6). Fix R > 0. Then by Green’s formula,

V ′
∞(R)− V ′

∞(−R) =

ˆ
T2×[−R,R]

ΔV∞.

Thus, by the definition of k+ and the analogous definition of k−,

k+ Areag0(T
2)− k− Areag0(T

2) = −2π.

It follows that

k− − k+ =
2π

Areag0(T
2)
.

Since V∞ is symmetric in z, it holds that k− = −k+ and c− = c+ (we denote
c0 ≡ c− = c+). �

It is straightforward to use superposition to extend the above construction to
the case of multiple poles. Precisely, we have Corollary 2.6.

Corollary 2.6. Let (T2 × R, g0) be a flat cylinder with a flat product metric g0.
Given a finite set Pm0

≡ {p1, . . . , pm0
} ⊂ T2 ×R such that

∑m0

m=1 z(pm) = 0, there
is a sign-changing Green’s function V∞ with

−Δg0V∞ = 2π

m0∑
k=1

δpk
.

There also exist linear functions L±(z) = k±z with

k− = −k+ =
πm0

Areag0(T
2)

> 0

such that for all k ∈ N,

|∇k
g0(V∞ − L±)| = O(e−

√
λ1|z|)(2.12)

as z → ±∞, where λ1 > 0 is the smallest positive eigenvalue of −ΔT2 .

Proof. By a translation in z, Theorem 2.5 produces a Green’s function Vi with a
pole at pi and which is symmetric in z about z(pi). The condition

∑m0

m=1 z(pm) = 0
ensures that V∞ =

∑m0

m=1 Vm will have the same constant term at both ends, which
can then be removed by subtracting a constant. �

In Section 6, we will use V∞ to construct a potential Vβ which is positive in a
large region, and such that [ 1

2π ∗ dVβ] is an integral class in H2(U,Z). This will be
used to define our neck metric.

3. The asymptotic geometry of Tian-Yau spaces

In this section we review the Tian-Yau construction [TY90] of complete Ricci-flat
Kähler metrics on the complement of a smooth anti-canonical divisor in a smooth
Fano manifold. In complex dimension 2 these metrics are hyperkähler and will be
used in our gluing construction in Section 6.

The Ricci-flat metrics constructed in [TY90] are asymptotic to the Calabi model
space at infinity. We first give the definition of the latter. Let D be an (n − 1)-
dimensional compact Kähler manifold with trivial canonical bundle and let L → D
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be an ample line bundle. We fix a nowhere vanishing holomorphic (n− 1)-form ΩD

on D with

(3.1)
1

2

ˆ
D

(
√
−1)(n−1)2ΩD ∧ ΩD = (2πc1(L))

n−1.

By Yau’s resolution of the Calabi conjecture [Yau78], there exists a unique Ricci-flat
Kähler metric ωD ∈ 2πc1(L) satisfying the equation

ωn−1
D =

1

2
(
√
−1)(n−1)2ΩD ∧ ΩD.

Up to scaling there exists a unique hermitian metric h on L whose curvature form
is −

√
−1ωD. We now fix a choice of h. Then the Calabi model space is the subset C

of the total space of L consisting of all elements ξ with 0 < |ξ|h < 1, endowed with
a nowhere vanishing holomorphic volume form ΩC and a Ricci-flat Kähler metric
ωC which is incomplete as |ξ|h → 1 and complete as |ξ|h → 0. The holomorphic
volume form ΩC is uniquely determined by the equation

Z� ΩC = p∗ΩD,

where p : C → D is the bundle projection and Z is the holomorphic vector field
generating the natural C∗-action on the fibers of p. The metric ωC is given by the
Calabi ansatz

(3.2) ωC =
n

n+ 1

√
−1∂∂̄(−log |ξ|2h)

n+1
n

and satisfies the complex Monge-Ampère equation

ωn
C =

1

2
(
√
−1)n

2

ΩC ∧ ΩC ,

hence is Ricci-flat. Define z = (−log |ξ|2h)1/n. It is easy to check that z is the
ωC-moment map for the natural S1-action on L. Then the ωC-distance function r
to a fixed point in C satisfies

C−1z
n+1
2 ≤ r ≤ Cz

n+1
2

uniformly for all z ≥ 1.
If n = 2 then D = E is an elliptic curve and the Calabi model space is hy-

perkähler and agrees with the Gibbons-Hawking construction from Section 2.2. To
see this, we choose A = 2π deg(L) and a flat Kähler form ωE = Ae1 ∧ e2 and a

holomorphic 1-form ΩE = A1/2(e1 +
√
−1e2) on E such that ωE =

√
−1
2 ΩE ∧ ΩE .

Then the Calabi ansatz produces a holomorphic 2-form ΩC and a Ricci-flat Kähler
form ωC on C such that ω2

C = 1
2ΩC ∧ ΩC . In particular,

(3.3) ωC ≡ (ωC , Re(ΩC), Im(ΩC))

is a hyperkähler triple.

Proposition 3.1. The hyperkähler structure ωC is diffeomorphism equivalent to
the one given by the Gibbons-Hawking ansatz with V = z on Nil3b(ε, τ )× (0,∞) as
in Section 2.2, where b = deg(L), τ is the modulus of E in the upper half-plane,
A = 2πb = ε2Im(τ ), and θ = θb.

Proof. The natural S1-action on C obviously preserves ωC , so ωC must be given
by the Gibbons-Hawking construction. It suffices to determine the hyperkähler
moment map π = (π1, π2, π3) and the potential V . We already know that the ωC-
moment map is given by π1 = (−log |ξ|2h)1/2 = z, and it is easy to check that the
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ΩC-moment map π2+
√
−1π3 equals the bundle projection p : C → E composed with

the Abel-Jacobi isomorphism E → C/periods, x �→
´ x

x0

√
−1ΩE , for an arbitrary

but fixed basepoint x0 ∈ E. Also, V −1 is the norm-squared of the Killing field, so
that

V −1 = (−log |ξ|2h)−1/2 = z−1.

The Calabi construction provides us with an explicit realization M = C of the total
space of the S1-bundle and with a specific choice of connection form θ given by the
Chern connection of L with respect to h. The diffeomorphism equivalence to the

model Nil3b(ε, τ )× (0,∞) with connection form θb (after rotating ΩC to e
√
−1αΩC if

necessary) follows from the discussion in Section 2.2. �

Remark 3.2. In [TY90] the volume growth and curvature decay rates of the n-

dimensional Calabi metric ωC are estimated as O(r
2n

n+1 ) and O(r−
2

n+1 ), respectively.
When n = 2, this suggests that |Rm| is borderline not in L2. However, while the
volume estimate is sharp for all n, the curvature estimate is sharp only for n ≥ 3.
For n = 2, the leading term in the asymptotic expansion of the curvature vanishes
because the Calabi-Yau metric on an elliptic curve is flat, and the true curvature
decay rate of ωC for n = 2 is O(r−2). This was also pointed out by R. Kobayashi
in [Kob90] but is perhaps most easily seen in the Gibbons-Hawking picture.

We now explain the Tian-Yau construction [TY90] of complete Ricci-flat Kähler
metrics asymptotic to a Calabi ansatz metric at infinity. Let M be a smooth Fano
manifold of complex dimension n, let D ∈ |K−1

M | be a smooth divisor, and let L
denote the holomorphic normal bundle of D in M . Then D has trivial canonical
bundle and L is ample, so in particular we can choose a holomorphic volume form
ΩD on D which satisfies (3.1). We fix a defining section S of D, so that S−1 can
be viewed as a holomorphic n-form ΩX on X = M \ D with a simple pole along
D. After scaling S by a nonzero complex constant, we may assume that ΩD is the
residue of ΩX along D. (In practice this means that ΩX is asymptotic to ΩC near
D with respect to a suitable diffeomorphism between tubular neighborhoods of D
in M and of the zero section in L.) Lastly, we fix a hermitian metric hM on K−1

M

whose curvature form is strictly positive on M and restricts to the unique Ricci-flat
Kähler form ωD ∈ 2πc1(L) on D. Then

ωX ≡ n

n+ 1

√
−1∂∂̄(−log |S|2hM

)
n+1
n

defines a Kähler form on a neighborhood of infinity in X. In fact, by multiplying
hM by a sufficiently small positive constant, we can arrange that ωX is defined and
strictly positive on all of X. As expected, ωX is then complete and asymptotic
to ωC , where the hermitian metric h used in (3.2) is simply the restriction of hM

to K−1
M |D = L. In particular, ωX is asymptotically Ricci-flat and the ωX -distance

function rX to any fixed basepoint in X can be uniformly estimated by

C−1(−log |S|2hM
)

n+1
2n ≤ rX ≤ C(−log |S|2hM

)
n+1
2n as |S|hM

→ 0.

Theorem 3.3 is proved in [TY90] by solving a complex Monge-Ampère equation with
reference metric ωX . The exponential decay statement follows from Proposition 2.9
in [Hei12].
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Theorem 3.3 ([TY90,Hei12]). There is a smooth function φ on X such that ωTY ≡
ωX +

√
−1∂∂̄φ is a complete Ricci-flat Kähler metric on X solving the Monge-

Ampère equation

ωn
TY =

1

2
(
√
−1)n

2

ΩX ∧ ΩX .

Moreover, there is a constant δ0 = δ0(M,D) > 0 such that for all integers k ≥ 0,

|∇k
gXφ|gX = O(e−δ0r

n
n+1
X ) as rX → ∞.

We remark that polynomial decay estimates were obtained in [KK10]. To make
Theorem 3.3 useful for our gluing construction in this paper, we need to replace ωX

by the Calabi model metric ωC in (3.3). This amounts to estimating the convergence
of ωX to ωC .

Proposition 3.4. There is a diffeomorphism Φ : C \K ′ → X \K, where K ⊂ X is
compact and K ′ = {|ξ|h ≥ 1

2}, such that the following hold uniformly as z → +∞:

(a) We have the complex structure asymptotics

|∇k
gC (Φ

∗JX − JC)|gC = O(e−( 1
2−ε)zn

) for all k ≥ 0, ε > 0.

(b) We have the holomorphic n-form asymptotics

|∇k
gC (Φ

∗ΩX − ΩC)|gC = O(e−( 1
2−ε)zn

) for all k ≥ 0, ε > 0.

(c) There is some positive constant

(3.4) δ > 0

such that for all k ≥ 0 the Ricci-flat Kähler metric ωTY satisfies the asymp-
totics

|∇k
gC (Φ

∗ωTY − ωC)|gC = O(e−δzn/2

).

Proof. One can prove as in [Don96, Section 2] that (b) implies (a). The point is
that ΩX uniquely determines JX because JX is determined by knowing the subspace
Λ1,0
JX

⊂ Λ1
CX, and we have Λ1,0

JX
X = kerT , where T : Λ1

CX → Λn+1
C X is the C-linear

map defined by Tα = ΩX ∧ α. See [CH13, Lemma 2.14] for details.
Item (b) can be proved by following the steps of a similar estimate in the asymp-

totically conical setting in [CH15, Section 2.2]; see also [Li20]. Fix any background
hermitian metric g on M . Via g-orthogonal projection, the holomorphic normal
bundle L = ND = T 1,0M |D/T 1,0D is naturally isomorphic to the g-orthogonal
complement (T 1,0D)⊥ ⊂ T 1,0M as a C∞ complex line bundle, and the g-normal
exponential map defines a diffeomorphism from a neighborhood of the zero section
in (T 1,0D)⊥ to a neighborhood of D in M . Let Φ be the composition of these two
maps. Then Φ is a diffeomorphism from a neighborhood of the zero section in L to
a neighborhood of D in M , and the restriction of Φ to the zero section is IdD.

Fix a point on D. Let (z1, . . . , zn−1, w) be local holomorphic coordinates on M
centered at this point such thatD is locally cut out by w = 0. Then (z1, . . . , zn−1, w)
may also be viewed as local holomorphic coordinates on L corresponding to the coset
of normal vectors w( ∂

∂w + T 1,0D) ∈ L based at the point (z1, . . . , zn−1, 0) ∈ D. In
these coordinates we may write

ΩX =

(
f(z)

w
+ g(z, w)

)
dz1 ∧ . . . ∧ dzn−1 ∧ dw,(3.5)
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ΩC =
f(z)

w
dz1 ∧ . . . ∧ dzn−1 ∧ dw,

where f, g are local holomorphic functions with f(z) �= 0 for all z. In order to
compare Φ∗ΩX to ΩC , we define new C∞ complex coordinates (z′1, . . . , z

′
n−1, w) on

M by

z′i(z, w) = zi − ai(z)w, where ai(z) =
∂(zi ◦ Φ)

∂w

∣∣∣∣
(z,0)

.(3.6)

Using the fact that dΦ is complex linear at w = 0 and that Φ∗(
∂
∂w ) = ∂

∂w +∑
ai(z)

∂
∂zi at w = 0, it is easy to check that these new coordinates satisfy

Φ∗dz′i = dzi and Φ∗dw = dw at w = 0.

Via a Taylor expansion, it follows directly from this that

Φ∗z′i = zi +Aiw
2 +Biww + Ciw

2 and Φ∗w = w +Aw2 +Bww + Cw2(3.7)

with smooth functions Ai, Bi, Ci and A,B,C. We now express the coordinates
(z, w) in (3.5) in terms of (z′, w) using (3.6), and then use (3.7) to compare Φ∗ΩX

to ΩC . The first step yields

ΩX =
f(z′)

w
dz′1 ∧ . . . ∧ dz′n−1 ∧ dw +Υ ∧ dw,

where Υ extends to a smooth complex (n− 1)-form on a neighborhood of D in M .
Then

Φ∗ΩX − ΩC

=
(A′+B′ w

w+C′ w2

w2 )(Υ′∧dw)+(A′′+B′′ w
w+C′′ w2

w2 )(Υ′′∧dw)+(wΘ′+wΘ′′+w2

w Θ′′′)

1+Aw+Bw+C w2

w

+ Φ∗Υ ∧ (dw + wφ′ + wφ′′),

(3.8)

where A′, B′, C ′, A′′, B′′, C ′′,Υ′,Υ′′,Θ′,Θ′′,Θ′′′, φ′, φ′′ extend to smooth complex
functions, (n − 1)-forms, n-forms, and 1-forms on a neighborhood of D in L, re-
spectively. The reason for writing the right-hand side of (3.8) in this way is that a
smooth complex n-form is small with respect to gC if it either contains an explicit
factor of w or w in front, or if it splits off a wedge factor of dw or dw. Unfortunately
the right-hand side of (3.8) is not smooth at the divisor but all non-smooth terms
are due to factors of w/w which satisfy the same estimates as smooth functions.

It remains to prove appropriate estimates on |∇k
gCF |gC for all k ≥ 0, where F

is either a smooth function on a neighborhood of D in L, or F = w/w. To begin
with, note that

|∇k
gCzi|gC = O(1) for all k ≥ 0,(3.9)

|w| = O(e−
1
2 z

n

), |∇k
gCw|gC = O(e−( 1

2−ε)zn

) for all k ≥ 1, ε > 0,(3.10)

|w−1| = O(e
1
2 z

n

), |∇k
gCw

−1|gC = O(e(
1
2+ε)zn

) for all k ≥ 1, ε > 0.(3.11)

Here the bound |zi| = O(1) is clear and the bounds |w±1| = O(e∓
1
2 z

n

) follow from
the definition of the moment map z = (−log |ξ|2h)1/n together with the fact that
|ξ|2h = |w|2e−φ with φ independent of w,w. The higher derivative bounds in (3.9)–
(3.11) follow from these pointwise bounds by using elliptic estimates for holomorphic
functions on a Kähler manifold of C∞ bounded geometry (these estimates apply
here because gC is Ricci-flat Kähler of bounded curvature). Note that the ε-terms in
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(3.10)–(3.11) are necessary because the sup of |w| over a gC-ball of radius 1 centered
at a point with w = w0 is O(|w0|1−ε) for every ε > 0 but is not O(|w0|), unlike on
a cylinder C∗

w ×D with model metric |d logw|2 + gD.
We now prove by induction that for all smooth functions F on a neighborhood

of D in L,

(3.12) |F | = O(1), |∇k
gCF |gC = O(eεz

n

) for all k ≥ 1, ε > 0.

Indeed, the pointwise bound is clear, and for k ≥ 1 we apply ∇k−1
gC to the expansion

dF =
∂F

∂w
dw +

∂F

∂w
dw +

n−1∑
i=1

∂F

∂zi
dzi +

n−1∑
i=1

∂F

∂zi
dzi,

using the inductive hypothesis to control ∇k−1
gC of the partial derivatives of F on

the right-hand side and using (3.9)–(3.10) to control ∇k−1
gC of dzi, dzi, dw, dw. This

proves (3.12). By using (3.10)–(3.11) we can then prove in a similar manner that∣∣∣∣ww
∣∣∣∣ = O(1),

∣∣∣∣∇k
gC

(
w

w

)∣∣∣∣
gC

= O(eεz
n

) for all k ≥ 1, ε > 0.(3.13)

Taken together, (3.12) and (3.13) allow us to estimate all contributions to (3.8) in
all Ck norms with respect to gC , proving item (b).

To prove item (c), notice that in local coordinates ξ = (z1, . . . , zn−1, w) ∈ L as
above,

Φ∗|S|2hM
= (1 +G)|ξ|2h = (1 +G)|w|2e−φ

with smooth real-valued locally defined functions G and φ, where G vanishes at
w = 0 and φ does not depend on w,w. Notice that G = Fw+Fw for some smooth
complex-valued locally defined function F . This structure of the Φ∗JX -Kähler
potential of Φ∗ωX , together with (3.10), (3.12), and item (a), makes it possible to
prove that for all k ≥ 0, ε > 0,

|∇k
gC (Φ

∗ωX − ωC)|gC = O(e−( 1
2−ε)zn

).

Similarly by Theorem 3.3 we get for some δ > 0 depending on δ0 that for all k ≥ 0,

|∇k
gC (Φ

∗ωTY − Φ∗ωX)|gC = O(e−δzn/2

).

This completes the proof of item (c). �

Remark 3.5. The decay of the Ricci-flat Kähler form ωTY to its asymptotic model
ωC is weaker than the decay of JX and of ΩX . The reason is that the latter is
obtained by an explicit computation where the errors admit an expansion in terms
of |w| ∼ e−

1
2 z

n

. On the other hand, the decay rate of ωTY depends on an analysis
of the Tian-Yau solution of the Monge-Ampère equation, which is related to the
fact that the decay rate of harmonic (not necessarily holomorphic) functions on the

Calabi model space (see Section 4) is in general only O(e−δz
n
2 ) for some δ > 0.

When n = 2, the Tian-Yau metric is hyperkähler, and the corresponding hy-
perkähler triple ωTY is determined by ωTY and ΩX . Let ωC be the Calabi hy-
perkähler triple defined in (3.3).

Corollary 3.6. Under the same diffeomorphism Φ as in Proposition 3.4 we have
that

(3.14) |∇k
gC (Φ

∗ωTY − ωC)|gC = O(e−δz)
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for all k ≥ 0, where δ > 0 is the same constant as in (3.4).

In our gluing construction we need the following refinement of Corollary 3.6.

Lemma 3.7. There exists a triple of 1-forms a with ∂z �a = 0 such that

Φ∗ωTY − ωC = da(3.15)

and such that for all k ≥ 0 and all ε > 0,

|∇k
gCa|gC = O(e−(δ−ε)z).(3.16)

Proof. By Proposition 3.1, the Calabi space C is diffeomorphic to Nil3b ×(0,∞) in
such a way that the Calabi metric gC becomes the Gibbons-Hawking metric (2.5).
Ignoring this diffeomorphism, we have a 2-form triple φ and a 1-form triple ψ such
that ∂z �φ = 0, ∂z �ψ = 0, and

Φ∗ωTY − ωC = φ+ dz ∧ψ.

Since ωTY ,ωC consist of closed forms, it follows that

(3.17) dNil3b
φ = 0, ∂zφ− dNil3b

ψ = 0.

Now we define the 1-form triple

a ≡ −
ˆ ∞

z

ψ dz.

Thanks to (3.14), this integral exists and satisfies (3.16). Note that this is not

completely obvious because the 1-form basis dx, dy, dt− xdy on Nil3b is not parallel
with respect to gC . However, this effect is absorbed by the ε in (3.16) because all
error terms are at worst polynomial in z. Property (3.15) now follows in a standard
manner by using (3.17). �

4. Liouville theorem for harmonic functions

In this section and the next, we will set up some technical tools for the gluing
construction. One of the crucial technical ingredients in analyzing the linearized op-
erator is to establish a Liouville theorem on the complete non-compact hyperkähler
manifolds of Tian-Yau that arise in our context.

Our main goal in this section is to prove a Liouville theorem for harmonic func-
tions with a small enough exponential growth rate, on a complete Riemannian
4-manifold (X4, g) with non-negative Ricci curvature which is asymptotically Cal-
abi in the sense of the following Definition 4.1. This is a necessary step towards
proving our Liouville theorem for half-harmonic 1-forms in Section 5.

Definition 4.1. Given some constant δ > 0, a complete Riemannian manifold
(X4, g) is said to be δ-asymptotically Calabi if there exist a compact subset K ⊂ X
and a Calabi model space (C, gC) as defined in Section 3, and a diffeomorphism
Φ : C \K ′ → X \K with K ′ = {|ξ|h ≥ 1

2} ⊂ C such that for all k ≥ 0,

|∇k
gC (Φ

∗g − gC)|gC = O(e−δz) as z → ∞,

where z = (−log |ξ|2h)1/2 denotes the natural moment map coordinate on (C, gC).

Example 4.2. According to Proposition 3.4, any complete hyperkähler Tian-Yau
space (X4, g) as in Theorem 3.3 is δ-asymptotically Calabi for some appropriate
constant δ > 0.
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The following is our main result in this section.

Theorem 4.3. Let (X4, g) be a complete Riemannian 4-manifold which is δ-
asymptotically Calabi for some δ > 0 and which has Ricg ≥ 0. Then there exists
an �0 ∈ (0, 1) depending only upon (X4, g) such that if u is a harmonic function on
(X4, g) with u = O(e�0z) as z → ∞, then u is a constant.

The remainder of this section will be dedicated to the proof of this theorem.

4.1. Separation of variables. The first step is to analyze the Laplace operator
on the Calabi model space using separation of variables. To recall the setup, we
work with a Calabi model space C corresponding to a smooth divisor D defined as
in Section 3. The Calabi metric is given by

ωC =
n

n+ 1

√
−1∂∂̄(− log |ξ|2h)

n+1
n ,

which is well-defined for |ξ|h < 1. In this subsection, we will reduce the equations
ΔCu = 0 and ΔCu = v to some linear ODEs; see Proposition 4.4. A similar
separation of variables was carried out in [KK10].

In order to carry out the separation of variables, we will study the local represen-
tation of the Laplace operator ΔC on C. We choose local holomorphic coordinates
z = {zi}n−1

i=1 on the smooth divisor D and fix a local holomorphic trivialization e0
of the line bundle L with |e0|2 = e−ψ, where ψ : D → R is a smooth function.
So we get local holomorphic coordinates (z, w) ≡ (z1, . . . , zn−1, w) on C by writing
a point ξ ∈ C as ξ = we0(z). Then |ξ|2h = |w|2e−ψ. We may assume ψ(0) = 1,
dψ(0) = 0 and

√
−1∂∂̄ψ = ωD. Let π : C → D be the obvious projection map.

Then we obtain

ωC = (− log |ξ|2h)
1
nωD +

1

n
(− log |ξ|2h)

1
n−1 ·

√
−1 ·

(dw
w

− ∂ψ
)
∧
(dw̄
w̄

− ∂̄ψ
)
.

For u ∈ C2(C,R), the Laplacian at points of the fiber π−1(0) is given by

ΔCu = (− log |ξ|2h)−
1
n

n−1∑
i=1

∂2u

∂zi∂z̄i
+ n(− log |ξ|2h)−

1
n+1|w|2 ∂2u

∂w∂w̄
.

Now denote � ≡ |ξ|h. Then we can write

w = �e
ψ
2 +

√
−1θ,

where ∂θ generates the S1-action on the total space of L. It is straightforward to
check that

∂�

∂w
=

�

2w
,

∂θ

∂w
=

1

2
√
−1w

,
∂�

∂zi
= −1

2
�∂ziψ,

∂θ

∂zi
= 0,

|w|2 ∂2u

∂w∂w̄
=

1

4
(�2u�� + �u� + uθθ).

For a fixed r0 ∈ (0, 1), the level set Y 2n−1 ≡ {� = r0} is equipped with the induced
metric

(4.1) h0 = (− log r20)
1
n gD +

1

n
(− log r20)

1
n−1(dθ − 1

2
dcψ)⊗ (dθ − 1

2
dcψ).

Now we consider a smooth function φ ∈ C∞(Y 2n−1) with

(4.2) L∂θ
φ =

√
−1 · j · φ
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for some integer j. Replacing φ by φ̄ if necessary, we may assume that j ≥ 0. Then

φ is induced by a smooth section φ̂ of (L∗)⊗j . More precisely, if we locally write

φ̂(z) = Φ(z)(e0(z)
∗)⊗j , then

φ(z, w) = wjΦ(z)|�=r0 = rj0e
j(ψ

2 +
√
−1θ)Φ(z).

Now let φ̂ be a non-zero eigensection of the ∂̄-Laplacian with eigenvalue λ̂, i.e.,

Δ∂̄ φ̂ = λ̂φ̂.

By the Kodaira-Nakano formula, Δ∂̄ = Δ∂ + j(n− 1), so we have that

λ̂ ≥ j(n− 1).

By a direct calculation, we see that on π−1(0),

(4.3)

n−1∑
i=1

∂2φ

∂zi∂z̄i
=
(
−λ̂+

j(n− 1)

2

)
φ.

Moreover, by the local expression of h0 given in (4.1), one can directly check that
on π−1(0) ∩ Y 2n−1,

Δh0
φ =

(
(− log r20)

− 1
n

(
− λ̂+

j(n− 1)

2

)
− j2n(− log r20)

− 1
n+1

)
φ.(4.4)

Now suppose that a smooth function u(�, z) on the Calabi space C is of the form
u ≡ f(�)φ(y), where φ is a function on Y 2n−1 satisfying (4.2) and (4.3). In polar
coordinates, we obtain

ΔCu = φ(y) · (− log �2)−
1
n

·
(n
4
(− log �2)(�2f�� + �f� − j2f)− (n− 1)

2
�f� −

(
λ̂− j(n− 1)

2

)
f
)
.

Notice that this formula is now independent of the choice of local holomorphic
coordinates. So u is harmonic if and only if

n

4
(− log �2)(�2f�� + �f� − j2f)− (n− 1)

2
�f� −

(
λ̂− j(n− 1)

2

)
f = 0.

Denote z = (− log �2)
1
n . Then we obtain

fzz −
(
n
(
λ̂− j(n− 1)

2

)
+

j2n2

4
zn
)
zn−2f = 0.

As for the Poisson equation,

ΔCu = v,

suppose that v ≡ ζ(�) · φ(y). Then the same separation of variables gives the
following ODE

fzz −
(
n
(
λ̂− j(n− 1)

2

)
+

j2n2

4
zn
)
zn−2f = zn−1 · ζ.

For our applications we focus on the case n = 2. So the corresponding ODE
becomes

fzz − (λ+ j2z2)f = z · ζ,

where λ ≡ 2λ̂ − j ≥ j. We have assumed that j ≥ 0 in the above discussion, but
notice that the Laplace operator is a real operator, so the ODEs we get for j and
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−j are the same. Denote z0 ≡ (− log r20)
1
2 . Then each eigenvalue Λ of Δh0

can be
represented by

(4.5) Λ =
λ

2z0
+ 2z0 · j2.

With the above computations, we are ready to set up the ODE system. We
fix some r0 ∈ (0, 1) and define (Y 3, h0) to be the level set {r = r0} endowed
with the induced Riemannian metric h0. The representation (4.5) tells us that the
eigenvalues of −Δh0

are given by linear combinations of λ and j2.
We denote by {Λk}∞k=0 the spectrum of Δh0

with 0 = Λ0 < Λ1 ≤ Λ2 < · · ·
(allowing multiplicity), and let {ϕk}∞k=0 be an L2-orthonormal basis of the eigen-
functions which are homogeneous under the S1-action such that

−Δh0
ϕk = Λk · ϕk, L∂θ

ϕk =
√
−1jkϕk, jk ∈ N.

From above, for each k ∈ Z+, we have λk ≥ jk, and when k = 0, λk = jk = 0, and
each eigenvalue can be written in the form

(4.6) Λk =
λk

2z0
+ 2z0 · j2k .

Let u(z,y) ∈ L2(Y 3) for every z. Then we can write the L2-expansion along Y 3 as
follows:

(4.7) u(z,y) =

∞∑
k=0

uk(z) · ϕk(y), y ∈ Y 3.

Notice that it might seem more natural to write the Fourier series as a double sum
(determined by the S1-action), but the above expansion is much more convenient
for our purposes, especially when we apply Weyl’s law below.

Now we summarize our ODE reductions in Proposition 4.4.

Proposition 4.4. Let (C, gC) be the Calabi model space, and let u solve the Poisson
equation ΔCu = v for some v ∈ CK0(C) and K0 ∈ Z+ sufficiently large. Let u,
v have “fiberwise” expansions as in (4.7). Then for every k ∈ N, the coefficient
functions uk(z) and vk(z) satisfy

d2uk(z)

dz2
− (j2kz

2 + λk)uk(z) = vk(z) · z, z ≥ 1.

4.2. Uniform estimates for the fundamental solutions. This subsection
presents several technical lemmas which will be frequently used in the later sec-
tions. Lemma 4.6 will be used to study the asymptotics of harmonic functions in
Section 4.3. Lemma 4.5 and Lemma 4.7 will be used in the uniform estimates of
the Poisson equation in Section 4.4.

We consider solutions of the homogeneous ODE

d2u(z)

dz2
− (j2z2 + λ)u(z) = 0.

In the case that j = 0 the ODE becomes

(4.8)
d2u(z)

dz2
= λ · u(z).

If λ = 0, the solutions to (4.8) are linear. If λ > 0, (4.8) has two linearly in-

dependent solutions e
√
λz and e−

√
λz. All the required estimates in this case are
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straightforward. So we only focus on the case j ∈ Z+ which is much more techni-
cally involved.

In the case j ∈ Z+, we have already shown in Section 4.1 that λ and j satisfy
the relation λ ≥ j ≥ 1. Hence for each pair of λ and j satisfying the above, we
choose h ≥ 0 such that

λ = (2h+ 1)j.

From now on, we focus on the differential equation (for every j ∈ Z+ and h ≥ 0)

(4.9)
d2u(z)

dz2
= j(jz2 + 2h+ 1)u(z).

We will simplify the above equation by the following transformations. Let

y =
√
jz, V (y) = u

( y√
j

)
.

Then V (y) satisfies

d2V (y)

dy2
= (y2 + (2h+ 1))V (y).

Furthermore, make the transformation

V (y) = e−
y2

2 Q(y).

Then Q solves the differential equation

(4.10)
d2Q(y)

dy2
− 2y

dQ(y)

dy
− 2(h+ 1)Q(y) = 0.

Notice that equation (4.10) is invariant under the change of variables y �→ −y.
Given y > 1 and h ≥ 0, we define the exponential integral H−h−1(y) as follows:

H−h−1(y) ≡
ˆ ∞

0

e−t2−2tythdt.

Here the subscript “−h−1” is consistent with the standard definition of the Hermite
function. By straightforward calculations, for each given h ≥ 0, H−h−1(y) and
H−h−1(−y) are linearly independent solutions to (4.10). Moreover, they coincide
with the usual Hermite functions up to a constant; see Section 10.5 of [Leb72].
Eventually, we obtain two solutions to (4.9), namely:

F(z) ≡ e−
jz2

2 H−h−1(−
√
jz) = e−

y2

2

ˆ ∞

0

e−t2+2ty+h log tdt,(4.11)

U(z) ≡ e−
jz2

2 H−h−1(
√
jz) = e−

y2

2

ˆ ∞

0

e−t2−2ty+h log tdt.(4.12)

Note that F , U depend on parameters j, h, but for simplicity we omit the subscripts.
The following elementary lemma is proved in Appendix A.

Lemma 4.5. The Wronskian of F and U is a constant given by

W(F ,U) = 2−h
√
jπΓ(h+ 1) > 0.

In particular, F and U are linearly independent.
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The regularity of the formal solutions obtained from the above separation of
variables requires very precise uniform estimates for the fundamental solutions F
and U . We will use the Laplace method, which is inspired by [SS20] in a different
context. Again we denote y =

√
jz and define

F (t) ≡ −t2 + 2ty + h log t, U(t) ≡ −t2 − 2ty + h log t.(4.13)

Straightforward computations tell us that both F and U are strictly concave when
h ≥ 0. For a fixed y, let t0 and s0 be the unique (positive) critical points of F and
U , respectively. It is straightforward to check that

t0 =
y

2
+

√
h2

2
+

y2

4
and s0 = −y

2
+

√
h2

2
+

y2

4
.(4.14)

Now we list some technical lemmas, where the proof can also be found in the
appendix.

Lemma 4.6. Let F(z), U(z) and F (t), U(t) be the functions defined in (4.11),
(4.12) and (4.13), respectively. Then the following properties hold.

(1) (Uniform estimates) There exists a uniform constant C0 > 0 independent
of j and h such that for all j ∈ Z+ and h ≥ 0

C0 · e−
jz2

2 +F (t0(z)) ≤ F(z) ≤ (1 +
√
π)e−

jz2

2 +F (t0(z)),

C0 · e−
jz2

2 +U(s0(z)) ≤ U(z) ≤ (1 +
√
π)e−

jz2

2 +U(s0(z)).

(2) (Asymptotics) For fixed j ∈ Z+ and h > 0, we have the following asymptotic
formulas:

lim
z→+∞

F(z)
√
πe

jz2

2 (
√
jz)h

= 1,(4.15)

lim
z→+∞

U(z)
e−

jz2

2 Γ(h+ 1)(2
√
jz)−h−1

= 1.(4.16)

Next, we define the functions

F̂ (z) ≡ −jz2

2
+ F (t0(z)) and Û(z) ≡ −jz2

2
+ U(s0(z)).

Lemma 4.7. The functions F̂ (z) and Û(z) satisfy the following properties:

(1) (Uniform estimate) There is a uniform constant C0 > 0 independent of
j ∈ Z+ and h ≥ 0 such that the following uniform estimate holds for all
z ≥ 1:

(4.17) 0 <
e

̂F (z)+̂U(z)

W(F ,U) ≤ C0.

(2) (Monotonicity) For every η > 0, F̂ (z)−ηz is increasing in z and Û(z)+ηz
is decreasing in z for z > 2η.
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4.3. Asymptotics of harmonic functions. We will first prove two lemmas,
which will be used to prove the main result of this subsection, Proposition 4.10.

Lemma 4.8. Let ϕk satisfy −Δh0
ϕk = Λk · ϕk with Λk > 0 and ‖ϕk‖L2(Y 3) = 1.

Then there exists C > 0 which depends only on the metric h0 such that ‖ϕk‖L∞(Y 3)

≤ C · Λk.

Proof. The eigenfunction ϕk satisfies the elliptic equation −Δh0
ϕk = Λk · ϕk, so it

follows from standard elliptic regularity that there exists C > 0 depending only on
the metric h0 such that

‖ϕk‖W 2,2(Y 3) ≤ C · (Λk + 1) · ‖ϕk‖L2(Y 3) ≤ C · Λk,

where k ∈ Z+. Applying the Sobolev embedding theorem,

‖ϕk‖
C0, 1

2 (Y 3)
≤ C‖ϕk‖W 2,2(Y 3) ≤ C · Λk,

where C > 0 depends only on the metric h0. The proof is complete. �

Lemma 4.9. Let (C, gC) be the Calabi model space with a fixed fiber (Y 3, h0). Let
K0 ∈ Z+ and let v ∈ C2K0(C) have the fiberwise L2-expansion

v(z,y) =

∞∑
k=0

vk(z) · ϕk(y).

Then for every z ≥ 1 and k ∈ Z+,

|vk(z)| ≤
Volh0

(Y 3)
1
2

(Λk)K0
· ‖v‖C2K0 (Y 3×{z}).

Proof. For k ∈ Z+, since −Δh0
ϕk = Λk · ϕk and ‖ϕk‖L2(Y 3) = 1, we have that

|vk(z)| =
∣∣∣∣ ˆ

Y 3

v · ϕk

∣∣∣∣ = ∣∣∣∣ ˆ
Y 3

v · (−Δh0
)K0ϕk

(Λk)K0

∣∣∣∣
≤ 1

(Λk)K0

ˆ
Y 3

∣∣ΔK0

h0
v
∣∣ · |ϕk| ≤

Volh0
(Y 3)1/2

(Λk)K0
· ‖v‖C2K0 (Y 3×{z}).

�

The main result in this subsection is the following.

Proposition 4.10. Let u be a harmonic function on the Calabi model space (C, gC).
There exists a constant δ > 0, depending only on (C, gC), such that if u = O(eδz)
as z → +∞ for some δ ∈ (0, δ), then u = L(z) + h(z,y), where:

(1) L(z) = a0 · z + b0 for some constants a0, b0 ∈ R,
(2) for every k ∈ N, the harmonic function h(z,y) satisfies

|∇kh(z,y)|gC ≤ Ck · e−δ·z/2.

Proof. Since the harmonic function u is smooth, as computed in Section 4.1, sepa-
ration of variables gives the following expansion along the fiber Y 3 which is actually
C�

loc(C)-convergent for any � ∈ N:

(4.18) u(z,y) = a0 · z + b0 +
∞∑
k=1

uk(z) · ϕk(y), y ∈ Y 3,
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where for every k ≥ 1, uk(z) satisfies the equation

(4.19)
d2uk(z)

dz2
− (j2kz

2 + λk)uk(z) = 0

for some jk ∈ N and λk ≥ 0. Let us denote

h(z,y) ≡
∞∑
k=1

uk(z) · ϕk(y), y ∈ Y 3.

Before discussing the asymptotic behavior of the harmonic function h(z,y), let
us give a more precise expression for each ODE solution uk (k ≥ 1) of (4.19) under
the growth condition u = O(eδz) for 0 < δ < δ, where the constant δ > 0 is chosen
as follows:

(4.20) δ ≡ min
{√

λk

∣∣∣k ∈ Z+

}
> 0.

For every k ∈ Z+, there are fundamental solutions Uk, Fk of (4.19) such that every
uk satisfies

uk(z) = Ck · Uk(z) + C∗
k · Fk(z), Ck, C

∗
k ∈ R.

The growth condition u = O(eδz) implies that

(4.21) |uk(z)| =
∣∣∣ ˆ

Y 3

u · ϕk

∣∣∣ ≤ C0 · (Volh0
(Y 3))1/2 · eδz , δ ∈ (0, δ).

There are two cases to analyze.
First, we consider the case jk = 0. Then the linear equation (4.19) is reduced to

u′′
k(z)− λk · uk(z) = 0.

By (4.6) and since k ≥ 1, we have that λk ≥ 1. Then fundamental solutions Fk,
Uk are chosen as

Fk(z) ≡ e
√
λk·z and Uk(z) ≡ e−

√
λk·z.

If we choose δ ∈ (0, δ), then applying (4.21) again implies that C∗
k = 0 for each

k ∈ Z+ which satisfies jk = 0, and hence

(4.22) uk(z) = Cke
−
√
λk·z.

Next, we consider the case k ∈ Z+ such that jk �= 0. Now the fundamental
solutions Fk, Uk are defined by (4.11) and (4.12) respectively, where the parameters
in the definition are uniquely fixed by k. Applying the asymptotics in Lemma 4.6
and the estimate (4.21), we have that Fk(z) grows faster than uk(z). So it follows
that C∗

k = 0 for every k ∈ Z+ which satisfies jk �= 0.
Combining the above two cases, we conclude that if δ ∈ (0, δ), then for every

k ∈ Z+, there exists some constant Ck ∈ R such that uk(z) = Ck · Uk(z) and hence

h(z,y) =
∞∑
k=1

Ck · Uk(z) · ϕk(y).

By definition, in our situation Uk(z) > 0, so there is no harm in assuming that
uk(z0) �= 0.
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Now we are in a position to estimate the upper bound of the harmonic function
h(z,y). We still separate into two cases. First, we consider k ∈ Z+ with jk = 0.
For fixed z0 > 106, we apply (4.22). Then for every sufficiently large z ∈ (2z0,+∞),

(4.23)

∣∣∣∣ uk(z)

uk(z0)

∣∣∣∣ = ∣∣∣∣ Uk(z)

Uk(z0)

∣∣∣∣ = e−
√
λk·(z−z0) ≤ e−δ(z−z0),

and hence∣∣∣∣∣ ∑
k>0, jk=0

uk(z) · ϕk(y)

∣∣∣∣∣ ≤ ∑
k>0, jk=0

∣∣∣∣ uk(z)

uk(z0)

∣∣∣∣ · |uk(z0)| · |ϕk(y)|

≤ Ce−δz/2 ·
∑

k>0, jk=0

1

(Λk)K0−1
,

where the last inequality follows from Lemma 4.8, Lemma 4.9 and (4.23). The
positive integer K0 is chosen sufficiently large so that the above series converges.
Next, let k ∈ Z+ be such that jk ≥ 1. For fixed z0 > 106 and z ∈ (2z0,∞),
applying the uniform estimates in Lemma 4.6 and the monotonicity in Lemma 4.7
(with η = 2δ), we find that∣∣∣∣ uk(z)

uk(z0)

∣∣∣∣ = ∣∣∣∣ Uk(z)

Uk(z0)

∣∣∣∣ ≤ C0 · e−δ·z.

Taking the sum and applying Lemma 4.8 again, we then have that∣∣∣∣∣ ∑
k>0, jk≥1

uk(z) · ϕk(y)

∣∣∣∣∣ ≤ ∑
k>0, jk≥1

∣∣∣∣ uk(z)

uk(z0)

∣∣∣∣ · |uk(z0)| · |ϕk(y)|

≤ C0 · e−δ·z ·
∑

k>0, jk≥1

1

(Λk)K0−1
.

The estimates in the above two cases imply that

|h(z,y)| ≤ C

(
e−δ·z/2

∑
k>0, jk=0

1

(Λk)K0−1
+ e−δ·z

∑
k>0, jk≥1

1

(Λk)K0−1

)

≤ Ce−δ·z/2 ·
∞∑
k=1

1

(Λk)K0−1
.(4.24)

Since the spectrum {Λk}∞k=1 of Δh0
obeys Weyl’s law on (Y 3, h0), it follows that

there is some constant C0 > 0 depending only on h0 such that for any sufficiently
large k ∈ Z+,

(4.25) C−1
0 k

2
3 ≤ |Λk| ≤ C0k

2
3 .

Now we fix K0 ≥ 3 and apply (4.25) to (4.24). Then
∞∑
k=1

1

(Λk)K0−1
≤ C0

∞∑
k=1

1

k
4
3

≤ C

and hence |h(z,y)| ≤ C · e−δ·z/2, where C depends on Volh0
(Y 3) and

‖u‖CK0 (Y 3×{z0}) for some fixed z0 > 106.

The higher order estimate of h(z,y) follows from the standard Schauder estimate.
Indeed, let us lift the harmonic function h to the local universal cover of C which
is non-collapsed with uniformly bounded curvature. Let x̃ = (z̃, ỹ) be a lift of the
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point x = (z̃,y). It follows that for any k ∈ Z+ and α ∈ (0, 1) on the local universal
cover,

|h|Ck,α(Br0
(x̃)) ≤ Ck · |h|C0(B2r0

(x̃)) ≤ Ck · e−δ·z/2,

where r0 > 0 is some fixed constant independent of x ∈ C. Therefore, at the center
x = (z,y) on the Calabi space C, we have that

|∇kh(z,y)| ≤ Ck · |h|C0(B2r0
(x)) ≤ Ck · e−δ·z/2.

This completes the proof. �
4.4. Regularity and asymptotics for the Poisson equation. This subsection
focuses on the solvability and uniform estimates for the Poisson equation near the
end of a Calabi space. Our approach to this problem was inspired by the approach
of [HS17] to the analogous problem on conical model spaces. First, we will prove a
technical ODE lemma.

Lemma 4.11. For each k ∈ Z+, let us consider the inhomogeneous ordinary dif-
ferential equation

(4.26)
d2uk(z)

dz2
− (j2kz

2 + λk)uk(z) = vk(z) · z, z ≥ 1,

where δ > 0 is the constant defined in (4.20). Assume that the function vk(z)
satisfies the following property: there are constants

η0 ∈ (−δ/2, δ/2) \ {0} and Qk > 0

such that
|vk(z)| ≤ Qk · eη0z.

Denoting by Wk ≡ W
(
Fk(z),Uk(z)

)
the Wronskian of Fk and Uk, let uk(z) be the

particular solution
uk(z) ≡ W−1

k (Dk(z) + Gk(z)),

where

Dk(z) ≡ Fk(z)

ˆ ∞

z

Uk(r) ·
(
vk(r) · r

)
dr and Gk(z) ≡ Uk(z)

ˆ z

1

Fk(r) ·
(
vk(r) · r

)
dr.

Then there are constants C0 > 0 and η0 < η < η0 + δ/10 which are independent of
k such that the particular solution uk satisfies the uniform estimate

|uk(z)| ≤ C0 ·Qk · eηz .
Proof. It is elementary to verify that uk(z) is a particular solution of (4.26). We
will prove that there exists some constant η0 < η < η0 + δ/10 such that

|W−1
k | · |Dk(z)| ≤ C0 ·Qk · eηz,(4.27)

|W−1
k | · |Gk(z)| ≤ C0 ·Qk · eηz,(4.28)

where the constant C0 > 0 is independent of k. The rest of the lemma will follow
from this.

First, we consider the case where k ∈ Z+ satisfies jk = 0. The fundamental
solutions are

Fk(z) ≡ e
√
λk·z and Uk(z) ≡ e−

√
λk·z.

Immediately, Wk = W(Fk(z),Uk(z)) = 2
√
λk and hence for η > η0,

|Dk(z)|
|Wk|

≤ Fk(z)

Wk

ˆ ∞

z

Uk(r)|vk(r) · r|dr ≤ Qk · e
√
λk·z

√
λk

ˆ ∞

z

e(−
√
λk+η)·rdr ≤ C0 ·Qk · eηz.
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Similarly,

|Gk(z)|
|Wk|

≤ Uk(z)

Wk

ˆ z

1

Fk(r)|vk(r) · r|dr ≤ Qk · e−
√
λk·z

√
λk

ˆ z

1

e(
√
λk+η)·rdr ≤ C0 ·Qk · eηz.

Next, consider the case jk ∈ Z+ and k ∈ Z+. From the uniform estimate in
Lemma 4.6, we have∣∣∣∣Dk(z)

Wk

∣∣∣∣ ≤ C0e
̂Fk(z)

Wk

ˆ ∞

z

e
̂Uk(r)|vk(r) · r|dr ≤ C0 ·Qk · e ̂Fk(z)

Wk

ˆ ∞

z

e
̂Uk(r)+η′rdr,

where η′ > η0. We choose ε ∈ (δ/100, δ/10) and denote η ≡ η′ + ε. Applying the
monotonicity in Lemma 4.7, we have that

∣∣∣∣Dk(z)

Wk

∣∣∣∣ ≤ C0 ·Qk · e
̂Fk(z)

Wk

ˆ ∞

z

e
̂Uk(r)+ηr · e−εrdr ≤ C0 ·Qk ·

e
̂Fk(z)+̂Uk(z)+ηz

Wk
.

The estimate (4.27) follows from this after applying the uniform estimate in Lemma
4.7. The estimate (4.28) is proved in a similar fashion. This completes the proof of
the lemma. �

We now prove the solvability of the Poisson equation on the end of the Calabi
model space.

Proposition 4.12. Let (C, gC) be the Calabi model space. There is a constant δ > 0
which depends only on C such that the following property holds: given any

η0 ∈ (−δ, δ) \ {0},

if v ∈ C3K0,α(C) for K0 ≥ 3 and v(z,y) = O(eη0z), then the equation

(4.29) Δg0u = v

has a solution u ∈ C3K0+2,α(C) such that for any η > η0,

|u(z,y)|+ |∇u(z,y)| ≤ C · eηz.

Proof. The basic strategy is to apply separation of variables to construct a solution
to the equation (4.29). Given v and for any fixed z ≥ 1, there is a fiberwise
L2-expansion

v(z,y) =

∞∑
k=0

vk(z)ϕk(y).(4.30)

Now let u0(z) satisfy u′′
0(z) = v0(z), and for each k ∈ Z+ let uk(z) be the particular

solution in Lemma 4.11. Then we have the following formal solution u(z,y) to the
equation (4.29):

u(z,y) =

∞∑
k=0

uk(z)ϕk(y).(4.31)
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First, we will show that the above series converges in the C0-topology and thus
u is a C0-function. Applying Lemma 4.8, Lemma 4.9 and Lemma 4.11, the L2-
expansion (4.31) yields

|u(z,y)| ≤|u0(z) · ϕ0(y)|+
∞∑
k=1

|uk(z)| · |ϕk(y)|

≤C ·
(
|u0(z)|+

∞∑
k=1

eηz

(Λk)K0−1

)
≤ C · (|u0(z)|+ eηz),

where the last inequality follows from Weyl’s law (see (4.25)) and we fix K0 ≥ 3.
Moreover, integrating v0(z) twice gives |u0(z)| ≤ C · eηz . Therefore, u ∈ C0

loc(C)
and |u(z,y)| ≤ C · eηz .

Next, we will apply the standard elliptic regularity on the Calabi model space
to show that u ∈ C2 and thus u is a regular solution. We denote by

UN (z,y) ≡
N∑

k=0

uk(z)ϕk(y) and VN (z,y) ≡
N∑

k=0

vk(z)ϕk(y),(4.32)

the partial sums of u and v respectively, which satisfy ΔgCUN = VN . For every
x ≡ (z,y) ∈ C, we will apply the elliptic regularity on the ball B2(x) ⊂ C to obtain
the higher regularity of u. For this purpose, we first prove Claim 4.13.

Claim 4.13. For a fixed x = (z,y) ∈ C, we have that ‖VN − v‖C0(B2(x)) → 0 as
N → ∞, where v and VN are given in (4.30) and (4.32), respectively.

Proof of Claim 4.13. Let us compute the expansion of the error term v − VN :

v − VN =
∑
k>N

vkϕk =
∑
k>N

( ˆ
Y 3

v · ϕk dvolh0

)
ϕk

=
∑
k>N

( ˆ
Y 3

v · (−Δh0
)K0ϕk

(Λk)K0
dvolh0

)
ϕk.

Integrating by parts yields

‖v − VN‖L∞(B2(x)) ≤
∑
k>N

(
1

(Λk)K0

ˆ
Y 3

|ΔK0

h0
v| · |ϕk| dvolh0

)
‖ϕk‖L∞(B2(x))

≤ V0 · ‖v‖C2K0 (Y 3×{z}) ·
∑
k>N

1

(Λk)K0−1
,

where V0 = Volh0
(Y 3). For fixed K0 ≥ 3, applying Weyl’s law as before gives us

that

‖v − VN‖L∞(B2(x)) ≤ C‖v‖C2K0 (Y 3×{z}) ·
∑
k>N

1

k
4
3

.

The right-hand side limits to 0 as N → +∞, and this completes the proof of the
claim. �

The proof of the higher order convergence then follows by exactly the same
argument. In fact, we just need to replace ‖v‖C2K0 with the higher order norm
‖v‖C2K0+m with m ≤ K0. Since ΔgCUN = VN , the standard W 2,p-estimate implies
that for every 1 < p < ∞, ‖UN‖W 2,p(B3/2(x)) ≤ Cp,x. By assumption, since v ∈
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C3K0(C) with K0 ≥ 3, we have that ‖VN‖C2(B2(x)) ≤ Cx. Hence the regularity of
u will be improved as follows. For every 1 < p < ∞,

‖UN‖W 4,p(B1(x)) ≤ Cp,x(‖UN‖W 2,p(B3/2(x)) + ‖VN‖W 2,p(B3/2(x))) ≤ Cp,x.

Now taking p > 4 and applying the Sobolev embedding, we see that

‖UN‖C3,α(B1(x)) ≤ Cp,x, α ≡ 1− 4p−1,

which implies that UN converges to a smooth solution u as in the proof of Claim
4.13. Applying the standard Schauder estimate and bootstrapping, the statement
of the proposition follows. �

4.5. Proof of the Liouville theorem. With the above technical preparations,
we can now complete the proof of the main result of this section, Theorem 4.3. We
need Lemma 4.14.

Lemma 4.14. Let (Mn, g, p) be a complete non-compact manifold with Ricg ≥ 0.
Let ω be a harmonic 1-form on (Mn, g), i.e., ΔHω = 0, where ΔH denotes the
Hodge Laplacian. Assume that

(4.33) lim
dg(x,p)→+∞

|ω(x)| = 0.

Then ω ≡ 0 on Mn.

Proof. Since ω is harmonic, by Bochner’s formula, we have that Δg|ω|2 = 2|∇ω|2+
2Ricg(ω, ω) ≥ 0. Combining (4.33) and the maximum principle, we have that ω ≡ 0
on Mn. �

Proof of Theorem 4.3. Let u satisfy Δgu = 0 on (X4, g) and u = O(e�0z) for some
�0 ∈ (0, 1) as z → ∞. The main part of the proof is to determine an �0 > 0 such
that if the above growth condition of u holds, then u has at most linear growth,
which enables us to apply Lemma 4.14.

By assumption, there is a diffeomorphism Φ : [102,+∞) × Y 3 → X4 \ K such
that for all k ∈ N, the following asymptotic behavior holds with respect to gC :

(4.34) ‖Φ∗g − gC‖Ck(C) ≤ Cke
−δz.

Claim 4.15. Assume that (X4, g) is δ-asymptotically Calabi. Let δ̂ ∈ (0, δ/10) be
such that u satisfies

Δgu = 0 and u = O(eδ̂z) as z → +∞.

Then for every fixed k ∈ Z+, there exists a constant Ck(g) > 0 such that for every

x ∈ [T0(k),+∞)× Y 3 with T0(k) ≥ 100k
3

> 0, ‖∇k
gCΔgCu(x)‖gC ≤ Ck(g) · e−

δ·z0
2 ,

where z ≡ z(x).

Proof. Near infinity of the Tian-Yau space (X4, g), let us denote φ ≡ (Δg −ΔgC )u.
Then Δgu = 0 implies that

(4.35) ΔgCu+ φ = 0.

We will show that for each k ∈ N we have

(4.36) ‖∇k
gCφ(x)‖ ≤ Ck(g) · e−

δz
2 ,

where Ck(g) > 0 depends only on k ∈ N and the curvature bound of the end
(X4 \K, g).
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The higher order derivative estimate will be proved by using standard local
covering arguments. Notice that the end X4 \K is collapsing and has the following
curvature bound for any k ∈ N:

sup
X4\K

‖∇k Rmg ‖g ≤ Qk(g)

for some Qk(g) > 0. Then given any α ∈ (0, 1), there exists a constant r0 ∈ (0, 1)

depending only on Q0(g) and α such that the following holds. Let (B̃r0(x), g̃, x̃) be
the Riemannian universal cover of Br0(x), where x̃ is a lift of x and x ∈ X4 \K.

Then the C1,α-harmonic radius of (B̃r0(x), x̃) is uniformly bounded from below by
r0/2.

Using the standard Schauder estimate for the lifted function ũ within the har-

monic radius, we have that ‖ũ‖C2,α(Br0/4(x̃)) ≤ C · ‖ũ‖C0(Br0/2(x̃)) ≤ C · eδ̂·z. Then
|∇2

gu(x)|g ≤ C · eδ̂·z. Next, by bootstrapping, we have that for every k ∈ Z+,

|∇k
gu(x)|g ≤ Ck(g) · eδ̂·z. Combining this with (4.34), we find that

|∇kφ(x)| = |(Δg −ΔgC )u(x)| ≤ Ck(g) · e−
δ·z
2 .

�

Next we choose the constant �0 by

(4.37) �0 ∈
(
0,min

{
δ · 10−2, δ

} )
,

where δ > 0 is the constant in Proposition 4.10. By assumption the harmonic
function u satisfies the asymptotic behavior u = O(e�0z). Then applying the above
claim and Proposition 4.12 on [T0,+∞) × Y 3, we see that there exists a solution
to the equation

(4.38) ΔgCv = φ

such that

|v(z,y)|+ |∇gCv(z,y)|gC ≤ C · e−�z

for some � ∈ (−δ/2, 0). Therefore, combining (4.35) and (4.38), we have

0 = Δgu = ΔgC (u+ v)

with u+ v = O(e�0z). Since 0 < �0 < 1 has been specified in (4.37), we are now in
a position to apply Proposition 4.10 to u+ v, which shows that

u+ v = az + b+ h(z,y),

where h(z,y) satisfies |∇gCh(z,y)|gC ≤ Ck · e−δ·z/2 for every k ∈ N.
The above asymptotics immediately imply that

|du|g = |dv + dz + dh|g ≤ |dv|g + |dz|g + |dh|g → 0 as z → ∞.(4.39)

Let ΔH be the Hodge-Laplacian on (X4, g). Since Δgu = 0, it holds that

ΔH(du) = dd∗(du) = −dΔgu = 0.

Since the complete space (X4, g) satisfies Ricg ≥ 0 and |du| satisfies the decay
property (4.39), Lemma 4.14 implies that |du|g ≡ 0 on X4. Therefore, u has to be
a constant, as claimed. �
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5. Liouville theorem for half-harmonic 1-forms

Recall from equation (1.6) that we call a 1-form γ on an oriented Riemannian
4-manifold half-harmonic if it satisfies Dγ = 0, i.e.,

(5.1) d+γ = 0, d∗γ = 0.

If the manifold is compact, then such a form is automatically closed and co-closed,
but this is no longer true on a non-compact manifold. The main result of this
section is a Liouville theorem for half-harmonic 1-forms. Let (X4 = M \ D,ω)
be given by the Tian-Yau construction, where M is a smooth del Pezzo surface
and D is a smooth anti-canonical divisor in M . By Proposition 3.4, we can fix a
diffeomorphism Φ : C \ K ′ → X \ K, where K and K ′ are compact subsets in X
and C respectively, and X is then a δ-asymptotically Calabi space for some δ > 0.
Let z denote the moment map coordinate on C, as defined in Section 3.

Theorem 5.1. There is some positive constant δh > 0 which depends only on the
geometry of X4 such that if a half-harmonic 1-form γ on X satisfies

(5.2) |γ|ω = O(eδhz)

as z → ∞, then γ ≡ 0.

Proof. We begin with an interpretation of (5.1) in terms of complex geometric data.
Notice in the Tian-Yau construction we have a preferred complex structure JTY on
X induced from that on M . With respect to JTY we can write γ = γ1,0+γ0,1 with
γ1,0 = γ0,1. Then by the Kähler identities we have

d+γ = 0 ⇐⇒
{
∂̄γ0,1 = 0,√
−1(∂̄∗γ0,1 − ∂∗γ1,0) = 0,

and

d∗γ = 0 ⇐⇒ ∂̄∗γ0,1 + ∂∗γ1,0 = 0.

Thus, equation (5.1) is equivalent to

∂̄γ0,1 = ∂̄∗γ0,1 = 0.

Theorem 5.1 will follow from Theorem 4.3 once we prove that there exists some
small δ > 0 and a smooth function f = O(eδz) such that ∂̄f = γ0,1 (note that
Δf = ∂̄∗γ0,1 = 0).

We next give a brief outline of the proof of this fact. There are four steps.

In Step 1, we will construct a solution f to ∂̄f = γ such that f = O(eεz
2

)
for all ε > 0. This is done using a complex-geometric argument, which essentially
amounts to an application of Hörmander’s weighted L2-estimates for the ∂̄-operator.
Interestingly it does not seem to be possible to obtain the required improvement
f = O(eδz) using only this type of method, owing to the fact that the function za

is plurisubharmonic on the Calabi model space (C, gC) only if a ≥ 2. To overcome
this problem we use the elliptic theory on (C, gC) developed in Section 4. Thanks

to the bound f = O(eεz
2

) for all ε > 0 from Step 1 and the O(e−( 1
2−ε)z2

) complex
structure asymptotics of Proposition 3.4, it follows that ∂̄Cf = O(eδz) on (C, gC).
In particular, since Δ = tr(

√
−1∂∂̄), the Poisson equation estimates of Proposition

4.12 imply that f can be decomposed into an O(eδz) part f1 and a gC-harmonic

part f2 which is O(eεz
2

) for all ε > 0; see Step 2 for details. Observe that it would
not be possible to compare ΔTY f and ΔCf directly because gTY and gC are only

Licensed to Princeton Univ. Prepared on Wed Nov 10 23:32:00 EST 2021 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NILPOTENT STRUCTURES AND COLLAPSING RICCI-FLAT METRICS 157

asymptotic at rate O(e−δz), which is too slow to beat the O(eεz
2

) growth of f from
Step 1.

Step 3 analyzes the gC-harmonic part f2 of f . It is clear from Section 4 that
f2 = O(eCz) for some large constant C. The required improvement f2 = O(eδz)
comes from the first-order equation ∂̄Cf2 = O(eδz) satisfied by f2 (in addition to
ΔgCf2 = 0). Technically this is done using separation of variables for the ∂̄C-
operator but the underlying idea can be easily explained: being of O(eCz) rather

than O(eCz2

) growth, the leading terms of the harmonic function f2 must be S1-
invariant, but on S1-invariant functions the ∂̄C-operator directly controls the radial
derivative ∂

∂z .
Step 4 concludes the proof by appealing to Theorem 4.3.

Step 1. In this step, we prove Proposition 5.2.

Proposition 5.2. There is a smooth function f on X with ∂̄f = γ and |f | =
O(eεz

2

) for all ε > 0.

Remark 5.3. We also have Δωf = 0, but at this point we cannot apply Theorem
4.3 directly to conclude that f is a constant since this would require the stronger
control |f | = O(eδz).

Proof of Proposition 5.2. We work on the compact manifold M . Let S be a holo-
morphic section ofK−1

M with S−1(0) = D and let h be a smooth hermitian metric on

K−1
M whose curvature form ωh is a Kähler form on M with positive Ricci curvature.

By Theorem 3.3, near D we have that

C−1
√
−1∂∂̄(−log |S|2h)3/2 ≤ ωTY ≤ C

√
−1∂∂̄(−log |S|2h)3/2.

By a straightforward computation, this implies that

(5.3) ωTY ≤ C|S|−2
h ωh,

and hence by hypothesis (5.2),

|γ|ωh
≤ C−1|S|−1

h |γ|ωTY
= O(|S|−1−ε

h )

for any ε > 0. Define α = γ ⊗ S. This is a section of Λ0,1
M ⊗ K−1

M which lies in

Lp
ωh

(M,Λ0,1
M ⊗K−1

M ) for all p > 1. Since ∂̄γ = 0, one can directly check that ∂̄α = 0

in the distributional sense. Now notice that H1(M,K−1
M ) = H1(M,KM⊗L) = 0 by

the Kodaira vanishing theorem applied to the ample line bundle L = K−2
M . Thus,

we can define β = ∂̄∗Δ−1
∂̄

α with respect to ωh. It follows from elliptic regularity

that β ∈ W 1,p
ωh

(M,K−1
M ) for all p > 1, so that β ∈ Cα

ωh
(M,K−1

M ) for all α < 1.

Moreover, by local regularity, we know that β is smooth away from D and ∂̄β = α.
Let f = β ⊗ S−1. Then on X we have that ∂̄f = γ. It follows that there is some
constant C > 0 such that

(5.4) f = O(|S|−1
h ) = O(eCz2

).

Lemma 5.4 allows us to improve (5.4) to the growth order eεz
2

for any ε > 0. The
key point is that the estimate (5.3) can be improved to almost O(1) in directions
tangential to D.

Lemma 5.4. Denote β0 = β|D. Then ∂̄β0 = 0, i.e., β0 is a holomorphic section
of K−1

M |D.
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Proof. We choose a finite cover D =
⋃N0

k=1Ok such that for each k there exists
a local holomorphic coordinate system (w1, w2) on some domain Uk ⊂ M such
that Uk ∩ D = Ok = {w2 = 0}. We will show that ∂̄β0 = 0 in every Ok ⊂ D

in the distributional sense. Let ψ be a smooth section of Λ0,1
D ⊗ (K−1

M |D) with
compact support in Ok. It suffices to show that 〈β0, ∂̄

∗ψ〉Ok
= 0. To this end, write

ψ(w1) = σ(w1)dw̄1 ⊗ (dw1 ∧ dw2)
−1 for some smooth function σ ∈ C∞

0 (Ok,C) and

use this to define the trivial extension ψ̂(w1, w2) = σ(w1)dw̄1 ⊗ (dw1 ∧ dw2)
−1 for

all (w1, w2) ∈ Uk. Denote by Ok(τ ) the slice {w2 = τ} in Uk, which is a complex
submanifold of M , and equip Ok(τ ) with the restriction of the Kähler metric ωh

from M . Notice that ψ̂ restricts to a smooth section of Λ0,1
Ok(τ)

⊗ (K−1
M |Ok(τ)) with

compact support in Ok(τ ). Since ∂̄β = α and β ∈ W 1,p ∩ Cα for any p > 1, it
follows that

〈β0, ∂̄
∗ψ〉Ok

= lim
τ→0

〈β, ∂̄∗ψ̂〉Ok(τ) = lim
τ→0

〈∂̄β, ψ̂〉Ok(τ) = lim
τ→0

〈α, ψ̂〉Ok(τ).(5.5)

Notice that

|γ(∂w̄1
)| ≤ |γ|ωTY

|∂w̄1
|ωTY

≤ |γ|ωTY
(− log |S|2h)

1
4 = O(|S|−ε

h ).

Since α = γ⊗S, it then follows that |α(∂w̄1
)| = O(|S|1−ε

h ) → 0 uniformly as w → 0.
Using (5.5) and noticing that ∂w̄1

is tangential to Ok(τ ), it follows that

〈β0, ∂̄
∗ψ〉Ok

= 0,

as desired. By standard elliptic regularity, β0 is a holomorphic section. �

Since M is Fano, we have that H1(M,OM ) = 0, so by a standard exact sequence
([GH94, p.139]) the restriction map H0(M,K−1

M ) → H0(D,K−1
M |D) is surjective.

This means that we can find some β1 ∈ H0(M,K−1
M ) such that β1|D = β0|D. Let

f = (β − β1)⊗ S−1. Then we still have ∂̄f = γ on X but now since β − β1 = 0 on
D and β ∈ Cα

ωh
(M,K−1

M ) for all α < 1, we finally obtain Proposition 5.2. �

Step 2. Let f = u+
√
−1v be the smooth function constructed in Proposition 5.2

with ΔωTY
u = ΔωTY

v = 0. In this step, we reduce the problem to a question
on the Calabi model space through the diffeomorphism Φ : (C \ K ′, ωC , JC) →
(X \K,ωTY , JTY ) of Proposition 3.4. The main point is to obtain a decomposition
u = u1 + u2 and v = v1 + v2 such that u1 = O(eδz), v1 = O(eδz), and ΔωCu2 =
ΔωCv2 = 0.

The idea of the proof of Step 2 is as follows. First, we will estimate ΔωCu and
ΔωCv and all of their derivatives. Specifically, we will prove that they have slow
exponential growth rates (as shown in (5.8)). Then applying Proposition 4.12, we
can construct solutions to the Poisson equations

ΔωCu1 = ΔωCu, ΔωCv1 = ΔωCv,

such that u1 = O(eδz) and v1 = O(eδz). This completes the desired decomposition
of u and v.

To obtain derivative estimates for ΔωCu and ΔωCv, we will prove derivative
estimates for du+ JCdv. To start with, by the assumption on γ and the first order
equation given by Step 1, we have that

(5.6) du+ JTY dv = Re(γ) = O(eδhz).
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Then applying the asymptotic estimate for JTY in Proposition 3.4, we can convert
the above growth control to a corresponding estimate for du + JCdv. In fact,
applying item (b) of Proposition 3.4, for any ε > 0 and for any k ∈ N,

|∇k
ωC (Φ

∗JTY − JC)|ωC = O(e(−
1
2+ε)z2

).

We also need derivative estimates for u and v with respect to the model metric ωC .

Notice that by Step 1, f = u+
√
−1v = O(eεz

2

) for any ε > 0, which implies that

|u|+ |v| ≤ 2|f | = O(eεz
2

).

Since u and v satisfy ΔωTY
u = ΔωTY

v = 0, by applying local elliptic estimates on
local universal covers as in the proof of Claim 4.15, we have that for all ε > 0 and
k ≥ 1,

|∇k
ωTY

u|ωTY
= O(eεz

2

), |∇k
ωTY

v|ωTY
= O(eεz

2

).

In terms of the Calabi model metric we then have

|∇k
ωCu|ωC = O(e

εz2

2 ), |∇k
ωCv|ωC = O(e

εz2

2 ).

Similarly, since γ is half-harmonic, we have that for all k ≥ 0,

|∇k
ωC (du+ JTY dv)|ωC = O(eδhz).

Applying these to (5.6), we get for k ∈ N,

|∇k
ωC (du+ JCdv)|ωC =

∣∣∣∇k
ωC (du+ JTY dv) +∇k

ωC

(
(JC − Φ∗JTY )dv

)∣∣∣
ωC

= O(eδhz) +O(e−
z2

4 ) = O(eδhz).

Now we proceed to prove the derivative estimates for ΔωCu and ΔωCv by using
the system

(5.7) du+ JTY dv = Re(γ).

The advantage of the above equation is that ΔωTY
= TrωTY

(d ◦ JTY ◦ d) so that
the behavior of ΔωTY

will follow from the asymptotics of JTY . In fact, taking the
differential of (5.7) yields

d ◦ JTY ◦ du = dJTY Re(γ), d ◦ JTY ◦ dv = dRe(γ).

Then using item (a) of Proposition 3.4, similar to the above we have for all k ∈ Z+

that

|∇k
ωCdJCdu|ωC = O(eδhz), |∇k

ωCdJCdv|ωC = O(eδhz).

Taking the trace, we then obtain that

(5.8) |∇k
ωCΔωCu|ωC = O(eδhz), |∇k

ωCΔωCv|ωC = O(eδhz).

Applying the linear theory for ΔωC in Proposition 4.12, for δh � δ, we can choose
u1 and v1 solving the equations

ΔωCu1 = ΔωCu and ΔωCv1 = ΔωCv,

such that u1 and v1 satisfy

(5.9) |∇k
ωCu1|ωC = O(eδhz), |∇k

ωCv1|ωC = O(eδhz).

So we have finished the proof of the decomposition u = u1 + u2 and v = v1 + v2
such that

ΔωCu2 = ΔωCv2 = 0.
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We also obtain that

|du2 + JCdv2|ωC = O(eδhz)

and

(5.10) |u2| = O(eεz
2

), |v2| = O(eεz
2

).

Step 3. Now we estimate the harmonic functions u2 and v2 with respect to the
model metric ωC using separation of variables for ∂̄C . The goal is to improve the

growth order of u2 and v2 from O(eεz
2

) for all ε > 0 to O(z) using the fact that
they also satisfy a first-order equation.

Proposition 5.5. We have that |u2| = O(z) and |v2| = O(z) as z → +∞.

Proof of Proposition 5.5. Let ψ ≡ du2+JCdv2 = O(eδhz). For a fixed fiber (Y 3, h0),
let {Λk}∞k=0 be the spectrum of Δh0

with Λ0 = 0, and {ϕk}∞k=0 be the corresponding

eigenfunctions such that −Δh0
ϕk = Λk · ϕk and L∂θ

ϕk =
√
−1jkϕk. As in Section

4.1, we can write the expansions

u2 =

∞∑
k=0

fk(z)ϕk and v2 =

∞∑
k=0

gk(z)ϕk,

which imply that

du2 =
∞∑
k=0

(
f ′
k(z) · ϕk · dz + fk(z) · dϕk

)
and

dv2 =
∞∑
k=0

(
g′k(z)ϕk · dz + gk(z) · dϕk

)
.

On C by the definition in Section 4.1, we have JC(zdz) = dθ. So it follows that
∞∑
k=0

(
f ′
k(z)−

√
−1jk · z · gk(z)

)
ϕk = ψ(∂z),

∞∑
k=0

(
z−1 · g′k(z) +

√
−1jk · fk(z)

)
ϕk = ψ(∂θ).

This implies that for each k ∈ N,

f ′
k(z)−

√
−1jk · z · gk(z) = O(eδhz), z−1 · g′k(z) +

√
−1jk · fk(z) = O(eδhz).

(5.11)

There are three different cases for k ∈ N to consider.

(1) If jk ∈ Z+, then each of fk(z) and gk(z) is given by a linear combination
of fundamental solutions Fk(z) and Uk(z) as defined in (4.11) and (4.12),
respectively. Using the asymptotics in Lemma 4.6 and (5.10), we have that

fk(z) = Ck · Uk(z) and gk(z) = C ′
k · Uk(z), where Uk(z) = O(e−

jkz2

2 ).

(2) If jk = 0, λk �= 0, then each of fk(z) and gk(z) is given by C∗
k · e

√
λkz +

Ck · e−
√
λkz. Let δ > 0 be the constant in Proposition 4.10. Using (5.11)

and ψ = O(eδhz), we conclude that, if δh < δ, then both fk and gk must

be proportional to e−
√
λkz.
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(3) If k = 0, then f0(z) = κ0 · z + μ0 and g0(z) = κ′
0 · z + μ′

0 for κ0, κ
′
0, μ0,

μ′
0 ∈ R.

Applying the same argument as in the proof of Proposition 4.10, we have that
the sum of the above decaying terms still decays exponentially. That is, there are
constants κ0, κ

′
0, μ0, μ

′
0 such that

u2(z,y) = κ0 · z + μ0 + w(z,y), v2(z,y) = κ0 · z + μ0 + w∗(z,y),

where w(z,y) = O(e−εz) and w∗(z,y) = O(e−εz) for some ε > 0. This completes
the proof. �

Step 4. We now complete the proof of Theorem 5.1. By Proposition 5.5 and (5.9),

|u| = O(eδhz), |v| = O(eδhz).

If δh > 0 is chosen such that δh < �0 with �0 > 0 in Theorem 4.3, then we conclude
that u and v must be constant so that γ = 0. �

6. Construction of the approximate hyperkähler triple

In this section, by gluing two hyperkähler Tian-Yau spaces with a neck region
that satisfies an appropriate topological balancing condition, we will obtain a closed
oriented 4-manifold M such that M has the same homological invariants as the K3
surface; see Proposition 6.6. Moreover, we will construct a triple of symplectic forms
ωM

β on M, depending on a parameter β > 0, which is approximately hyperkähler
with smaller and smaller errors as β → ∞. For β sufficiently large, this triple will
be perturbed to a hyperkähler triple ωHK

β in Section 10.

6.1. The Tian-Yau pieces. First, we briefly describe the geometry of the Tian-
Yau building blocks. Fix b± ∈ {1, . . . , 9} as in Theorem A. Let (X4

b−
, gb−) and

(X4
b+
, gb+) be two hyperkähler Tian-Yau spaces obtained by removing two anti-

canonical elliptic curves from two del Pezzo surfaces of degree b− and b+, respec-
tively. Denote by Nil3b± = Nil3b±(ε±, τ±) the corresponding Heisenberg nilmanifolds

with deg(Nil3b±) = b± defined in Section 2.1. It follows from Proposition 3.1 and
Corollary 3.6 that there exist “coordinate systems” on the ends of the Tian-Yau
spaces (X4

b±
, gb±),

ΦTY
± : [ζ±0 ,∞)×Nil3b± → X4

b± ,(6.1)

such that

(ΦTY
± )∗ω± = ωC,± +O(e−δ±z±), z± → ∞,

where ωC,± is the Calabi model hyperkähler triple defined by applying the Gibbons-
Hawking ansatz to the flat product space T2

± × [ζ±0 ,∞), where T2
± ≡ C/ε±〈1, τ±〉,

with the harmonic function

V±(z±) = 2πb±z±A
−1
± ,

and the choice of connection 1-form θb± ≡ (2πb±A
−1
± )(dt− xdy) on Nil3b± as given

as in (2.2). Note also that the metric in these coordinates admits an expansion

(ΦTY
± )∗gb± = V±(gT2 + dz2±) + V −1

± θ2b± +O(e−δ±z±), z± → ∞.(6.2)

In our construction, we will always make the following assumptions.

• The elliptic curves removed from the del Pezzo surfaces satisfy τ+ = τ−.
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• A = ε2±Im(τ±) = 1.

Note the latter assumption can always be arranged by scaling the Tian-Yau metrics.
For parameters T− > 0 and T+ > 0, define the following compact regions in X4

b±
:

X4
b±(T±) ≡ X4

b±

∖
ΦTY

±

(
(T±,+∞)×Nil3b±

)
.(6.3)

6.2. The neck region. Consider the flat cylinder (T2 ×R, g0) and choose a finite
set of monopoles Pm0

≡ {p1, . . . , pm0
} ⊂ T2×R such that

∑m0

m=1 z(pm) = 0, where

m0 = b− + b+.

Let V∞ be the Green’s function from Corollary 2.6, which satisfies

−Δg0V∞ = 2π

m0∑
m=1

δpm
.

By Corollary 2.6, we can write

V∞(x, y, z) =

{
π(b− + b+)z + h−, z � −1,

−π(b− + b+)z + h+, z � 1,

and

|∇kh±(x, y, z)|g0 = O(e−
√
λ1|z|)(6.4)

as |z| → ∞ for all k ≥ 0, where λ1 is the smallest positive eigenvalue of −ΔT2 .
Next, for β sufficiently large, we define a new harmonic function on T2 × R by

(6.5) Vβ(x, y, z) ≡ V∞(x, y, z) + kz + β,

where

k = π(b− − b+).

Then near the two ends of the neck region, the harmonic function Vβ can be written
as

Vβ(x, y, z) =

{
2πb−z + β + h−, z � −1,

−2πb+z + β + h+, z � 1.
(6.6)

Using this potential, we next define the neck metric through the Gibbons-
Hawking ansatz. First, we note that H2((T

2 × R) \ Pm0
,Z) has dimension m0 + 1

with generators being small spheres around the monopole points and any torus of
the form T2 × {z′}, where z′ is any value of z for which there are no monopole
points. It is easy to see that the 2-form 1

2π ∗ dVβ attains integer values on these

cycles, which implies that the cohomology class [ 1
2π ∗ dVβ] is integral. We then

denote by N 4
m0

the total space of the S1-bundle over (T2 × R) \ Pm0
with Euler

class [ 1
2π ∗ dVβ ] union finitely many points P̃m0

= {p̃1, . . . , p̃m0
} with π(p̃i) = pi,

and extend the bundle projection to a mapping π : N 4
m0

→ T2 × R. Choose a

connection 1-form θ on N 4
m0

\ P̃m0
such that

dθ = ∗dVβ,

and note that θ is independent of the gluing parameter β. Applying the Gibbons-
Hawking ansatz to Vβ , we obtain a triple ωN = (ωN

1 , ωN
2 , ωN

3 ) of smooth closed
2-forms over N 4

m0
(see (2.1)) which induces an incomplete hyperkähler metric over

the open subset of T2 × R where Vβ > 0.
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For real parameters T1, T2, we define

N 4
m0

(T1, T2) ≡ π−1
{
(x, y, z) ∈ T2 × R | T1 < z < T2

}
,

and let T± be defined by

4πb± · T± = β.(6.7)

The reason for this choice of T± is due to a matching condition which we will explain
in the next subsection. Denote

(6.8) U− ≡ (−T−,−T− + 1) ⊂ (−∞,∞), U+ ≡ (T+ − 1, T+) ⊂ (−∞,∞).

Lemma 6.1 shows that there is a “gauge transformation” which makes the connec-
tion form exponentially close to the Calabi model connection form for z ∈ U±.

Lemma 6.1. For β sufficiently large, there is a diffeomorphism

ΦN
β,± : U± ×Nil3∓b± → N 4

m0
(U±)(6.9)

such that

(6.10) (ΦN
β,±)

∗dx = dx, (ΦN
β,±)

∗dy = dy, (ΦN
β,±)

∗z = z,

and (ΦN
β,±)

∗θ − θb± = π∗a± for a 1-form a± on T2 × U±, with

(6.11)
∣∣∇k

g0a±
∣∣
g0

= O(e−δβ) as β → ∞,

for some δ > 0 independent of β and for all k ≤ 4.

Proof. We only prove the negative case since the positive case is similar. We first
view both sides of (6.9) as principal S1-bundles over T2×U−, endowed with unitary
connections θb− and θ respectively. It is easy to see by construction that they have
the same Euler number b−. So by general theory we can find a bundle isomorphism
H : U− ×Nil3b− → N 4

m0
(U−). In particular H covers the identity map on T2 × U−.

Now both H∗θ and θb− are unitary connection 1-forms on the same U(1) bundle.
The difference of the curvatures is

H∗dθ − dθb− = dθ − dθb− = ∗d(Vβ − V− − β) = ∗dh−.

Notice by (6.4) and definition of T− that for some δ > 0 we have on T2 × U−,

|∇k(∗dh−)|g0 = O(e−δβ), k ≤ 4.

Basic Hodge theory then implies that by modifying H by a gauge transformation if
necessary, we may assume that θ − θb− = θf + π∗a−, where a− satisfies (6.11) and
θf is a flat connection. As already discussed in Section 2.2, θf can be removed by
composition with the horizontal lift of a rotation on T2. �

Next, let ωC,±
β denote the hyperkähler triple on U±×Nil3∓b± obtained by applying

the Gibbons-Hawking ansatz to T2×U± with the harmonic function V±(z)+β and

the choice of the connection 1-form θb± . Let g
C,±
β denote the associated Riemannian

metric. In the following we will need to compare the hyperkähler triples ωN on the

neck with the model hyperkähler triple ωC,±
β for z ∈ U±.

Proposition 6.2. There exist smooth triples of 1-forms α± on U± ×Nil3∓b± such
that

(6.12) (ΦN
β,±)

∗ωN − ωC,±
β = dα±,
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with

|∇kα±|gC,±
β

= O(e−δβ), β → ∞,

for some δ > 0 independent of β and for all k ≤ 4.

Proof. Again we only deal with the negative case. We only construct α−
1 , since the

argument for the others is similar. By Lemma 6.1, we have

(ΦN
β,−)

∗ωN
1 − (ωC,−

β )1 = π∗(h−dx ∧ dy + dz ∧ a−),

where

|∇kh−|g0 = O(e−δβ), |∇ka−|g0 = O(e−δβ),

for some δ > 0 and all k ≤ 4, as β → ∞. Using (2.7) and (2.12), we clearly haveˆ
T2

h−(x, y, z) dvolT2 = 0.

Since ωN
1 and (ωC,−

β )1 are both closed, the 2-form

λ = h−dx ∧ dy + dz ∧ a−

is also closed. Next we want to find a primitive for λ. First, from basic Hodge
theory on T2 we can find a smooth 1-form ζ, with no dz component, such that
dζ − h−dx ∧ dy = dz ∧ η for a 1-form η, and such that |∇kζ|g0 = O(e−δβ) and
|∇kη|g0 = O(e−δβ) for all k ≤ 4 as β → ∞. Then λ− dζ = dz ∧ (a− − η). Define

ξ ≡
ˆ z

−T−

(∂z�(λ− dζ)) dz.

Then one can check that dξ = λ− dζ, and that |∇kξ|g0 = O(e−δβ) for all k ≤ 4 as
β → ∞. The 1-form

α−
1 = π∗(ζ + ξ)

satisfies dα−
1 = (ΦN

β,−)
∗ωN

1 − (ωN ,−
β )1, and |∇kα−

1 |π∗g0 = O(e−δβ) for all k ≤
4 as β → ∞. To finish, we need to compare |∇kα−

1 |π∗g0 with |∇kα−
1 |gC,−

β
. A

computation using the explicit formula for the model metric gC,−β shows that this
introduces error terms which are at most polynomial in β. This completes the
proof. �

6.3. The attaching maps and constraints. We next define the attaching maps
which will be used to construct the manifold M. Define the negative damage zone
by

DZ− ≡ ΦTY
−

(
(T−, T− + 1)×Nil3b−

)
⊂ X4

b−

using the coordinates given by (6.1) on the end of X4
b−
. Define

Z− : R×Nil3b− → R×Nil3b− , Z−(z−, p) = (z− − 2T−, p).

Define the negative attaching map Ψ− : DZ− → N 4
m0

by

Ψ− = ΦN
β,− ◦ Z− ◦ (ΦTY

− )−1.(6.13)

Similarly, define the positive damage zone by

DZ+ ≡ ΦTY
−

(
(T+, T+ + 1)×Nil3b+

)
⊂ X4

b+ ,
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using the coordinates given by (6.1) on the end of X4
b+
. Define

Z+ : R×Nil3b+ → R×Nil3−b+ , Z+(z+, p) = (2T+ − z+, ψ+(p)),

where ψ+ : Nil3b+ → Nil3−b+ is the orientation-reversing diffeomorphism given by

ψ(x, y, t) = (−x,−y,−t).

Define the positive attaching map Ψ+ : DZ+ → N 4
m0

by

Ψ+ = ΦN
β,+ ◦ Z+ ◦ (ΦTY

+ )−1.(6.14)

We obtain the manifold M by gluing the pieces together using the attaching maps:

M ≡ X4
b−(T− + 1)

⋃
Ψ−

N 4
m0

(−T−, T+)
⋃
Ψ+

X4
b+(T+ + 1).

The manifold M carries an orientation compatible with both Tian-Yau pieces, and
we will fix this orientation in the following.

Next, we want the potentials to agree up to the constant term in the damage
zones after identifying the corresponding regions using the attaching maps. On
DZ−, modulo exponentially decaying errors, we have that

Ψ∗
−Vβ = 2πb−(z− − 2T−) + β = 2πb−z− − 2πb−(2T−) + β,

which we want to be equal to the leading terms of V−. This requires that

0 = −2πb−(2T−) + β.(6.15)

Similarly, on the other damage zone DZ+, modulo exponentially decaying errors,
we have that

Ψ∗
+Vβ = −2πb+(2T+ − z+) + β = 2πb+z+ − 2πb+(2T+) + β,

which we want to be equal to the leading terms of V+, so we must have

0 = −2πb+(2T+) + β.(6.16)

So we see that the gluing procedure requires the matching condition

4πb± · T± = β.(6.17)

This explains our choice of T± in (6.7).

Remark 6.3. From now on, we will view β as the only independent parameter in
our gluing construction, with all other parameters determined by β.

6.4. Definite triples and topology of M. All of the pieces in our gluing con-
struction have hyperkähler triples

ω− ≡ (ω−
1 , ω

−
2 , ω

−
3 ) on X4

b− ,

ωN ≡ (ωN
1 , ωN

2 , ωN
3 ) on N 4

m0
(−T−, T+),

ω+ ≡ (ω+
1 , ω

+
2 , ω

+
3 ) on X4

b+ .

Next, we will glue these triples in the damage zones DZ− and DZ+ to define a
triple of symplectic forms on M. The first step is Proposition 6.4.
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Proposition 6.4. There exist smooth triples of 1-forms a± ∈ Ω1(DZ±) ⊗ R3

satisfying

ω± + da± = Ψ∗
±ω

N in DZ±,

such that for k ≤ 4,

|∇ka±| ≤ C · e−δβ in DZ±,

where δ > 0 and C are constants independent of β.

Proof. The mapping Z± satisfies

Z∗
±ω

C,±
β = ωC,±,

so pulling back equation (6.12) under the mapping Z± yields

(6.18) Z∗
±(Φ

N
β,±)

∗ωN − ωC,± = d(Z∗
±α

±).

Consequently, the neck metric is close to the Calabi model metric in the damage
zone after pulling back by the attaching map. The proposition then follows from
Lemma 3.7 and Proposition 6.2. �

Let φ± be cutoff functions such that

φ± =

{
0 for z± ≤ T±,

1 for z± ≥ T± + 1.

Then we define the closed triple

ωM
β =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω− on X4
b−
(T−),

ω− + d
(
φ−a

−) on X4
b−
(T−, T− + 1),

ωN on N 4
m0

(−T− + 1, T+ − 1),

ω+ + d
(
φ+a

+
)

on X4
b+
(T+, T+ + 1),

ω+ on X4
b+
(T+).

(6.19)

The next result, which follows immediately from Proposition 6.4, shows that ωM

is very close to being a hyperkähler triple for β sufficiently large.

Corollary 6.5. There exists a constant C > 0 independent of the gluing parameter
β > 0 such that

‖QωM
β

− Id ‖C1(M) ≤ Ce−δqβ ,

where δq > 0 is a constant independent of β, and the norm is measured with respect
to gβ, the Riemannian metric associated to ωM

β . Consequently, the triple ωM
β is a

closed, definite triple for β sufficiently large.

We next analyze some topological properties of the manifold M. Proposition
6.6 shows that the Betti numbers do agree with those of the K3 surface.

Proposition 6.6. The compact oriented manifold M has the following topological
properties:

b1(M) = 0, χ(M) = 24, b+2 (M) = 3, b−2 (M) = 19.
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Proof. We write the manifold M as the union of open sets U ∪ V , where

U = N 4
m0

(−T−, T+), V = Xb−(T− + 1) �Xb+(T− + 1),

with Xb± = Qb± \ T2, m0 = b− + b+, and Qb± a del Pezzo surface of degree b±.

Clearly, U ∩ V deformation retracts onto Nil3b− �Nil3b+ .

Next, we claim that the de Rham cohomology H1(Xb±) = 0. To see this, we use
the long exact sequence of a pair in de Rham cohomology

· · · → Hk
c (Qb± \ T2) → Hk(Qb±) → Hk(T2)

φ−→ Hk+1
c (Qb± \ T2) → · · · ;(6.20)

see [Spi79, Chapter 11]. Since H3(Qb±) = 0, (6.20) yields an exact sequence

· · · → H2(Qb±)
i∗−→ H2(T2) → H3

c (Qb± \ T2) → 0.

Here the mapping i∗ : H2(Qb±) → H2(T2) is just the pullback under inclusion,

which is dual to the mapping on homology i∗ : H2(T
2,R) → H2(Qb± ,R). Since T2

is a complex submanifold of a Kähler manifold, this latter mapping is injective, so
the mapping i∗ is surjective, and by Poincaré duality we conclude that

H1(Qb± \ T2) ∼= H3
c (Qb± \ T2) = 0.

Since we have just showed that H1(Xb±) = 0, the Mayer-Vietoris sequence in
cohomology for the pair {U, V } yields an exact sequence

0 → H1(M) → H1(Nm0
)

i∗−→ H1(Nil3b− �Nil3b+)
∼= H1(Nil3b−)⊕H1(Nil3b+).(6.21)

The mapping i∗ is the pullback under inclusion of the two nilmanifold fibers of
the neck at each end. We claim that this mapping is injective. To see this, let
Pm0

≡ {p1, . . . , pm0
} denote the monopole points in B = T2 × (−T−, T+), where

m0 = b− + b+. Then there are p̃j ∈ N 4
m0

such that N 4
m0

\ P̃m0
is a circle bundle

over B \ Pm0
, i.e.,

S1 −→ N 4
m0

\ P̃m0

π−−→ B \ Pm0
.(6.22)

The Gysin sequence of (6.22) begins with

0 → H1(B \ Pm0
)

π∗
−→ H1(N 4

m0
\ P̃m0

) → · · ·(6.23)

It is easy to see that the inclusion induces isomorphisms H1(B \ Pm0
) ∼= H1(B) ∼=

R⊕ R and H1(N 4
m0

\ P̃m0
) ∼= H1(N 4

m0
). Then (6.23) becomes

0 → span{dx, dy} π∗
−→ H1(N 4

m0
) → · · ·

Together with Proposition 2.3 and the exact sequence (6.21), we conclude that

i∗π∗dx and i∗π∗dy are both nontrivial and linearly independent in H1(Nil3b− �
Nil3b+), so that i∗ is injective as claimed. Then (6.21) implies that b1(M) = 0.
Since M is a compact orientable 4-manifold, Poincaré duality also implies that
b3(M) = 0.

Next, it follows from the fibration (6.22) that χ(N 4
m0

\ P̃m0
) = 0, and therefore

χ(N 4
m0

) = # of monopole points = m0 = b− + b+.

For a Tian-Yau space, we have that

χ(X4
b ) = χ(Qb \ T2) = χ(Qb)− χ(T2) = χ(Qb),
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where Qb is a degree b del Pezzo surface, and so

χ(X4
b ) = χ(Qb \ T2) = 12− b.

Note also that χ(Nil3b−) = χ(Nil3b+) = 0 since it is an orientable 3-manifold. Then
we have that

χ(M) = χ(X4
b−) + χ(N ) + χ(X4

b+) = (12− b−) + (b+ + b−) + (12− b+) = 24.

Since we have shown above that b1(M) = b3(M) = 0, this proves that b2(M) = 22.
Finally, as we constructed in (6.19) the approximate definite triple ωM

β ≡
(ω1, ω2, ω3), which are self-dual 2-forms forming a basis of Λ2

+ at every point, the
bundle Λ2

+(M) is a trivial rank 3 bundle. Also, ω1 being non-zero everywhere means
that there is an almost complex structure (ω1/|ω1| is a unit norm self-dual 2-form,
which is equivalent to an orthogonal almost complex structure). By Corollary 6.5,
for β � 1, the rank 2 subbundle V ⊂ Λ2

0 given by the orthogonal complement of
ω1/|ω1| is trivial. This implies that c1(TM, J) = 0, and the Hirzebruch signature
theorem implies that

2χ(M) + 3τ (M) =

ˆ
M

c21 = 0,

from which it follows that τ (M) = −16. Therefore, b+2 (M) = 3 and b−2 (M) =
19. �

7. Geometry and regularity of the approximate metric

In this section, we will give a detailed analysis of the geometry of (M, gβ).

7.1. Subdivision and regularity estimate on the glued space. Since the
arguments in the next sections are very tedious and involved, in this subsection
we will list some fixed constants and make necessary conventions which will be
frequently used in the later proofs.

7.1.1. Tian-Yau spaces and their asymptotic rates. To start with, for two positive
integers

b−, b+ ∈ {1, 2, . . . , 9},
let (X4

b−
, gb− , q−) and (X4

b
+
, gb+ , q+) be fixed hyperkähler Tian-Yau spaces with

reference points q− ∈ X4
b−

and q+ ∈ X4
b+

such that their degrees are b− and b+,

respectively. See Section 3 for the definition of a Tian-Yau space and the natural
coordinate z outside a large compact subset. As we introduced in Section 6.1, on
(X4

b−
, gb− , q−) and (X4

b+
, gb+ , q+), there are diffeomorphisms

Φ± : [ζ±0 ,+∞)×Nil3b± → X4
b± \K±

between the Gibbons-Hawking space (as a circle bundle over a flat cylinder T2×R)
and the Tian-Yau space outside a compact subset. We define the definite constants
D±

0 by

D±
0 ≡ the distance between q± and the level set {x ∈ X4

b± |z±(x) = ζ±0 }.
Proposition 3.4 shows that there are some positive constants

(7.1) δ1 > 0, δ2 > 0
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such that for any k ∈ N∣∣∣∇k
g−
C

(
(Φ−)∗ω−

TY − ω−
C

)∣∣∣
g−
C

= O(e−δ1z−)

and ∣∣∣∇k
g+
C

(
(Φ+)∗ω+

TY − ω+
C

)∣∣∣
g+
C

= O(e−δ2z+),

where ω±
TY , ω

±
C are the Kähler forms on the Tian-Yau spaces X4

b±
and on the Calabi

model spaces, respectively.

7.1.2. Some notation regarding the neck region. Next we fix some parameters in
the neck region for ease of our discussions in the sections to come.

Let Pm0
≡ {p1, . . . , pm0

} be the set of monopole points on the flat cylinder
(T2

x,y × Rz, g0) with
∑m0

m=1 z(pm) = 0, where g0 is the flat product metric with
coordinates (x, y, z) such that there are definite constants ι0 > 0 and T0 > 0 such
that for all k �= l, we have that

ι0 ≤ dg0(pk, pl) ≤ T0.

For any pm ∈ Pm0
, we define the associated distance function

(7.2) dm(x) ≡ dgβ (pm,x), x ∈ (M, gβ),

where the metric gβ is determined by the approximate hyperkähler triple (6.19).
In our proof, the following notation will also be needed. Given β � 1, by Theorem
2.5, the defining Green’s function Vβ of the Gibbons-Hawking metric on the neck
satisfies the following property: there are constants

(7.3) ε1 > 0, ε2 > 0,

such that for any k ∈ N we have that∣∣∣∇k
g0

(
Vβ − (2πb− · z + β)

)∣∣∣ = O(eε1z), z → −∞,∣∣∣∇k
g0

(
Vβ − (−2πb+ · z + β)

)∣∣∣ = O(e−ε2z), z → +∞.

Moreover, by the definition of Vβ in (6.5), the estimate

C−1 · β ≤ Vβ(x) ≤ C · β(7.4)

holds away from the monopole points in the neck region N 4
m0

(−T−, T+). Thus,
there are uniform constants ι′0 > 0, T ′

0 > 0, such that

ι′0 · (β)
1
2 ≤ dgβ (pm, pl) ≤ T ′

0 · (β)
1
2 , ∀1 ≤ m < l ≤ m0.

The following functions defined on N 4
m0

as well as on the Tian-Yau pieces nat-
urally arise from the construction of the model metric and are crucial in analyzing
the rescaled limits and defining the weight functions in the next section.

(1) We define the following functions on the neck:

L−(x) ≡ (2πb− · z(x) + β)
1
2 , −T− ≤ z(x) < 0,

L+(x) ≡ (−2πb+ · z(x) + β)
1
2 , 0 ≤ z(x) < T+.
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Figure 7.1. The red circles represent the S1 fibers and the blue
curves represent the base T2s of the nilmanifolds. The ×s are the
monopole points in the neck region N . The gray regions are in the
“damage zones” between IV± and V±.

(2) For x ∈ M located in the end region of X4
b±

and satisfying ζ±0 ≤ z±(x) ≤
T±, we define

L±(x) ≡ (2πb± · z±(x))
1
2 ,

where ζ±0 was defined in (6.1) and will be used throughout.

7.1.3. Subdivision of the manifold M. The manifold (M, gβ) will be divided into 9
regions depending on the different collapsing behaviors of gβ (see Figure 7.1):

I : dm(x) ≤ β− 1
2 for some 1 ≤ m ≤ m0,

II : 2β− 1
2 ≤ dm(x) ≤ (ι′0/4) · (β)

1
2 for some 1 ≤ m ≤ m0,

III : z(x) ∈ [−m0T0,m0T0] and dm(x) ≥ (ι′0/2) · (β)
1
2 for all 1 ≤ m ≤ m0,

IV− : z(x) ∈ [−T−/2,−2m0T0],

IV+ : z(x) ∈ [2m0T0, T+/2],

V± : x ∈ X4
b± and 2ζ±0 ≤ z±(x) ≤ T±,

VI± : x ∈ BD±
0
(q±) ⊂ X4

b± .

We note that for x ∈ IV±, we have that

T ′
0 · (β)

1
2 ≤ dm(x) ≤ R± for all 1 ≤ m ≤ m0,
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where

R− ≡ sup
{
dgβ (x, p1)

∣∣∣− T− ≤ z(x) ≤ 0
}

and

R+ ≡ sup
{
dgβ (x, p1)

∣∣∣0 ≤ z(x) ≤ T+

}
.

Recall (7.4) and that T± = O(β). Hence the uniform estimate C−1 · β 3
2 ≤ R± ≤

C · β 3
2 holds.

Remark 7.1. Notice that the 9 regions do not completely cover the manifold M.
However, each gap region has the same geometric behavior as the regions adjacent to
it in the above subdivision. In particular, the curvature estimates and the rescaled
geometries in each gap region will be the same as in the adjacent regions, so we
will ignore these gap regions in what follows.

Next we prove uniform curvature estimates onM which will be crucial in showing
that certain rescalings of the approximate metric have bounded curvature.

Lemma 7.2. The following uniform curvature estimates hold for (M, gβ).

(1) Let us denote r(x) ≡ dg0(x,Pm0
) on (T2 × R, g0). Then there exists a

constant C > 0 such that for each 1 ≤ m ≤ m0 and for every x ∈ Br0(pm)
with r0 ≡ 1

2 InjRadg0(T
2), the following curvature estimates hold:

|Rm |(x) ≤
{
Cβ, 0 ≤ r(x) < β−1,

C
β2r(x)3 , β−1 ≤ r(x) < r0.

(7.5)

In terms of the intrinsic distance function with respect to the Riemannian
metric gβ,

|Rm |(x) ≤ C

β
1
2 dm(x)3

, β−1 ≤ r(x) < r0,(7.6)

where dm is defined in (7.2).
(2) If x is in the neck region but has some definite distance away from the

monopoles, the following curvature estimates hold for some uniform con-
stant C > 0:

|Rm |(x) ≤ C

β2 · |z(x)| , |z(x)| ≥ r0
10

and − T− ≤ z(x) ≤ T+.(7.7)

(3) For x ∈ Xb±(T±) ⊂ M (recall (6.3)), there is a constant C > 0 such that

|Rm |(x) ≤
{
C, z±(x) < ζ±0 ,

C
dgβ

(x,q±)2 , z±(x) ≥ ζ±0 .
(7.8)

Remark 7.3. The curvature estimates in Lemma 7.2 are sharp in the following
sense. The second estimate in (7.5) corresponds to the curvature behavior of the
Taub-NUT metric, which is exactly of inverse cubic decay. The curvature estimate
in (7.8) is sharp as well because the curvatures have precisely quadratic decay along
the end of a complete Tian-Yau space.
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Proof. The proof only requires straightforward calculations, so we only present
a sketch. We use the following formula for the pointwise norm squared of the
curvature of a Gibbons-Hawking metric:

|Rm |2 =
1

2
V −1
β Δ2(V −1

β );(7.9)

see [GW00]. We just need to consider the case of one monopole point located at
the origin. The case of several monopole points follows easily from this case. Let
r0 ≡ 1

2 InjRadg0(T
2). Then we have the expansion

Vβ(x) =
1

2r(x)
+ β + h(x), x ∈ Br0(0

3),(7.10)

where h is a bounded harmonic function.
First, we estimate the curvature in the case r(x) < β−1. By (7.10), it follows

that

V −1
β =

2r

1 + 2rβ + 2rh
≤ Cr(1− 2rβ + 4r2β2 + 8r3β3)

for r < β−1, and then

|V −1
β Δ2(V −1

β )| ≤ Crβ3.

The first estimate in (7.5) follows from this.
Next, let x ∈ Br0(0

3) satisfy r(x) ≥ β−1. Substituting (7.10) into (7.9), a similar
expansion formula proves the second estimate in (7.5).

Now we relate the intrinsic distance function dm(x) and the Euclidean radial
function r(x). By directly estimating the integral of

√
Vβ, we have that

1

C ′ ·
√
r(x) ≤ dm(x) ≤ C ′√r(x), r(x) < β−1,

1

C ′ · β
1
2 · r(x) ≤ dm(x) ≤ C ′ · β 1

2 · r(x), r(x) ≥ β−1,

where C ′ > 0 is some universal constant. The curvature estimate in (7.6) immedi-
ately follows from this.

From now on, we consider the case that x is in the neck region and satisfies
|z(x)| ≥ r0

10 . In this case, Vβ has the expansion (6.6). Note that since the cutoff
function and its derivatives up to third order are uniformly bounded, the curvature
of the glued metric is of order β−3 in the damage zone regions. The curvature
estimate in (7.7) follows from this observation and (7.9).

Next, we recall from Section 2.2 that for the model spaces, the defining harmonic

functions are V−(x) = 2πb−z(x)
A and V+(x) = 2πb+z(x)

A , so (7.9) implies the first
estimate in (7.8). Hence the complete end of the model space has precisely inverse
quadratic curvature decay. It follows from Proposition 3.4 that the Tian-Yau metric
does also. �

7.2. Rescaled geometries. In this subsection, we will analyze the geometry of
each region defined in Section 7.1.3, which can be viewed as geometric preparation
for defining our weighted Hölder spaces. In our context, we will discuss a sequence
(M, gj) with gj ≡ gβj

for the gluing parameter sequence βj → ∞. In the remaining
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part of this section, we will rescale as follows: for every xj ∈ M, we will choose the
rescaling factors λj > 0 and the corresponding rescaled metric g̃j = λ2

jgj so that

(M, g̃j ,xj)
GH−−→ (M∞, g̃∞,x∞).

The choice of λj will be consistent with the definition of the weight function. We
will also need to improve the Gromov-Hausdorff convergence to convergence with
some higher regularity. To this end, we will select subdomains Uj ⊂ M which are of
almost full measure such that the above rescaling has uniformly bounded curvature
in Uj .

Region I.
We will first prove that, after an appropriate rescaling, the blow-up limit around

each monopole point is the Taub-NUT space. Let T2 × R be equipped with a flat
product metric g0. Given a constant β > 0, let Vβ be the harmonic function defined
in (6.5) that satisfies

−Δg0Vβ = 2π

m0∑
m=1

δpm

and has the following expansion:

Vβ(x) =
1

2|x− pm| + hm(x) + β as x ∈ Bg0
r0 (pm) ⊂ T2 × R,

where each hm is a bounded harmonic function on Bg0
r0 (pm), r0 ≡ 1

2 min{d0, i0},
and

d0 ≡ min
1≤m<l≤m0

dg0(pm, pl), i0 ≡ InjRadg0(T
2 × R).

Let (N 4
m0

, gβ) be the Gibbons-Hawking space equipped with the hyperkähler metric

gβ ≡ Vβ · gT2×R + V −1
β · θ2,

where θ is a connection 1-form satisfying the monopole equation dθ = ∗dVβ . Denote
by π the bundle projection. Given any positive constant σ > 0, we define the
rescaled metric as follows:

λσ,β ≡ σ · β 1
2 , g̃σ,β ≡ (λσ,β)

2 · gβ .
Then we have Lemma 7.4.

Lemma 7.4. Let pm ∈ Pm0
be a monopole point and let π−1(pm) = pm ∈ N 4

m0
.

For every fixed positive constant σ > 0, we have the following C∞-convergence:

(N 4
m0

, g̃σ,β ,pm)
C∞
−−→ (R4, g̃σ,∞, p̃m,∞) as β → +∞,

where (R4, g̃σ,∞, p̃m,∞) is a Ricci-flat Taub-NUT space with

g̃σ,∞ = Gσ · gR3 + (Gσ)
−1θ2 and Gσ(p) =

1

2d0(p, 03)
+

1

σ2
,

where d0 is the distance function in the Euclidean space R3.

Proof. Let Bg0
r0 (pm) ⊂ T2×R be the ball defined as above with π−1(pm) = pm. We

choose a standard coordinate system {x, y, z} in Bg0
r0 (pm) such that pm = (0, 0, 0).

Then in these coordinates,

Vβ(x, y, z) =
1

2
√

x2 + y2 + z2
+ h(x, y, z) + β,
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where h is a bounded harmonic function on Bg0
r0 (pm). Let us rescale the coordinates

by

x̃β ≡ γβ · x, ỹβ ≡ γβ · y, z̃β ≡ γβ · z,

where γβ ≡ σ2 · β. So the rescaled metrics g̃σ,β converge to

g̃σ,∞ = Gσ · gR3 + (Gσ)
−1θ2 and Gσ(p) =

1

2d0(p, 03)
+

1

σ2
,

where d0 is the distance function in the Euclidean space R3. This tells us that g̃σ,∞
is a Taub-NUT metric, and the proof is complete. �

Returning to the analysis of Region I, in this case we choose λj ≡ (βj)
1
2 and

consider the rescaled metric g̃j = λ2
jgj . Applying Lemma 7.4, the rescaled spaces

converge to the standard Taub-NUT space, i.e.,

(M, g̃j , pm)
GH−−→ (R4, g̃∞, pm,∞),

where the length of the S1-fiber at infinity equals 1. By the regularity theory of
harmonic functions, the above convergence can be improved to C� everywhere for
any � ∈ Z+.

Region II.
We will now analyze the convergence of appropriately rescaled spaces for every

fixed reference point xj in Region II. To understand the geometries of the rescaled
limits, there are three cases to consider, each of which depends on the distance of
a reference point xj to the monopoles. Namely,

(a) There is a uniform constant σ0 > 0 such that 2β
− 1

2

j ≤ dm(xj) ≤ 1
σ0

· β− 1
2

j .

(b) The distance to a monopole dm(xj) satisfies

dm(xj)

β
− 1

2

j

→ ∞ and
dm(xj)

β
1
2

j

→ 0.

(c) There is some uniform constant C0 > 0 such that

0 < C0 · β
1
2

j ≤ dm(xj) ≤
ι′0
4
· β

1
2

j .

In this region, the rescaled metric g̃j = λ2
j · gj is chosen as

λj ≡

⎧⎨⎩
(
dm(xj)

)−1

, in Case (a) and Case (b),

(dj)
−1, dj ≡ min1≤m≤m0

dm(xj), in Case (c).
(7.11)

Now we proceed to describe the rescaled limits in each of the above cases. Apply-
ing Lemma 7.4 to Case (a), the rescaled spaces converge to a Ricci-flat Taub-NUT
space with a monopole pm,∞, i.e.,

(M, g̃j ,xj)
GH−−→ (R4, g̃∞,x∞),

where dg̃∞(x∞, pm,∞) = 1 and the S1-fiber at infinity has length at least σ0 > 0.
Moreover, the above convergence is C∞ everywhere.

In Case (b), we have the convergence(
M\Bgj

β
− 1

2
j

(pm), g̃j ,xj

)
GH−−→ (R3 \ {03}, gR3 ,x∞),
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where gR3 is the standard Euclidean metric on R3. To prove this, note the following.
In terms of the rescaled metrics g̃j , the diameters of the fibers converge in the
following way:

Diamg̃j (S
1) ≤ C · β− 1

2

j · 1

dm(xj)
→ 0.(7.12)

Now denote γj ≡
β

1
2
j

dm(xj)
and define the rescaled coordinates

xj ≡ γj · x, yj ≡ γj · y, zj ≡ γj · z.
Then one can check that the metric tensor g̃j in terms of the rescaled coordinates
converges to the Euclidean metric dx2

∞+dy2∞+dz2∞, where (xj , yj , zj) converges to
(x∞, y∞, z∞) with |dx∞| = |dy∞| = |dz∞| = 1. Therefore, by (7.12), the rescaled
Gromov-Hausdorff limit is the punctured Euclidean space R3 \ {03}. Moreover,
applying Lemma 7.2, it follows that the sequence converges with uniformly bounded
curvature away from the origin.

In Case (c), we will prove that the rescaled limit is a punctured flat cylinder.
That is, let sj > 0 be a sequence of numbers such that

sj → 0,
1

sjβj
→ 0.

Then we claim that(
M\ π−1

( m0⋃
m=1

Bg0
sj (pm)

)
, g̃j ,xj

)
GH−−→

(
(T2 × R) \ Pm0

, g0,x∞

)
,

where g0 is a flat product metric on T2 × R and Pm0
≡ {p1, . . . , pm0

} ⊂ T2 × R is
the set of all monopole points.

To see this, we will carefully look at the convergence in a sequence of punctured
domains with unbounded diameter. We denote U(a, b) ≡ {x ∈ M|a ≤ z(x) ≤ b}.
Let ξj > 0 be a sequence with ξj/βj → 0 and choose a sequence of punctured
domains

Ůj ≡ U(z(xj)− ξj , z(xj) + ξj) \ π−1
( m0⋃

m=1

Bg0
sj (pm)

)
,

where Bg0
sj (pm) are balls of radii sj in the flat product metric g0 on T2 × R. It is

straightforward to see that

Diamg̃j (Ůj) ≈ C · ξj → ∞,(7.13)

Diamg̃j

(
π−1(Bg0

sj (pm))
)
≈ C · sj → 0.(7.14)

The above arguments show that the limit Ů∞ is a complete space minus m0 points.
On the other hand, we will show that the metrics g̃j converge to a flat product

metric on T2 × R. In fact, for every y ∈ Ůj , there is a bounded harmonic function
hj such that Vβj

satisfies

|Vβj
(y)− (hj(y) + 2πb− · z(y) + βj)| ≤

1

2sj
.

In Case (c), let us define γj ≡ β
− 1

2
j ·dj , where dj is defined in (7.11). By assumption,

there are constants C0 > 0, ι′0 > 0, such that for every j ∈ Z+, we have that
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C0 ≤ γj ≤ ι′0
4 . By the definition of γj and λj , we have that λj = γ−1

j · β− 1
2

j . Since
1

sjβj
→ 0, the following holds for some uniform constant C > 0:

∣∣∣λ2
jVβj

(y)− 1

γ2
j

∣∣∣ = |Vβj
(y)− βj |
γ2
j βj

≤
C + C · ξj + 1

2sj

γ2
jβj

=

C
βj

+
Cξj
βj

+ 1
2sjβj

γ2
j

→ 0.

(7.15)

Therefore, applying (7.13), (7.14) and (7.15), we have that

(7.16) (Ůj , g̃j ,xj)
GH−−→

(
(T2 × R) \ Pm0

, g0,x∞
)
,

where g0 is a flat product metric on T2 × R and Pm0
has m0 points. As in Case

(b), applying Lemma 7.2, we see that away from the monopole points, curvatures
are uniformly bounded in (7.16).

Region III.

For every fixed xj in Region III, we define λj ≡ β
− 1

2

j and set g̃j ≡ λ2
jgj . Similar

to Case (c) of Region II, let sj > 0 be a sequence of numbers such that sj → 0 and
1

sjβj
→ 0. Then applying the arguments in Case (c) of Region II, we have(

M\ π−1
( m0⋃

m=1

Bg0
sj (pm)

)
, g̃j ,xj

)
GH−−→

(
(T2 × R) \ Pm0

, g0,x∞

)
,

where g0 is a flat product metric on T2 × R. Applying Lemma 7.2, it follows that
the sequence converges with uniformly bounded curvature away from the monopole
points.

Region IV−.
For fixed xj in Region IV−, we choose the following rescaling factor:

λj ≡ (L−(xj))
−1,

and consider the corresponding rescaled metric g̃j = λ2
jgj . To start with, let us

estimate from below the rescaled distance from xj to a monopole. For every xj in
Region VI−, by the definition of this region, we have that

dg̃j (pm,xj) ≥
10T ′

0 · β
1
2
j

L−(xj)
=

10T ′
0 · β

1
2
j

(2πb− · z(xj) + β− + βj)
1
2

.

If βj > 0 is sufficiently large, then immediately

dg̃j (pm,xj) ≥ 5T ′
0 > 0.

Now we consider the following cases.

(a) There is a constant C0 > 10T ′
0 independent of j such that

5T ′
0 ≤ dg̃j (pm,xj) ≡ λj · dm(xj) ≤ C0

for each 1 ≤ m ≤ m0.
(b) The reference points xj in Region IV− satisfy

dg̃j (pm,xj) ≡ λj · dm(xj) → ∞.

In Case (a), we have the convergence

(M, g̃j ,xj)
GH−−→

(
(T2 × R) \ Pm0

, g0,x∞

)
,
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where g0 is a flat product metric and the set Pm0
contains m0 points. To see this,

first notice that there is some constant C > 0 such that |z(xj)| ≤ C. Let us denote

U(a, b) ≡ {x ∈ M|a ≤ z(x) ≤ b},

and let us also choose a sequence ξj > 0 satisfying ξj → ∞ and
ξj
βj

→ 0. For every

fixed xj in Region IV−, we choose a punctured domain

(7.17) Ůj ≡ U(z(xj)− ξj , z(xj) + ξj) \ π−1
( m0⋃

m=1

Bg0
sj (pm)

)
,

where Bg0
sj
(pm) are balls of radii sj in the flat product metric g0 on T2 × R and

sj > 0 is a sequence of numbers satisfying sj → 0 and 1
sjβj

→ 0. Then it is

straightforward to see that

(7.18) Diamg̃j (Ůj) ≈ C · ξj → ∞.

Hence the limit space Ů∞ has two ends. Moreover,

(7.19) Diamg̃j

(
π−1(Bg0

sj (pm))
)
≈ C · sj → 0.

Therefore, the limit space Ů∞ is a complete space minus m0 points.
Next, we will show that g̃j converges to a flat product metric g0 on T2 × R. To

this end, it suffices to show that for every y ∈ Ůj ,
Vβj

(y)

(L−(xj))2
→ 1 as j → +∞.

In fact, for every y ∈ Ůj , there is a bounded harmonic function hj such that the
Green’s function Vβj

satisfies

|Vβj
(y)− (hj(y) + 2πb− · z(y) + βj)| ≤

1

2sj
.

Since 1
sjβj

→ 0 and
ξj
βj

→ 0, the following holds for some uniform constant C > 0:∣∣∣ Vβj
(y)

(L−(xj))2
− 1

∣∣∣ = |Vβj
(y)− (L−(xj))

2|
|2πb− · z(xj) + β− + βj |

≤
C + Cξj +

1
2sj

βj − C
→ 0.(7.20)

Therefore, applying (7.18), (7.19) and (7.20), we have

(Ůj , g̃j ,xj)
GH−−→

(
(T2 × R) \ Pm0

, g0,x∞
)
,

where g0 is a flat product metric on T2×R and Pm0
comprises m0 points. Moreover,

by Lemma 7.2, it follows that the sequence converges with uniformly bounded
curvature away from the monopoles.

In Case (b), it holds that

(M, g̃j ,xj)
GH−−→ (T2 × R, g0,x∞),

where g0 is a flat product metric on T2 × R. The proof of this is similar to the
previous case. Here we choose the domain

Uj ≡ U(z(xj)− ξj , z(xj) + ξj),

where the sequence of numbers ξj > 0 satisfies ξj → ∞ and
ξj
βj

→ 0. Then the

same arguments show that

(Uj , g̃j ,xj)
GH−−→ (T2 × R, g0,x∞),
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where g0 is a flat product metric on T2 × R. By Lemma 7.2, it follows that the
sequence converges with uniformly bounded curvature in any compact subset of
bounded diameter containing xj .

Region IV+.
For every fixed reference point xj in Region IV+, we choose the rescaled metric

g̃j = λ2
jgj with λj ≡ (L+(xj))

−1. The rescaled limits are the same as those in
Region IV−.

Region V−.
Recall that Region V− is a large region in the Tian-Yau space (X4

b−
, gb− , q−)

with q− ∈ X4
b−
. For every fixed reference point xj in Region V−, we choose the

rescaled metric

λj ≡ (L−(xj))
−1, g̃j = λ2

jgj ,

where gj in Region V− coincides with gb− and we have defined L−(y) ≡ (2πb− ·
z−(y))

1
2 . We need to analyze the following cases.

(a) z−(xj) → ∞.
(b) There is some constant C0 > 0 independent of the index j such that 10ζ−0 ≤

z−(xj) ≤ C0.

In Case (a), we have the convergence

(M, g̃j ,xj)
GH−−→ (T2 × R, g0,x∞),

where g0 is a flat product metric on T2×R. To see this, we denote ζj ≡ z−(xj) → ∞.
Let ξj > 0 satisfy

ξj → ∞ and
ξj
ζj

→ 0.

Then we choose an unbounded annular domain

U−
j ≡ U−(ζj − ξj , ζj + ξj) = {y ∈ M|ζj − ξj ≤ z−(y) ≤ ζj + ξj}.

We will show that

(Uj , g̃j ,xj)
GH−−→ (T2 × R, g0,x∞),

where g0 is a flat product metric on T2 × R. Applying the same arguments as
before, we have

Diamg̃j (Uj) → ∞,

so that the limit space U∞ has two ends. It follows that U∞ is complete. In
addition, we need to show that g̃j converges to a flat product metric on T2×R. To
prove this, let us recall the asymptotics of the Tian-Yau metric gb− (for instance,
see (6.2)):∣∣∣(ΦTY

− )∗gb− −
(
V−(y) · g0 + V −1

− (y) · θ2b−
)∣∣∣ ≤ C · e−δ−·z−(y), z−(y) → +∞,

where g0 is a flat product metric on T2×R and where V−(y) ≡ 2πb− · z−(y). Then
straightforward calculations imply that∣∣L−(xj)

−2 · (ΦTY
− )∗gb− − g0

∣∣ → 0.

Indeed, it suffices to verify that∣∣∣∣ V−(y)

(L−(xj))2
− 1

∣∣∣∣ = |V−(y)− (L−(xj))
2|

2πb− · ζj
=

ξj
ζj

→ 0.
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By Lemma 7.2, it follows that the sequence converges with uniformly bounded cur-
vature in any compact subset containing xj of bounded diameter. This completes
the analysis of Case (a).

In Case (b), since d(q−,xj) ≤ C0, there is some constant C ′
0 > 0 (depending

only on the constant C0 > 0 and the geometric data of gb−) such that

1

C ′
0

≤ L−(xj) ≤ C ′
0.

Therefore, the limit space (M∞, g̃∞,x∞) is a complete Ricci-flat Tian-Yau space
which is a simple rescaling of (X4

b−
, gb−, q−). The convergence in this case is more-

over smooth on compact subsets.
Region V+.
For every fixed reference point xj in Region V+, we choose the rescaled metric

g̃j = λ2
jgj with λj ≡ (L+(xj))

−1. So the rescaling geometries are the same as those
of Region V−.

Region VI−.
We choose λj ≡ 1 and the limit is (X4

b−
, gb− , q−), a complete Tian-Yau space.

Region VI+.
We choose λj ≡ 1 and the limit is (X4

b+
, gb+ , q+), again a complete Tian-Yau

space.

8. Weighted Schauder estimate

The main part of this section is to establish the appropriate weighted analysis
consistent with the different rescaled geometries of the manifold (M, gβ). The main
result in this section is the weighted Schauder estimate in Proposition 8.2.

Let δ and ν be fixed constants to be determined later. Fix the gluing parameter

β > 0. The weight functions ρ
(k+α)
δ,ν with k ∈ N and 0 ≤ α < 1 are defined as

follows (the notations are defined in Section 7.1):

ρ
(k+α)
δ,ν (x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eδ·(2T−) · (β− 1
2 )ν+k+α, x ∈ I,

eδ·(2T−) · (dm(x))ν+k+α, x ∈ II,

eδ·(2T−) · (β 1
2 )ν+k+α, x ∈ III,

eδ·(z(x)+2T−) · (L−(x))
ν+k+α x ∈ IV−,

eδ·(z(x)+2T−) · (L+(x))
ν+k+α x ∈ IV+,

eδ·(z−(x)) · (L−(x))
ν+k+α, x ∈ V−,

eδ·(−z+(x)+2T−+2T+) · (L+(x))
ν+k+α, x ∈ V+,

eδ·ζ
−
0 ·

(
L−(ζ

−
0 )
)ν+k+α

, x ∈ VI−,

eδ(−ζ+
0 +2T−+2T+) ·

(
L+(ζ

+
0 )
)ν+k+α

, x ∈ VI+ .

(8.1)

Each weight function matches up across gluing regions. To see this, we refer readers
to the definition of the attaching maps in (6.13) and (6.14) showing the relationship
between z, z−, z+ in the damage zones. The above regions do not entirely cover M,
so we extend each weight function to a smooth function on the entire manifold
M by using appropriate cutoff functions in each gap region. By Remark 7.1, the
rescaling geometry in each gap region is the same as that of the adjacent regions;
therefore these gap regions can be ignored in the weighted analysis.
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Before defining the weighted Hölder norms, we make a remark on the rescaled
geometries. For any fixed x ∈ M, the computations in Section 7.2 imply that

sup
B1/λx (x)

|Rm |ĝβ ≤ C0 · λ2
x

for some uniform constant C0 > 0, where λx > 0 is the metric rescaling factor
associated to x as in the discussions in Section 7.2. So it is standard that there is
a uniform constant s0 > 0 such that

InjRadĝβ (x̂) ≥
s0
2λx

,

where x̂ is a lift of x in the universal cover of Bs0/λx
(x). For every x ∈ M, let us

set rx ≡ s0
λx

. We are now ready to give the definition of the weighted Hölder spaces.

Definition 8.1. Given δ, ν ∈ R, k ∈ N and α ∈ (0, 1), the weighted Hölder space

Ck,α
δ,ν (M) is defined as the space of all Ck,α-tensor fields (of some fixed type, for

example, functions, 1-forms, symmetric 2-tensors, etc.) equipped with the following
weighted norm with respect to the Riemannian metric gβ . For a tensor field ω on
M we define the following.

(1) The weighted Ck,α-seminorm is

[ω]Ck,α
δ,ν

≡ sup
x∈M

sup
{
ρ
(k+α)
δ,ν (x) · |∇

kω̂(x̂)−∇kω̂(ŷ)|
(dĝβ (x̂, ŷ))

α

∣∣∣ ŷ ∈ Brx/2(x̂)
}
,

where x̂ denotes a lift of x to the universal cover of Brx(x), the difference
of the two covariant derivatives is defined in terms of parallel translation in
Brx/2(x̂) along the unique geodesic connecting x̂ and ŷ, and ω̂, ĝβ, are the
lifts of ω, gβ, respectively.

(2) The weighted Ck,α-norm is

‖ω‖Ck,α
δ,ν (M) ≡

k∑
j=0

∥∥∥ρ(j)δ,ν · ∇jω
∥∥∥
C0(M)

+ [ω]Ck,α
δ,ν (M).

Proposition 8.2 (The weighted Schauder estimate). Consider (M, gβ) with a
sufficiently large gluing parameter β > 0. Let Dgβ ≡ d+ ⊕ d∗. Then there exists

a uniform constant C > 0 (independent of β) such that for every ω ∈ Ω1(M), it
holds that

(8.2) ‖ω‖C1,α
δ,ν (M) ≤ C

(
‖Dgβω‖C0,α

δ,ν+1(M) + ‖ω‖C0
δ,ν (M)

)
.

Proof. We will argue by contradiction and suppose that no such uniform constant
C > 0 exists. This means that there exist the following sequences:

(1) a sequence of numbers βj → ∞,

(2) a sequence of gluing metrics (M, gj) with weight functions ρ
(k+α)
j,δ,ν (for sim-

plicity, we will denote these by ρ
(k+α)
δ,ν because there is no ambiguity),

(3) a sequence of differential 1-forms ωj ∈ Ω1(M) such that as j → ∞,

‖ωj‖C1,α
δ,ν (M,gj)

= 1,(8.3)

‖Dgjωj‖C0,α
δ,ν+1(M,gj)

+ ‖ωj‖C0
δ,ν(M,gj) → 0.(8.4)
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Our main goal is to prove a local version of the weighted Schauder estimate
claimed in (8.2). Precisely, it suffices to show that there is some uniform constant
C > 0 (independent of j) such that for every ω ∈ Ω1(M) and for every xj ∈ M,
there is some rj > 0 (depending on the location of xj) such that the following
estimate holds in B2rj (xj) ⊂ (M, gj):

(8.5) ‖ω‖C1,α
δ,ν (Brj

(xj))
≤ C

(
‖Dgjω‖C0,α

δ,ν+1(B2rj
(xj))

+ ‖ω‖C0
δ,ν(B2rj

(xj))

)
.

Once (8.5) is established, a contradiction almost immediately arises, which com-

pletes the proof. Indeed, (8.3) implies that either ‖ρ(1)δ,ν · ∇ωj‖C0(M,gj) ≥ 1
2 or

[ωj ]C1,α
δ,ν (M,gj)

≥ 1
2 . We assume that ‖ρ(1)δ,ν · ∇ωj‖C0(M,gj) ≥ 1

2 as the argument for

the other case is identical. Hence, by definition, there exists some xj ∈ Mj with

(8.6) |ρ(1)δ,ν(xj) · ∇ωj(xj)| ≥
1

2
.

By (8.5), there is some rj > 0 which depends on xj such that

‖ωj‖C1,α
δ,ν (Brj

(xj))
≤ C

(
‖Dgjωj‖C0,α

δ,ν+1(B2rj
(xj))

+ ‖ωj‖C0
δ,ν(B2rj

(xj))

)
→ 0.

The above estimate implies that

(8.7) |ρ(1)δ,ν(xj) · ∇ωj(xj)| ≤ ‖ωj‖C1
δ,ν(Brj

(xj)) ≤ ‖ωj‖C1,α
δ,ν (Brj

(xj))
→ 0.

However, (8.7) contradicts (8.6). The proof is done.
So the main part of the proof of the proposition is to establish (8.5). In our proof,

the primary strategy is to rescale the metric gj by setting g̃j ≡ λ2
jgj . Recall that

in the previous section, we showed that, for every reference point xj ∈ M, after an
appropriate rescaling, there is a subdomain Uj containing xj that has uniformly
bounded geometry away from at most finitely many singular points. Then the
standard Schauder estimate in the rescaled space is available. That is, there is
some uniform constant r̃0 > 0 such that for every ω̃ ∈ Ω1(M),

(8.8) ‖ω‖
C1,α(B

g̃j
r̃0

(xj))
≤ C

(
‖Dg̃jω‖C0,α(B

g̃j
2r̃0

(xj))
+ ‖ω‖

C0(B
g̃j
2r̃0

(xj))

)
,

where the geodesic balls B
g̃j
2r̃0

(xj) ⊂ Uj converge to a ball in a smooth space keep-
ing curvatures uniformly bounded. One can obtain the estimate (8.8) by lifting
everything to the local universal covers, whose C1,α-harmonic radius is uniformly
bounded from below. Once we obtain (8.8), we will get the weighted estimate (8.5)
after an appropriate rescaling.

In the following arguments, for every fixed xj ∈ M, we will choose the corre-
sponding rescaled metrics g̃j = λ2

jgj defined as in Section 7.2.
Region I.

We prove (8.5) around the monopole pm ∈ Pm0
. Let λj = β

1
2
j and choose the

rescaled metric g̃j ≡ λ2
jgj . Then(

M, g̃j , pm

)
C∞
−−→

(
R4, g̃∞, pm,∞

)
as βj → ∞,

where g̃∞ is the standard Taub-NUT metric such that the length of the S1-fiber
at infinity equals 1. Since the above convergence is C∞, the rescaled sequence
(M, g̃j , pm) has bounded geometry and thus the standard Schauder estimate holds
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in the geodesic ball B
g̃j
2 (pm) with respect to the rescaled metric g̃j . Precisely, there

is a uniform constant such that for every ω ∈ Ω1(M),

‖ω‖
C1,α(B

g̃j
1 (pm))

≤ C
(
‖Dg̃jω‖C0,α(B

g̃j
2 (pm))

+ ‖ω‖
C0(B

g̃j
2 (pm))

)
.

Now we rescale back to the original metric gj . With respect to the original metric,
the above Schauder estimate is equivalent to the following:

‖ρ(1)δ,ν · ∇ω‖C0(Brj
(pm)) + ‖ρ(1+α)

δ,ν · ∇ω‖Cα(Brj
(pm))

≤ C
(
‖ρ(α)δ,ν+1 · Dgjω‖Cα(B2rj

(pm)) + ‖ρ(0)δ,ν · ω‖C0(B2rj
(pm))

)
,

where rj = λ−1
j . Therefore, by the definition of the weighted Hölder norm,

‖ω‖C1,α
δ,ν (Brj

(pm)) ≤ C
(
‖Dgjω‖C0,α

δ,ν+1(B2rj
(pm)) + ‖ω‖C0

δ,ν(B2rj
(pm))

)
.

So the estimate (8.5) has been proved in Region I.
Region II.
We will prove (8.5) for every xj in Region II. We break down this region in Case

(a), (b), and (c) (with different rescaling geometries) as for Region II in Section
7.2.

In each of the above cases, the rescaled spaces (M, g̃j ,xj) have uniformly
bounded curvatures and converge to a smooth limit space. This enables us to obtain
the standard Schauder estimate in any ball of a definite radius in the rescaled spaces.
Specifically, let xj be a fixed point in Region II. Then the standard Schauder esti-

mate in B
g̃j
1/6(xj) states that for any ω ∈ Ω1(M),

‖ω‖
C1,α(B

g̃j
1/6

(xj))
≤ C

(
‖Dg̃jω‖Cα(B

g̃j
1/3

(xj))
+ ‖ω‖

C0(B
g̃j
1/3

(xj))

)
.

Then rescaling to the original metrics gj , we find that

‖ρ(1)δ,ν(xj)·∇ω‖C0(Brj
(xj)) + ‖ρ(1+α)

δ,ν (xj) · ∇ω‖Cα(Brj
(xj))

≤ C
(
‖ρ(α)δ,ν+1(xj) · Dgjω‖Cα(B2rj

(xj)) + ‖ρ(0)δ,ν(xj) · ω‖C0(B2rj
(xj))

)
.

The above rj > 0 is defined as follows:

rj ≡
{

1
6λ

−1
j = 1

6dm(xj), in Case (a) and Case (b),
1
6dj , in Case (c),

where dj ≡ min1≤m≤m0
dgj (pm,xj). We need to show that the values ρ

(k+α)
δ,ν (y) for

all y ∈ Brj (xj) are equivalent. To see this, note by the triangle inequality that for
every y ∈ Brj (xj), (

5

6

)ν+k+α

≤
ρ
(k+α)
δ,ν (y)

ρ
(k+α)
δ,ν (xj)

≤
(
7

6

)ν+k+α

.

By the definition of the weighted norm, (8.5) now follows.
Region III.
The rescaled metrics are g̃j ≡ β−1

j ·gj , and so coincide with Case (c) of Region II.
Regions IV− and IV+.
We only prove the estimate (8.5) for every fixed reference point xj in Region

IV−. The proof for the other region is identical.
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For a fixed xj in Region IV−, we define g̃j = λ2
jgj with λj ≡ (L−(xj))

−1. In
Section 7.2, the rescaled limits were separated into Case (a) and Case (b). We
follow the notation as stated there. Notice that, in each of the above cases, the
rescaled spaces have uniformly bounded curvature, allowing us to state the standard
Schauder estimate in the following way.

In Case (a), by assumption, we can pick some definite constant

r̃0 ≡ T ′
0

2
≤

dg̃j (pm,xj)

10

such that for every ω ∈ Ω1(M),

‖ω‖
C1,α(B

g̃j
r̃0

(xj))
≤ C

(
‖Dg̃jω‖Cα(B

g̃j
2r̃0

(xj))
+ ‖ω‖

C0(B
g̃j
2r̃0

(xj))

)
.

In the above estimate, the constant C > 0 depends only on T ′
0 > 0 and the flat

product metric g0 (in particular, C does not depend on C0). Let us rescale back to
the original metric gj and take rj ≡ (L−(xj)) · r̃0 > 0. Then

‖ρ(1)δ,ν(xj)·∇ω‖C0(Brj
(xj)) + ‖ρ(1+α)

δ,ν (xj) · ∇ω‖Cα(Brj
(xj))

≤ C
(
‖ρ(α)δ,ν+1(xj) · Dgjω‖Cα(B2rj

(xj)) + ‖ρ(0)δ,ν(xj) · ω‖C0(B2rj
(xj))

)
.

All that remains to show is that the values of the weight function ρ
(k+α)
δ,ν are equiv-

alent for every y ∈ B2rj (xj). To see this, denote ζj ≡ z(xj). Then, by straight-
forward computations, there is a uniform constant C1 > 0 such that for every
y ∈ B2rj (xj), we have that |z(y)− ζj | ≤ C1. Moreover, we can show that there is

some uniform constant C2 > 0 such that
ζj
βj

≤ C2 for any j ∈ Z+. By the definition

of the weight function in Region IV−, we also have that

ρ
(k+α)
δ,ν (y)

ρ
(k+α)
δ,ν (xj)

= eδ·(z(y)−ζj) · (L−(y))
ν+k+α

(L−(xj))ν+k+α
.

The above estimates then imply that there is a uniform constant C3 > 0 such that

1

C3
≤
∣∣∣∣∣ ρ

(k+α)
δ,ν (y)

ρ
(k+α)
δ,ν (xj)

∣∣∣∣∣ ≤ C3.

This completes the proof of (8.5) in Case (a). The proof of the estimate in Case
(b) follows similarly.

Regions V− and V+.
We only need to prove the estimate (8.5) for the reference point xj in Region

V− because the estimate in Region V+ is identical. As in the discussion in Section
7.2, there are Case (a) and Case (b) to be considered.

First, we prove the weighted Schauder estimate (8.5) in Case (a). Let λj ≡
(L(xj))

−1 and g̃j ≡ λ2
jgj . Then we have shown in Section 7.2 that

(M, g̃j ,xj)
GH−−→ (T2 × R, g0,x∞).

Moreover, the curvatures are uniformly bounded in the above convergence, which
implies the standard Schauder estimate for every ω ∈ Ω1(M), namely

‖ω‖
C1,α(B

g̃j
1 (xj))

≤ C
(
‖Dg̃jω‖Cα(B

g̃j
2 (xj))

+ ‖ω‖
C0(B

g̃j
2 (xj))

)
.
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Rescaling back to the original metrics gj , we find that

‖ρ(1)δ,ν(xj)·∇ω‖C0(Brj
(xj)) + ‖ρ(1+α)

δ,ν (xj) · ∇ω‖Cα(Brj
(xj))

≤ C
(
‖ρ(α)δ,ν+1(xj) · Dgjω‖Cα(B2rj

(xj)) + ‖ρ(0)δ,ν(xj) · ω‖C0(B2rj
(xj))

)
.

Now the last step is to show that all the values ρ
(k+α)
δ,ν (y) are equivalent for

every y ∈ B2rj (xj). To see this, denote ζj ≡ z−(xj) and ξj ≡ z−(y). Then
straightforward computations imply that |ξj − ζj | ≤ C0 for some uniform constant
C0 > 0. By the definition of the weight function in Region V−, we see that

ρ
(k+α)
δ,ν (y)

ρ
(k+α)
δ,ν (xj)

= eδ·(ξj−ζj) · (L−(y))
ν+k+α

(L−(xj))ν+k+α
.

Therefore

1

C1
≤

ρ
(k+α)
δ,ν (y)

ρ
(k+α)
δ,ν (xj)

≤ C1,

which completes the proof of Case (a).
Next we prove Case (b). We showed in Section 7.2 that the limit space (M∞, g̃∞,

x∞) is a finite rescaling of (X4
b−
, gb−, q−). Moreover, the Gromov-Hausdorff con-

vergence is strengthened as (M, g̃j ,xj)
Ck

−−→ (M∞, g̃∞,x∞) for any k ∈ Z+ which
implies the following Schauder estimate:

‖ω‖
C1,α(B

g̃j
1 (xj))

≤ C
(
‖Dg̃jω‖Cα(B

g̃j
2 (xj))

+ ‖ω‖
C0(B

g̃j
2 (xj))

)
,

where C > 0 is independent of j. Now we rescale the above estimate to the original
metric whilst also rescaling ω as in Case (a), which gives

‖ρ(1)δ,ν(xj)·∇ω‖C0(Brj
(xj)) + ‖ρ(1+α)

δ,ν (xj) · ∇ω‖Cα(Brj
(xj))

≤ C
(
‖ρ(α)δ,ν+1(xj) · Dgjω‖Cα(B2rj

(xj)) + ‖ρ(0)δ,ν(xj) · ω‖C0(B2rj
(xj))

)
,

where rj ≡ L−(xj). Similar to Case (a), there is some constant C2 > 0 which is
independent of the index j and the constant C0 such that

1

C2
≤

ρ
(k+α)
δ,ν (y)

ρ
(k+α)
δ,ν (xj)

≤ C2.

By definition, the weighted Schauder estimate (8.5) immediately follows from this.
Regions VI− and VI+.
First, we consider the case where the fixed reference point xj is in Region

VI−. Then the weighted estimate (8.5) becomes the standard Schauder estimate on
B1(xj) ⊂ X4

b−
. Indeed, as the weight function in this region is uniformly bounded,

(8.5) is equivalent to the standard one.
The proof in Region VI+ proceeds identically. �
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9. The injectivity estimate for Dg

In this section, we will prove the uniform injectivity of the linearized operator
which is a crucial technical ingredient in proving the existence of a hyperkähler
triple. For ease of exposition, we state a standard Liouville theorem on the flat
cylinder T2 × R.

Lemma 9.1. Let T2 × R be equipped with a flat product metric g0 and let λ0 be
the lowest positive eigenvalue of −Δg0 . If u satisfies Δg0u = 0 and |u(z)| = O(eλz)
for some λ ∈ (0,

√
λ0), then u ≡ 0.

Now we state the main technical result of this subsection.

Proposition 9.2 (The injectivity estimate for Dg). Consider (M, gβ) with suffi-
ciently large gluing parameter β > 0. Assume that the parameters δ and ν satisfy

(1) 0 < δ < 1
103 min{δ1, δ2, ε1, ε2, λ0, δh, δq},

(2) ν ∈ (0, 1),

where the constants δ1, δ2, ε1, ε2 have been specified in (7.1) and (7.3) respectively,
λ0 > 0 is as in Lemma 9.1, δh > 0 is as in Theorem 5.1 and δq is as in Corollary
6.5. Then for every α ∈ (0, 1), there exists a uniform constant C = C(α, δ, ν) > 0
which is independent of β such that for every ω ∈ Ω1(M),

‖ω‖C1,α
δ,ν (M) ≤ C · ‖Dgβω‖C0,α

δ,ν+1(M).

Proof. By Proposition 8.2, it suffices to show that there exists a uniform constant
C > 0 such that

‖ω‖C0
δ,ν(M) ≤ C · ‖Dgβω‖C0,α

δ,ν+1(M)

for all ω ∈ Ω1(M). We argue by contradiction and suppose that no such uniform
constant exists. Then we have the following:

(1) a sequence of spaces (Mj , gj) with gluing parameters βj → ∞,
(2) a sequence of 1-forms ωj ∈ Ω1(Mj) such that as j → ∞,

‖ωj‖C0
δ,ν(Mj ,gj) = 1 and ‖Dgjωj‖C0,α

δ,ν+1(Mj ,gj)
→ 0,

(3) a sequence of points xj ∈ Mj satisfying |ρ(0)j,δ,ν(xj) · ωj(xj)| = 1, where

ρ
(0)
j,δ,ν is a sequence of weight functions in (Mj , gj).

Now we are in a position to rescale the above sequences to produce a contradic-
tion. To start with, let gj be as above, and denote the rescaling factors as follows.

(1) Rescaling of the metrics. Let g̃j = λ2
j · gj with λj to be determined

later. Then with respect to the fixed reference point xj ∈ Mj as in (3)
above, we have the convergence

(Mj , g̃j ,xj)
GH−−→ (M∞, d̃∞,x∞).

(2) Rescaling of the 1-forms. The 1-forms ωj will be rescaled by ω̃j ≡ κj ·ωj

for a sequence κj > 0 to be determined later.

(3) Rescaling of the weight functions. We denote by ρ
(k+α)
j,δ,ν and ρ

(k+α)
∞,δ,ν the

weight functions on Mj and M∞, respectively. Fix k = 0, 1 and α ∈ (0, 1),

and rescale the weight function ρ
(k+α)
j,δ,ν by ρ̃

(k+α)
j,δ,ν = τ

(k+α)
j · ρ(k+α)

j,δ,ν with

τ
(k+α)
j to be determined later.
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The above rescaling factors are chosen to satisfy the following scale-invariance prop-
erties:

1 ≤ τ
(0)
j · κj · λ−1

j ≤ 10, 1 ≤ τ
(1)
j · κj · λ−2

j ≤ 10, 1 ≤ τ
(1+α)
j · κj · λ−2−α

j ≤ 10.

In this way, we will obtain a sequence of 1-forms ω̃j ∈ Ω1(Mj) with the following
properties:

‖ω̃j‖C0
δ,ν(M,g̃j) = 1, |ρ̃(0)j,δ,ν(xj) · ω̃j(xj)| = 1, ‖Dg̃j ω̃j‖Cα

δ,ν+1(M,g̃j) → 0.

The basic strategy of the proof is to combine compactness arguments and Liou-
ville theorems. More precisely, if (M∞, g̃∞,x∞) is non-collapsed, we apply Propo-
sition 8.2 to obtain a limiting 1-form ω̃∞ ∈ (M∞, g̃∞,x∞) such that

‖ω̃∞‖C0
δ,ν(M∞,g̃∞) = 1, |ρ̃(0)∞,δ,ν(x∞) · ω̃∞(x∞)| = 1, Dg̃∞ ω̃∞ ≡ 0.(9.1)

Then we apply our Liouville theorems to show that the above limiting 1-form ω̃∞
with controlled weighted norm vanishes on M∞, which gives a contradiction. Next,
for a collapsed limit (M∞, g̃∞,x∞), to understand the limiting behavior of the
operators Dg̃j and the contradicting 1-forms ω̃j , we will lift everything to an appro-

priately chosen non-collapsed (local) normal cover such that C1,α-compactness still
applies on such a covering space. On the other hand, we will show that there is a
representation ω̃j = fx

j θ
x
j + fy

j θ
x
j + fz

j θ
z
j + f t

jθ
t
j such that (fx

j , f
y
j , f

z
j , f

t
j ) converges

to a 4-tuple of harmonic functions (fx
∞, fy

∞, fz
∞, f t

∞). In addition, we will also show
that at least one of fx

∞, fy
∞, fz

∞ and f t
∞ has a positive weighted Hölder norm at x∞.

The desired contradiction then arises from various versions of Liouville theorems
for harmonic functions in the different collapsed regions.

We will now produce the desired contradiction in each of the regions discussed
in Section 7.2. Specifically, we will explain how to choose λj , κj , τj , and apply a
Liouville theorem in each region.

Region I.
Assume that the reference point xj is in Region I. Then the rescaled limit is the

Taub-NUT space (M∞, g̃∞,x∞) with a limiting monopole pm,∞. We choose the
rescaling factors as follows:

λj = β
1
2

j , τ
(k+α)
j = e−δ·2T− · (β

1
2

j )
ν+k+α, κj = eδ·2T− · (β− 1

2

j )ν−1.

Then we have that dg̃∞(pm,∞,x∞) ≤ C and the rescaled weight function in the
limit space is given by

ρ̃
(k+α)
∞,δ,ν (x) =

{
1, x ∈ B1(pm,∞),

(dg̃∞(x, pm,∞))ν+k+α, x ∈ M∞ \B2(pm,∞).

The limiting 1-form ω̃∞ ∈ Ω1(M∞) then satisfies

Dg̃∞ ω̃∞ ≡ 0, |ρ̃(0)∞,δ,ν(x∞) · ω̃∞(x∞)| = 1, ‖ω̃∞‖C0
δ,ν(M∞) = 1.

Notice that the above norm bound implies that for all x ∈ M∞ \B2(pm,∞),

|ω̃∞(x)| ≤ (dg̃∞(x, pm,∞))−ν .

Since ω̃∞ is in the kernel of Dg̃∞ , ω̃∞ is harmonic with respect to the Taub-NUT
metric g̃∞. Applying Lemma 4.14 and using ν > 0, we conclude that ω̃∞ ≡ 0.

Region II.
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Now we discuss the case that the reference points xj are in Region II. In Section
7.2, the rescaled geometries were separated into Case (a), Case (b), and Case (c).
We work with the same division in what follows.

We start with our analysis in Case (a). By Lemma 7.4, the rescaled limit in
Case (a) is a Ricci-flat Taub-NUT space (M∞, g̃∞,x∞) such that the S1-fiber at
infinity has length at least σ0 > 0. The rescaling factors in this case are

λj = (dm(xj))
−1, τ

(k+α)
j = e−δ·2T− · (dm(xj))

−ν−k−α, κj = eδ·2T− · (dm(xj))
ν−1.

In the rescaled limit space, the limiting reference point x∞ satisfies dg̃∞(x∞, pm,∞)
= 1. Moreover, the rescaled weight function in the limit space is given by

ρ̃
(k+α)
∞,δ,ν (x) = (dg̃∞(pm,∞,x))−ν−k−α, x ∈ M∞ \B2(pm,∞),

and the limiting 1-form ω̃∞ ∈ Ω1(M∞) satisfies

Dg̃∞ ω̃∞ ≡ 0, |ρ̃(0)∞,δ,ν(x∞) · ω̃∞(x∞)| = 1, ‖ω̃∞‖C0
δ,ν(M∞) ≤ 1.

The above weighted norm bound implies that for every x ∈ M∞ \ B2(pm,∞), the
limiting 1-form ω̃∞ satisfies the pointwise estimate

|ω̃∞(x)| ≤
(
dg̃∞(pm,∞,x)

)−ν

.

Applying Lemma 4.14, we deduce that ω̃∞ ≡ 0 on M∞, which completes the proof
of Case (a).

In Case (b), the rescaled limit is R3 \ {03}. Let us choose the rescaling factors
as follows:

λj = (dm(xj))
−1, τ

(k+α)
j = e−δ·2T− · (dm(xj))

−ν−k−α, κj = eδ·2T− · (dm(xj))
ν−1.

In terms of the above rescaled metric, the reference point x∞ satisfies dg0(x∞, 03) =
1. Moreover, the rescaled weight function in the limit space is given by

ρ̃
(k+α)
∞,δ,ν (x) = (dg0(0

3,x))−ν−k−α, x ∈ R3 \ {03}.
We will now analyze the limiting behavior of the operator Dg̃j under the collaps-

ing sequence (M, gj ,xj). Our basic strategy is to reduce the convergence of the
1-form ω̃j to the convergence of the coefficient functions. Let

ω̃j = fx
j · θxj + fy

j · θyj + fz
j · θzj + f t

j · θtj ,
where

θxj ≡ λj · β
1
2
j · dx, θyj ≡ λj · β

1
2
j · dy, θzj ≡ λj · β

1
2
j · dz, θtj ≡ λj · β

1
2
j · dt.

By straightforward computations,

|θxj |g̃j = |θyj |g̃j = |θzj |g̃j → 1, |θtj |g̃j → 0.(9.2)

Now let us construct the limits of the above coefficient functions. We start with
the Gromov-Hausdorff convergence

(M, g̃j ,xj)
GH−−→ (R3, g0,x∞)

with |x∞| = 1. For any fixed R > 10, let Ag0
1
R ,R

(03) be an annulus in R3 with respect

to the Euclidean metric g0. The first step is to obtain the limits of the coefficient
functions fx

j , f
y
j , f

z
j , f

t
j with controlled weighted norms in the flat annulus Ag0

1
R ,R

(03)

under the Gromov-Hausdorff convergence. Letting R → ∞, we will apply Arzelà-
Ascoli to obtain global limiting functions.
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First, fixing any R > 0, we consider a Euclidean annulus Ag0
1
R ,R

(03) ⊂ R3. We

claim that there are limiting functions fx
∞,R, f

y
∞,R, f

z
∞,R and f t

∞,R on Ag0
1
R ,R

(03) ⊂
R3. Indeed, for any fixed R > 0, there exist s̄0(R) > 0 and N0(R) > 0 such that
{B2s̄0(y∞,k)}Nk=1 with N ≤ N0 is a finite collection of Euclidean balls covering
Ag0

1
R ,R

(03) which satisfies

(1) Ag0
1
R ,R

(03) ⊂
⋃N

s=1 B2s̄0(y∞,k) ⊂ Ag0
1

3R ,3R
(03),

(2) s̄0
3 ≤ dg0(y∞,k,y∞,k′) ≤ s̄0 for all 1 ≤ k < k′ ≤ N .

We will verify that there exists a subsequence (still denoted by j) such that the
above finite cover satisfies the following compatibility:

(C1) (fx
j , f

y
j , f

z
j , f

t
j ) converges to harmonic functions (fx

∞,k, f
y
∞,k, f

z
∞,k, f

t
∞,k) on

every B2s̄0(y∞,k).
(C2) The above locally defined limiting functions can be patched together in the

sense that if B2s̄0(y∞,k) ∩B2s̄0(y∞,k′) �= ∅, then
fx
∞,k(y∞) = fx

∞,k′(y∞), fy
∞,k(y∞) = fy

∞,k′(y∞),

fz
∞,k(y∞) = fz

∞,k′(y∞), f t
∞,k(y∞) = f t

∞,k′(y∞),

holds for all y∞ ∈ B2s̄0(y∞,k) ∩B2s̄0(y∞,k′).

The above compatibility properties immediately imply that there are well-defined
harmonic limiting functions fx

∞,R, f
y
∞,R, f

z
∞,R and f t

∞,R on A 1
R ,R(0

3).

To show property (C1), by taking some subsequence, it suffices to show that
for each ball B2s̄0(y∞,k) in the above finite cover, there is some subsequence in
the original sequence {j} such that the coefficient functions fx

j,k converge to a
harmonic function fx

∞,k. For this purpose, we need to locally unwrap the collapsed
fibers and discuss the convergence of the coefficient functions fx

j,k on non-collapsed
local universal covers.

We take a sequence of geodesic balls B2s̄0(yj,k) with

(B2s̄0(yj,k), g̃j)
GH−−→ (B2s̄0(y∞,k), g0).

Denote by �j (→ 0) the length of the collapsing S1-fiber at yj and define

Γj = Γεj (yj,k) ≡ Image[π1(Bεj (yj)) → π1(B2s̄0(yj))],

where εj > 0 is chosen such that 2�j ≤ εj ≤ 4�j . In our situation, π1(B2s̄0(yj,k)) =
Γj and Γj is isomorphic to Z. Now let

prj : (
̂B2s̄0(yj,k), ĝj , ŷj,k) −→ (B2s̄0(yj,k), g̃j ,yj,k)

be the universal covering map with B2s̄0(yj,k) = ̂B2s̄0(yj,k)/Γj . On the universal
covers, we have the following diagram of equivariant Gromov-Hausdorff convergence(

̂B2s̄0(yj,k), ĝj ,Γj , ŷj,k

)
eqGH ��

prj

��

(
Ŷk, ĝ∞,Γ∞, ŷ∞,k

)
pr∞

��(
B2s̄0(yj,k), g̃j ,yj,k

)
GH ��

(
B2s̄0(y∞,k), g0,y∞,k

)
which satisfies the following properties:
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(e1) the universal covers ( ̂B2s̄0(yj,k), ĝj , ŷj,k) are non-collapsed and have uni-
formly bounded curvature,

(e2) the limiting Lie group Γ∞ is diffeomorphic to R and acts isometrically on

the limit space (Ŷk, ĝ∞, ŷ∞,k),
(e3) the universal covering maps prj converge to a Riemannian submersion

pr∞ : (Ŷk, ĝ∞, ŷ∞,k) −→ (B2s̄0(y∞,k), g0,y∞,k)

with B2s̄0(y∞,k) = Ŷk/Γ∞,

(e4) for every ẑ∞ ∈ Ŷk, the orbit Γ∞ · ẑ∞ is a geodesic in Ŷk and isometric

to (R, dt2). In particular, (Ŷk, ĝ∞, ŷ∞) is isometric to B2s̄0(0
3) × R in the

Euclidean space R4.

Indeed, property (e1) follows from Lemma 7.2. Properties (e2) and (e3) follow from
the definition of equivariant convergence.

Proof of Property (e4). Define the rescaled coordinate functions

xj ≡ γj · x, yj ≡ γj · y, zj ≡ γj · z,

where γj = λj · β
1
2 . By direct computation, it is easy to see that

Δg̃jxj = Δg̃jyj = Δg̃jzj = 0,

and by (9.2), away from the monopole points, we have that

|∇g̃jxj |g̃j = |∇g̃jyj |g̃j = |∇g̃jzj |g̃j → 1.

To see that the orbits are totally geodesic, we will prove that

|∇2
g̃jxj |g̃j = |∇2

g̃jyj |g̃j = |∇2
g̃jzj |g̃j → 0.(9.3)

It suffices to verify this for xj as the proofs for yj and zj are identical to this case.
First, Bochner’s formula gives that

(9.4)
1

2
Δg̃j |∇xj |2g̃j = |∇2xj |2g̃j .

Due to Cheeger-Colding (see [CC96]), there exist cutoff functions ϕj : M → [0, 1]
with

ϕj(x) =

{
1, x ∈ BR(pj),

0, x ∈ M \B2R(pj),

and an absolute constant C0 > 0 such that R|∇g̃jϕj |g̃j + R2|Δg̃jϕj | ≤ C0. Inte-
grating (9.4) over B4R(pj) yields 

B4R(pj)

ϕj |∇2xj |2g̃j dvolg̃j

=
1

Volg̃j (B4R(pj))

ˆ
B4R(pj)

ϕj |∇2xj |2g̃j dvolg̃j

=
1

Volg̃j (B4R(pj))

ˆ
B4R(pj)

1

2
ϕjΔg̃j (|∇xj |2g̃j − 1) dvolg̃j

=
1

2Volg̃j (B4R(pj))

ˆ
B4R(pj)

(Δg̃jϕj) · (|∇xj |2g̃j − 1) dvolg̃j → 0
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as j → ∞. Therefore, by volume comparison,

(9.5)

 
BR(pj)

|∇2xj |2g̃j dvolg̃j → 0

as j → ∞. Let p∞ ∈ R3 \ {03} with B2s̄0(p∞) ⊂ R3 \ {03} and choose a sequence

of geodesic balls B2s̄0(pj) such that (B2s̄0(pj), g̃j)
GH−−→ (B2s̄0(p∞), g0). By Lemma

7.2, the curvatures on Bs̄0(pj) are uniformly bounded by C · s̄−2
0 , where C > 0 is an

absolute constant. On the other hand, since Δg̃jxj = 0, (9.5) can be strengthened
to

sup
Bs̄0

(pj)

|∇2xj |2g̃j → 0.

This completes the proof of (9.3).
To finish the proof of Property (e4), note that by (9.3), the second fundamental

form of each Γ∞-orbit is vanishing. In other words, each Γ∞-orbit is a geodesic

in Ŷk. Combined with the facts that the limiting projection pr∞ is a Riemannian

submersion and B2s̄0(y∞,k) is a Euclidean ball, we conclude that Ŷk ≡ B2s̄0(0
3)×R

and ĝ∞ is isometric to the Euclidean metric. �

We will apply the above equivariant convergence to construct harmonic functions
fx
∞,k, f

y
∞,k, f

z
∞,k and f t

∞,k in B2s̄0(y∞,k). We only show the construction of fx
∞,k.

Notice that Proposition 8.2 implies that the Γj-invariant lifted functions f̂x
j satisfy

the uniform weighted Schauder estimate

‖f̂x
j ‖C1,α

δ,ν ( ̂B2s̄0
(yj))

≤ C

with respect to the lifted weight function. Applying Arzelà-Ascoli, after passing to

a subsequence, there is a limiting function f̂x
∞,k that satisfies

‖f̂x
∞,k‖C1,α

δ,ν (̂Yk)
≤ C.

Combined with the above equivariant convergence, we find that the limit function

f̂x
∞,k is Γ∞-invariant and descends to a function fx

∞,k in B2s̄0(y∞). Now we prove

that fx
∞,k is a harmonic function on B2s̄0(y∞). As the lifted 1-forms ω̂j also satisfy

‖ω̂j‖C1,α
δ,ν ( ̂B2s̄0

(yj))
≤ C,

there is a limiting 1-form ω̂∞,k that satisfies ‖ω̂∞,k‖C1,α
δ,ν (̂Yk)

≤ C. The contradiction

assumption then implies that

Dĝ∞ ω̂∞,k ≡ 0 in Ŷ k.

The standard elliptic regularity theory for Dĝ∞ now shows that the 1-form ω̂∞,k is

C∞ which in turn implies that f̂x
∞,k ∈ C∞(Ŷk). Lemma 9.3 will be used throughout

what follows. Its proof is left to the reader.

Lemma 9.3. Let (M4, g) be an oriented Riemannian 4-manifold and let ω ∈
Ω1(M4) satisfy Dgω = 0, where Dg ≡ d+ ⊕ d∗. Then ΔHω = 0, where ΔH is
the Hodge Laplacian on (M4, g).

Lemma 9.3 implies that Δĝ∞(f̂x
∞,k) = 0. Applying Property (e4), Δg0(f

x
∞,k) =

Δĝ∞(f̂x
∞,k) = 0. The construction of the harmonic limiting functions fy

∞,k, f
z
∞,k

and f t
∞,k is verbatim.
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We are now ready to prove (C2). To this end, we take the union of disjoint balls

B∞ ≡ B2s̄0(y∞,k) ∪B2s̄0(y∞,k′), B2s̄0(y∞,k) ∩B2s̄0(y∞,k′) �= ∅.

Let Bj ≡ B2s̄0(yj,k) ∪ B2s̄0(yj,k′). Then we have that (Bj , g̃j)
GH−−→ (B∞, g0). By

the same arguments as above, Bj has uniformly bounded curvature and the univer-

sal covering space (B̂j , ĝj) is non-collapsed. Moreover, the equivariant convergence
with properties (e1)–(e5) as above still holds in this case. By passing to some sub-

sequence, the lifted coefficient functions f̂x
j are C1,α′

-converging to some invariant

limiting function f̂x
∞,k,k′ on B̂∞ for any α′ ∈ (0, α) satisfying

f̂x
∞,k,k′ |

̂Yk
= f̂x

∞,k.

Therefore, f̂x
∞,k,k′ descends to a function fx

∞,k,k′ on B∞ with

fx
∞,k,k′ |B2s̄0

(y∞,k) = fx
∞,k.

In addition, fx
∞,k,k′ is harmonic on B∞, so we have managed to extend the local

harmonic limiting function fx
∞,k to the union B∞. Repeating the above arguments,

we can extend the limiting functions to the whole annulus Ag0
1
R ,R

(03).

The above construction gives a control of the harmonic functions (fx
∞,R, f

y
∞,R,

fz
∞,R, f

t
∞,R) on the flat annulus AR ≡ Ag0

1
R ,R

(03) with respect to the weighted norm:

|ρ̃(0)∞,δ,ν(x∞)| ·
(
|fx

∞,R(x∞)|+ |fy
∞,R(x∞)|+ |fz

∞,R(x∞)|+ |f t
∞,R(x∞)|

)
≥ 1

30
,

‖fx
∞,R‖C1,α

δ,ν (AR) + ‖fy
∞,R‖C1,α

δ,ν (AR) + ‖fz
∞,R‖C1,α

δ,ν (AR) + ‖f t
∞,R‖C1,α

δ,ν (AR) ≤ C.

(9.6)

We are now able to define a global harmonic 4-tuple on the punctured Euclidean
space R3 \ {03} by applying standard exhaustion arguments. Let R → +∞. By
applying (9.6) and Arzelà-Ascoli, there exists a global 4-tuple of harmonic functions
(fx

∞, fy
∞, fz

∞, f t
∞) on R3 \ {03} such that

|ρ̃(0)∞,δ,ν(x∞)| ·
(
|fx

∞(x∞)|+ |fy
∞(x∞)|+ |fz

∞(x∞)|+ |f t
∞(x∞)|

)
≥ 1

30
,

‖fx
∞‖C1,α

δ,ν (R3\{03})+‖fy
∞‖C1,α

δ,ν (R3\{03})+‖fz
∞‖C1,α

δ,ν (R3\{03})+‖f t
∞‖C1,α

δ,ν (R3\{03}) ≤ C.

The weighted norm bound implies that the limiting functions have the following
controlled behavior:

(|fx
∞|+ |fy

∞|+ |fz
∞|+ |f t

∞|)(x) ≤ C
(
dg0(x, 0

3)
)−ν

, ∀x ∈ R3 \ {03}.

By the standard removable singularity theorem, the 4-tuple of harmonic functions
(fx

∞, fy
∞, fz

∞, f t
∞) extend to the entire Euclidean space R3. Using 0 < ν < 1 and

applying the standard Liouville theorem for harmonic functions, we conclude that
fx
∞ = fy

∞ = fz
∞ = f t

∞ ≡ 0. So a contradiction arises, which completes the proof of
Case (b).

Now we consider Case (c). We have shown in Section 7.2 that the rescaled limit
in Case (c) is a punctured flat cylinder (T2 ×R) \ Pm0

. More precisely, we chose a

sequence of punctured unbounded domains Ůj containing xj such that

(Ůj , g̃j ,xj)
GH−−→

(
(T2 × R) \ Pm0

, g0,x∞

)
.
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Then the curvatures are uniformly bounded away from the singular points, that is,
points in Pm0

.
Let us denote dj ≡ min1≤m≤m0

{dm(pm,xj)} and choose the following rescaling
factors

λj = d−1
j , τ

(k+α)
j = e−δ·2T− · (d−1

j )ν+k+α, κj = eδ·2T− · (dj)ν−1.

So the rescaled weight function in the limit space satisfies

ρ̃
(k+α)
∞,δ,ν (x) =

⎧⎪⎨⎪⎩
(dg0(pm,x))ν+k+α, x ∈ Bg0

ι′′0
(pm) for some 1 ≤ m ≤ m0,

Qν,k,α, x ∈
⋂m0

m=1 A
g0
m (2ι′′0 , T

′′
0 ),

eδz(x), x ∈ (T2 × R) \
⋃m0

m=1 B
g0
T ′′
0
(pm),

where ι′′0 ∈ [1,
ι′0
C0

] is some constant of definite size and Qν,k,α depends only on ν, k
and α.

Similar to Case (b), to apply the Liouville theorem on the collapsed limit, we
will construct a globally defined 4-tuple of harmonic functions (fx

∞, fy
∞, fz

∞, f t
∞) on

the limit space.
Fix R > 0, denote by TR(S) the R-tubular neighborhood of a compact set S.

Applying Lemma 7.2, we have the following curvature estimate on the sequence of

annuli T
g̃j
3R(Pm0

) \ T g̃j
1
R

(Pm0
):

‖Rmg̃j ‖
L∞

(
T

g̃j
3R(Pm0

)\T g̃j
1
R

(Pm0
)

) ≤ K0 ·R2,

where K0 > 0 is an absolute constant. Applying the same arguments as in Case (b),
one can construct a 4-tuple of harmonic functions (fx

∞, fy
∞, fz

∞, f t
∞) on (T2×R)\Pm0

which satisfy the following weighted estimates on (T2 × R) \ Pm0
:

|ρ̃(0)∞,δ,ν(x∞)| ·
(
|fx

∞(x∞)|+ |fy
∞(x∞)|+ |fz

∞(x∞)|+ |f t
∞(x∞)|

)
≥ 1

30
,

‖fx
∞‖C1,α

δ,ν
+ ‖fy

∞‖C1,α
δ,ν

+ ‖fz
∞‖C1,α

δ,ν
+ ‖f t

∞‖C1,α
δ,ν

≤ C.
(9.7)

This implies that

|fx
∞(x)|+ |fy

∞(x)|+ |fz
∞(x)|+ |f t

∞(x)| ≤ C
(
dg0(x, pm)

)−ν

, x ∈ Bg0
ι′′0
(pm),

|fx
∞(x)|+ |fy

∞(x)|+ |fz
∞(x)|+ |f t

∞(x)| ≤ Ce−δz(x), |z(x)| ≥ Z0,
(9.8)

for some sufficiently large Z0 > 0, since Δg0f
x
∞ = Δg0f

y
∞ = Δg0f

z
∞ = Δg0f

t
∞ ≡ 0

on the punctured cylinder (T2×R)\Pm0
. Since we have required that 0 < ν < 1, it

is standard to verify that the singularities in Pm0
are removable. It follows that the

harmonic functions fx
∞, fy

∞, fz
∞ and f t

∞ extend to the entire flat cylinder T2×R and
satisfy the asymptotic behavior as in (9.8). Applying Lemma 9.1 to the coefficient
functions with the growth condition (9.8), we conclude that fx

∞ = fy
∞ = fz

∞ =
f t
∞ ≡ 0 on T2 × R. This contradicts (9.7), so the proof of Case (c) is complete.
Region III.
The proof for Region III is identical to Case (c) of Region II.
Regions IV− and Region IV+.
We only focus on the case that the reference points xj are located in Region

IV−. The proof for Region IV+ is verbatim. Region IV− has two different types of
rescaling geometries of Section 7.2, which are given by Case (a) and Case (b).
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For fixed reference points xj located in Case (a), we have the following conver-
gence:

(Ůj , g̃j ,xj)
GH−−→

(
(T2 × R) \ Pm0

, g0,x∞

)
,

where g0 is a flat product metric on T2 ×R and Ůj is defined in (7.17). We choose
the rescaling factors as follows:

λj=(L−(xj))
−1, τ

(k+α)
j =e−δ(2T−) · (L−(xj))

−ν−k−α, κj=eδ(2T−) · (L−(xj))
ν−1.

The limiting weight function is then

ρ̃
(k+α)
∞,δ,ν =

⎧⎪⎨⎪⎩
(dg0(pm,x))ν+k+α, x ∈ Bg0

ι′′0
(pm) for some 1 ≤ m ≤ m0,

Qν,k,α, x ∈
⋂m0

m=1 A
g0
m(2ι′′0 , T

′′
0 ),

eδz(x), x ∈ (T2 × R) \
⋃m0

m=1 B
g0
T ′′
0
(pm),

where ι′′0 ∈ [1, ι0
C0

] is some constant of definite size and Qν,k,α depends only on ν, k

and α. The rest of the proof is identical to the proof of Case (c) in Region II.
Next we prove Case (b). We showed in Section 7.2 that in this case we have the

following convergence:

(Uj , g̃j ,xj)
GH−−→ (T2 × R, g0,x∞),

where g0 is a flat product metric on T2 × R. The rescaling factors are chosen as

λj = (L−(xj))
−1, τ

(k+α)
j = e−δ(2T−−zj) · (L−(xj))

−ν−k−α,

κj = eδ(2T−+zj) · (L−(xj))
ν−1,

where zj ≡ z(xj). We also translate the z-coordinate by z̃(x) = z(x) − zj , which

gives the limiting weight function ρ̃
(k+α)
∞,δ,ν (x) = eδ·z̃(x) for every x ∈ T2 × R. With

z replaced by z̃, the remainder of the contradiction argument is the same as Case
(c) of Region II.

Regions V− and V+.
First, we assume that the reference points xj are located in Region V+. As

discussed in Section 7.2, it is natural to subdivide Region V+ into Case (a) and
Case (b). In this region, we choose the corresponding rescaling factors

λj =
1

L+(xj)
, τ

(k+α)
j =

e−2δ·(T−+T+− zj
2 )

(L+(xj))ν+k+α
, κj =

e2δ·(T−+T+− zj
2 )

(L+(xj))1−ν
,

where zj ≡ z+(xj).
First, the rescaled limit in Case (a) is the flat cylinder T2 × R and we have the

convergence

(Uj , g̃j ,xj)
GH−−→ (T2 × R, g0,x∞).

Hence, under the z-coordinate translation z̃+(x) = z+(x)− zj , the limiting weight

function is ρ̃
(k+α)
∞,δ,ν (x) = e−δ·z̃+(x). With z+ replaced by z̃+, the remaining argu-

ments are exactly the same as those for Case (b) of Region IV±. This completes
the proof of this case.

Next, we consider Case (b) of Region V+. If the xj satisfy 10ζ+0 ≤ z+(xj) ≤ C0,

then we have the convergence (M, g̃j ,xj)
C


−−→ (M∞, g̃∞,x∞) for any � ∈ Z+, where
the limit space is a fixed rescaling of (X4

b+
, gb+ , q+). Also passing to a subsequence,
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we have z+(xj) → c0 ∈ [10ζ+0 , C0]. Hence, using the same translation z̃+(x) =
z+(x)− zj , the limiting weight function is

ρ
(k+α)
∞,δ,ν (x) = e−δ·z̃+(x) · (1 + c

−1
0 · z̃+(x))

ν
2 , x ∈ X4

b+ \B2D+
0
(q+).

On the other hand, the limiting 1-form ω̃∞ ∈ Ω1(X4
b+
) satisfies the following:

Dgb+
ω̃∞ ≡ 0, |ρ̃(0)∞,δ,ν(x∞) · ω̃∞(x∞)| = 1, ‖ω̃∞‖C0

δ,ν(X
4
b+

) = 1.

Notice that ν ∈ (0, 1) and zj � 1. We also have the C0-bound

|ω̃∞(x)| ≤ C2 · eδ·z̃+(x), x ∈ X4
b+ \B2D+

0
(q+).

If δ ∈ (0, δh), applying Theorem 5.1 then gives that we have that ω̃∞ ≡ 0 on X4
b+
.

The proof is the same if the xj are in Region V−. The only difference appears
in Case (b), where the C0-bound of the limiting harmonic 1-form ω̃∞ becomes

|ω̃∞(x)| ≤ C1 · e−δ·z−(x) · (z−(x))−
ν
2 , x ∈ X4

b− \B2D−
0
(q−).

We are now able to apply a much simpler Liouville theorem (Lemma 4.14) to the
above decaying harmonic 1-form ω̃∞ from which the contradiction arises.

Regions VI− and VI+.
If the xj are located in Region VI−, the proof is identical to Case (b) of Region

V−. If xj are located in Region VI+, the proof is the same as Case (b) of Region
V+.

Combining all of the above regions, the proof of Proposition 9.2 is complete. �

10. Perturbation to genuine hyperkähler metrics

Theorem 10.5 is the main existence theorem of a hyperkähler triple and will
be proved in Section 10.1. Then in Section 10.2 we will prove the main theorems
introduced in Section 1.2.

10.1. The existence of a hyperkähler triple. We begin with some general re-
marks about perturbing a closed, definite triple ω to a genuine hyperkähler triple.
This material is from [Fos19], with some minor changes. We seek a triple of closed
2-forms θ = (θ1, θ2, θ3) such that ω ≡ ω + θ is an actual hyperkähler triple on M,
which is the system

1

2
(ωi + θi) ∧ (ωj + θj) = δij dvolω+θ,

which is equivalent to

(10.1)
1

2
(ωi ∧ ωj + ωi ∧ θj + ωj ∧ θi + θi ∧ θj) =

1

6
δij

3∑
j=1

(
ω2
j + θ2j + 2ωj ∧ θj

)
.

Now split θ into its self-dual and anti-self-dual parts with respect to gω, writing
θ = θ+ + θ−. We define a matrix A = (Aij) by

θ+i =

3∑
j=1

Aijωj(10.2)

and define also a matrix Sθ− = (Sij) by

1

2
θ−i ∧ θ−j = Sij dvolω, 1 ≤ i ≤ j ≤ 3.
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For any 3× 3 real matrix B, we denote by

tf(B) = B − 1

3
Tr(B) Id

the trace-free part of B. Then we can write (10.1) as the matrix equation

(10.3) tf(QωA
T +QωA+AQωA

T ) = tf(−Qω − Sθ−).

For simplicity, in our context, we always identify a triple of self-dual 2-forms with a
3× 3-matrix as in (10.2). Then observe that a solution of the following gauge-fixed
system

d+η + ξ = F0

(
tf(−Qω − Sd−η)

)
, d∗η = 0,(10.4)

is also a solution of (10.3). Here F0 denotes the local inverse near zero of the
local diffeomorphism G0 : S0(R

3) → S0(R
3) on the space of trace-free symmetric

3× 3-matrices S0(R
3) defined by

G0(A) = tf(QωA
T +AQω +AQωA

T ).

Moreover, η = (η1, η2, η3) with ηj ∈ Ω1(M), ξ = (ξ1, ξ2, ξ3) with ξi ∈ H+(M) (the
space of self-dual harmonic 2-forms with respect to gω), and d±η is the self-dual
or anti-self-dual part of dη = θ − ξ with respect to gω, respectively.

The linearization of the elliptic system (10.4) at η = 0 is precisely the operator
(1.5) mentioned in the Introduction:

L = (D ⊕ Id)⊗ R3 : (Ω1(M)⊕H+(M))⊗ R3 −→ (Ω0(M)⊕ Ω2
+(M))⊗ R3,

where

D ≡ d∗ + d+ : Ω1(M) −→ (Ω0(M)⊕ Ω2
+(M)).

For any sufficiently large gluing parameter β � 1, denote by ωM
β = (ω1, ω2, ω3)

the approximate definite triple on M which was constructed in Section 6. To prove
the existence of a hyperkähler triple, we will solve the gauge-fixed elliptic system
(10.4) based at ω = ωM

β . We will use the following version of the implicit function

theorem; see for example [RS05, Theorem 4.4.2].

Lemma 10.1. Let F : A → B be a C1-map between two Banach spaces such
that F (x)− F (0) = L (x) + N (x), where the operator L : A → B is linear and
N (0) = 0. Assume that

(1) L is an isomorphism with ‖L −1‖ ≤ C1,
(2) there are constants r > 0 and C2 > 0 with r < 1

3C1C2
such that

(a) ‖N (x)−N (y)‖B ≤ C2 ·(‖x‖A+‖y‖A)·‖x−y‖A for all x, y ∈ Br(0) ⊂
A,

(b) ‖F (0)‖B ≤ r
2C1

.

Then there exists a unique solution to F (x) = 0 in A such that

‖x‖A ≤ 2C1 · ‖F (0)‖B.

To apply the above implicit function theorem, we need to verify the above prop-
erties in our context. Recall that ωM

β ≡ (ω1, ω2, ω3) is the closed, definite triple on
M constructed in Section 6 which induces a Riemannian metric gβ such that the
triple ωM is self-dual with respect to g. Define the following Banach spaces:

A ≡
(
C1,α

δ,ν (Ω̊
1(M))⊕H+(M)

)
⊗ R3, B ≡

(
C0,α

δ,ν+1(Λ
+(M))

)
⊗ R3,
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where H+(M) is the space of self-dual harmonic 2-forms on M, Λ+(M) is the

space of self-dual 2-forms on M, and Ω̊1(M) ≡ {η ∈ Ω1(M)|d∗η = 0}. Notice that
Proposition 6.6 implies that

dim(H+(M)) = b+2 (M) = 3.

Clearly the closed self-dual 2-forms ωM
β ≡ (ω1, ω2, ω3) form a basis of H+(M).

Let A andB be equipped with the following weighted Hölder norms: for (η, ξ̄+) ∈
A and ξ+ ∈ B, let us set

‖(η, ξ̄+)‖A ≡ ‖η‖C1,α
δ,ν (M) + ‖ξ̄+‖L2(M), ‖ξ+‖B ≡ ‖ξ+‖C0,α

δ,ν+1(M).

The operator F : A → B is defined by

F (η, ξ̄+) ≡ d+η + ξ̄+ − F0

(
tf(−Qβ − Sd−η)

)
,

which is given by the system (10.4). The corresponding linearization is

Lgβ ≡ (d+ ⊕ Id)⊗ R3 : A −→ B.

So the nonlinear part is given by

N (η, ξ̄+) ≡ F0

(
tf(−Qβ)

)
− F0

(
tf(−Qβ − Sd−η)

)
.

First, we will check Property (1) in Lemma 10.1.

Proposition 10.2. Let the gluing parameter β � 1 be sufficiently large. Then there
exists a constant C > 0 independent of β such that for every ξ+ ≡ (ξ+1 , ξ

+
2 , ξ

+
3 ) ∈ B,

there exists a unique pair

(η, ξ̄+) ≡
(
(η1, η2, η3), (ξ̄

+
1 , ξ̄

+
2 , ξ̄

+
3 )
)
∈ A,

which solves Lgβ (η, ξ̄
+) = ξ+ and satisfies the estimate

(10.5) ‖η‖C1,α
δ,ν (M) + ‖ξ̄+‖L2(M) ≤ Ce10δ·β · ‖ξ+‖C0,α

δ,ν+1(M),

where δ and ν are the constants in Proposition 9.2.

Proof. First, we prove that Lgβ is surjective. It follows from Hodge theory that

Ω2
+(M) = H+(M)⊕ d+(Ω̊1(M)).

This clearly implies that the operator Lgβ = (d+⊕ Id)⊗R3 : A −→ B is surjective.
The remainder of the proof is a contradiction argument. We will argue on the

level of forms which will imply the result for triples. If (10.5) does not hold for
a uniform constant, then there exist sequences βj → ∞ and ηj ∈ Ω1(M), ξ̄+j ∈
H+(M) with 〈d+ηj , ξ̄+j 〉L2(M) = 0, such that

e10δ·βj‖d+ηj + ξ̄+j ‖C0,α
δ,ν+1(M) → 0 as j → ∞,(10.6)

‖ηj‖C1,α
δ,ν (M) + ‖ξ̄+j ‖L2(M) = 1.(10.7)

Pairing ξ̄+j and d+ηj + ξ̄+j gives ‖ξ̄+j ‖2L2(M) = 〈d+ηj + ξ̄+j , ξ̄
+
j 〉L2(M). Using (10.6),

we find that

‖ξ̄+j ‖2L2(M) ≤ εje
−10δ·βj

ˆ
M

|ξ̄+j |(ρ
(0+α)
δ,ν+1 )

−1 dvolgβj

≤ εje
−10δ·βj‖ξ̄+j ‖L2(M)

{ ˆ
M
(ρ

(0+α)
δ,ν+1 )

−2 dvolgβj

} 1
2

,
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where εj → 0 as j → ∞. It is easy to check thatˆ
M
(ρ

(0+α)
δ,ν+1 )

−2 dvolgβj
< C,

where C is independent of βj , so that as j → ∞,

(10.8) e10δ·βj‖ξ̄+j ‖L2(M) → 0.

Next, since each triple ωM
βj

is harmonic and spans H+(M) at every point, we

can write

(10.9) ξ̄+ = λ1ω1 + λ2ω2 + λ3ω3.

Recall by the definition of the triple ωM
βj

, for every 1 ≤ p, q ≤ 3,

1

2

ˆ
M

ωp ∧ ωq =

ˆ
M

Qpq dvolωM
βj

.

Hence for any self-dual harmonic form ξ̄+ ∈ H+(M),

‖ξ̄+‖2L2(M) = 2

3∑
p,q=1

λpλq

ˆ
M

Qpq dvolωM
βj

.

Thus, applying the volume estimate C−1β2
j ≤ Volgβj

(M) ≤ Cβ2
j and Proposition

6.4, we have the estimate

C−1β2
j (λ

2
1,j + λ2

2,j + λ2
3,j) ≤ ‖ξ̄+j ‖2L2(M).

The above and (10.8) imply that βj ·λk,j · e10δ·βj → 0 as j → ∞ for k = 1, 2, 3. We
then have that

‖ξ̄+j ‖C0,α
δ,ν+1(M) = ‖λ1,jω1 + λ2,jω2 + λ3,jω3‖C0,α

δ,ν+1(M)

≤ λ1,j‖ω1‖C0,α
δ,ν+1(M) + λ2,j‖ω2‖C0,α

δ,ν+1(M) + λ3,j‖ω3‖C0,α
δ,ν+1(M).

Since ‖ωk‖C0,α
δ,ν+1(M) ≤ Ce5δ·βj for 1 ≤ k ≤ 3, the above implies that

‖ξ̄+j ‖C0,α
δ,ν+1(M) ≤ Cεjβ

−1
j e−5δ·βj

for some sequence εj → 0 as j → ∞, so we have proved that ‖ξ̄+j ‖C0,α
δ,ν+1(M) → 0 as

j → ∞. Hence we have proved that our sequence satisfies

‖d+ηj‖C0,α
δ,ν+1(M) → 0 and ‖ηj‖C1,α

δ,ν (M) → 1

as j → ∞, which contradicts Proposition 9.2. �

In Lemma 10.3, we will verify Property (2) of Lemma 10.1.

Lemma 10.3. Consider (M, gβ) with sufficiently large β � 1. Let δ and ν be
the constants in Proposition 9.2. Then there are constants r0 > 0 and C > 0
(independent of β) such that for every v1 ≡ (η1, ξ̄

+
1 ) ∈ Br(0) ⊂ A, v2 ≡ (η2, ξ̄

+
2 ) ∈

Br(0) ⊂ A with r < r0, we have that

(10.10) ‖N (v1)− N (v2)‖B ≤ C(‖v1‖A + ‖v2‖A) · ‖v1 − v2‖A.

Licensed to Princeton Univ. Prepared on Wed Nov 10 23:32:00 EST 2021 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



198 H.-J. HEIN, S. SUN, J. VIACLOVSKY, AND R. ZHANG

Proof. By definition, for any v ≡ (ω, ξ̄+),

N (v) ≡ F0

(
tf(−Qβ)

)
− F0

(
tf(−Qβ − Sd−η)

)
,

and hence

N (v1)− N (v2) = F0

(
tf(−Qβ − Sd−η2

)
)
− F0

(
tf(−Qβ − Sd−η1

)
)
.

Since F0 : S0(R
3) → S0(R

3) is a smooth map on the space of trace-free symmetric
(3× 3)-matrices S0(R

3), there is some universal constant C > 0 such that

|N (v1)− N (v2)| ≤ C|d−η1 ∗ d−η1 − d−η2 ∗ d−η2|
≤ C(|d−η1|+ |d−η2|) · |d−(η1 − η2)|.

Multiplying by the weight function gives us

ρ
(0)
δ,ν+1(x) · |N (v1)− N (v2)|

≤ C
(
ρ
(1)
δ,ν(x) · (|d−η1|+ |d−η2|)

)
·
(
ρ
(1)
δ,ν(x) · |d−(η1 − η2)|

)
,

where we have used the pointwise estimate ρ
(0)
δ,ν+1(x) ≤ C · (ρ(1)δ,ν(x))

2. Taking sup
norms leads to

‖N (v1)− N (v2)‖C0
δ,ν+1(M)

≤ C
(
‖v1‖C1

δ,ν(M) + ‖v2‖C1
δ,ν(M)

)
·
(
‖v1 − v2‖C1

δ,ν(M)

)
.

By similar computations, we also have the Hölder seminorm estimate[
N (v1)− N (v2)

]
C0,α

δ,ν+1(M)

≤ C
(
‖v1‖C1,α

δ,ν (M) + ‖v2‖C1,α
δ,ν (M)

)
·
(
‖v1 − v2‖C1,α

δ,ν (M)

)
.

So we obtain the estimate (10.10) for the nonlinear errors. �

Proposition 10.4. Consider (M, gβ) with sufficiently large gluing parameter β �
1. Let δ and ν be chosen as in Proposition 9.2. Then there exists a constant C > 0
independent of β such that

‖F (0)‖B ≤ Ce−
δqβ

2 ,

where δq > 0 is the constant in Corollary 6.5.

Proof. In our context, it holds that F (0) = −F0

(
tf(−Qβ)

)
. Since F0 : S0(R

3) →
S0(R

3) is a smooth map on the space of trace-free symmetric (3× 3)-matrices and
F0(0) = 0, we have that

‖F (0)‖B ≤ C‖ tf(Qβ)‖B.

Since the weight function in the damage zones (inside Region IV±) satisfies |ρ(α)δ,ν (x)|
� e

δq·β
10 , the desired error estimate follows from the estimate in Corollary 6.5. �

Now we are ready to prove the existence of a hyperkähler triple on M.
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Theorem 10.5. Consider (M, gβ) with sufficiently large gluing parameter β � 1.
Denote by ωM

β the definite triple constructed by Proposition 6.4. Let δ and ν be the

constants in Proposition 9.2. Then there exists a hyperkähler triple ωHK
β such that

(10.11) ‖ωM
β − ωHK

β ‖C0,α
δ,ν+1(M) ≤ Ce−δ0β ,

where C > 0 and δ0 > 0 are independent of β. In particular, M is diffeomorphic
to the K3 surface.

Proof. It suffices to verify the conditions of Lemma 10.1. In fact, Proposition 10.2,
Lemma 10.3 and Proposition 10.4 verify Property (1), Property (2a) and Property
(2b) in Lemma 10.1, respectively. So applying the implicit function theorem given
by Lemma 10.1, the existence of the hyperkähler triple ωHK

β follows. The error

estimate (10.11) follows directly from the implicit function theorem.
Since the hyperkähler triple ωHK

β determines a hyperkähler metric on M, and

since χ(M) = 24 by Proposition 6.6, M must be diffeomorphic to the K3 surface.
�

10.2. Completion of main proofs. In this subsection, we prove Theorems A
and B. Let us begin with the following ε-regularity theorem for collapsed Einstein
manifolds due to Naber and the fourth author of this paper; see [NZ16] for more
details.

Theorem 10.6. Let (Mn, g, p) satisfy Ricg ≡ λg and |λ| ≤ n−1. Given a manifold
(Zk, zk) with k = dim(Zk) < n, there are uniform constants δ0 > 0, w0 > 0 and
C0 > 0 which depend only on n and the geometry of B1(z

k) such that the following
property holds: if

dGH(B2(p), B2(z
k)) < δ0,

then the group Γδ0(p) ≡ Image[π1(Bδ0(p)) → π1(B2(p))] has a nilpotent subgroup
N of index bounded by w0 such that rank(N ) ≤ n− k.

Furthermore, if rank(N ) = n − k, then supB1(p) |Rm | ≤ C0. Conversely, if

supB3(p) |Rm | ≤ C0, then rank(N ) = n− k.

Proof of Theorem A. First, we consider the simpler case that there is only one
cluster of monopoles, i.e., m = 1. Without loss of generality, one can assume that
all the monopoles in the neck region are located on the same torus fiber of T2 ×R.

We start the proof by describing the hyperkähler metrics ĥβ and the continuous
map Fβ : K3 → [0, 1]. Given any sufficiently large parameter β � 1, denote
by gβ the approximate metric which is almost Ricci-flat and determined by the
approximate triple constructed in Section 6 with

C−1β
3
2 ≤ Diamgβ (M) ≤ Cβ

3
2 .

By Theorem 10.5, there exists a hyperkähler triple ωHK
β which has the associated

hyperkähler metric ĝβ . The estimate (10.11), and the fact that the weight function
is bounded below by a positive constant (independent of β), imply that

‖ωM
β − ωHK

β ‖C0(M) ≤ Ce−δ0β.

The isomorphism (1.4) then implies that

(10.12) ‖ĝβ − gβ‖C0(M) ≤ Ce−δ0β .
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Next, using the definition of the weighted Hölder norms, the estimates (10.11) and
(10.12), together with the isomorphism (1.4), we obtain the bound

(10.13) ‖ĝβ − gβ‖C0,α
δ,ν+1(M) ≤ Ce−δ0β

for some C > 0 and δ0 > 0 independent of β. Let ĥβ be the rescaling of the
hyperkähler metric ĝβ with Diamĥβ

(M) = 1. Denote by hβ the rescaling of gβ
with Diamhβ

(M) = 1. Then

‖ĥβ − hβ‖C0(M) ≤ Ce−
δ0β
2 .

Now we are ready to define the map Fβ : M → [0, 1]. First, recalling the notation
in Section 6, we extend the function z on the neck region to a function z̃ on M as
follows:

z̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ζ−0 − 2T−, x ∈ X4
b−

\ {z− ≥ ζ−0 },
z−(x)− 2T−, x ∈ X4

b−
∩ {ζ−0 ≤ z− ≤ T−},

z(x), x ∈ N (T−, T+),

2T+ − z+(x), x ∈ X4
b+

∩ {ζ+0 ≤ z+ ≤ T+},
2T+ − ζ+0 , x ∈ X4

b+
\ {z+ ≥ ζ+0 },

and then define

Fβ(x) =
z̃(x)− ζ−0 + 2T−

2(T+ + T−)− ζ−0 − ζ+0
.

It then follows from the gluing construction that there is some point t1 ∈ (0, 1)
such that F−1

β (t1) is a singular S1-bundle over T2 with exactly (b− + b+) vanishing
circles. In fact, the vanishing circles occur at the monopoles of the neck region
N 4

m0
constructed in Section 6.2, which itself is a Gibbons-Hawking space over T2×

R. Moreover, for each t ∈ (0, t1) ∪ (t1, 1), the fiber F−1
β (t) is diffeomorphic to a

Heisenberg nilmanifold with

deg(F−1
β (t)) =

{
b−, t ∈ (0, t1),

b+, t ∈ (t1, 1).

By Section 6, there is some uniform constant C0 > 0 such that for each regular
fiber,

C−1
0 β−1 ≤ Diamĥβ

(F−1
β (t)) ≤ C0β

−1, C−1
0 β−2 ≤ Diamĥβ

(S1) ≤ C0β
−2.

With these diameter estimates, we are ready to prove the uniform curvature esti-
mates by applying Theorem 10.6. Fix any ε ∈ (0, 10−2) and choose β > 0 sufficiently
large such that

Diamĥβ
(F−1

β (t)) <
δ0 · ε
10

,

where δ0 > 0 is the dimensional constant from Theorem 10.6. Now, for a ball
around each regular point Bε(x) ⊂ F−1

β ([0, 1] \ T2ε(S)) with S ≡ {0, t1, 1},

Γδ0ε(x) ≡ Image[π1(Bδ0ε(x)) → Bε(x)] ∼= π1(Nil3),

hence rank(Γδ0ε(x)) = 3. Then by Theorem 10.6, we know that supBε/2(x)
|Rmĥβ

|
≤ C0,ε, where C0,ε > 0 depends only on ε and is independent of β. The higher
order curvature estimates can be proved by considering a local universal cover and
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applying the standard regularity theory for non-collapsing Einstein metrics. This
completes the proof of item (1) of Theorem A.

Now we proceed to prove item (2). We still apply Theorem 10.6 to determine the
curvature blow-up behavior around the singular fiber. In fact, if x ∈ Tε/2(F

−1
β (t1)),

it suffices to show that

(10.14) sup
Bε/2(x)

|Rmĥβ
| → ∞ as β → ∞.

Notice that

Γε/2(x) ≡ Image[π1(Bε/2(x)) → B1/10(x)] ∼= Z⊕ Z,

hence rank(Γε/2(x)) = 2 < 3. Theorem 10.6 therefore implies (10.14).
The next part is to prove the classification of the bubble limits of item (2) of

the statement of the theorem. Fixing the gluing parameter β � 1, we analyze the
curvature behavior of the approximate metric gβ in the gluing construction scaled
such that

C−1β
3
2 ≤ Diamgβ (M, g) ≤ Cβ

3
2 .

There are two cases to analyze.
First, let the reference point xβ be a point of maximal curvature of a Tian-Yau

piece. It follows directly from the construction that, as β → +∞, the curvature
|Rmgβ |(xβ) is uniformly bounded but does not go to 0. So (M, gβ ,xβ) converges to

a complete hyperkähler Tian-Yau space (X4, gTY ,x∞) in the pointed Ck-topology
for any k ∈ Z+. We will show that (M, ĝβ ,xβ) also converges to the same Tian-
Yau space (X4, gTY ,x∞) in the pointed Ck-topology for any k ∈ Z+. In fact, the
estimate (10.13) implies that (M, ĝβ , xβ) converges to the same Tian-Yau space
(X4, gTY ,x∞) in the pointed C0,α-topology. The stronger convergence follows from
the regularity result for non-collapsed Einstein metrics in [AC92]. Since the rescal-

ing factor β
3
2 is much smaller than exponential, the bubble limit of (M, ĥβ) around

xβ is a complete hyperkähler Tian-Yau space.
Next, we consider the case in which the reference point xβ is very close to one of

monopoles, i.e., xβ ∈ B
β− 1

2
(pm) in terms of the metric ĥβ , where pm ∈ Pb−+b+ ≡

{p1, . . . , pb−+b+}. Applying Lemma 7.4, we have that

(M, β · gβ ,xβ) −→ (R4, gTN ,x∞),

where gTN is the Taub-NUT metric and the convergence is with respect to the
pointed Ck-topology for any k ∈ Z+. Applying the error estimate (10.13) and the
same arguments as above, we see that (M, β · hβ,xβ) converges to (R4, gTN ,x∞)
in the pointed Ck-topology for any k ∈ Z+. This implies that in terms of the

hyperkähler metric ĥβ, we have the pointed Ck-convergence for any k ∈ Z+,

(M, β4 · ĥβ,xβ) −→ (R4, gTN ,x∞).

So the proof of (2) is done.
The above completes the proof in the case of 1 singular point of convergence

in the interior of the interval. We are now in a position to generalize the gluing
construction in Section 6 to produce multiple singular points of convergence in the
interior of the interval.
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First, we fix two hyperkähler Tian-Yau spaces (X4
b−
, gb− , p−) and (X4

b+
, gb+ , p+)

with b−, b+ ∈ {1, . . . , 9}. Let {wj}mj=1 be positive integers satisfying

w1 + · · ·+ wm = b− + b+.

For each 1 ≤ j ≤ m, we choose the neck region N 4
wj

to be a Gibbons-Hawking

space over a finite flat cylinder (T2× [−Tj , Tj+1], g0) with wj monopoles. As in the
construction of Section 7, each pair of monopoles in N 4

wj
has definite and bounded

distance. Now let Gj : T2 × R → R be a global sign-changing Green’s function
which satisfies

−Δg0Gj = 2π

wj∑
s=1

δps
.

Then there are constants k−j > 0 and k+j < 0 such that

|∇k
g0(Gj − k−j z)| ≤ Cke

λ1z, z < −100 · β,
|∇k

g0(Gj − k+j z)| ≤ Cke
−λ1z, z > 100 · β,

k−j = −k+j = πwj .

Note that the first step of the gluing is to modify the above Green’s function by
adding a linear function: let Vj ≡ Gj + (�jz + β) be such that two adjacent neck
regions have compatible slopes, that is,

k−j+1 + �j+1 = k+j + �j and k−1 + �1 = 2πb−.

Immediately, we have that k+1 + �1 = 2π(b− − w1). Eventually, one can check that
at the right end of the last neck region N 4

wm
,

k+m + �m = 2π
(
b− −

m∑
j=1

wj

)
= −2πb+.

Applying the construction in Section 6, we obtain a manifold

(10.15) M =

X4
b−(T1)

⋃
Ψ1

N 4
w1

(−T1−1, T2)
⋃
Ψ2

. . .
⋃
Ψm

N 4
wm

(−Tm−1, Tm+1)
⋃

Ψm+1

X4
b+(Tm+1+1),

where the attaching maps Ψ1, . . .Ψm are chosen analogously to Ψ−, and Ψm+1

is chosen analogously to Ψ+. Furthermore, there is an approximate hyperkähler
triple ωM on M which is hyperkähler away from the damage zones and satisfies the
conclusions of Proposition 6.4. The weight function onM is defined in an analogous
way to (8.1), and the arguments in the previous sections are easily modified to prove
the existence of a hyperkähler metric ĝβ close to gβ .

To satisfy the matching conditions analogous to those in Section 6.3, the pa-
rameters Tj are then all chosen proportional to β so that the diameter of the neck

region N 4
wj
(−Tj − 1, Tj+1) in the metric ĝβ is proportional to β3/2. Thus, for

the sequence of unit diameter hyperkähler metrics ĥβ, these neck regions limit to
nontrivial intervals, therefore there are exactly m distinct singular points of con-
vergence tj ∈ (0, 1), j = 1 . . .m, in the interior of the interval. The analysis of the
regular collapsing regions and the bubbling regions is the same as above. �
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Proof of Theorem B. This is a consequence of the above construction. Indeed, let

N 4
w1

(−T1 − 1, T2), . . . ,N 4
wm

(−Tm − 1, Tm+1)

be the neck regions in (10.15) such that for each 1 ≤ j ≤ m, the neck region
N 4

wj
(−Tj − 1, Tj+1) has exactly wj monopoles with the same z-coordinate. Notice

that the degree of the nilmanifold fiber is determined by the ending slope of the
Green’s function. Corollary 2.6 implies that the degree of the nilpotent fibers will
jump by wj when crossing a singular fiber in N 4

wj
(−Tj − 1, Tj+1). One can also

see that there are wj Taub-NUT bubbles at each singular point tj ∈ (0, 1), j =
1 . . .m. �

Remark 10.7. If we take each collection of wj monopole points inN 4
wj

(−Tj−1, Tj+1)

to have distance exactly proportional to β−1 from each other (in the flat metric
on T2 × R), then the corresponding bubble limit will be a multi-Taub-NUT ALF-
Awj−1 metric instead of wj distinct Taub-NUT bubbles. It is also possible to obtain
nontrivial bubble trees. For example, if the pairwise distance of the monopole points
is proportional to β−2, then there will be a first bubble an ALF orbifold with a
cyclic orbifold point of order wj , and a deepest bubble an ALE-Awj−1 metric.

Appendix A. Uniform estimates for Hermite functions

In this appendix, we give the proofs of Lemma 4.5, Lemma 4.6, and Lemma 4.7
in Section 4.2.

Proof of Lemma 4.5. Since d
dzW(F(z),U(z)) = F ′′(z)U(z) − F(z)U ′′(z) = 0, we

obtain

W(F(z),U(z)) = W(F(0),U(0)) = 2F ′(0)U(0).
Moreover, direct computation gives that

F ′(0) = 2
√
j ·

ˆ ∞

0

e−t2th+1dt =
√
j · Γ

(h
2
+ 1

)
and U(0) = 1

2Γ
(

h
2 + 1

2

)
. Applying the Legendre duplication formula (see (1.2.3) in

[Leb72]),
Γ(t)Γ(t+ 1

2 )

Γ(2t)
=

√
π

22t−1
, t > 0,

we have that W(F(z),U(z)) = 2−h ·
√
jπ · Γ(h+ 1) > 0. �

Proof of Lemma 4.6. First, we prove the uniform estimates in item (1) of Lemma
4.6. By the definition of F and U , it suffices to prove that

C0 · eF (t0) ≤
ˆ ∞

0

eF (t)dt ≤ (1 +
√
π)eF (t0),(A.1)

C0 · eU(s0) ≤
ˆ ∞

0

eU(t)dt ≤ (1 +
√
π)eU(s0),(A.2)

where C0 > 0 is a uniform constant independent of h and j. We only prove the
first inequality. The second can be proved in exactly the same way.

To prove the integral estimates in (A.1), let us write

(A.3)

ˆ ∞

0

eF (t)dt =

ˆ 2t0

0

eF (t)dt+

ˆ ∞

2t0

eF (t)dt.
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In our computations, we will make a change of variable t = t0 · (1 + ξ) such that
ξ ∈ (−1, 1). Applying Taylor’s theorem to F (t)− F (t0), we have that

F (t)− F (t0) = F (t0(1 + ξ))− F (t0) =
F ′′(θ)

2
· t20 · ξ2,(A.4)

where θ is some number between t and t0. Notice that

F ′′(t) = −2− h

t2
, h ≥ 0.(A.5)

Since θ is between t0 and t ∈ [0, 2t0], (A.5) implies that F ′′(θ) ≤ F ′′(2t0) < 0.
Combining this with (A.4) then yields the following upper bound for the first term
in (A.3):ˆ 2t0

0

eF (t)dt = eF (t0)

ˆ 2t0

0

eF (t)−F (t0)dt ≤ eF (t0) · t0 ·
ˆ 1

−1

e
F ′′(2t0)

2 ·t20·ξ2dξ.

Immediately F ′′(2t0) = −
(
2 + h

4t20

)
, so we have that

ˆ 2t0

0

eF (t)dt ≤ eF (t0) · t0 ·
ˆ 1

−1

e−(t20+
h
8 )·ξ

2

dξ ≤
√
π · t0√
t20 +

h
8

· eF (t0) ≤
√
π · eF (t0).

Next, we estimate the second term in (A.3). The property F ′′(t) < 0 implies
that F ′(t) is monotone decreasing, so we have that F ′(t) ≤ F ′(2t0) for any t ≥ 2t0.
Applying Taylor’s theorem again, we derive that F (t) ≤ F (2t0)+F ′(2t0) · (t−2t0),
which in turn implies thatˆ ∞

2t0

eF (t)dt ≤ eF (2t0)

ˆ ∞

2t0

eF
′(2t0)·(t−2t0)dt =

eF (2t0)

−F ′(2t0)
.

Since F ′(t) < 0 for all t > t0, we have that F (2t0) ≤ F (t0). Also notice that

F ′(2t0) = − 4t20+h
2t0

< 0 with 0 < t0 < +∞. Hence,ˆ ∞

2t0

eF (t)dt ≤ 2t0
4t20 + h

· eF (t0) ≤ eF (t0).

Combining the above, we deduce thatˆ ∞

0

eF (t)dt ≤ (1 +
√
π)eF (t0).

The lower bound estimate in (A.1) also follows from Laplace’s method. Indeed,ˆ ∞

0

eF (t)dt ≥
ˆ 2t0

t0

eF (t)dt ≥ eF (t0)

ˆ 2t0(y)

t0(y)

e
F ′′(t0)

2 (t−t0)
2

dt ≥ C0 · eF (t0).

So the proof of (A.1) is done. The proof of (A.2) is identical.
Now we prove the asymptotics in item (2) of Lemma 4.6. For simplicity, we

will calculate the asymptotic behavior in y. For fixed h and j, as y → ∞, it is
straightforward to verify that

t0 = y +
h2

2y
+O(y−3) and s0 =

h2

2y
+O(y−3).(A.6)

These asymptotics imply that

F (t0) = y2 + h log y +O(y−2) and U(s0) = −h+ h log h− h log(2y) +O(y−2).

(A.7)
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First, we prove the asymptotics for F . As in the proof of item (1), we have that
ˆ ∞

0

eF (t)dt = eF (t0)

ˆ 2t0

0

eF (t)−F (t0)dt+

ˆ ∞

2t0

eF (t)dt

= t0e
F (t0)

ˆ 1

−1

e−t20ε
2+h(log(1+ε)−ε)dε+

ˆ ∞

2t0

eF (t)dt.

Notice that

lim
t0→∞

t0

ˆ 1

−1

e−t20ε
2+h(log(1+ε)−ε)dε =

√
π and lim

t0→∞
e−F (t0)

ˆ ∞

2t0

eF (t)dt = 0.

Moreover, by (A.6), limy→+∞ t0(y) → ∞. It follows that

lim
z→∞

F(z)
√
πe−

jz2

2 +F (t0(z))
= 1.

Combining the above limit and (A.7), the proof of (4.15) is complete.
In the case j ∈ Z+ and h > 0, we will prove the asymptotic behavior of U . We

write ˆ ∞

0

eU(t)dt = s0e
U(s0)

ˆ ∞

−1

e−s20ε
2+h(log(1+ε)−ε)dε

= s0e
U(s0)

ˆ ∞

−1

e−s20ε
2 · (1 + ε)he−hεdε.

We claim that

lim
s0→0

ˆ ∞

−1

(e−s20ε
2 − 1) · (1 + ε)he−hεdε = 0.

In fact, it is straightforward to see that for any s0 > 0, we have that −1 ≤ e−s20ε
2 −

1 ≤ 0. Also for any fixed h > 0,ˆ ∞

−1

(1 + ε)he−hεdε < ∞.

Applying the dominated convergence theorem yields

lim
s0→0

ˆ ∞

−1

(e−s20ε
2 − 1) · (1 + ε)he−hεdε = 0.

This completes the proof of the claim.
Next, by the definition of the gamma function,ˆ ∞

−1

(1 + ε)he−hεdε = eh
ˆ ∞

0

e−hsshds = ehh−h−1Γ(h+ 1).

Therefore,

lim
s0→0

ˆ ∞

−1

e−s20ε
2+h(log(1+ε)−ε)dε = ehh−h−1Γ(h+ 1).

Since limy→+∞ s0 = 0 and U satisfies (A.7), we eventually obtain (4.16). �

Proof of Lemma 4.7. First, we prove item (1). Let us begin by discussing the case
h = 0 and j ∈ Z+. Direct computations give that t0 = y and s0 = 0. So, by

definition, we have that F̂ (z) = jz2

2 and Û(z) = − jz2

2 . (4.17) now follows.
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Next, we prove the case j ∈ Z+ and h > 0. Let us denote a ≡ 2y. By elementary
calculations,

t0 − s0 =
a

2
, t20 + s20 =

a2

4
+ h, t0s0 =

h

2
.

So we have that

F (t0) + U(s0) = −(t20 + s20) + a(t0 − s0) + h log(t0s0)

=
a2

4
− h+ h log

(
h

2

)
= jz2 − h+ h log

(
h

2

)
.

Therefore e
̂F (z)+̂U(z) ≤ e−h+h log(h

2 ). Applying Lemma 4.5 then leads to

e
̂F (z)+̂U(z)

W(z)
≤ e−h+h log(h

2 )

√
jπ2−hΓ(h+ 1)

≤ C0.

Now we prove the monotonicity formulas in item (2). Let y =
√
jz and a = 2y.

Then, by definition,

F̂ = −a2

8
− (t0(a))

2 + at0(a) + h log(t0(a)),

Û = −a2

8
− (s0(a))

2 − as0(a) + h log(s0(a)).

We show that F̂ is increasing in a and Û is decreasing in a. To see this, just observe
that

dF̂

da
= −a

4
+ t0(a) +

(
− 2t0(a) + a+

h

t0(a)

)
t′0(a) =

√
h

2
+

a2

16
≥ a

4
,

so that F̂ (z)− ηz is increasing for z > 2η. Similarly, the monotonicity of Û(z)+ ηz
follows from the bound

dÛ

da
= −a

4
− s0(a) +

(
− 2s0(a)− a+

h

s0(a)

)
s′0(a) = −

√
h

2
+

a2

16
≤ −a

4
.

�
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