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1. INTRODUCTION

The main purpose of this paper is to describe a new mechanism by which Ricci-
flat metrics on K3 surfaces can degenerate. It also suggests a new general phenom-
enon that could possibly occur in the context of other canonical metrics.

Recall in 1976, Yau’s solution to the Calabi conjecture [Yau78| proved the ex-
istence of Kéahler metrics with vanishing Ricci curvature, which are governed by
the Riemannian analogue of the vacuum Einstein equation, on a compact Kéhler
manifold with zero first Chern class. These Calabi-Yau metrics led to the first
known construction of compact Ricci-flat Riemannian manifolds which are not flat.
Examples of such manifolds exist in abundance, and these metrics often appear
in natural families parametrized by certain complex geometric data, namely, their
Kahler class and their complex structure. As the complex geometric data degener-
ates, it is a natural question to understand the process of singularity formation of
the corresponding Ricci-flat metrics.

There is a great deal known about the limiting process of Einstein metrics under
a local volume non-collapsing assumption; see for example [And90,BKN89|[Che03|
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CCI7ICCT02l/[CDI3CNI5CNI3|CT05Tia90]. In general there is not much known
in the collapsing case. However, in the case of Einstein 4-manifolds, in a pioneering
work, Cheeger and Tian proved the first e-regularity theorem without any non-
collapsing assumption [CT06]. This result implies that there is a Gromov-Hausorff
limit which is smooth away from finitely many points, and the sequence collapses
with uniformly bounded curvature away from the singular set. But we note that
this result does not give any information on the degeneration near the singular set.
To understand the degeneration of a sequence of metrics
(M]n’gﬁpj) % (Xgmdooapoo)
more precisely near the singular set, one studies them at an infinitesimal scale:
assuming that the curvature blows up around the points p;, we choose rescaling
factors A\; — oo such that

n GH 5 ~
(11) (M] v)‘?gjvpj) - (Yoovdooapoo)

as j — oo after passing to a subsequence. The limit in (II]) can depend upon the
choice of rescaling factors A;, and we will call any such limit a bubble limit.

In this paper we focus on the case of Kahler-Einstein metrics in complex dimen-
sion 2. In fact we will only consider Ricci-flat Kahler metrics on the K3 surface, i.e.,
the oriented smooth 4-manifold underlying a simply-connected compact complex
surface with vanishing first Chern class. The Ricci-flat Kéhler metrics in this case
have holonomy SU(2) 2 Sp(1) so they are in fact hyperkdihler. The main result
of this paper presents a new gluing construction of metrics of this type, relying
crucially on their hyperkéhler property. We can also identify all bubble limits in
our construction, so our main result also gives some new understanding of the type
of degeneration possible near the finite singular set in the theorem of [CT06].

1.1. Gluing constructions of hyperkidhler K3 surfaces. There are many
known gluing constructions of hyperké&hler metrics on K3 surfaces in the litera-
ture, which we briefly review here.

1.1.1. Kummer construction. There are non-collapsing sequences of hyperkéahler
metrics on the K3 surface limiting to a flat orbifold T*/Z,. There are 16 singular
points of convergence, at which Eguchi-Hanson metrics occur as bubble limits; see
[LS94.[Donl2] and the references therein.

1.1.2. Codimension-1 collapse. In [Fosl9] Foscolo constructed a family of hyper-
kithler metrics on the K3 surface that collapses to the flat orbifold T3/Zy. The
collapse has bounded curvature away from finitely many points, and is given by
shrinking the fibers of an S'-fibration. In the simplest case, curvature blow-up
occurs at the 8 singular points of T3/Zy, where the bubble limits are given by
complete hyperkéhler spaces with cubic volume growth, which in this case are
ALF-Dy spaces. Let us also point out that the results of [Fosl9] have motivated
the study of codimension-1 collapse of Ga-manifolds to 3-dimensional Calabi-Yau
manifolds in [FHN].

1.1.3. Codimension-2 collapse. In [GW00], Gross and Wilson constructed a family
of hyperkahler metrics on elliptic K3 surfaces with exactly 24 singular fibers of type
I, which collapse to a singular metric dy, on a topological sphere X2 = S?, which
is non-smooth at the 24 points corresponding to the singular fibers. Away from the
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singular fibers, the metric is modeled on the Green-Shapere-Vafa-Yau hyperkahler
semi-flat metrics [GSVY90]. In a neighborhood of each singular fiber the metric
is modeled on the Ooguri- Vafa metric (see [GWOO0LIOV96]), which is an incomplete
hyperkahler metric constructed using the Gibbons-Hawking ansatz which we will
recall in Section

1.1.4. Codimension-3 collapse with torus fibers. In [TY90], Tian and Yau con-
structed complete non-compact hyperkéhler 4-manifolds with cylindrical ends by
removing smooth fibers from rational elliptic surfaces, and were proved in [Heil2] to
converge to their R x T2 flat asymptotic models at an exponential rate. Such spaces
are known as ALH spaces in the literature. It is then possible to glue together two
ALH spaces to obtain a family of hyperkdhler metrics on the K3 surface which
degenerates by developing a long neck modeled on T3 times an interval [CC20]. If
one rescales these metrics to have diameter equal to 1, then the Gromov-Hausdorff
limit is the unit interval and the bubble limits at each endpoint are the Tian-Yau
asymptotically cylindrical metrics. Gluing of asymptotically cylindrical geometric
structures is a very familiar construction in geometry; see for example [F1o91L[KS01]
for anti-self-dual metrics in dimension 4, and [Kov03|[HHN15] for holonomy G met-
rics in dimension 7.

1.2. Main results. The main result of this paper gives a new gluing construction in
which a family of hyperkahler metrics on the K3 surface collapses to a unit interval
and generically the collapse happens along a 3-dimensional Heisenberg nilmanifold
(i.e., a nontrivial S'-bundle over T?). Part of our motivation was an attempt to
understand the hyperkahler metric degenerations corresponding to Type IT complex
structure degenerations of polarized complex K3 surfaces. A guiding example is
when we have a family of quartic K3 surfaces Z; in CP3 defined by the equation
tq + f1fo = 0, where g is a general quartic and f; and fo are general quadrics.
The general fiber is a smooth K3 surface while the central fiber is a union of two
quadric surfaces X7 and X, intersecting transversally along an elliptic curve defined
by f1 = fo = 0. We would like to understand the behavior of the Ricci-flat metrics
on Z; in the cohomology class 2mc;(O(1)|z,) as t tends to zero.

In 1987, R. Kobayashi proposed a conjectural mechanism for Ricci-flat metrics
on K3 surfaces to degenerate into unions of Tian-Yau and Taub-NUT spaces; see
Cases (i) and (ii) on p.223 in [Kob90]. Moreover, Kobayashi also proposed an
identification of these limits with Type II polarized degenerations of complex K3
surfaces. In this paper, we focus mainly on the Riemannian geometric aspects of
this problem, so our main result gives a verification of Kobayashi’s expectation only
at the level of hyperkéahler structures. We do expect that some of our degenerations
can be used to characterize some Type II polarized degenerations of complex K3
surfaces.

Given a del Pezzo surface M and a smooth anti-canonical curve D C M, Tian-
Yau proved in [T'Y90] the existence of a hyperkéhler metric on M\ D, with interest-
ing asymptotic geometry at infinity. Namely, outside a compact set the manifold is
diffeomorphic to N x [0, 00), where N is an S!-bundle over D of degree d = ¢;(X)?,
and the metric is modeled on a doubly warped product so that as we move towards
infinity, the S' fibers shrink in size while the base torus D expands. The volume
growth rate of the hyperkéahler metric is 4/3 and the curvature decays quadratically.
We call such a hyperkahler metric a Tian-Yau metric throughout this paper; for
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more precise details, we refer to Section Bl The proof in [TY90] uses the Calabi
ansatz in a neighborhood of infinity and then solves a Monge-Ampeére equation, so
it is not a priori clear whether these metrics are unique or canonical in a suitable
sense. Nevertheless they provide candidates for the bubble limits of the degenera-
tion that we would like to understand.

In analogy with the cylindrical ALH gluing described above, one might expect
that gluing together two Tian-Yau metrics would result in a hyperkahler K3 surface.
However, an easy Euler characteristic argument shows that one cannot naively glue
the ends of the two Tian-Yau metrics together to even match the topology of a K3
surface. Geometrically, even though the end of a Tian-Yau metric is topologically
cylindrical, the metric itself is not. So we need to construct a neck region that
approximates the Tian-Yau ends on both sides.

A key novel ingredient of this paper is the construction of such a transition
region, specifically an incomplete hyperkéhler 4-manifold that can be viewed as
a doubly-periodic cousin of the Qoguri-Vafa metric. Recall that the Ooguri-Vafa
metric is the metric arising from the Gibbons-Hawking ansatz applied to a harmonic
function on S x R? with a pole on S* x {0}; or equivalently, a harmonic function
on R x R?, periodic in the first variable, and with poles along Z x {0} C R x {0}.
Our neck metric is instead constructed by applying the Gibbons-Hawking ansatz to
a harmonic function on the flat cylinder T? x R with finitely many poles (which we
call the monopole points) in T? x R. This is equivalent to a harmonic function on
R? x R, doubly periodic in the first and second variables, and with poles on a rank
2 lattice. For more details of this construction we refer to Section Pl Here we point
out that in analogy with the Ooguri-Vafa case, the resulting metric is incomplete
because T? x R is parabolic, hence admits no globally positive harmonic functions;
moreover, the two ends of this neck metric do indeed match up closely with the
ends of the Tian-Yau metrics.

Our main theorem says that it is in fact possible to “glue together” two Tian-
Yau metrics with a suitable neck region as above to construct families of Ricci-flat
metrics on the K3 surface with a nontrivial nilpotent collapsing structure.

Theorem A. Let by, b_ and m be positive integers satisfying
1<b: <9, 1<m<by+b_.

Then there exists a family of hyperkihler metrics ﬁﬁ on the K3 surface which col-
lapse to the standard metric on the closed interval [0, 1], i.e.,

(K3, hs) <5 (0, 1],d#?), B — oc.
Moreover, for each sufficiently large 8 >> 1, there exists a finite set S = {0,t1,. ..,
tm,1} C [0,1] and a continuous surjective map
Fs: K3 —[0,1],

which is almost distance-preserving, i.e., for some constant Cy > 0 independent of

57

C
|F5(p) — F(@)| - dj, (p.a)| < ?O ¥p,q € K3,
such that the following properties hold.
(1) (Regular collapsing regions) Denote by Tc(S) the e-tubular neighborhood of
S and R = [0,1] \ T.(S). Then for every sufficiently small € (depending
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on the minimal distance between the points in S) and k € N, there exists
Ck,e > 0 such that

sup |VkRm;LB| < Ches
Fi'(Re)
and for each t € R, Fgl(t) is diffeomorphic to an S*-fiber bundle over T?.

Furthermore,
Cy '8~" < Diamy (F5'(t)) < CoBf™,  Cy'B7% < Diam;, (1) < Cop~

(2) (Bubbling regions) The preimage FEI(TE(S)) can be written as the union of

different connected components S U ( U;nzl Sg) USS such that the following

properties hold.
a) For j € [1,m], there exists an x5 ; € SJ such that Fg(xs ;) — ts,
B,J € B\LB,j J

Co '8 < [Rmy, |(zp,) < CoB*

as B — oo, and rescalings of the metrics near xg; converge to Taub-
NUT metrics (see Example 1) in the pointed Gromov-Hausdorff
sense. In fact, it is possible to have several distinct Taub-NUT bub-
bles coming out of the same component S?; see Theorem [Bl for a more
precise statement.

(b) There exist z54 € S such that Fg(z,_) — 0, Fa(zg ) — 1,

Co 8% < [Rmy,_|(2p.+) < Cofp®

as B — oo, and rescalings of the metrics near g 4+ converge, in the
pointed Gromov-Hausdorff sense, to Tian-Yau metrics on a del Pezzo
surface of degree by, minus a smooth anti-canonical curve.

Remark 1.1. The Riemannian geometry of the regular collapsing regions is actu-
ally completely understood. For each ¢ € Re, Fy' 1(t) is a 3-dimensional Heisenberg
nilmanifold if the S'-bundle is nontrivial, and is diffeomorphic to T? otherwise.
Furthermore, the universal cover of a regular preimage F[; 1(lfj +€,tj41 — €) con-

verges to a hyperkéhler manifold (Us, §oo) with a Heisenberg or Euclidean group of
isometries according to whether the S'-bundle is nontrivial or trivial. An explicit
expression for g, in the Heisenberg case may be found in Section In particu-
lar, our construction gives a concrete example of Lott’s recent work classifying the
regular regions in collapsing 4-manifolds with almost Ricci-flat metrics (see [Lot20]
for more details).

For the precise definition of a 3-dimensional Heisenberg nilmanifold; see Section
21l These are S'-bundles over T2, and thus they have a degree which is only well-
defined up to sign. However, if one specifies a projection to an oriented T2, then the
degree is a well-defined integer. We denote by Nilg a 3-dimensional nilmanifold of
degree b, where we will always have a certain projection to an oriented T? in mind.
Let to = 0, tyy1 = 1, and let d; be the degree of a nilpotent fiber Nilf’lj on the
interval (t; +¢€,t;41—€), j=0,...,m, with dy = b_ and d,,, = —b;. The following
Domain Wall Crossing Theorem describes the possible jumps of the degrees of the
nilmanifolds upon crossing the singular regions.
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Theorem B. Given any m-tuple of positive integers (w1, ..., wy,) satisfying
m
ij =b_ + bJra
j=1
there exist examples in Theorem [Al with d; — dj+1 = wjtq, j = 0,...,m — 1.

Furthermore, near each singular point t;, evactly w; Taub-NUT bubbles occur.

Remark 1.2. This domain wall crossing phenomenon has been studied in the physics
literature, namely, it arises in Type ITA massive superstring theory; see [Hul98].

1.3. Outline of the paper. Our proof adopts the description, originally due to
Donaldson [Don06], of a hyperkéhler metric in terms of a triple of three symplectic
forms, a description which was also used, for example, in [CC20,[FLS17, [Fos19].
Let M* be an oriented 4-manifold with a volume form dvoly. A triple of 2-forms
w = (w1,ws,ws) is called closed if dw; = dws = dws = 0, and is called definite if
the matrix @ = (Q;;) defined by

1

5&)1‘ A Wy = Qij dVOlO

is positive. Given a definite triple w, the associated volume form is defined as

dvol, = (det(Q))3 dvoly,
which is independent of the choice of volume form dvoly. We denote by
Qu = (det(Q) 5 Q

the normalized matrix with unit determinant. A definite triple w = (w1, ws,ws)
is called a hyperkdhler triple if it is closed and the renormalized coefficient matrix

satisfies

(1.2) Q. =1d.

Note that (2] is equivalent to the equation

(1.3) S9Ny = 205(W] ), 1<i<i<B
There is a well-known algebraic isomorphism of homogeneous spaces
(1.4) SL(4,R)/S0O(4) = S0(3,3)/(SO(3) x SO(3))

(see for example [Sal89 Chapter 7]), so each definite triple w determines a Riemann-
ian metric g,, such that each wj is self-dual with respect to g., and dvol,,, = dvol,,.
If moreover w = (w1, ws,ws) is a hyperkahler triple, then g,, is a hyperkdhler met-
ric. Furthermore, wy 4+ v/—1ws is a holomorphic 2-form with respect to the complex
structure determined by w; which makes w; a Kéahler form.

Our proof will not directly construct a Ricci-flat metric on the K3 surface. In-
stead, we will construct a manifold M and a family of closed definite triples on M,
denoted by wé", all of which depend upon a gluing parameter 5. The associated
Riemannian metric will be denoted by gg. For § sufficiently large, we will then
perturb the approximate triple to obtain a hyperkahler triple, which will then yield
in particular a Ricci-flat Kéhler metric. In order to carry out this perturbation,
we will use the implicit function theorem (see Lemma [I0T]). As we will see in
Section [I0.]], this requires finding a right inverse to the operator

(15) %, = (24, ®1)QR? : (Q (M)BHT(M))RR? — (Q°(M)BQ%(M))QR?,
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where H T (M) denotes the space of self-dual harmonic 2-forms with respect to gg,
the operator %, is defined by

Dy, =d* @ dt QM) — QM) B (M),

where d* is the divergence operator and dT is the self-dual part of the exterior
derivative. We will refer to £, as the linearized operator. We will require a bound
for the right inverse of .2}, in certain weighted Hélder norms which is independent
of the gluing parameter 8. We will next give an outline of the main steps required
in order to achieve this bound.

In Section Pl we give some background on the Gibbons-Hawking ansatz. We
also define the Heisenberg nilmanifolds and describe the Calabi model space used
in the Tian-Yau construction from the Gibbons-Hawking point of view. Lastly, we
construct a harmonic function whose associated Gibbons-Hawking ansatz defines
the neck region N.

The Calabi model space will be described in Section 3] from a complex geometric
perspective, which will be used to obtain the precise asymptotic behavior of the
complete hyperkahler Tian-Yau spaces. The main result is Proposition [3.4] which
roughly states that a complete Tian-Yau space is exponentially asymptotic to a
Calabi model space, up to any arbitrary order of derivatives.

In Section @] we will establish a Liouville-type theorem for harmonic functions
which says that any harmonic function of sufficiently small exponential growth on
a complete hyperkahler Tian-Yau space has to be a constant. To prove this, the
asymptotics proved in Section Bl will be crucial. These will allow us to reduce our
problem to a question about harmonic functions on the Calabi model space, which
will be solved using separation of variables. This step is already quite involved as it
requires us to develop some new elliptic theory on a model space which is a doubly
warped product rather than just a cylinder.

A 1-form ¢ is said to be half-harmonic if it is in the kernel of 2, i.e.,

(1.6) d*¢=0, d"¢=0.

In Section Bl we will prove a Liouville theorem for half-harmonic 1-forms on a
complete hyperkéhler Tian-Yau space (see Theorem [5.1]). This will be crucial later
in the proof of the key uniform estimate (Proposition [@.2)) required for our gluing
construction. An important observation here is that equation (@) is equivalent to
the (0, 1)-component of ¢ satisfying 9*¢%! = 9¢%! = 0 for any choice of compatible
integrable complex structure. This will allow us to invoke tools from complex
geometry.

In Section [0l we will complete the construction of the neck region and construct
a closed almost hyperkéahler triple on a certain manifold M. We will also describe
some topological invariants of M. Note that at this stage it would be difficult to
show directly that M is actually diffeomorphic to K3, a fact which will follow easily
once we have shown that it admits a hyperkahler metric.

Section [l will focus on the rescaling geometry of the manifold M. This leads to
a decomposition of M (see Section [[1] and [(2)) into 9 different regions, labeled I,
IL, TIL, IV, V4, V1L, with each of these regions exhibiting different regularity and
convergence behaviors. In particular, we will describe all of the rescaled Gromov-
Hausdorff limits for base points in each of the various regions.

In SectionsRland [@ we will set up the weighted analysis package and prove some
technical results. The first step in Section [l is to define weighted Holder spaces
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which are consistent with the different collapsing behaviors in different regions of
M. The remainder of Section [8 will then consist of proving the weighted Schauder
estimate in Proposition In Section [@ we will prove a uniform injectivity esti-
mate for the operator Z,,; see Proposition

Existence of a bounded right inverse to the operator .Z,, for 3 sufficiently large
will be proved in Section [I0} see Proposition In the remainder of Section [I0]
we will then complete the proofs of Theorems [A] and [Bl

2. THE GIBBONS-HAWKING ANSATZ AND THE MODEL SPACE

We first recall the Gibbons-Hawking construction of 4-dimensional hyperkahler
structures with an S! symmetry. Let (U, hyy) be a 3-dimensional parallelizable flat
manifold. Then the metric hyy = €2 + e2 + dz?, where ey, 2, dz are global parallel
1-forms. Let V be a positive harmonic function on U so that *dV is a closed 2-form.
We assume further that the de Rham class [5- % dV] lies in H2(U, Z) so that *dV is
the curvature form of a unitary connection —v/—16 on a circle bundle 7 : 9t — U.
Then

g=Vr*hy +V '0®0
is a hyperkihler metric on 9 invariant under the S'-action. This is called the
Gibbons-Hawking ansatz. The corresponding triple of symplectic forms is given by

(2.1) w= (w1, w2,w3) =(dzA0+ Ve Nea,er N0+ Vea Adz,ea A0+ Vdz Aey).

The triple w satisfies the hyperkéhler triple equations (L3]).

By definition the metric g depends not only on the harmonic function V' but also
on the choice of connection 6 with curvature form *dV. One can check that gauge
equivalent connections lead to isometric metrics; so in essence g depends only on the
gauge equivalence class of 8. Different gauge equivalence classes differ by tensoring
with a flat connection, and the set of isomorphism classes of flat connections is
given by H'(U,R)/H (U, Z).

Conversely, any 4-dimensional hyperkahler metric admitting a tri-holomorphic
Killing symmetry is locally given by the Gibbons-Hawking ansatz. To see this we
notice that in the formula above, we can intrinsically interpret V! as the norm-
squared of the Killing field, and the projection map 7 as the hyperkdhler moment
map.

To get more interesting examples one often allows V' to have isolated poles
Pr = {p1,...,pr} such that near each p;, V can be written as % -+ h; where r; is
the distance function to p; and h; is a smooth harmonic function. Then the corre-
sponding metric g is defined on a manifold 9t admitting a projection 7 : 9t — U,
such that 7 is a circle bundle over U \ Py and near each point p;, 7 is modeled on
the Hopf fibration

g C? = R (21,22) — (\z1|2 - |22|2,2Re(z1zQ),21m(21z2)).

Example 2.1. Let U = R3. If V = o (a positive constant), then (9,g) is a
flat product R® x S*. If V = %, then (91, g) is flat Euclidean space R* and the
map 7 is exactly the Hopf fibration. If V, = o + 217 then (90, g) is the Taub-NUT
space. This is again diffeomorphic to R* but has cubic volume growth and the
length of the S* fibers approaches a positive constant at infinity. Notice that as o
varies, these metrics are isometric up to dilation. This is most easily seen using the
above intrinsic description. We take the metric g; constructed using V; =1 + %
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and rescale g, = 0~ 'g;. Then the length of the S* orbits becomes (JVl)’1/2 and
the hyperkihler moment map becomes 7, = o~ 'w. Thus, g, can be written in
Gibbons-Hawking form with potential oV;.

By taking multiple poles, we similarly obtain other hyperkahler manifolds which
are asymptotic to quotients of either R* or Taub-NUT space by cyclic groups. These
are referred to in the literature as ALE/ALF spaces of Ai_1-type, respectively. See
[Min1i] for a complete theory of ALF-Ay_; spaces.

Example 2.2. Let U = S' x R? and let V be a Green’s function with exactly one
pole on St x {0}. In [GWOQO] V is constructed by passing to the universal cover
U= R3, where the lifted function Visa periodic Green’s function constructed using
a Weierstraf} series. V is only positive in a certain bounded open set in U. The
corresponding hyperkahler metric on this bounded open set is called the Ooguri-
Vafa metric. With one particular choice of a compatible complex structure, 9t
becomes a holomorphic elliptic fibration over a disc D C R? = C, and the singular
fiber has monodromy of type I;. The Ooguri-Vafa metric plays a crucial role in
the work of Gross-Wilson [GW00] on collapsing Calabi-Yau metrics on elliptic K3
surfaces with exactly 24 singular fibers of type I;.

In the following subsections, we will consider Gibbons-Hawking spaces (90, g)
whose base is a large open subset of a flat cylinder U = ’]I‘iﬁy x R,. In Section 2.2]
we take V' to be linear in z. This yields the model space at infinity of the Tian-
Yau metrics [TY90] as well as of the gravitational instantons with 74/3 volume
growth and r~2 curvature decay from [Heil2]. In this situation, 901 is diffeomorphic
to the product of a line and a 3-dimensional Heisenberg nilmanifold. We begin by
collecting together some useful basic facts about Heisenberg nilmanifolds in Section
21 In Section we then consider a doubly-periodic analog of Example 2.2] over
T2 times a bounded interval and show that this is asymptotic to the model space
of Section near the ends of the interval. Ultimately this new metric will serve
as the neck region in our gluing construction.

2.1. The Heisenberg nilmanifolds. The 3-dimensional Heisenberg group is

1
H(LLR)=< |0
0

oS =8

t
y|: z,y,teR
1

Fix € > 0 and 7 € C with I'm(7) # 0 and define a lattice A = eZ(1,7) C R = C.
Let 71 = Re(7) and 75 = Im(7). Then A = Area(R2 ,/A) = €1y For b € Z, the
Heisenberg nilmanifold of degree b, denoted by Nil? (e, 7), is the quotient of H(1,R)
by the left action generated by

(z,y,t) = (x + €, y,t +ey),
(l‘,y,t) = ($+€7'17y+€7'2,t+ Ele),
(z,y,t) — (x,y,t+Ab_1).

Note that the forms

(2.2) dr, dy, 0, = (2rbA~Y)(dt — zdy)
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are a basis of left-invariant 1-forms on Nil}. Also, it is clear that Nil} is the total
space of a degree b circle fibration

(2.3) St — Nil; = T? =R2 /A
The following result will be needed later in Proposition

Proposition 2.3. For Nil} with b # 0, we have by (Nil}) = by(Nil}) = 2, and the
de Rham cohomology group H'! (Nil‘g) is generated by m*dx and w*dy.

Proof. The Gysin sequence associated to (23]) yields
(2.4) 0 — HY(T?) = HY(Nil}) — H(T?) 2 H2(T?) — - -

Since the Euler class e of the bundle is b times a generator of H?(T?), the mapping
Ue : R = H%(T?) — H?*(T?) = R is just multiplication by b, hence is an isomor-
phism. Consequently, 7* : H'(T?) — H*(Nil}) is also an isomorphism. Since Nil}
is a compact orientable 3-manifold, Poincaré duality implies that b; = bs. O

For b € Z,, we define the Heisenberg nilmanifold Nilib to be the quotient of
H(1,R) by the action generated by

(T, y,t) = (z+ € y,t —ey),
(xvy’t) = (I+€Tl7y+€7-2at - Gle),
(,y,t) — (a:,y,t—Ab_l).

Note that the generated action is conjugate to the previous action by the mapping
(z,y,t) = (—z,—y, —t), and the forms

de, dy, 0_,= (2rbA™)(dt + zdy)
are a basis of left-invariant 1-forms on Nilz.

2.2. The Gibbons-Hawking model space. Consider an oriented torus T? with
a flat metric of area A and let U = ’JI‘?W X R,~o, where we have fixed a choice
of an orthogonal frame {ej,ea} on T? such that gp2 = A(e? + e3). Let V(z) =
27bz - A=1 for a positive integer b > 0. Fixing a connection form 6 such that

df = 27b - A~'dvolyz, the corresponding hyperkihler Gibbons-Hawking metric g is

given by
2.5 = i)+ A

29 9= =5 (om +5%) + 50"

As before we denote by 9 the underlying manifold of g. It has one complete end as
z — oo and one incomplete end as z — 0. Moreover, for each zy > 0, the level set
{z = 2} is a Heisenberg nilmanifold Nil}(e,7) with a zo-dependent left-invariant

metric, where 7 denotes the modulus of our flat 2-torus in the upper half-plane and

A = é®1y as in Section 21} Making the substitution z = (3/2)s%/% and then scaling

appropriately, the Gibbons-Hawking metric g takes the form

2mwbz

A N2
2, .2/3 —2/3
ds* 4+ s/ g2 + s (37rb0) .

In this form, it is easy to see that the volume growth is ~ s*/3 and that [Rm]| ~ s~2
as § — 0o. Omne can also show using the Chern-Gauss-Bonnet formula that the
L?-norm of Rm is finite.
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A very convenient property for our purposes is that if we do change the con-
nection 1-form 6 by a flat connection, then the associated Gibbons-Hawking metric
[23) actually only changes by a diffeomorphism (although this diffeomorphism nec-
essarily breaks the S!-bundle structure on 9). To see this, fix any choice of § such
that df = 2rbA~! dvolr=. Note that we can always arrange by parallel transport in
the z-direction that the dz-component of § vanishes. Then we only need to consider
the case that 6 gets changed by the pullback (under the projection MM 5 U — T?)
of a parallel 1-form 1 on T2. Write 7 = v J dvoly2, where v is a parallel vector field
on T2. Let © be the f-horizontal lift of v to 90T and let fs be the 1-parameter group of
diffeomorphisms generated by o, which covers a 1-parameter group of translations
on T2. Then

di( F50) = 6 F2(d6) + d(6 2 70) = 27bA=1 (i o7 (dvoles)) = 2xbA=1r*r,
S

using the fact that dfs|,(6],) for all z € M. Thus,

=0, ()
[0 =0+ 2wbsA™ .

This shows that any two possible choices of 8 with vanishing dz-component differ
by the lift to 91 of the translation action of T? on itself. Consequently, the corre-
sponding hyperkéahler metrics (28]) are clearly isometric as well. We note that with
the particular choice 8 = 6, from (Z2)), these diffeomorphisms can be written down
explicitly as follows: for all p,q € R, the mapping

Sp(x7y7t7z) = (:E _Q7y+p7t+px7z)
descends to a diffeomorphism of Nil} (e, 7)., ,+ x R, which satisfies
© 0y = Oy + 20b A~ (pdx + qdy).

Remark 2.4. View the flat torus T? as an elliptic curve E of modulus 7 with
respect to the complex structure J defined by Je; = e;. Then there is exactly one
g-parallel complex structure Jy on the total space 9 that makes the projection
map to F holomorphic. This choice of complex structure realizes 9t as an open
subset of the total space of a degree b holomorphic line bundle L over E (more
precisely, as a tubular neighborhood of the zero section of L with the zero section
removed). However, we can choose a different g-parallel complex structure J; on 9t
such that J10 = zdz. With respect to J; we can view 91 as a holomorphic elliptic
fibration over a punctured disc in C. The monodromy of this fibration is given by

the matrix € SL(2,Z); see [Sco83l pp. 469-470] for more details. This gives

1 b
0 1
a different compactified model for 9t where the compactifying divisor is a singular
fiber of Kodaira type I. The Jy-Kéhler form of our hyperkéhler model metric
is then given by an appropriate semi-flat ansatz [GSVY90,[GW00], and provides
the model at infinity for the gravitational instantons with volume growth ~ r4/3
and curvature decay ~ 72 constructed in [Heil2]. We will pursue this observation
further in [HSVZ], connecting the complete hyperkdhler metrics of [TY90] and of
[Heil2] by global hyperkéhler rotations.

2.3. Green’s function on a flat cylinder. The neck region in our gluing con-
struction is given by a doubly-periodic analog of the Ooguri-Vafa metric. To con-
struct this metric using the Gibbons-Hawking ansatz, we first need to construct a
Green’s function V., on (T? x R, gg), where T? is any flat 2-torus. We also need
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to determine the asymptotics of Vo as |z| — oo in order to ensure that the neck
matches the Calabi model space from Section on both ends.

It is known that the flat cylinder T? x R is parabolic, namely, it does not admit
a positive Green’s function. In fact, Cheng and Yau proved that any complete
non-compact Riemannian manifold with Vol(Bg(p)) < CR? must be parabolic; see
Theorem 1 and Corollary 1 in [CY75].

We now construct a particular sign-changing Green’s function V. Equip Tﬁyy X
R, with the flat product metric go. Fix a point p on T? x R with z(p) = 0. For
R > 0 let Vg denote the unique function on T? x [—R, R] satisfying

_AgOVR = 271'5[,, z e (—R, R),
VR = 0, z==R.
The normalization of the right-hand side is precisely chosen in such a way that Vi =
% + O(1) near p, where r denotes the go-distance to p. Thus, the 4-dimensional
Gibbons-Hawking metric associated to Vi (or Vg 4 C for any constant C') extends
smoothly across p; cf. Example Il For any R > 0, Vi is a positive Green’s

function that is vanishing on the boundary {z = £R}. If Ry > Rj, then applying
the maximum principle, Vg, (x) > Vg, (x) for every © € Bpg, (p). Let us define

Cr = sup Vg.
0B (p)

Then it follows from the parabolicity of T? x R that Cr — oo as R — co. By
[LT87, Theorem 1], Vg(z,y,z) — Cr converges to a function V. (z,y, z) uniformly
on compact subsets of (T? x R) \ {p} as R — oo. Moreover, Vo, < 0 on the
complement of B;(p) and

—Ay, Voo = 276, on T? x R.
Notice also that Vo, is symmetric in z by construction.

Theorem 2.5. Let V., be the sign-changing Green’s function as defined above.
Then there exists a constant ¢, € R such that for all k € N,

|V§O (Voo —k1z—¢p)| = O(efm‘z‘), 7z — oo,
where

(2.6) A

by — T
T Areag, (T?)

and A1 > 0 is the smallest positive eigenvalue of —Arz.

>0

Proof. Consider the fiberwise average
1
=—— dvol .
Voo (Z) Areago (T2) /]1‘2 x{z} Voo (I7 v Z) Ol (x7 y)

This is well-defined, smooth in z for z # 0, and continuous at z = 0. For z # 0, we
have that

1 d?V.
/! _ o0
27) Voo 2) = Area,, (T?) /sz{z} ( dz? )dVOIgO
Ao 9 /.
= _ Ar2Vy,) dvol,, = 0.
Areago (TQ) 11‘2><{z}( ' ) 7
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This implies that V. (z) is a piecewise linear function. By construction,
lim| ;|40 Voo (, y, 2) = —00. Then for all z > 0,

(2.8) V. (z) = constant = k4 < 0.

Denote Dy = Diam,, (T?). Choose Ry > 10Dy large enough so that Vi (z,y,2) <
—1 on the set (T? x R) \ Bg,(p). Then for any fixed ¢ € (T? x R) \ Bag,(p) and
r € (2Dg,4Dy), we can apply the Harnack inequality to the harmonic function Vi,
which itself is negative in the geodesic ball B,.(q) C (T*xR)\Bg, (p). More precisely,
passing to the universal cover and applying the standard Harnack inequality for
positive harmonic functions on a fixed ball in R3, we see that there is a uniform
constant Cy > 0 depending only on Dy > 0 such that for all wy,ws € B,.(q),

1 <V(’LU1)<

2.9

(29) Co ~ Vaol(wz) =

Since the fiber average Vo (z) of Vi is linear in z with slope k. < 0, (29) yields
that

(2.10) —Coz < Vyo(z,y,2) < —Chz

for z > 1, where the constants C; and Cs depend only on the constants Cy and
k.
We denote by A= = {);}32; the positive spectrum of —Arz and expand Vi

according to the eigenfunctions of Arz along the torus fiber T2 x {2z} for each fixed
z > 0. This yields

Voo(xvya Z) = (kJrz + C+) + ij(z)hj(xay),

j=1
where k4 < 0 is the constant of (Z.8)) and where

[i(2) = N fi(2), —Aq2hy = Ajhy, /Tz |y =
Immediately,
fi(2) = czem VA 4 eV,
Notice that

/ Viol? = (k2 +e0)* + ) |fi(2)%
T2x{z} 1

Jj=

By the linear growth property (2.10), we see that ¢; = 0 for all j € Z,. Therefore,

(211) / ‘Voo — (k+2§ + C+ Z |C |2 ( —2\/_2) as z — +OO,
T2 x{z}

where A > 0 is the minimum of Ag2. To see (ZI1]), note that the series converges for
z = 1. Applying elliptic regularity to the harmonic function Vo, = Voo — (k2 4c¢4),

Viollw22(B, 20 < ClViollL2(B,(q)) < Ce™2VA1

7‘/2
for all balls B,.(q) as above, where C' depends only on the diameter and on the
injectivity radius of T2. By the 3-dimensional Sobolev embedding W22 < C’O’%,

Voo (@9, 2) = (k2 + )] = O(e” VA as 2 — +oc.
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Standard elliptic regularity then shows that for any k£ € N,
Ve (Voo (@9, 2) — (kg2 + e1))] = O(e™V™7) as 2 — +o0

The same argument applies in the case z — —c.
Now we prove the slope relation (Z.]). Fix R > 0. Then by Green’s formula,

VI_(R) = V.(~R) = / AV...
T2 x[—R,R]

Thus, by the definition of k4 and the analogous definition of k_,
by Aveay, (T) — k- Aveay, (T?) = —2r.
It follows that

2m
k- —ky = ——~-
7 Areay, (T2)
Since Vo is symmetric in z, it holds that k&= = —k; and c— = c; (we denote
Cp=C- =cq). a

It is straightforward to use superposition to extend the above construction to
the case of multiple poles. Precisely, we have Corollary

Corollary 2.6. Let (T? x R, go) be a flat cylinder with a flat product metric go.
Given a finite set Ppy = {p1,...,Pmo} C T2 x R such that Y%, z(pm) = 0, there
is a sign-changing Green’s function Vi with

mo
Dy Voo =27 p,.
k=1
There also exist linear functions Ly (z) = kyz with
T™mo

W=k = Rrcay, (1)

>0

such that for all k € N,
(2.12) [V (Voo = La)| = O(eVA1))
as z — Fo0o, where A1 > 0 is the smallest positive eigenvalue of —Are.

Proof. By a translation in z, Theorem produces a Green’s function V; with a
pole at p; and which is symmetric in z about z(p;). The condition Y "% | z(pp) = 0
ensures that V,, = 2211 V. will have the same constant term at both ends, which
can then be removed by subtracting a constant. (Il

In Section [6] we will use V to construct a potential V3 which is positive in a
large region, and such that [5- x dVj] is an integral class in H?(U, Z). This will be
used to define our neck metric.

3. THE ASYMPTOTIC GEOMETRY OF TIAN-YAU SPACES

In this section we review the Tian-Yau construction [TY90] of complete Ricci-flat
Kahler metrics on the complement of a smooth anti-canonical divisor in a smooth
Fano manifold. In complex dimension 2 these metrics are hyperkahler and will be
used in our gluing construction in Section [6l

The Ricci-flat metrics constructed in [TY90] are asymptotic to the Calabi model
space at infinity. We first give the definition of the latter. Let D be an (n — 1)-
dimensional compact Kéhler manifold with trivial canonical bundle and let L — D
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be an ample line bundle. We fix a nowhere vanishing holomorphic (n — 1)-form Qp
on D with
1

(3.1) 5/D(\/—_l)(n_l)zQD AQp = (2mey (L)L

By Yau’s resolution of the Calabi conjecture [Yau78|, there exists a unique Ricci-flat
Kéhler metric wp € 2mweq (L) satisfying the equation

wg_l = %(\/——1)(”_1)29,3 AQp.
Up to scaling there exists a unique hermitian metric h on L whose curvature form
is —v/—1wp. We now fix a choice of h. Then the Calabi model space is the subset C
of the total space of L consisting of all elements £ with 0 < |£], < 1, endowed with
a nowhere vanishing holomorphic volume form Q¢ and a Ricci-flat Kéhler metric
we which is incomplete as |€|p, — 1 and complete as ||, — 0. The holomorphic
volume form ¢ is uniquely determined by the equation

Z Qc = p*QD7
where p : C — D is the bundle projection and Z is the holomorphic vector field

generating the natural C*-action on the fibers of p. The metric we is given by the
Calabi ansatz

n - nt1
(32) we = —=V/T100(-log |¢)
and satisfies the complex Monge-Ampere equation
1 —
W = 5(,/—1)”2% A Qe,

hence is Ricci-flat. Define z = (—log|¢|?)1/™. It is easy to check that z is the
we-moment map for the natural S'-action on L. Then the we-distance function r
to a fixed point in C satisfies

n+1 n+1

Clz7 <r<(Cz2

uniformly for all z > 1.

If n = 2 then D = FE is an elliptic curve and the Calabi model space is hy-
perkéhler and agrees with the Gibbons-Hawking construction from Section To
see this, we choose A = 27 deg(L) and a flat K&hler form wr = Ae; A ez and a
holomorphic 1-form Qf = A1/2(61 ++v/—1es) on E such that wp = @QE AQg.
Then the Calabi ansatz produces a holomorphic 2-form ¢ and a Ricci-flat Kéhler

form we on C such that wg = %QC A Qc. In particular,

(3.3) we = (we, Re(Qe), Im(Q¢))
is a hyperkahler triple.

Proposition 3.1. The hyperkdhler structure we is diffeomorphism equivalent to
the one given by the Gibbons-Hawking ansatz with V = z on Nil3(e,7) x (0,00) as
in Section 22, where b = deg(L), T is the modulus of E in the upper half-plane,
A=21b=e2Im(7), and 0 = 0.

Proof. The natural S*-action on C obviously preserves wc, so we must be given
by the Gibbons-Hawking construction. It suffices to determine the hyperkahler
moment map 7 = (w1, w2, 73) and the potential V. We already know that the wc-
moment map is given by m = (—log|£[2)!/2 = 2, and it is easy to check that the
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Qc-moment map mo++/— 173 equals the bundle projection p : C — F composed with
the Abel-Jacobi isomorphism F — C/periods, x — f;o vV —1Qg, for an arbitrary
but fixed basepoint xy € E. Also, V! is the norm-squared of the Killing field, so
that

V= (Slog f¢lf) P =2t

The Calabi construction provides us with an explicit realization 9t = C of the total
space of the S'-bundle and with a specific choice of connection form 6 given by the
Chern connection of L with respect to h. The diffeomorphism equivalence to the
model Nilg (e,7) x (0, 00) with connection form 6 (after rotating Q¢ to eV-leQ, if
necessary) follows from the discussion in Section O

Remark 3.2. In [TY90] the volume growth and curvature decay rates of the n-
dimensional Calabi metric w¢ are estimated as O(rn%l) and O(r*n%r1 ), respectively.
When n = 2, this suggests that |Rm| is borderline not in L?. However, while the
volume estimate is sharp for all n, the curvature estimate is sharp only for n > 3.
For n = 2, the leading term in the asymptotic expansion of the curvature vanishes
because the Calabi-Yau metric on an elliptic curve is flat, and the true curvature
decay rate of we for n = 2 is O(r~2). This was also pointed out by R. Kobayashi
in [Kob90] but is perhaps most easily seen in the Gibbons-Hawking picture.

We now explain the Tian-Yau construction [TY90] of complete Ricci-flat Ké&hler
metrics asymptotic to a Calabi ansatz metric at infinity. Let M be a smooth Fano
manifold of complex dimension n, let D € \Kﬂjﬂ be a smooth divisor, and let L
denote the holomorphic normal bundle of D in M. Then D has trivial canonical
bundle and L is ample, so in particular we can choose a holomorphic volume form
Qp on D which satisfies ([3.I]). We fix a defining section S of D, so that S~! can
be viewed as a holomorphic n-form Qx on X = M \ D with a simple pole along
D. After scaling S by a nonzero complex constant, we may assume that Qp is the
residue of Qx along D. (In practice this means that Qx is asymptotic to {2¢ near
D with respect to a suitable diffeomorphism between tubular neighborhoods of D
in M and of the zero section in L.) Lastly, we fix a hermitian metric iy on KI\_/I1
whose curvature form is strictly positive on M and restricts to the unique Ricci-flat
Kaéhler form wp € 2me1(L) on D. Then

n+1

=" 185(— 2
wx = n—|—1\/ 100(—log|S|3,,,)

defines a Kéahler form on a neighborhood of infinity in X. In fact, by multiplying
has by a sufficiently small positive constant, we can arrange that wx is defined and
strictly positive on all of X. As expected, wx is then complete and asymptotic
to we, where the hermitian metric h used in ([B:2) is simply the restriction of hps
to K];[l\ p = L. In particular, wx is asymptotically Ricci-flat and the wx-distance
function rx to any fixed basepoint in X can be uniformly estimated by

_ ni1 5
C 1(_10g‘5|i1\4) 2n S X S C(—log‘5|i1\4) 2n as ‘S|h1\4 - 0

Theorem [33]is proved in [TY90] by solving a complex Monge-Ampere equation with
reference metric wy. The exponential decay statement follows from Proposition 2.9
in [Heil2].
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Theorem 3.3 ([TY90,Heil2]). There is a smooth function ¢ on X such that wry =
wx + V—100¢ is a complete Ricci-flat Kdhler metric on X solving the Monge-
Ampere equation

1 _
UJ%Y = 5(\/—1)nZQX AQx.
Moreover, there is a constant 69 = do(M, D) > 0 such that for all integers k > 0,

_n__
IVE blox = O(e™2"5 ) as rx — oc.

We remark that polynomial decay estimates were obtained in [KKI10]. To make
Theorem [B:3] useful for our gluing construction in this paper, we need to replace wy
by the Calabi model metric we in [3.3]). This amounts to estimating the convergence
of wx to we.

Proposition 3.4. There is a diffeomorphism ® : C\ K' — X\ K, where K C X is
compact and K' = {|¢|n > %}, such that the following hold uniformly as z — +o00:

(a) We have the complex structure asymptotics
IVE (@*Jx — Je)lge = O(e™ 372" for all k > 0,¢ > 0.
(b) We have the holomorphic n-form asymptotics
IVE (@*Qx — Qc)lge = O(e™ 79" for all k >0, > 0.
(¢) There is some positive constant
(3.4) 6>0

such that for all k > 0 the Ricci-flat Kdhler metric wry satisfies the asymp-
totics

* o
IVE(@*wry — we)lge = O(e™ 7).

Proof. One can prove as in [Don96, Section 2] that (b) implies (a). The point is
that Qx uniquely determines Jx because Jx is determined by knowing the subspace
A}];(() C ALX, and we have AlJ’)?X = ker T, where T : ALX — A(’CLHX is the C-linear
map defined by Ta = Qx A a. See [CHI3, Lemma 2.14] for details.

Item (b) can be proved by following the steps of a similar estimate in the asymp-
totically conical setting in [CHI5| Section 2.2]; see also [Li20]. Fix any background
hermitian metric ¢ on M. Via g-orthogonal projection, the holomorphic normal
bundle L = Np = T*9M|p/T*°D is naturally isomorphic to the g-orthogonal
complement (T19D)+ ¢ T°M as a C> complex line bundle, and the g-normal
exponential map defines a diffeomorphism from a neighborhood of the zero section
in (T1°D)* to a neighborhood of D in M. Let ® be the composition of these two
maps. Then & is a diffeomorphism from a neighborhood of the zero section in L to
a neighborhood of D in M, and the restriction of ® to the zero section is Idp.

Fix a point on D. Let (z,...,2,-1,w) be local holomorphic coordinates on M
centered at this point such that D is locally cut out by w = 0. Then (21, ..., 2,—1,w)
may also be viewed as local holomorphic coordinates on L corresponding to the coset
of normal vectors w(% +TH9D) € L based at the point (21,...,2,-1,0) € D. In
these coordinates we may write

(3.5) Qx = <% +g(z,w))dz1 Ao ANdzp—1 A dw,
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Qe = Mdz1 A...Ndzp_1 A dw,
w

where f, g are local holomorphic functions with f(z) # 0 for all z. In order to

compare ®*Qx to Q¢, we define new C* complex coordinates (21, ..., 2,,_1,w) on
M by
O(zj0®
(3.6) 2i(z,w) = z; — a;(z)w, where a;(z) = Ozo2) .
Ow (20

Using the fact that d® is complex linear at w = 0 and that ®.(Z) = 2 +
S ai(2) 22 at w =0, it is easy to check that these new coordinates satisfy

®*dz} = dz; and ®*dw = dw at w = 0.
Via a Taylor expansion, it follows directly from this that
(3.7) @'zl =2z + A;w? 4+ Byww + C;w? and ®*w = w + Aw? + Buww 4+ Cw?

with smooth functions A;, B;,C; and A, B,C. We now express the coordinates
(z,w) in [BA) in terms of (z/,w) using (B8], and then use ([B.7)) to compare ®*Qx
to Q¢. The first step yields

!
Qx = f(z)dzll/\.../\dz;l_l/\dw+T/\dw,
w
where T extends to a smooth complex (n — 1)-form on a neighborhood of D in M.
Then
O*0x — Q¢
(3.8) _ (A'+B'§+c'§—§)(r'Adw)+(A”+B"§+c“3—3)(r"Adm+(w@'+m@“+%@“’)

1+ Aw+Bw+CZ
+ ®*Y A (dw + we' +we"),

where A, B, C', A", B",C" Y'Y ©,0", 0" ¢,¢" extend to smooth complex
functions, (n — 1)-forms, n-forms, and 1-forms on a neighborhood of D in L, re-
spectively. The reason for writing the right-hand side of ([B:8)) in this way is that a
smooth complex n-form is small with respect to ge¢ if it either contains an explicit
factor of w or w in front, or if it splits off a wedge factor of dw or dw. Unfortunately
the right-hand side of (B8] is not smooth at the divisor but all non-smooth terms
are due to factors of w/w which satisfy the same estimates as smooth functions.

It remains to prove appropriate estimates on \V’;CF lge for all k& > 0, where F'
is either a smooth function on a neighborhood of D in L, or F = w/w. To begin
with, note that

(3.9)  |VE zilge = O(1) for all k >0,
(3.10) lw| = 0(e=2*"), |V§cw\gc =0 G forall k > 1,¢ > 0,
(3.11) lw™l = 0(ez*"), [VE w™l|, = O(e'z+9") for all k > 1,¢ > 0.

Here the bound |z;| = O(1) is clear and the bounds [w®!| = O(e¥2%") follow from
the definition of the moment map z = (—log|¢|?)*/" together with the fact that
€]? = |w|?e~? with ¢ independent of w,w. The higher derivative bounds in (B3)-
BII) follow from these pointwise bounds by using elliptic estimates for holomorphic
functions on a Ké&hler manifold of C*° bounded geometry (these estimates apply
here because g¢ is Ricci-flat K&hler of bounded curvature). Note that the e-terms in
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(BI0)—(BII) are necessary because the sup of |w| over a g¢-ball of radius 1 centered
at a point with w = wy is O(Jwp|*~¢) for every € > 0 but is not O(|wp|), unlike on
a cylinder C%, x D with model metric |dlogw|? + gp.

We now prove by induction that for all smooth functions F' on a neighborhood
of Din L,

(3.12) |F|=0(1), |VE Flg, =O(e=") for all k > 1,¢ > 0.
Indeed, the pointwise bound is clear, and for & > 1 we apply V’“il to the expansion

dF:g—iduH——d_ Z dzﬁ—z dzz,

using the inductive hypothesis to control V’g“gl of the partial derivatives of F' on
the right-hand side and using (3.9)—(BI0) to control Vggl of dz;,dz;, dw, dw. This
proves ([B12)). By using BI0)-(BII)) we can then prove in a similar manner that
w w
3.13 —|=0(), |VE [ —
o []-om. [ (F)

= O(e*") for all k> 1, > 0.
w

gc
Taken together, (B:12)) and BI3]) allow us to estimate all contributions to (B8] in
all C* norms with respect to g¢, proving item (b).

To prove item (c), notice that in local coordinates £ = (z1,...,2,—1,w) € L as
above,

0|82, = (1 + G = (1 + G)luf?e®

with smooth real-valued locally defined functions G and ¢, where G vanishes at
w = 0 and ¢ does not depend on w,w. Notice that G = Fw + Fw for some smooth
complex-valued locally defined function F. This structure of the ®*Jx-Kahler
potential of ®*wx, together with BI0), (B12), and item (a), makes it possible to
prove that for all £ > 0,¢e > 0,

« _(1__\.n
Ve (®*wx —we)|ge = O(e™ 797",
Similarly by Theorem B3 we get for some § > 0 depending on g that for all & > 0,
" s onj2
Ve (@*wry — @*wx)|ge = O(e 7).
This completes the proof of item (c). O
Remark 3.5. The decay of the Ricci-flat Kahler form wry to its asymptotic model
we is weaker than the decay of Jx and of 0x. The reason is that the latter is
obtained by an explicit computation where the errors admit an expansion in terms
of |w| ~ e~2%". On the other hand, the decay rate of wry depends on an analysis

of the Tian-Yau solution of the Monge-Ampere equation, which is related to the
fact that the decay rate of harmonic (not necessarily holomorphic) functions on the

Calabi model space (see Section []) is in general only O(e‘éz%) for some 6 > 0.
When n = 2, the Tian-Yau metric is hyperkahler, and the corresponding hy-

perkéhler triple wry is determined by wry and Qx. Let we be the Calabi hy-
perkéhler triple defined in (B.3).

Corollary 3.6. Under the same diffeomorphism ® as in Proposition 3.4] we have
that

(3.14) IVE (@*wry — we)lge = O(e™%)
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for all k > 0, where § > 0 is the same constant as in (3.4).
In our gluing construction we need the following refinement of Corollary

Lemma 3.7. There exists a triple of 1-forms a with 0, 2a = 0 such that

(315) (I)*wTy —Wwe = da
and such that for all k > 0 and all € > 0,
(3.16) IVE.alg = O(e”079%).

Proof. By Proposition B} the Calabi space C is diffeomorphic to Nil} x (0, c0) in
such a way that the Calabi metric gc becomes the Gibbons-Hawking metric (23).
Ignoring this diffeomorphism, we have a 2-form triple ¢ and a 1-form triple ¥ such

that 0, . ¢ =0, 0, sy =0, and
P*wry —we = ¢ +dz A .
Since wry,we consist of closed forms, it follows that
(3.17) dxip =0, 0:¢ — dyypep = 0.
Now we define the 1-form triple
=— /oo P dz.

Thanks to (BI4), this integral exists and satisfies (BI0). Note that this is not
completely obvious because the 1-form basis dx, dy, dt — xdy on Nilg is not parallel
with respect to gc. However, this effect is absorbed by the € in ([BI6]) because all
error terms are at worst polynomial in z. Property (B.I5]) now follows in a standard

manner by using (3I7). O

4. LIOUVILLE THEOREM FOR HARMONIC FUNCTIONS

In this section and the next, we will set up some technical tools for the gluing
construction. One of the crucial technical ingredients in analyzing the linearized op-
erator is to establish a Liouville theorem on the complete non-compact hyperkahler
manifolds of Tian-Yau that arise in our context.

Our main goal in this section is to prove a Liouville theorem for harmonic func-
tions with a small enough exponential growth rate, on a complete Riemannian
4-manifold (X%, g) with non-negative Ricci curvature which is asymptotically Cal-
abi in the sense of the following Definition £l This is a necessary step towards
proving our Liouville theorem for half-harmonic 1-forms in Section

Definition 4.1. Given some constant § > 0, a complete Riemannian manifold
(X4, g) is said to be -asymptotically Calabi if there exist a compact subset K C X
and a Calabi model space (C,gc) as defined in Section Bl and a diffeomorphism
®:C\ K' — X\ K with K" = {|¢|, > 4} C C such that for all k > 0,

IVE(®%g — go)lge = O(e™%) as z — o0,
where z = (—log |§\i)1/2 denotes the natural moment map coordinate on (C, g¢).

Example 4.2. According to Proposition [3.4] any complete hyperkahler Tian-Yau
space (X%, g) as in Theorem is d-asymptotically Calabi for some appropriate
constant § > 0.
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The following is our main result in this section.

Theorem 4.3. Let (X% g) be a complete Riemannian 4-manifold which is J-
asymptotically Calabi for some § > 0 and which has Ricy > 0. Then there exists
an by € (0,1) depending only upon (X%, g) such that if u is a harmonic function on
(X4, g) with u = O(e'?) as z — oo, then u is a constant.

The remainder of this section will be dedicated to the proof of this theorem.

4.1. Separation of variables. The first step is to analyze the Laplace operator
on the Calabi model space using separation of variables. To recall the setup, we
work with a Calabi model space C corresponding to a smooth divisor D defined as
in Section Bl The Calabi metric is given by

n n+1

— 7— 2 n
V=100~ log¢})

which is well-defined for |€|;, < 1. In this subsection, we will reduce the equations
Acu = 0 and Acu = v to some linear ODEs; see Proposition 4l A similar
separation of variables was carried out in [KK10].

In order to carry out the separation of variables, we will study the local represen-
tation of the Laplace operator A¢ on C. We choose local holomorphic coordinates
z={z ?;11 on the smooth divisor D and fix a local holomorphic trivialization eg
of the line bundle L with |eg|? = e~¥, where v : D — R is a smooth function.
So we get local holomorphic coordinates (z,w) = (z1, ..., 2n—1,w) on C by writing
a point £ € C as & = wep(z). Then [£]? = |w[?e~¥. We may assume 1(0) = 1,
dy(0) = 0 and /=109y = wp. Let m : C — D be the obvious projection map.
Then we obtain

1 1 d dw =
we = (~log ey bwp + - (~ log |6}) ¥ - V=T (2 — ) A (2~ 3w).

For u € C?(C,R), the Laplacian at points of the fiber 7=1(0) is given by

we =

0%u
02;0%;

0%y
Owow”

n—1
Acu = (—logle})™ 7 Y +n(—log [€3) 77+ |w|?
=1

Now denote ¢ = |£|,. Then we can write
w = ge%“/*_w,

where 0y generates the S'-action on the total space of L. It is straightforward to

check that

do 0 00 1 do 1 a0

a . — & a — :__8,2-7 _:05

ow 2w Ow 2y/—1w’ 0z 2¢ ¥ 0z;

0%u 1

|w|2awau—) = 2(92/&99 + Qu@ + Uge).
For a fixed ro € (0,1), the level set Y27~ = {p = ry} is equipped with the induced
metric

2y4 1 2\L -1 1. 1.

@1 o= (~logrd) gp + —(~logrd)h(dh — L) © (d — ).

Now we consider a smooth function ¢ € C>(Y?"~!) with

(42) £59¢:\/__1]¢
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for some integer j. Replacing ¢ by ¢ if necessary, we may assume that j > 0. Then
¢ is induced by a smooth section ¢ of (L*)®7. More precisely, if we locally write
¢(2) = ®(2)(eo(2)*)®7, then

9z, w) = W B(2)|p=ry = ! T T B(2).
Now let g% be a non-zero eigensection of the d-Laplacian with eigenvalue 5\, ie.,
Asd = A,
By the Kodaira-Nakano formula, Ay = Ag + j(n — 1), so we have that
A>j(n—1).
By a direct calculation, we see that on 7=1(0),

n—1 82 R . .
(3 Y gegs ~ (A )

Moreover, by the local expression of hg given in (@I, one can directly check that
on 1 1(0)NYy?-1

(44) Ah0¢ = ((— 10g7“8)7% ( — 5\ + w) _ an(_ 10g7"(2))77_lb+1)¢,

Now suppose that a smooth function u(p, z) on the Calabi space C is of the form
u = f(0)¢o(y), where ¢ is a function on V2"~ ! satisfying @.2) and @3)). In polar
coordinates, we obtain

Acu = ¢(y) - (~logg®) ™

(o 2\( 2 2 _(”_1) _ A_j(n_l)
(F(—log ) (@*fuo + 0 = %) = 5—0fs = (A= T ).
Notice that this formula is now independent of the choice of local holomorphic
coordinates. So u is harmonic if and only if

(10800 oo + 0fy — )~ "5 og, — (A= DY p o

n
4
Denote z = (— log ¢?)

1
n

. Then we obtain
2 2

Jez — (n(j\ - ](n; 1)) +? I z")z”fo =0.

As for the Poisson equation,

Acu = v,
suppose that v = ((g) - ¢(y). Then the same separation of variables gives the
following ODE

foz — (n(j\ — j(n; 1)) + j2I2z">z"_2f =z""1.C.

For our applications we focus on the case n = 2. So the corresponding ODE
becomes

Jez — ()‘+j222)f =z-¢,

where A = 2\ — 7 > j. We have assumed that j > 0 in the above discussion, but
notice that the Laplace operator is a real operator, so the ODEs we get for j and
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—j are the same. Denote zg = (— log r%)%. Then each eigenvalue A of Ay, can be
represented by

A )

With the above computations, we are ready to set up the ODE system. We
fix some 19 € (0,1) and define (Y3, ho) to be the level set {r = ro} endowed
with the induced Riemannian metric hg. The representation (3] tells us that the
eigenvalues of —Ay,, are given by linear combinations of A and j2.

We denote by {A;}72, the spectrum of Ay, with 0 = Ag < A1 < Ay < -
(allowing multiplicity), and let {¢)}52, be an L?-orthonormal basis of the eigen-
functions which are homogeneous under the S'-action such that

—Dpoor = M - ory Loyor = V—1jrek, jr €N

From above, for each k € Z, we have Ay > ji, and when k =0, A\ = ji = 0, and
each eigenvalue can be written in the form

Ak
4.6 Ap = =+ 22 - ji.
(4.6) F= 0 + 220 Ji
Let u(z,y) € L%(Y?) for every z. Then we can write the L?-expansion along Y3 as
follows:
(4.7) u(zy) =Y uk(2) wily), yev>
k=0

Notice that it might seem more natural to write the Fourier series as a double sum
(determined by the S!-action), but the above expansion is much more convenient
for our purposes, especially when we apply Weyl’s law below.

Now we summarize our ODE reductions in Proposition [£.4]

Proposition 4.4. Let (C, gc) be the Calabi model space, and let u solve the Poisson
equation Acu = v for some v € CKo(C) and Ky € Z, sufficiently large. Let u,
v have “fiberwise” expansions as in [@T). Then for every k € N, the coefficient
functions uk(z) and vi(z) satisfy
d*uy,(2)
dz?
4.2. Uniform estimates for the fundamental solutions. This subsection
presents several technical lemmas which will be frequently used in the later sec-
tions. Lemma will be used to study the asymptotics of harmonic functions in
Section 3l Lemma and Lemma [£7] will be used in the uniform estimates of
the Poisson equation in Section £4l
We consider solutions of the homogeneous ODE
d?u(z)
dz?
In the case that j = 0 the ODE becomes
d*u(z)
dz?

If A = 0, the solutions to ([@8) are linear. If A > 0, (£F)) has two linearly in-
Vxz —Vz

— (22 + Mun(z) = v(2) 2, 2> 1.

— (5222 + Mu(z) = 0.

(4.8)

=X u(z).

dependent solutions e and e . All the required estimates in this case are
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straightforward. So we only focus on the case j € Z, which is much more techni-
cally involved.

In the case j € Z,, we have already shown in Section 1] that A and j satisfy
the relation A > j > 1. Hence for each pair of A and j satisfying the above, we
choose h > 0 such that

A= (2h + 1)j.
From now on, we focus on the differential equation (for every j € Z; and h > 0)
d*u(z)
dz?

We will simplify the above equation by the following transformations. Let

y=vis Vi) =u( ).

(4.9) =7(j2% + 2h + Du(2).

Then V (y) satisfies
V (y)
dy?

Furthermore, make the transformation

= (" + (2h + 1))V (y).

y2

Viy) =e 7 Q).
Then @ solves the differential equation

Q) ., dQy)

4.10
(4.10) a0 Yy

(h+1)Q(y) = 0.

Notice that equation (@I0) is invariant under the change of variables y — —y.
Given y > 1 and h > 0, we define the exponential integral H_;,_1(y) as follows:

H_h_l(y)z/ et =2tyghgy
0

Here the subscript “—h—1" is consistent with the standard definition of the Hermite
function. By straightforward calculations, for each given h > 0, H_,_;(y) and
H_j_1(—y) are linearly independent solutions to (£I0). Moreover, they coincide
with the usual Hermite functions up to a constant; see Section 10.5 of [Leb72].
Eventually, we obtain two solutions to (£9), namely:

2

'22 y o0
(4.11) F(z) = e~ 3 H—h—1(—\/32) — e T / e—t2+2ty+hlogtdt,
0

2

iz? Y e
(4.12) Uz)=e T H j,_1(1j2) = 6_7/ e 1" 2y thlost gy
0

Note that F, U depend on parameters j, h, but for simplicity we omit the subscripts.
The following elementary lemma is proved in Appendix [Al

Lemma 4.5. The Wronskian of F and U is a constant given by
W(F,U) =2""/j7T(h + 1) > 0.

In particular, F and U are linearly independent.
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The regularity of the formal solutions obtained from the above separation of
variables requires very precise uniform estimates for the fundamental solutions F
and U. We will use the Laplace method, which is inspired by [SS20] in a different
context. Again we denote y = /72 and define

(4.13) F(t) = —t* + 2ty + hlogt, U(t) = —t*> — 2ty + hlogt.

Straightforward computations tell us that both ' and U are strictly concave when
h > 0. For a fixed y, let ¢y and sg be the unique (positive) critical points of F and
U, respectively. It is straightforward to check that

h2 y2 Yy h2 y2
Tyt omd =gty gt

Now we list some technical lemmas, where the proof can also be found in the
appendix.

(4.14) to =

<

Lemma 4.6. Let F(z), U(z) and F(t), U(t) be the functions defined in ([EII),
EI2) and @I3), respectively. Then the following properties hold.

(1) (Uniform estimates) There exists a uniform constant Cy > 0 independent
of j and h such that for all j € Z4 and h >0

Cy - o 15 (to(2)) <F(z) <1+ \/;)ef%ﬂv(to(z)),
Cy - 64&22+U(50(z)) <U(z) < (1+ ﬁ)e*%erU(so(z))'

(2) (Asymptotics) For fized j € Z4 and h > 0, we have the following asymptotic

formulas:
(4.15) lim % =1,
R (Vi)
(4.16) lim ——; Uiz) —1.
z—=too ,— 43 F(h-i—l)(Q\/jZ)_h_l
Next, we define the functions
N jz2 N j22
F(z) = -5t F(to(z)) and U(z) = -5t U(so(2)).

Lemma 4.7. The functions ﬁ(z) and lA](z) satisfy the following properties:

(1) (Uniform estimate) There is a uniform constant Cy > 0 independent of
j € Zy and h > 0 such that the following uniform estimate holds for all
z>1:

FHT(2)

4.1 — < (.
( 7) 0< W(]:,Z/{) _C()

(2) (Monotonicity) For everyn > 0, ﬁ(z) —1nz is increasing in z and (7(2) +nz

is decreasing in z for z > 2.
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4.3. Asymptotics of harmonic functions. We will first prove two lemmas,
which will be used to prove the main result of this subsection, Proposition [4.10

Lemma 4.8. Let oy, satisfy —Ap,pr = Ag - @r with Ay > 0 and ||og||L2(ysy = 1.
Then there exists C > 0 which depends only on the metric ho such that ||| Lo (ys)
<C-Ag.

Proof. The eigenfunction ¢y, satisfies the elliptic equation —A, i = A - @k, so it
follows from standard elliptic regularity that there exists C' > 0 depending only on
the metric hg such that

lorllwe2vsy < C- (A +1) - lorllLzysy < C - Ag,
where k € Z, . Applying the Sobolev embedding theorem,
lokll o, (yay < Clierllwazys) < C- Ay,
where C' > 0 depends only on the metric hy. The proof is complete. ([l

Lemma 4.9. Let (C,gc) be the Calabi model space with a fized fiber (Y3, hg). Let
Ko € Zy and let v € C*5o(C) have the fiberwise L?-expansion

= Z vg(2)
k=0

Then for every z > 1 and k € Z,

Vol (Y3)2
(] < Tl Pllowmayot:

Proof. For k € Z, since —Ap i = Ay - or and ||ox||z2(ys) = 1, we have that

(=Any)*o0p
‘Uk |_ U Pk Y3 Ak Ko

Vol (Y3)1/2
K h
SW/W,‘A ool lexl < =S - lezravax oy

The main result in this subsection is the following.

Proposition 4.10. Let u be a harmonic function on the Calabi model space (C, gc).
There exists a constant § > 0, depending only on (C,gc), such that if u = O(e?)
as z — +oo for some ¢ € (0,9), then u = L(z) + h(z,y), where:

(1) L(z) = ap - z+ by for some constants ag, by € R,

(2) for every k € N, the harmonic function h(z,y) satisfies

[V (2, y)lge < Ok - e 2572,

Proof. Since the harmonic function u is smooth, as computed in Section [£.1], sepa-
ration of variables gives the following expansion along the fiber Y3 which is actually

Cf .(C)-convergent for any ¢ € N:
o0

(4.18) u(zy) = a0z +bo+ Y u(2) - or(y), yev?,
k=1
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where for every k > 1, ug(z) satisfies the equation
d*uy,(2)
dz?

for some j, € N and A\ > 0. Let us denote

(4.19) (222 + M\)ur(z) = 0

h(Z,y)EZuk(Z)gOk(y), yeyg-
k=1

Before discussing the asymptotic behavior of the harmonic function h(z,y), let
us give a more precise expression for each ODE solution uy (k > 1) of (Z19) under
the growth condition u = O(e??) for 0 < § < &, where the constant § > 0 is chosen
as follows:

(4.20) gzmin{\/ﬁ‘kez+}>o.

For every k € Z., there are fundamental solutions Uy, Fj of (EI9) such that every
uy, satisfies

uk(z):Ck-Uk(Z)—l—CZ-fk(Z), Ck,CZ € R.
The growth condition u = O(e%%) implies that

(4.21) lup(2)| = ‘/Ygu-npk‘ < Cy - (Vo (Y32 622, 5 € (0,0).

There are two cases to analyze.
First, we consider the case jx = 0. Then the linear equation ([£I9) is reduced to

up(z) — A\ - ug(2) = 0.

By (6] and since k£ > 1, we have that Ay > 1. Then fundamental solutions Fj,
Uy, are chosen as

Fi(z) = eV and  Uy(z) = e V2

If we choose 6 € (0,9), then applying (f.2I) again implies that C}; = 0 for each
k € Z4 which satisfies ji = 0, and hence

(4.22) up(z) = Cre V2,

Next, we consider the case k € Z, such that jr # 0. Now the fundamental
solutions Fy, Uy, are defined by (1)) and ([@I2)) respectively, where the parameters
in the definition are uniquely fixed by k. Applying the asymptotics in Lemma
and the estimate ([£.21]), we have that Fj(z) grows faster than uy(z). So it follows
that C}; = 0 for every k € Z which satisfies j; # 0.

Combining the above two cases, we conclude that if § € (0,9), then for every
k € Z,, there exists some constant Cj € R such that ug(z) = Cj - Uk (z) and hence

h(z,y) =Y Cr-Us(2) - pr(y).
k=1

By definition, in our situation Uj(z) > 0, so there is no harm in assuming that

ug(20) # 0.
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Now we are in a position to estimate the upper bound of the harmonic function
h(z,y). We still separate into two cases. First, we consider k € Z, with j, = 0.
For fixed zy > 10%, we apply ([£22). Then for every sufficiently large z € (22, +00),

(4.23) up(2) | _ ‘ Ur(2) | _ e~ VAR-(z=50) < o=8(:=30),
ug(20) U (20)
and hence
up(z
> w@ram|s 3 |[EE ) )
£>0, ja=0 k>0, jp=01 *\<0
1
—02/2 -
< Ce Z (Ak)KO_l )
k>0, jr=0

where the last inequality follows from Lemma [L8 Lemma {9 and [@23). The
positive integer Ky is chosen sufficiently large so that the above series converges.
Next, let k € Z, be such that j; > 1. For fixed 2o > 10% and z € (229, 0),
applying the uniform estimates in Lemma and the monotonicity in Lemma (7]
(with n = 26), we find that

ur(2) Ur(2)
uk(20) Uy (20)
Taking the sum and applying Lemma again, we then have that

S Co . 6_@2.

RO “’“(<Z))‘-|Uk<zo)|-sok<y>|
k>0, Jy>1 k>0, o1 | HRLZ0
o 1
<Ch-e - Y, EomeT

k>0, jr21

The estimates in the above two cases imply that

1 1
—5-2/2 —d-z
he )| < C(e 2 Wom e o <Ak>Kol>
k>0, jr=0
= 1
4.24 <Ce 02N
( ) =~ Ce kz::l (Ak)KO_l
Since the spectrum {A}72, of Ay, obeys Weyl’s law on (Y3, ho), it follows that
there is some constant Cy > 0 depending only on hg such that for any sufficiently

large k € Z+,
(4.25) Cylks < |Ag| < Cok3.
Now we fix Ky > 3 and apply [@23]) to [@24]). Then
- 1 — 1
g <C ) —<C
2 ot <002 i

and hence |h(z,y)] < C - e %%2 where C depends on Vol (Y?) and
[ull ¢xo(vex gz for some fixed zo > 10°.

The higher order estimate of h(z, y) follows from the standard Schauder estimate.
Indeed, let us lift the harmonic function h to the local universal cover of C which
is non-collapsed with uniformly bounded curvature. Let & = (Z, ) be a lift of the
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point « = (Z,y). It follows that for any k € Z, and a € (0, 1) on the local universal
cover,

|Blena (B, @) < Ck - hloo (s, @) < Ck-e 272,
where rg > 0 is some fixed constant independent of @ € C. Therefore, at the center
x = (z,y) on the Calabi space C, we have that

IV*h(z,9)| < Ck - |hlco(Ba,, (2)) < Ci - e /2.
This completes the proof. O

4.4. Regularity and asymptotics for the Poisson equation. This subsection
focuses on the solvability and uniform estimates for the Poisson equation near the
end of a Calabi space. Our approach to this problem was inspired by the approach
of [HS17] to the analogous problem on conical model spaces. First, we will prove a
technical ODE lemma.

Lemma 4.11. For each k € Z,, let us consider the inhomogeneous ordinary dif-
ferential equation

d?uy(2)

dz?
where § > 0 is the constant defined in [@20). Assume that the function vi(z)
satisfies the following property: there are constants

no € (—=6/2,6/2)\ {0} and Qx>0

(4.26) — (G222 M) up(2) = vp(2) -2, 2> 1,

such that
luk(2)] < Q- €™
Denoting by Wy, = W(}"k(z),uk(z)) the Wronskian of Fi, and Uy, let ui(z) be the
particular solution
u(2) = Wy H(Di(2) + Gr(2)),
where
Dr(z) = Fr(2) / Uy (1) - (vk(r) . r)dr and Gi(z) = Ui(2) /.Fk(r) . (vk(r) ~7")dr.
z 1
Then there are constants Co > 0 and ny < 1 < 1o + /10 which are independent of
k such that the particular solution uy satisfies the uniform estimate

|uk(z)| S C() . Qk . e"z.

Proof. Tt is elementary to verify that uy(z) is a particular solution of (L26). We
will prove that there exists some constant 1y < 1 < 19 + ¢/10 such that

(4.27) (Wi - IDk(2)] < Co - Q- €77,

(4.28) (Wi -Gk (2)] < Co - Qi - €,

where the constant Cy > 0 is independent of k. The rest of the lemma will follow
from this.

First, we consider the case where k € Z, satisfies j = 0. The fundamental
solutions are
Fu(z) = eV and  Up(z) = e V2
Immediately, Wy = W(Fx(2),Ux(2)) = 2¢/Ax, and hence for n > no,

D o0 .oV Akz [0
# < f;\g:)/uk(T”Uk(T) crldr < le;\/)\_/ VAT g < O - Q) - €T
z k z
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Similarly,

9k(2)| _ Ur(2)
Wil = Wi

Qp - e VA2

[Flntr) - ridr < [ nar < - Quer
1

Ak 1

Next, consider the case j, € Z; and k € Z. From the uniform estimate in
Lemma [£.6] we have

C Fr(2) o Co - . eFr(2) RPN ’
< O;ivk /Z eU’“(T)|vk(r)-r\dr§ e L Q;jv: /z eUr(r)+n "dr,

Dy(2)
Wi

where 1’ > 9. We choose € € (§/100,6/10) and denote n = n' + €. Applying the
monotonicity in Lemma 7] we have that

F\k (z) o ﬁk (Z)+[7k:(z)+nz
e eUk,(T)Jr’]T . eferdr S CO . Qk . 6—

< Ch. .
< Co-Qx we /. Wi

‘ Di(2)
W

The estimate [@.27]) follows from this after applying the uniform estimate in Lemma
7 The estimate [@28)) is proved in a similar fashion. This completes the proof of
the lemma. (]

We now prove the solvability of the Poisson equation on the end of the Calabi
model space.

Proposition 4.12. Let (C, g¢) be the Calabi model space. There is a constant § > 0
which depends only on C such that the following property holds: given any

o € (—6,0) \ {0},
if v € C3K0(C) for Ko > 3 and v(z,y) = O(e"?), then the equation
(4.29) Agou =1
has a solution u € C3KoT29(C) such that for any n > no,
|u(z,y)| + |[Vu(z,y)| < C-e".

Proof. The basic strategy is to apply separation of variables to construct a solution
to the equation ([@29). Given v and for any fixed z > 1, there is a fiberwise
L?-expansion

(4.30) v(z,y) =Y vk(2)er(y).
k=0

Now let ug(z) satisfy ug(z) = vo(z), and for each k € Z4 let uy(z) be the particular
solution in Lemma LTIl Then we have the following formal solution u(z,y) to the

equation (29):

(4.31) u(zy) =Y ur(2)er(y).
k=0
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First, we will show that the above series converges in the C°-topology and thus
u is a CO-function. Applying Lemma A8 Lemma B3I and Lemma ETIT], the L3-
expansion (L3T]) yields

u(z,y)| <|uo(2) |+Z|W - ler(y)l

<C (o) + 3 s < € o) + 7).

where the last inequality follows from Weyl’s law (see ({20])) and we fix Ky > 3.
Moreover, integrating vo(z) twice gives |ug(z)] < C - €"*. Therefore, u € C}.(C)
and |u(z,y)| < C - e

Next, we will apply the standard elliptic regularity on the Calabi model space
to show that u € C? and thus u is a regular solution. We denote by

(4.32) Un(z,y) = Zuk(z)gok(y and Vy(z,y) ka

the partial sums of w and v respectively, which satisfy Ay, Uy = V. For every
x = (z,y) € C, we will apply the elliptic regularity on the ball By(x) C C to obtain
the higher regularity of u. For this purpose, we first prove Claim [£T3]

Claim 4.13. For a fixed x = (z,y) € C, we have that ||V — v co(B,)) — 0 as
N — oo, where v and Vi are given in (£30) and ([£32), respectively.

Proof of Claim [£13l Let us compute the expansion of the error term v — Viy:

’U—VN: Z’ngok: Z (/SU-(pdeOhm)@k
Y

E>N E>N
ANTRLC
_ Z (/ 'Md‘@lho)@k-
k>N ve (Ak) ’

Integrating by parts yields

1
o = Vil Ba@y < 3 (W/ A0l |¢k|dVOlh°)ml'm(&(w))
k>N k
1
< Vo Jolloemoyoxgay - D (Ao’

k>N

where Vy = Vol,, (Y?). For fixed Ky > 3, applying Weyl’s law as before gives us

that
1
[v = VNl (B (2)) < Cllvllceroyvaxizy) - PES
k>N P
The right-hand side limits to 0 as N — +o00, and this completes the proof of the
claim. 0

The proof of the higher order convergence then follows by exactly the same
argument. In fact, we just need to replace ||v||c2x, with the higher order norm
lv]| cexo+m with m < K. Since A, Un = Vy, the standard W2P-estimate implies
that for every 1 < p < oo, [|[Un||w22(B,,s(2)) < Cpe- By assumption, since v €
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C3%0(C) with Ko > 3, we have that ||Vy|lc2(, (@) < Ce. Hence the regularity of
u will be improved as follows. For every 1 < p < oo,

1Unllwar(Bi(@) < Cpa(lUnllw2r(By)s@) + IVNllw2r sy @) < Cpa-
Now taking p > 4 and applying the Sobolev embedding, we see that
|UNcso (B (@) < Cpay =1 —4p~ 1,

which implies that Uy converges to a smooth solution u as in the proof of Claim
T3l Applying the standard Schauder estimate and bootstrapping, the statement
of the proposition follows. O

4.5. Proof of the Liouville theorem. With the above technical preparations,
we can now complete the proof of the main result of this section, Theorem We
need Lemma 141

Lemma 4.14. Let (M™,g,p) be a complete non-compact manifold with Ricy > 0.
Let w be a harmonic 1-form on (M™,g), i.e., Agw = 0, where Ay denotes the
Hodge Laplacian. Assume that

(4.33) lim |w(z)| = 0.

dg(z,p)—>+o00

Then w=0 on M™.

Proof. Since w is harmonic, by Bochner’s formula, we have that A |w|? = 2|Vw|? +
2 Ricg(w,w) > 0. Combining (.33)) and the maximum principle, we have that w = 0
on M™. ]

Proof of Theorem 3] Let u satisfy Ayu =0 on (X?,g) and u = O(e**?) for some
¢y € (0,1) as z — oo. The main part of the proof is to determine an £, > 0 such
that if the above growth condition of w holds, then w has at most linear growth,
which enables us to apply Lemma [£.14]

By assumption, there is a diffeomorphism @ : [10%, +00) x Y3 — X%\ K such
that for all £ € N, the following asymptotic behavior holds with respect to gc:

(4.34) 199 — gellcr ey < Cre™°%.

Claim 4.15. Assume that (X4, g) is é-asymptotically Calabi. Let § € (0,6/10) be
such that u satisfies

Aju=0 and u= O(esz) as z — +o00.
Then for every fixed k € Z, there exists a constant C(g) > 0 such that for every
x € [Ty(k), +00) x Y3 with Ty(k) > 100" > 0, |[VE Ay u(@)]s. < Cilg) - e 530,
where z = z(x).
Proof. Near infinity of the Tian-Yau space (X4, g), let us denote ¢ = (A, — Ay )u.
Then Aju = 0 implies that

(4.35) Agou+¢=0.
We will show that for each &k € N we have

_ sz
(4.36) Vi d()|| < Crlg)-e 7,

where Ci(g) > 0 depends only on k € N and the curvature bound of the end
(X*\ K, 9g).

Licensed to Princeton Univ. Prepared on Wed Nov 10 23:32:00 EST 2021 for download from IP 128.112.200.107.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NILPOTENT STRUCTURES AND COLLAPSING RICCI-FLAT METRICS 155

The higher order derivative estimate will be proved by using standard local
covering arguments. Notice that the end X\ K is collapsing and has the following
curvature bound for any k € N:

sup ”Vk Rmy ||y < Qx(9)
XNK

for some Qg(g) > 0. Then given any « € (0, 1), there exists a constant o € (0,1)

depending only on Qg(g) and « such that the following holds. Let (B,,(x), g, &) be
the Riemannian universal cover of B, (x), where & is a lift of x and x € X*\ K.

Then the C'**-harmonic radius of (B, (), ) is uniformly bounded from below by

7’0/2.
Using the standard Schauder estimate for the lifted function @ within the har-
monic radius, we have that ||@]lc2.« (s, ,.@) < C - [|@llcos,, @) < C- e>#. Then

Viu(z)|, < C - 92, Next, by bootstrapping, we have that for every k € Z,,
[Viu(zx)]y < Cr(g) - %, Combining this with ([@34)), we find that

V5 6(@)] = (A — Ageu(@)| < Cilg) e~ 7.

Next we choose the constant ¢y by
(4.37) lo € (0,min {6-1072,6}),

where § > 0 is the constant in Proposition I0l By assumption the harmonic
function u satisfies the asymptotic behavior u = O(e‘?). Then applying the above
claim and Proposition 12 on [Tp, +00) x Y3, we see that there exists a solution
to the equation

(4.38) Agov=20¢
such that
0(2,9)| + Ve v(2,y)lge < C e
for some ¢ € (—§/2,0). Therefore, combining ({35]) and ([38), we have
0=Agu=A2Ag (u+v)

with u + v = O(e®?). Since 0 < £y < 1 has been specified in [@37), we are now in
a position to apply Proposition .10 to v + v, which shows that

u+v=az+b+ h(z,y),

where h(z,y) satisfies |V, .h(2,Y)|ge < Ck - e 2%/2 for every k € N.
The above asymptotics immediately imply that

(4.39) |dul, = |dv + dz + dhly < |dv|, + |dz|y + |dh|, = 0 as z — oo.
Let Ay be the Hodge-Laplacian on (X%, g). Since Aju = 0, it holds that
Ap(du) = dd*(du) = —dAzu=0.

Since the complete space (X?,g) satisfies Ric, > 0 and |du| satisfies the decay
property (£39), Lemma 14 implies that |du|, = 0 on X*. Therefore, u has to be
a constant, as claimed. O
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5. LIOUVILLE THEOREM FOR HALF-HARMONIC 1-FORMS

Recall from equation () that we call a 1-form « on an oriented Riemannian
4-manifold half-harmonic if it satisfies Zv =0, i.e.,

(5.1) dty =0, d*v=0.

If the manifold is compact, then such a form is automatically closed and co-closed,
but this is no longer true on a non-compact manifold. The main result of this
section is a Liouville theorem for half-harmonic 1-forms. Let (X* = M \ D,w)
be given by the Tian-Yau construction, where M is a smooth del Pezzo surface
and D is a smooth anti-canonical divisor in M. By Proposition 3.4, we can fix a
diffeomorphism ® : C \ K/ — X \ K, where K and K’ are compact subsets in X
and C respectively, and X is then a J-asymptotically Calabi space for some § > 0.
Let z denote the moment map coordinate on C, as defined in Section [3l

Theorem 5.1. There is some positive constant 6, > 0 which depends only on the
geometry of X* such that if a half-harmonic 1-form v on X satisfies

(5.2) 1w = O(e™?)
as z — 0o, then v = 0.

Proof. We begin with an interpretation of (&.I)) in terms of complex geometric data.
Notice in the Tian-Yau construction we have a preferred complex structure Jry on
X induced from that on M. With respect to Jry we can write v = y50 4 ~%1 with
410 = ~0.1 Then by the Kihler identities we have

ot =0,

dTy =0 < _
! {\/—_ua*vovl —9*y10) =0,

and
d*’y =0 8*7071 + 8*71,0 =0.
Thus, equation (B.)) is equivalent to
G701 = 5401 — 0.

Theorem [5.1] will follow from Theorem (.3 once we prove that there exists some
small 6 > 0 and a smooth function f = O(e’?) such that 9f = %' (note that
Af =0 %1 =0).

We next give a brief outline of the proof of this fact. There are four steps.

In Step 1, we will construct a solution f to df = v such that f = 0(6622)
for all € > 0. This is done using a complex-geometric argument, which essentially
amounts to an application of Hérmander’s weighted L?-estimates for the J-operator.
Interestingly it does not seem to be possible to obtain the required improvement
f = O(e%) using only this type of method, owing to the fact that the function z®
is plurisubharmonic on the Calabi model space (C, g¢) only if a > 2. To overcome
this problem we use the elliptic theory on (C, g¢) developed in Section @l Thanks
to the bound f = O(e*") for all € > 0 from Step 1 and the O(e~(2797") complex
structure asymptotics of Proposition 3.4} it follows that dcf = O(e??) on (C, gc).
In particular, since A = tr(y/—193), the Poisson equation estimates of Proposition
imply that f can be decomposed into an O(e’?) part f; and a ge-harmonic
part fo which is 0(6622) for all € > 0; see Step 2 for details. Observe that it would
not be possible to compare Ary f and Acf directly because gry and g¢ are only

Licensed to Princeton Univ. Prepared on Wed Nov 10 23:32:00 EST 2021 for download from IP 128.112.200.107.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NILPOTENT STRUCTURES AND COLLAPSING RICCI-FLAT METRICS 157

asymptotic at rate O(e~%?), which is too slow to beat the 0(6622) growth of f from
Step 1.

Step 3 analyzes the gc-harmonic part fo of f. It is clear from Section M that
f2 = O(e%?) for some large constant C. The required improvement fo = O(e?)
comes from the first-order equation J¢ fo = O(e%?) satisfied by f» (in addition to
Ag.fo = 0). Technically this is done using separation of variables for the Oc-
operator but the underlying idea can be easily explained: being of O(e“?) rather
than 0(60z2) growth, the leading terms of the harmonic function fo must be S!-
invariant, but on S'-invariant functions the d¢-operator directly controls the radial
derivative %.

Step 4 concludes the proof by appealing to Theorem 3]

Step 1. In this step, we prove Proposition

Proposition 5.2. There is a smooth function f on X with Of = v and |f| =
O(efz2) for all e > 0.

Remark 5.3. We also have A, f = 0, but at this point we cannot apply Theorem
directly to conclude that f is a constant since this would require the stronger
control |f| = O(e%?).

Proof of Proposition [5.2l We work on the compact manifold M. Let S be a holo-
morphic section of K ;41 with S71(0) = D and let h be a smooth hermitian metric on

K ;41 whose curvature form wy, is a Kéhler form on M with positive Ricci curvature.
By Theorem B3] near D we have that

C'V=100(~log|S[})*? < wry < CV=109(log |S[7)*/*.
By a straightforward computation, this implies that
(5.3) wry < C|S|;, %wn,
and hence by hypothesis (5.2]),

e < C7HS1 oy = OS], )

for any € > 0. Define o = y® S. This is a section of A?\}Il ® KJ\? which lies in
Ly (M, A(J)V’[1 ®K]\_/Il) for all p > 1. Since 0y = 0, one can directly check that da = 0
in the distributional sense. Now notice that H'(M, K,,') = H'(M, Ky ®L) = 0 by
the Kodaira vanishing theorem applied to the ample line bundle L = KJ\_f. Thus,
we can define 8 = 8*A51a with respect to wy. It follows from elliptic regularity
that 3 € WLP(M, K;') for all p > 1, so that 8 € CS, (M, K;;") for all a < 1.
Moreover, by local regularity, we know that /3 is smooth away from D and 98 = a.

Let f = 8 ® S~!'. Then on X we have that df = ~. It follows that there is some
constant C' > 0 such that

_ 22
(5.4) F=0(sl,") = 0(e“).
Lemma [5.4] allows us to improve (5.4]) to the growth order e for any € > 0. The

key point is that the estimate (B3] can be improved to almost O(1) in directions
tangential to D.

Lemma 5.4. Denote By = f|p. Then 0By = 0, i.e., By is a holomorphic section
Of K;/[1|D.
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Proof. We choose a finite cover D = Uivil Oy, such that for each k there exists
a local holomorphic coordinate system (wi,ws) on some domain Uy C M such
that Uy N D = Oy, = {wy = 0}. We will show that 98, = 0 in every O, C D
in the distributional sense. Let ¢ be a smooth section of A%l ® (K;/'|p) with
compact support in Oy. It suffices to show that (8, 9*¥)o, = 0. To this end, write
P(wy) = o(wy)dwy @ (dwy A dwy)~t for some smooth function o € C§°(Oy, C) and
use this to define the trivial extension t(wy,wy) = o(w)dw; @ (dwy A dws)~" for
all (w1, ws) € Uy. Denote by Oy (7) the slice {wy = 7} in Uy, which is a complex
submanifold of M, and equip Og(7) with the restriction of the Kéhler metric wy,
from M. Notice that 1) restricts to a smooth section of A%i(ﬂ ® (K&l‘ok(ﬂ) with
compact support in Og(7). Since 93 = a and B € WP N C? for any p > 1, it
follows that

(5.5) (Bo, 0" Yo, = E}%(ﬂ, T V)o,(r) = Tlig})@@@ok(r) = Tlig})<0471/3>ok(r)-
Notice that

(@2l < Moy 108 lory < Plwry (= log]S[2) T = O(1S];,°).

Since a = y® S, it then follows that | (0, )| = O(|S];, ) — 0 uniformly as w — 0.
Using (&3] and noticing that 0, is tangential to Ok (7), it follows that

<ﬂ0, 5*,¢)>Ok = Oa

as desired. By standard elliptic regularity, 8y is a holomorphic section. (Il

Since M is Fano, we have that H'(M, Oyr) = 0, so by a standard exact sequence
([GH94, p.139]) the restriction map H°(M, K,') — H°(D, K,;'|p) is surjective.
This means that we can find some 3; € H°(M, Kj;fl) such that B1|p = Bo|p. Let
f=(B—p1)®S™L. Then we still have df = v on X but now since 5 — #; = 0 on
D and g € Cg, (M, KA_/Il) for all @ < 1, we finally obtain Proposition |

Step 2. Let f = u + +/—1v be the smooth function constructed in Proposition
with Ay, u = Ay, v = 0. In this step, we reduce the problem to a question
on the Calabi model space through the diffeomorphism @ : (C \ K’ we,Je) —
(X \ K,wry, Jry) of Proposition B4l The main point is to obtain a decomposition
u = uy +up and v = vy + vy such that u; = O(e%?), v; = O(e?), and A, us =
ch Vg = 0.

The idea of the proof of Step [2is as follows. First, we will estimate A, v and
A,.v and all of their derivatives. Specifically, we will prove that they have slow
exponential growth rates (as shown in (E8])). Then applying Proposition 12 we
can construct solutions to the Poisson equations

Apeur = Ayou, Ayovr = Ay, v,

such that u; = O(e??) and v; = O(e’?). This completes the desired decomposition
of v and v.

To obtain derivative estimates for A,,u and A,,v, we will prove derivative
estimates for du + Jedv. To start with, by the assumption on v and the first order
equation given by Step [l we have that

(5.6) du + Jpydv = Re(y) = O(e%).
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Then applying the asymptotic estimate for Jry in Proposition [3.4] we can convert
the above growth control to a corresponding estimate for du + Jedv. In fact,
applying item (b) of Proposition [34] for any € > 0 and for any k € N,

IVE (@ Try — Je)|we = O(e 73957,

We also need derivative estimates for u and v with respect to the model metric we.
2
Notice that by Step[l f = u+ +/—1v = O(e*") for any € > 0, which implies that

lu| + o] < 2|f] = O(e).

Since v and v satisty A, u = Ay, v = 0, by applying local elliptic estimates on
local universal covers as in the proof of Claim .15l we have that for all € > 0 and
k>1,
2 2
|vclfJTyu|wTY = O(e€z )7 |v(]f)TyU|WTY = O(eez )'
In terms of the Calabi model metric we then have

k 522 k, 522
Vietlwe =0(€=), Vvl =O0(e ).
Similarly, since «y is half-harmonic, we have that for all k > 0,
IVE_(du + Jrydv)|w, = O(e’"?).

Applying these to (5.6]), we get for k € N,

VE (du+ Jedv)lue = V5, (du+ Jrydv) + VE, ((Je = ©* Try )dv)

= O(e"%) + 0(e=T) = O(e%),

Now we proceed to prove the derivative estimates for A, ,u and A, v by using
the system

(5.7) du + Jrydv = Re(7y).

The advantage of the above equation is that A, = Try,., (d o Jry od) so that
the behavior of A,,,, will follow from the asymptotics of Jry. In fact, taking the
differential of (.7 yields

do JTY odu = dJTyRe(v), do JTY odv = dRe(’y)

Then using item (a) of Proposition B4} similar to the above we have for all k € Z,
that
|VE. dJcdul, = O(e™?), |VE dJcdvl,, = O(?).
Taking the trace, we then obtain that
(5.8) |v£cchu|wc = O(eéhz)v |v£cch’U|wc = O(eghz)'

Applying the linear theory for A, in Proposition d.12] for §, < &, we can choose
u1 and vy solving the equations

Apeur = Ayou and Ay, v = Ay v,

such that u; and vy satisfy

(5.9) Vietutlue = 0(e2?), Vi v1lue = O(™).
So we have finished the proof of the decomposition v = uy + us and v = v + vy
such that

AWC’U,Q = chﬂg =0.
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We also obtain that
dug + Jedvslw,, = O(e?)
and
(5.10) lug| = O(e), |vg| = O(e).
Step 3. Now we estimate the harmonic functions us and vz with respect to the
model metric we using separation of variables for 0c. The goal is to improve the

growth order of uy and ve from 0(6622) for all € > 0 to O(z) using the fact that
they also satisfy a first-order equation.

Proposition 5.5. We have that |uz| = O(2) and |v2| = O(2) as z — +00.

Proof of Proposition 5.5 Let ¢ = dug+Jedvy = O(e’7#). For a fixed fiber (Y3, hy),
let {Ar}72, be the spectrum of Ay, with Ag = 0, and {p }32, be the corresponding
eigenfunctions such that —Ay, ¢ = Ay, - ox and Lo, ox = vV —1jkpr. As in Section
[T, we can write the expansions

uy = fe(z)pr and vy =Y gr(2)ex,
k=0 k=0

which imply that

dus = Z (f/lc(z) “p - dz + fr(z) - dSOk)
=0
and
dvz = 3" (g(2)pn - dz + gu(2) - dipy )
k=0

On C by the definition in Section F1] we have Je(zdz) = df. So it follows that

o0

> (fi(2) = V=i - 2 gi(2)) e = ¥(0s),
k=0
D (" gh(2) + V=i - fr(2))ox = ()
k=0
This implies that for each k € N,

(5.11)
Fi(2) = V=1 2 ge(2) = O(e™%), 271 gi(2) + V=1ji - fu(2) = O(e™?).

There are three different cases for £ € N to consider.

(1) If ji € Z, then each of fx(z) and gx(z) is given by a linear combination
of fundamental solutions Fi(z) and Uy (z) as defined in (@Il and @12,
respectively. Using the asymptotics in Lemma .6 and (5.I0), we have that

fi(2) = Ck - Up(2) and gi(z) = Cy - Up(2), where Uy (z) = 0(67”“52 ).

(2) If jx = 0, A\, # 0, then each of fx(2) and gi(z) is given by C} - eV * +
Ck - eV Let § > 0 be the constant in Proposition EI0l Using (5.11)
and 1) = O(e’*?), we conclude that, if 6, < J, then both fi and gz must

/\kz

be proportional to e~
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(3) If k = 0, then fo(2) = ko -z + po and go(z) = k(- 2 + pg for Ko, Ky, Lo,

uo € R.
Applying the same argument as in the proof of Proposition 10l we have that
the sum of the above decaying terms still decays exponentially. That is, there are
constants ko, K, to, py such that

UQ(Z, y) =Ko %2 + Ho + w(z7 y)7 /1)2(z>y) =Ko % + Ho + w*(’z>y)u
where w(z,y) = O(e™%*) and w*(z,y) = O(e”%*) for some ¢ > 0. This completes
the proof. |

Step 4. We now complete the proof of Theorem 5.1l By Proposition and (£9),
ul = O(e”?), [v] = O(e™?).

If 65, > 0 is chosen such that d;, < £y with £5 > 0 in Theorem 3] then we conclude
that v and v must be constant so that v = 0. O

6. CONSTRUCTION OF THE APPROXIMATE HYPERKAHLER TRIPLE

In this section, by gluing two hyperkahler Tian-Yau spaces with a neck region
that satisfies an appropriate topological balancing condition, we will obtain a closed
oriented 4-manifold M such that M has the same homological invariants as the K3
surface; see Proposition[6.6l Moreover, we will construct a triple of symplectic forms
wé" on M, depending on a parameter 8 > 0, which is approximately hyperkahler
with smaller and smaller errors as 8 — oco. For 8 sufficiently large, this triple will
be perturbed to a hyperkéhler triple ng in Section [0

6.1. The Tian-Yau pieces. First, we briefly describe the geometry of the Tian-
Yau building blocks. Fix by € {1,...,9} as in Theorem [Al Let (X; ,g, ) and
(X,i, g, ) be two hyperkéhler Tian-Yau spaces obtained by removing two anti-
canonical elliptic curves from two del Pezzo surfaces of degree b_ and b, respec-
tively. Denote by Nil} L= Nil} , (€+,7+) the corresponding Heisenberg nilmanifolds

with deg(Nil} ) = bx defined in Section 211 It follows from Proposition 3.1] and
Corollary that there exist “coordinate systems” on the ends of the Tian-Yau
spaces (Xgli 2 Gbs ),
(6.1) LY ¢ (¢, 00) x Nilj, — X1,
such that

(T ) w® = WO £ O(e72+%%), 23 — o0,
where w®7 is the Calabi model hyperkihler triple defined by applying the Gibbons-

Hawking ansatz to the flat product space T2 x [Coi, o), where T2 = C/e(1,74),
with the harmonic function

Vi(zi) = 27Tb:|:2:|:A:T:1,

and the choice of connection 1-form 6, = (2rbLAL")(dt — xdy) on Nilgi as given
as in (2.2)). Note also that the metric in these coordinates admits an expansion

(6.2) (@1 ) gp. = Valgr= +d2%) + V05, +O(e725%), 24 — oo,
In our construction, we will always make the following assumptions.

e The elliptic curves removed from the del Pezzo surfaces satisfy 7, = 7_.
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e A=élIm(ry) = 1.
Note the latter assumption can always be arranged by scaling the Tian-Yau metrics.
For parameters 7_ > 0 and T > 0, define the following compact regions in X g‘i:

(6.3) Xt (Ty) = Xgli\cbiy ((Ti, +00) x Nil3, )

6.2. The neck region. Consider the flat cylinder (T? x R, gg) and choose a finite
set of monopoles Pp,; = {p1,...,Pmy} C T? x R such that Y% | z(p,) = 0, where
mo = b_ + b+.

Let Vo be the Green’s function from Corollary [Z.6] which satisfies

—Agy Voo =27 goj Oy -

m=1
By Corollary 2.6, we can write
Vi (4 2) = - +bi)z+h_, z< -1,
o —m(b-+by)z+hy, z2>>1,
and
(6.4) (V" bt (2,9, 2) gy = O™ N1

as |z| = oo for all k > 0, where \; is the smallest positive eigenvalue of —Are.
Next, for 3 sufficiently large, we define a new harmonic function on T? x R by

(6.5) Va(z,y,2) = Voo (2,9, 2) + kz + 0,
where
k=m(b_ —by).
Then near the two ends of the neck region, the harmonic function V3 can be written
as

2nb_z+ B+ h_, z K —1,

6.6 Vi(z,y, 2) =
(6.6) 5(7,9,7) {—27rb+z+/5+h+, 2> 1.

Using this potential, we next define the neck metric through the Gibbons-
Hawking ansatz. First, we note that Ha((T? x R) \ Py, Z) has dimension mg + 1
with generators being small spheres around the monopole points and any torus of
the form T? x {2'}, where 2’ is any value of z for which there are no monopole
points. It is easy to see that the 2-form % * dVp attains integer values on these
cycles, which implies that the cohomology class [% * dVg] is integral. We then
denote by N, the total space of the S*'-bundle over (T? x R) \ Pp,, with Euler
class 5= * dV;3] union finitely many points Py = {B1,- - -+ Py} With 7(5;) = s,
and extend the bundle projection to a mapping 7 : J\/',‘,lTO — T? x R. Choose a

0

connection 1-form § on N3\ P, such that
df = *dVpg,

and note that 6 is independent of the gluing parameter 5. Applying the Gibbons-
Hawking ansatz to V3, we obtain a triple wN = (w{v ,wé\/ ,wQ/ ) of smooth closed
2-forms over Ny, (see (1)) which induces an incomplete hyperkéhler metric over
the open subset of T? x R where V3 > 0.
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For real parameters 1,75, we define
N (T, To) =7 H(2,y,2) e T xR | Ty < 2 < T},
and let Ty be defined by
(6.7) dmby - Ty = .

The reason for this choice of T is due to a matching condition which we will explain
in the next subsection. Denote

(6.8) U_=(-T_,-T_-+1)C(—00,00), Uy=(Ty—1,T}) C (—00,00).

Lemma shows that there is a “gauge transformation” which makes the connec-
tion form exponentially close to the Calabi model connection form for z € Uy.

Lemma 6.1. For 8 sufficiently large, there is a diffeomorphism

(6.9) oY, Uy xNild,, — N (Uy)

such that

(6.10) (@Y, )'de =de, (PN, )*dy=dy, (®Y.)z=z,
and (@Q{i)*e — 0y, = m*ay for a 1-form ay on T? x Uy, with
(6.11) |V’;oai‘go =0(e %) as B — oo,

for some § > 0 independent of B and for all k < 4.

Proof. We only prove the negative case since the positive case is similar. We first
view both sides of ([6.9) as principal S'-bundles over T? x U_, endowed with unitary
connections 0,_ and 6 respectively. It is easy to see by construction that they have
the same Euler number b_. So by general theory we can find a bundle isomorphism
H:U_ xNil} — N, (UZ). In particular H covers the identity map on T? x U_.
Now both H*6 and 6,_ are unitary connection 1-forms on the same U(1) bundle.
The difference of the curvatures is

H*d0 —do, =df —db, ==d(Vz—V_ — ) =xdh_.
Notice by ([6.4) and definition of 7 that for some § > 0 we have on T? x U_,
|VE(xdh_)| 4 = O(e™%), k<4
Basic Hodge theory then implies that by modifying H by a gauge transformation if

necessary, we may assume that 6 — 6, =0y + 7m*a_, where a_ satisfies (GI1]) and
s is a flat connection. As already discussed in Section 22 6 can be removed by
composition with the horizontal lift of a rotation on T2. O

Next, let wg’i denote the hyperkéhler triple on Uy xNilgj’Fb . obtained by applying
the Gibbons-Hawking ansatz to T? x Uy with the harmonic function Vi (z)+ 3 and

the choice of the connection 1-form 6, . Let gg’i denote the associated Riemannian

N

metric. In the following we will need to compare the hyperkéhler triples w’”’ on the

neck with the model hyperkéhler triple wg’i for z € Uy.
Proposition 6.2. There exist smooth triples of 1-forms a® on Uy x Nﬂibi such
that
* C,:i:
(6.12) (@Y 1) W —wi™ = da*

)
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with
|Vkai\gg,i =0(e %), B— oo,

for some § > 0 independent of 8 and for all k < 4.

Proof. Again we only deal with the negative case. We only construct o], since the
argument for the others is similar. By Lemma [6.I] we have

(@g{f)*w{v — (wg’7)1 =7*"(h_dzx ANdy+dzANa_),
where
|vkh*‘go = O(e_éﬁ)v |vka*|go = 0(6_56)7
for some ¢ > 0 and all k < 4, as § — oco. Using [2.7) and ([ZI2), we clearly have
h_(x,y, z) dvolp2 = 0.

T2

N

Since wy' and (wg’7)1 are both closed, the 2-form

A=h_dexANdy+dzNa_

is also closed. Next we want to find a primitive for A\. First, from basic Hodge
theory on T? we can find a smooth 1-form ¢, with no dz component, such that
d¢ — h_dz Ndy = dz A7 for a 1-form 7, and such that |V*¢|,, = O(e™%) and
|VEn) 4y = O(e™%) for all k < 4 as 8 — oo. Then A\ — d{ = dz A (a— — 7). Define

¢ = /_T (0.2(\ — d¢)) dz.

Then one can check that d¢ = A — d(, and that |V*¢|,, = O(e7%%) for all k < 4 as
B — oo. The 1-form

ay =71 (C+§)
satisfies day = (@2{7)*(.0{“ - (wjﬁv’*)l, and [VEQ] [xeg, = O(e™%P) for all k <
4 as B — oo. To finish, we need to compare |V¥aj |z+g, with \Vkaﬂgc,f. A
5

computation using the explicit formula for the model metric 92’7 shows that this
introduces error terms which are at most polynomial in 8. This completes the
proof. O

6.3. The attaching maps and constraints. We next define the attaching maps
which will be used to construct the manifold M. Define the negative damage zone
by

Dz =™ (T, 7 +1) x Nil}_) c X}
using the coordinates given by (61]) on the end of X;' . Define
Z_:RxNil; -RxNil} |, Z_(z_,p) = (2_ —2T_,p).
Define the negative attaching map V_ : DZ_ — J\/f;m by
(6.13) Vo =04 oz o(eTV) L
Similarly, define the positive damage zone by

DZ, = oTY ((T+, Ty + 1) x Nil}, ) c X,
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using the coordinates given by (6.1]) on the end of X gi. Define
ZyRxNily, »RxNil’, , Zi(z4,p) = 2T — 24,91 (p)),
where ¥ : Nilg L Nilib . is the orientation-reversing diffeomorphism given by
¢($7 Y, t) = (—.’II, Y, _t)
Define the positive attaching map ¥V : DZ, — ./\/’,%LO by
(6.14) Uy =04 0z, 0(@]Y)"
We obtain the manifold M by gluing the pieces together using the attaching maps:

M= X} (T + 1) [N, (T2, T) | X3 (T4 + 1),
v L

The manifold M carries an orientation compatible with both Tian-Yau pieces, and
we will fix this orientation in the following.

Next, we want the potentials to agree up to the constant term in the damage
zones after identifying the corresponding regions using the attaching maps. On
DZ_, modulo exponentially decaying errors, we have that

U Vg =2mb_(2- —2T_)+ B =2mwb_z_ —2mnb_(2T_) + 3,
which we want to be equal to the leading terms of V_. This requires that
(6.15) 0=—-2mb_(27_) + 8.

Similarly, on the other damage zone DZ,, modulo exponentially decaying errors,
we have that

Ut Vg = —2mby (214 — 24) + B = 2mby 2y — 2wby (2174 ) + 3,
which we want to be equal to the leading terms of V., so we must have
(6.16) 0= —2mby(2T4) + B.

So we see that the gluing procedure requires the matching condition
(6.17) dmby - Ty = B.
This explains our choice of T4 in (67).

Remark 6.3. From now on, we will view § as the only independent parameter in
our gluing construction, with all other parameters determined by f.

6.4. Definite triples and topology of M. All of the pieces in our gluing con-
struction have hyperkahler triples

w” = (wy,wy ,ws ) onXg{7
N = (w{v,wé\/,wQ/) on/\/f,‘m(—T,,Tg,
wt = (wf,wi,wi) onXglJr.

Next, we will glue these triples in the damage zones DZ_ and DZ, to define a
triple of symplectic forms on M. The first step is Proposition
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Proposition 6.4. There exist smooth triples of 1-forms a* € Q' (DZy) ® R3
satisfying
wt +da* = *in mn DZy,
such that for k < 4,
|VFa®| < C-e % in DZy,
where § > 0 and C' are constants independent of [3.
Proof. The mapping Z4 satisfies
Ziwg’i = WOF
so pulling back equation (6.I2]) under the mapping Zy yields

(6.18) Z1(@Y )N — Wt =d(21a®).

)

Consequently, the neck metric is close to the Calabi model metric in the damage
zone after pulling back by the attaching map. The proposition then follows from
Lemma [3.7] and Proposition O

Let ¢+ be cutoff functions such that

by = 0 for zy <Tjy,
£ 1 for z4 > T4 + 1.

Then we define the closed triple

w~ on X (T-),

w”+d(¢p-a”) on X} (T_,T-+1),
(6.19) wit =WV on Njb (=T_ +1,T; — 1),

wh +d(¢ra™) on Xli (T4, Ty + 1),

wt on X§+(T+).

The next result, which follows immediately from Proposition [6.4] shows that w™
is very close to being a hyperkéahler triple for § sufficiently large.

Corollary 6.5. There exists a constant C > 0 independent of the gluing parameter
B > 0 such that

Qe —1d[[cr(m) < Ce04F,

where 64 > 0 is a constant independent of 5, and the norm is measured with respect
to gg, the Riemannian metric associated to wé\/‘. Consequently, the triple wé\/‘ s a
closed, definite triple for B sufficiently large.

We next analyze some topological properties of the manifold M. Proposition
shows that the Betti numbers do agree with those of the K3 surface.

Proposition 6.6. The compact oriented manifold M has the following topological
properties:

bi(M) =0, x(M) =24, bJ (M) =3, b, (M) = 19.
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Proof. We write the manifold M as the union of open sets U U V', where
U=Np (-T_,T}), V=X, (T- +1)UX,, (T +1),

with Xp, = Qp, \ T?, mo = b— + by, and Q. a del Pezzo surface of degree by.
Clearly, U NV deformation retracts onto Nil} LI Nilg’+.

Next, we claim that the de Rham cohomology H'(X,, ) = 0. To see this, we use
the long exact sequence of a pair in de Rham cohomology

(6.20) RN Hf(Qbi \TQ) . Hk(Qbi) N Hk(TZ) i} Hf-H(Qbi \T2) SN
see [Spi79, Chapter 11]. Since H3(Qp, ) = 0, ([6.20) yields an exact sequence
o= HX(Qpy) S HA(T?) = H3(Qp, \ T?) — 0.

Here the mapping i* : H*(Qp,) — H?(T?) is just the pullback under inclusion,
which is dual to the mapping on homology i, : Ha(T? R) — H2(Qy. ,R). Since T?
is a complex submanifold of a Kdhler manifold, this latter mapping is injective, so
the mapping ¢* is surjective, and by Poincaré duality we conclude that

H'(Qu, \T?) = HZ(Qp. \ T?) = 0.

Since we have just showed that H!(Xp,) = 0, the Mayer-Vietoris sequence in
cohomology for the pair {U, V} yields an exact sequence

(6.21) 0 — H'(M) = H'(Npn,) — H' (NI} UNil} ) & H'(Nil} ) @ H'(Nil}, ).

0

The mapping ¢* is the pullback under inclusion of the two nilmanifold fibers of
the neck at each end. We claim that this mapping is injective. To see this, let
Py = {P1,---,Pme} denote the monopole points in B = T? x (—=7_,T ), where
mo = b_ + by. Then there are p; € N}, such that N, \ Ppn, is a circle bundle
over B\ P,,,, i.e.,

(622) Sl — Nﬁ% \,ﬁmo _7_r_> B \ Pmo-

The Gysin sequence of ([6.22]) begins with
(6.23) 0= HY(B\ Ppy) 5 H'NA\ Pray) = -+
It is easy to see that the inclusion induces isomorphisms H YB\ Pm,) 2 HY(B) =
R@®R and H' (N, \ Pm,) = H'(N,},,). Then 6.23) becomes
0 — span{dz, dy} LA H' (N, =

Together with Proposition 23] and the exact sequence (G.21I), we conclude that
i*m*dx and ¢*7*dy are both nontrivial and linearly independent in H 1(Nilgf U
Nil‘2+), so that * is injective as claimed. Then (6.2I) implies that b1 (M) = 0.
Since M is a compact orientable 4-manifold, Poincaré duality also implies that
bs(M) = 0.

Next, it follows from the fibration ([.22) that x (N, \ Py ) = 0, and therefore

X(/\/ﬁm) = # of monopole points = mg =b_ + by.
For a Tian-Yau space, we have that

X(X3) = x(Qu \ T?) = x(Q) — x(T?) = x(Qs),
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where @, is a degree b del Pezzo surface, and so
X(X3) = x(Qy \ T?) = 12— b.

Note also that y(Nil} ) = y(Nil} ) = 0 since it is an orientable 3-manifold. Then
we have that

X(M) = x(Xp) + xV) + x(Xp, ) = (12 = bo) + (by +b-) + (12— by) = 24,

Since we have shown above that by (M) = b3(M) = 0, this proves that by (M) = 22.

Finally, as we constructed in (6I9) the approximate definite triple wé\’l =
(w1, wa,w3), which are self-dual 2-forms forming a basis of A% at every point, the
bundle A% (M) is a trivial rank 3 bundle. Also, w; being non-zero everywhere means
that there is an almost complex structure (wq/|wi] is a unit norm self-dual 2-form,
which is equivalent to an orthogonal almost complex structure). By Corollary [6.5]
for 8> 1, the rank 2 subbundle V' C A2 given by the orthogonal complement of
w1 /|wi| is trivial. This implies that ¢; (T M, J) = 0, and the Hirzebruch signature
theorem implies that

2x(M) + 37(M) = /M i =0,

from which it follows that 7(M) = —16. Therefore, b (M) = 3 and b, (M)
19.

Ol

7. GEOMETRY AND REGULARITY OF THE APPROXIMATE METRIC

In this section, we will give a detailed analysis of the geometry of (M, gg).

7.1. Subdivision and regularity estimate on the glued space. Since the
arguments in the next sections are very tedious and involved, in this subsection
we will list some fixed constants and make necessary conventions which will be
frequently used in the later proofs.

7.1.1. Tian-Yau spaces and their asymptotic rates. To start with, for two positive
integers
b_,by €{1,2,...,9},
let (X;' ,9p_,q-) and (X} ,gs,,q4+) be fixed hyperkéhler Tian-Yau spaces with
- +

reference points g_ € Xgli and ¢4+ € X,ir such that their degrees are b_ and b,
respectively. See Section [3] for the definition of a Tian-Yau space and the natural
coordinate z outside a large compact subset. As we introduced in Section 6.1l on
(X} .gp_,q—) and (X§+,gb+,q+), there are diffeomorphisms

O 1 [, +00) x Nilp, — X \ Ky

between the Gibbons-Hawking space (as a circle bundle over a flat cylinder T? x R)
and the Tian-Yau space outside a compact subset. We define the definite constants
Dg by

DZ = the distance between ¢+ and the level set {x € Xy, |zs () = Y.
Proposition [34] shows that there are some positive constants

(7.1) 6, >0, 6, >0
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such that for any k € N

Vi (@) ey —wg)| =06

and
‘Vk+ ((‘I’+)*w+ - w+) = O(e %%)
g TY C gg, ’

where w%y, wgt are the Kéhler forms on the Tian-Yau spaces X g‘ . and on the Calabi
model spaces, respectively.

7.1.2. Some notation regarding the neck region. Next we fix some parameters in
the neck region for ease of our discussions in the sections to come.
Let Py = {p1,-.-,Pmo} be the set of monopole points on the flat cylinder

(T2, x Rz, go) with Y% 2(p,,) = 0, where go is the flat product metric with

coordinates (x,y, z) such that there are definite constants ¢y > 0 and Ty > 0 such
that for all k£ # [, we have that

to < dgo (1) < To.
For any p,, € Py, we define the associated distance function
(72) dm(m) = dgﬁ (prm :v), (S (M,gg),

where the metric gg is determined by the approximate hyperkéhler triple (GI9).
In our proof, the following notation will also be needed. Given 3 > 1, by Theorem
[2.5] the defining Green’s function V3 of the Gibbons-Hawking metric on the neck
satisfies the following property: there are constants

(7.3) €1 > 0, €9 > 07

such that for any £ € N we have that

‘VSO (Vg — (2mb_ -z + B))’ = O(e“*), z — —00,
(e7%2%), z = +o00.

]v’;o (Vs — (-2mby -2+ 6))] ~0
Moreover, by the definition of Vp in (G.3), the estimate
(7.4) Ct-p<Vy(x)<C-B

holds away from the monopole points in the neck region N (—=T-,T4). Thus,
there are uniform constants ¢, > 0, Tp; > 0, such that

1o+ (8)? < dyy(pmopr) < Tp - (B)2, V1 <m <1<my.

The following functions defined on N}, = as well as on the Tian-Yau pieces nat-
urally arise from the construction of the model metric and are crucial in analyzing
the rescaled limits and defining the weight functions in the next section.

(1) We define the following functions on the neck:
L_(z)= (2nb_ - z(x) + B)2, —T- < z(x) <0,
Li(x) = (—2nby - 2(z) + B)2, 0< 2(x) < Ty
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TUITUIII

FIGURE 7.1. The red circles represent the S! fibers and the blue
curves represent the base T?s of the nilmanifolds. The xs are the
monopole points in the neck region A/. The gray regions are in the
“damage zones” between IV and V.

(2) For & € M located in the end region of Xlili and satisfying (& < z4 () <
T, we define

L, (x) = (21bs - 24 (2))?,
where ¢ was defined in (BI)) and will be used throughout.

7.1.3. Subdivision of the manifold M. The manifold (M, gg) will be divided into 9
regions depending on the different collapsing behaviors of gg (see Figure [L1]):

I: dp(x) < B*% for some 1 < m < my,
II: 2877 <dp(x) < (15/4) - (B)? for some 1 < m < my,
I: z(x) € [-moTy, moTo] and d,,(x) > (1(/2) - (B)% for all 1 <m < my,
IV_: z(x) € [-T-/2, —2moTo],
IV, z(x) € [2moTo, T /2],
Vi: zxze Xfi and 2¢F < zu(x) < T,
VL. : @€ Bpx(qx) C X, .
We note that for & € IV, we have that

T, - (8)7 < dm(x) < Ry for all 1 < m < m,
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where
R_ =sup {dgﬁ(w,pl)‘ —T_<z(x) < O}
and
R, =sup {dgﬁ (a:,pl)’O <z(z) < T+}.

Recall (Z4) and that Ty = O(3). Hence the uniform estimate C1'.8% <Ry <
C'- % holds.

Remark 7.1. Notice that the 9 regions do not completely cover the manifold M.
However, each gap region has the same geometric behavior as the regions adjacent to
it in the above subdivision. In particular, the curvature estimates and the rescaled
geometries in each gap region will be the same as in the adjacent regions, so we
will ignore these gap regions in what follows.

Next we prove uniform curvature estimates on M which will be crucial in showing
that certain rescalings of the approximate metric have bounded curvature.

Lemma 7.2. The following uniform curvature estimates hold for (M, gg).

(1) Let us denote r(z) = dg, (2, Pm,) on (T? x R, go). Then there exists a
constant C' > 0 such that for each 1 < m < myg and for every © € B.,(pm)
with ro = %Ianadg0 (T?), the following curvature estimates hold:

(5) R () < {Cﬁa O<ri@) <8,

Rt B~ < r(x) <.

In terms of the intrinsic distance function with respect to the Riemannian
metric gg,
< ¢
B2dy(x)?
where d,, is defined in ([T2)).
(2) If x is in the neck region but has some definite distance away from the

momnopoles, the following curvature estimates hold for some uniform con-
stant C' > 0:

(7.6) | Rm |() ;BT <r(m) <o,

(7.7)  |Rm|() < m, 2(2)| > 12 and ~T_ < 2(w) <.

(3) Forx € Xp, (T+) C M (recall 63)), there is a constant C > 0 such that

C, Z:t(w) < C(ita
(7.8) | Rm [() < { c 2 (@) > CE

dg[—} (m7qi)2 ’

Remark 7.3. The curvature estimates in Lemma are sharp in the following
sense. The second estimate in (T3] corresponds to the curvature behavior of the
Taub-NUT metric, which is exactly of inverse cubic decay. The curvature estimate
in (Z.8) is sharp as well because the curvatures have precisely quadratic decay along
the end of a complete Tian-Yau space.
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Proof. The proof only requires straightforward calculations, so we only present
a sketch. We use the following formula for the pointwise norm squared of the
curvature of a Gibbons-Hawking metric:

1 _
(7.9) |Rm|? = 5V ARV

see [GWO00]. We just need to consider the case of one monopole point located at
the origin. The case of several monopole points follows easily from this case. Let

ro = %Ianang (T?). Then we have the expansion

1
7.10 Vs(x) = —— h B,,(0%),
(7.10) @) = gz + 0+ hla). € By (0)
where h is a bounded harmonic function.
First, we estimate the curvature in the case r(x) < f~!. By (ZI0), it follows
that

2
- < Cr(1—2rB +4r28% + 8/ 8%)

Vil ———————
A 1+2rB+2rh —

for r < 71, and then
‘Vﬁ_lAQ(Vﬂ_l)‘ < CTﬂS-

The first estimate in (ZH) follows from this.

Next, let © € B, (03) satisfy r(z) > 37!. Substituting (ZI0) into (Z.3)), a similar
expansion formula proves the second estimate in (Z5).

Now we relate the intrinsic distance function d,,(x) and the Euclidean radial
function r(x). By directly estimating the integral of \/Vj, we have that

o V@) < dn(@) < C'Vrl@), r(@) < 57,
G B r(@) S du(e) < O 51 (@), rl@) > 67

where C’ > 0 is some universal constant. The curvature estimate in (Z6) immedi-
ately follows from this.

From now on, we consider the case that x is in the neck region and satisfies
|z(x)] > 7&. In this case, V3 has the expansion (6.6). Note that since the cutoff
function and its derivatives up to third order are uniformly bounded, the curvature
of the glued metric is of order 372 in the damage zone regions. The curvature
estimate in (7)) follows from this observation and (7.9).

Next, we recall from Section 2.2 that for the model spaces, the defining harmonic
functions are V_(x) = w and V,(z) = %@, so ([79) implies the first
estimate in (Z8). Hence the complete end of the model space has precisely inverse
quadratic curvature decay. It follows from PropositionB4lthat the Tian-Yau metric
does also. ]

7.2. Rescaled geometries. In this subsection, we will analyze the geometry of
each region defined in Section [[.T.3] which can be viewed as geometric preparation
for defining our weighted Holder spaces. In our context, we will discuss a sequence
(M, g;) with g; = g, for the gluing parameter sequence 3; — co. In the remaining
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part of this section, we will rescale as follows: for every x; € M, we will choose the
rescaling factors A\; > 0 and the corresponding rescaled metric §; = )\fgj so that

(M, G, 2;) EEs (Moo, Goor Too).-

The choice of A\; will be consistent with the definition of the weight function. We
will also need to improve the Gromov-Hausdorff convergence to convergence with
some higher regularity. To this end, we will select subdomains U; C M which are of
almost full measure such that the above rescaling has uniformly bounded curvature
in U j-

Region 1.

We will first prove that, after an appropriate rescaling, the blow-up limit around
each monopole point is the Taub-NUT space. Let T? x R be equipped with a flat
product metric gg. Given a constant 3 > 0, let V3 be the harmonic function defined
in (@30 that satisfies

mo
—Dg V=21 5,
m=1
and has the following expansion:
1
where each h,, is a bounded harmonic function on BY(py,), 1o = %min{do,io},
and
_ . . . 2
do = Lo min dgo(Pm,>p1), G0 = InjRad, (T° x R).

Let (N}, 9s) be the Gibbons-Hawking space equipped with the hyperkéhler metric
98 = Vs - groxr + Vgl - 6%,
where 6 is a connection 1-form satisfying the monopole equation df = *dVg. Denote
by 7 the bundle projection. Given any positive constant o > 0, we define the
rescaled metric as follows:
FR
/\a,ﬁ =02, 9o, = ()‘0,6)2 “9B-
Then we have Lemma [74]

Lemma 7.4. Let p,, € P, be a monopole point and let 7= (pym) = pm € N;?l@o'
For every fized positive constant o > 0, we have the following C*°-convergence:

(N;Lzouga,ﬂvpm) Q (R47ga,oo>15m,00) as B — +o0,
where (R*, Go. 00, Pm.co) 15 a Ricci-flat Taub-NUT space with
1 1
= 2do(p0%) | o2
where dy is the distance function in the Euclidean space R3.

Proof. Let B (pp) C T? xR be the ball defined as above with 77! (pp,) = pp,. We
choose a standard coordinate system {z,y, z} in B (p,,) such that p,, = (0,0,0).
Then in these coordinates,

Jo,c0o = Go - grs + (GU)_192 and Gy (p)

1

Va(z,y, 2) = ————o—
) = e

+ h(z,y,2) + B,
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where h is a bounded harmonic function on BJ°(p,,). Let us rescale the coordinates
by
Ta=Y3-T, Ys=Y8 Y, 28 =78 " 2,
where 73 = 0 - . So the rescaled metrics g, g5 converge to
1 1
" 2o, 05) o7

where dj is the distance function in the Euclidean space R3. This tells us that Jo,00
is a Taub-NUT metric, and the proof is complete. O

Goo =Gy - grs + (Go)710? and G, (p)

Returning to the analysis of Region I, in this case we choose \; = (Bj)% and
consider the rescaled metric g; = )\fgj. Applying Lemma [74] the rescaled spaces
converge to the standard Taub-NUT space, i.e.,

~ GH
(M, Gj,Pm) = (R*, Jos, Prm,oo)s

where the length of the S'-fiber at infinity equals 1. By the regularity theory of
harmonic functions, the above convergence can be improved to C* everywhere for
any { € Z.

Region II.

We will now analyze the convergence of appropriately rescaled spaces for every
fixed reference point x; in Region II. To understand the geometries of the rescaled
limits, there are three cases to consider, each of which depends on the distance of
a reference point «; to the monopoles. Namely,

_1 _1
(a) There is a uniform constant o9 > 0 such that 23; * < d,(z;) < Ulo B; 2.
(b) The distance to a monopole d,,(x;) satisfies
s j dn j
d L(ji]) — o0 and L(Z}j) — 0.
B;* B;
(¢) There is some uniform constant Cy > 0 such that
3 W g3
O<CO'BJ' Sdm(mj)g ZBJ
In this region, the rescaled metric g; = )\f - gj is chosen as
~1
_)ld (cc)) , in Case (a) and Case (b),
(711) A = ( m ]

(dj)~t,  dj = mini<m<m, dm(x;), in Case (c).

Now we proceed to describe the rescaled limits in each of the above cases. Apply-
ing Lemma[T 4l to Case (a), the rescaled spaces converge to a Ricci-flat Taub-NUT
space with a monopole py, o, i.€.,

~ GH
(Mmgjij) — (R4vgoo7 moo)a

where dj__ (Too, Pm,oo) = 1 and the S'-fiber at infinity has length at least o > 0.
Moreover, the above convergence is C*° everywhere.
In Case (b), we have the convergence

(M \BZJ,% (pm)agjawj) ﬂ} (R3 \ {03},QR3,$00),

J
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where ggs is the standard Euclidean metric on R3. To prove this, note the following.
In terms of the rescaled metrics g;, the diameters of the fibers converge in the
following way:

7.12 Diamg (SY) < C-5; 2 -
(7.12) famg, (5°) < € 5, dm ()

wl»—‘

Now denote 7v; =

=7 (7 " and define the rescaled coordinates

.’IJJE’}/]:E, ij’yjy, Z]E’YJZ

Then one can check that the metric tensor g; in terms of the rescaled coordinates
converges to the Euclidean metric dz?_ +dy2, +dz2, , where (x,v;, 2;) converges to
(Zoos Yoos Zoo) With |dZeo| = |dYso| = |dzeo| = 1. Therefore, by ([L12)), the rescaled
Gromov-Hausdorff limit is the punctured Euclidean space R? \ {0%}. Moreover,
applying Lemmal[7.2] it follows that the sequence converges with uniformly bounded
curvature away from the origin.

In Case (c), we will prove that the rescaled limit is a punctured flat cylinder.
That is, let s; > 0 be a sequence of numbers such that

1
i —0, — —0.
> T

Then we claim that
1 ~ GH 2
(M= (U B (om)),d5:25) 5 (T2 % B) \ Py 90,20,

where go is a flat product metric on T? x R and P, = {p1,--,Pmo} C T2 x R is
the set of all monopole points.

To see this, we will carefully look at the convergence in a sequence of punctured
domains with unbounded diameter. We denote U(a,b) = {& € M|a < z(x) < b}.
Let £ > 0 be a sequence with £;/8; — 0 and choose a sequence of punctured
domains

0y = Uls(ay) = &, () + ) \ (U B (pm)):

where B’ (pr,) are balls of radii s; in the flat product metric go on T? x R. Tt is
straightforward to see that

(7.13) Diamg, (U;) =~ C - & — o0,
(7.14) Diam;, (fl(Bg; (pm))) ~C-s; 0,

The above arguments show that the limit f]oo is a complete space minus mg points.

On the other hand, we will show that the metrics §; converge to a flat product

metric on T? x R. In fact, for every y € Uj, there is a bounded harmonic function
hj such that Vg, satisfies

1

Vs, () — (h;(y) +2mb_ - 2(y) + B;)| < %5,

1

In Case (c), let us define v; = 3, * -d;, where d; is defined in (ZII]). By assumption,

there are constants Cy > 0, ¢, > 0, such that for every j € Z,, we have that
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’ _1
Co <75 < “. By the definition of ~; and \;, we have that \; =~; ' - 3; *. Since

. 15 — 0, the following holds for some uniform constant C' > 0:
I

(7.15)
oL c 4 04 1
A2V (y) — L Vs, (y) — 85l < CH+C-&+ 5 _ B + 5 T nE o
s 7 e T 738 v
Therefore, applying (I3), ((I14) and (Z.I3]), we have that
e G
(716) (U]?gjvm]) —H> ((TQ XR)\PTH()’Q07$OO)7

where gg is a flat product metric on T? x R and P,,, has mg points. As in Case
(b), applying Lemma [[2] we see that away from the monopole points, curvatures
are uniformly bounded in (7.10]).

Region III.
_1
For every fixed x; in Region III, we define A\; = 3, * and set g; = )\fgj. Similar
to Case (c) of Region II, let s; > 0 be a sequence of numbers such that s; — 0 and

Slﬁ — 0. Then applying the arguments in Case (c) of Region II, we have

(M (U B 0)) i) 5 (72 B)\ Progin ).
m=1

where go is a flat product metric on T2 x R. Applying Lemma [.2] it follows that
the sequence converges with uniformly bounded curvature away from the monopole
points.

Region IV_.

For fixed x; in Region IV_, we choose the following rescaling factor:

A= (L(a)) 7

and consider the corresponding rescaled metric g; = )\?gj. To start with, let us
estimate from below the rescaled distance from x; to a monopole. For every x; in
Region VI_, by the definition of this region, we have that

1 1
10T} - B2 10T} - B2
dﬁj(pmamj) 2 I .j = ; I
—(®5)  (@2nb- - 2(my) + -+ B;)?
If 3; > 0 is sufficiently large, then immediately

dgj (pm,$j> > 5T6 > 0.

Now we consider the following cases.
(a) There is a constant Cy > 10Tj, independent of j such that

5Ty < dg; (Pm, ®5) = Aj - dm(x5) < Co

for each 1 < m < my.
(b) The reference points «; in Region IV_ satisfy

dg, (Pmsxj) = Aj - dm(25) = 00.

In Case (a), we have the convergence

(M. g5, ;) <5 (T2 X B)\ Py g0, @ ).
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where g is a flat product metric and the set P,,, contains mg points. To see this,
first notice that there is some constant C' > 0 such that |z(x;)| < C. Let us denote

U(a,b) = {x € M|a < z(z) < b},

and let us also choose a sequence &; > 0 satisfying £; — oo and —éjv — 0. For every
J
fixed z; in Region IV_, we choose a punctured domain

(7.17) Uj = Ulalay) = & 2(ay) + ) \ 77" U B (p))

where Bg;? (pm) are balls of radii s; in the flat product metric gy on T2 x R and

s; > 0 is a sequence of numbers satisfying s; — 0 and ﬁ — 0. Then it is
VEatV)

straightforward to see that

(7.18) Diamg, (U;) ~ C - & — cc.
Hence the limit space Us has two ends. Moreover,

(7.19) Diam;;, (wfl(ng(pm))) ~C-s; 0.

Therefore, the limit space (0]00 is a complete space minus mg points.

Next, we will show that g; converges to a flat product metric go on T? x R. To

this end, it suffices to show that for every y € [OJj, % — 1 as j — +o0.

In fact, for every y € [OJj, there is a bounded harmonic function h; such that the
Green’s function Vg, satisfies
1
V3, ) = (hy ) 27 2(9) + 35)| < 5

Since ﬁ — 0 and g—i — 0, the following holds for some uniform constant C' > 0:
VEag¥) J

(7.20) Vi, () ‘7 Vo, (1) = (Lo (@) _ C+ 0+ - )

(L—()) o 2mbo - z(ay) 8-+ T B - C
Therefore, applying (ZI8), (ZI9) and ([Z20), we have

o GH
(Ujagjvmj) — ((Tz X R) \ Pmoagmwoo),

where g is a flat product metric on T? xR and P,,, comprises mq points. Moreover,
by Lemma [[.2] it follows that the sequence converges with uniformly bounded
curvature away from the monopoles.

In Case (b), it holds that

~ GH
(Mvgj7m]) S (TQ X Rag()vmoo)a

where ¢o is a flat product metric on T2 x R. The proof of this is similar to the
previous case. Here we choose the domain

Uj = U(zx(w;) — &, 2(x)) + &),
where the sequence of numbers &; > 0 satisfies §; — oo and g—; — 0. Then the

same arguments show that

~ GH
(Uj,gj,l'j) — (T2 x R, gvaOO)7
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where ¢o is a flat product metric on T? x R. By Lemma [.2] it follows that the
sequence converges with uniformly bounded curvature in any compact subset of
bounded diameter containing x;.

Region IV,.

For every fixed reference point x; in Region IV, we choose the rescaled metric
g; = )x?gj with \; = (L4 (x;))~'. The rescaled limits are the same as those in
Region IV_.

Region V_.

Recall that Region V_ is a large region in the Tian-Yau space (X ,gp ,q-)

with ¢g_ € Xgli. For every fixed reference point x; in Region V_, we choose the
rescaled metric
A= (L (x)™", g5 =Ny

where g; in Region V_ coincides with g,— and we have defined L_(y) = (27b_ -
z_(y))2. We need to analyze the following cases.

(a) z_(x;) — oo.

(b) There is some constant Cjy > 0 independent of the index j such that 10¢, <

Z— (ar:j) < CO.

In Case (a), we have the convergence
. GH
(M7 9j, w]) — (TQ X Ra 90, moo)a

where gq is a flat product metric on T2 xR. To see this, we denote G =z2_(xj) = o0.
Let &; > 0 satisfy

§; — oo and §—>O.

G

Then we choose an unbounded annular domain
Uy SU(G=6.G+E) =y e MIG - & <2 (1) S G+ &)
We will show that
(U;, 85, 2;) oH, (T? x R, go, oo ),
where gq is a flat product metric on T? x R. Applying the same arguments as
before, we have
Diamg, (U;) — oo,

so that the limit space Uy has two ends. It follows that U, is complete. In

addition, we need to show that g; converges to a flat product metric on T? x R. To
prove this, let us recall the asymptotics of the Tian-Yau metric g,_ (for instance,

see (62)):
@) gs. = (Vo) 90+ V' () -0 )| S Coe7® =W 2 (y) 4o,
where g is a flat product metric on T? x R and where V_(y) = 27b_ - z_(y). Then

straightforward calculations imply that
|L ()2 (@) g, — go| = 0.
Indeed, it suffices to verify that
‘ mw>_4:wuw—@4MW_g
(L (2;))?

= — 0.
QWb,'Cj Cj
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By Lemmal[7.2] it follows that the sequence converges with uniformly bounded cur-
vature in any compact subset containing x; of bounded diameter. This completes
the analysis of Case (a).

In Case (b), since d(q—,z;) < Cp, there is some constant Cj; > 0 (depending
only on the constant Cy > 0 and the geometric data of g;_) such that

1

C_(/) < L—(wj) < C(l)'

Therefore, the limit space (Moo, Goos o) is a complete Ricci-flat Tian-Yau space
which is a simple rescaling of (X;' , g,—,¢—). The convergence in this case is more-
over smooth on compact subsets.

Region V..

For every fixed reference point x; in Region V, we choose the rescaled metric
gi = Ajgj with Aj = (L (x;))~". So the rescaling geometries are the same as those
of Region V_.

Region VI_.

We choose A\; = 1 and the limit is (X g{, 9b_,q—), a complete Tian-Yau space.

Region VI,.

We choose A; = 1 and the limit is (X§+,gb+,q+), again a complete Tian-Yau
space.

8. WEIGHTED SCHAUDER ESTIMATE

The main part of this section is to establish the appropriate weighted analysis
consistent with the different rescaled geometries of the manifold (M, gg). The main
result in this section is the weighted Schauder estimate in Proposition

Let § and v be fixed constants to be determined later. Fix the gluing parameter
B > 0. The weight functions pg’fj ®) with k € N and 0 < a < 1 are defined as

follows (the notations are defined in Section [T.1]):

ed(2T-) (6—1)11—&-/4:—&-047 €1,

5 Zr
65'(2T7) . (dWL(w))l/-'rk-'ra7 xTr € IL
3 (2T0) | (gEythta x € 11,
e (@) F2T) ([ (g))vthta zeclV_,
5(2()+2T-) . (], vtk+a v
. e T T € 9
e E=(@) (L (x))vthte TeV_,
eh (2 @+2-42T) (L (z)) R,z eV,
B v+k+a
o (L)) @€ VL,
v+k+a
S(—GE+2T_42T3) | (L+(CJ )) , ®EVL.

Each weight function matches up across gluing regions. To see this, we refer readers
to the definition of the attaching maps in (GI3]) and (G.I4)) showing the relationship
between z, z_, z; in the damage zones. The above regions do not entirely cover M,
so we extend each weight function to a smooth function on the entire manifold
M by using appropriate cutoff functions in each gap region. By Remark [T1] the
rescaling geometry in each gap region is the same as that of the adjacent regions;
therefore these gap regions can be ignored in the weighted analysis.
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Before defining the weighted Holder norms, we make a remark on the rescaled

geometries. For any fixed x € M, the computations in Section imply that
sup |Rmlg, < Co- A2
Bi/x, ()

for some uniform constant Cy > 0, where A\, > 0 is the metric rescaling factor
associated to x as in the discussions in Section So it is standard that there is
a uniform constant sg > 0 such that
. N 50
InjRad,_(z) > —,

.] gg( ) — 2)\@
where # is a lift of 2 in the universal cover of By /5, (2). For every x € M, let us
set r, = 3¢. We are now ready to give the definition of the weighted Holder spaces.

Definition 8.1. Given 0,v € R, k € N and « € (0,1), the weighted Holder space
C’Z{’Va (M) is defined as the space of all C**-tensor fields (of some fixed type, for
example, functions, 1-forms, symmetric 2-tensors, etc.) equipped with the following
weighted norm with respect to the Riemannian metric gg. For a tensor field w on
M we define the following.

(1) The weighted C**“-seminorm is

(k) IVI0(E) = VFQ()))
{ri @ =

where Z denotes a lift of = to the universal cover of B, (z), the difference
of the two covariant derivatives is defined in terms of parallel translation in
B, /2(Z) along the unique geodesic connecting & and g, and @, gg, are the
lifts of w, gg, respectively.

(2) The weighted C**“-norm is

[M]Cfs",‘f = sup sup j€ Brw/g(i')},

reM

k
= U) i .
Illogz o = 22 [l062 - 7] gy, + ez
J:

Proposition 8.2 (The weighted Schauder estimate). Consider (M, gg) with a
sufficiently large gluing parameter 3 > 0. Let 9y, = d* @ d*. Then there exists
a uniform constant C' > 0 (independent of ) such that for every w € QY (M), it
holds that

(3:2) Il ey < C(1Zasllcos i + Iwlleg, an)-
Proof. We will argue by contradiction and suppose that no such uniform constant
C > 0 exists. This means that there exist the following sequences:
(1) a sequence of numbers 3; — oo,
(2) a sequence of gluing metrics (M, g;) with weight functions pgfggua) (for sim-
plicity, we will denote these by pgkj ) hecause there is no ambiguity),
(3) a sequence of differential 1-forms w; € Q'(M) such that as j — oo,

(8.3) lwjllcte ag) =1

(8.4) 1Zg;0illcoe mgy + Iwilleg, (g, = 0-
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Our main goal is to prove a local version of the weighted Schauder estimate
claimed in (82). Precisely, it suffices to show that there is some uniform constant
C > 0 (independent of j) such that for every w € Q'(M) and for every z; € M,
there is some r; > 0 (depending on the location of ;) such that the following
estimate holds in By, (x;) C (M, g;):

(8.5) ||W||c;35(BTj (@) < C(H%wllcg;;ﬂ(&” @) T lwley, 5., (wj)))-

Once (B3] is established, a contradiction almost immediately arises, which com-

pletes the proof. Indeed, ([B3]) implies that either Hpglg - Vwjlleom,g) = 1 or

1
[wj]Cg”f(M,gj) > 1. We assume that HPE;Z - Vwjllcom,g,) > 1 as the argument for
the other case is identical. Hence, by definition, there exists some x; € M, with

1
(8.6) P (a;) - Ve ()| > 5.

By (B3, there is some 7; > 0 which depends on «; such that

ijHc;;;(BTj (@) = C(H@gj‘JJchM (Bar, () T lwilley, (.., (mj))) — 0.

S,v41

The above estimate implies that
1
(8.7) Ipb(@s) - Veoi @] < lwilley, (., @ < lwillore s, (o) = O

However, (87 contradicts (86]). The proof is done.

So the main part of the proof of the proposition is to establish (83H]). In our proof,
the primary strategy is to rescale the metric g; by setting g; = )\fgj. Recall that
in the previous section, we showed that, for every reference point x; € M, after an
appropriate rescaling, there is a subdomain U; containing x; that has uniformly
bounded geometry away from at most finitely many singular points. Then the
standard Schauder estimate in the rescaled space is available. That is, there is
some uniform constant 7o > 0 such that for every @ € Q}(M),

58 |l < (195,91 + [l

Che(BE () €O (B3l (=5)) c°<B§;’0(wj>>>’
where the geodesic balls Bgf;o (z;) C U; converge to a ball in a smooth space keep-
ing curvatures uniformly bounded. One can obtain the estimate (8S) by lifting
everything to the local universal covers, whose C'**-harmonic radius is uniformly
bounded from below. Once we obtain (), we will get the weighted estimate (83
after an appropriate rescaling.

In the following arguments, for every fixed x; € M, we will choose the corre-
sponding rescaled metrics g; = )\fgj defined as in Section

Region 1.
1
We prove (&3] around the monopole p,, € Pp,. Let \; = B; and choose the
rescaled metric §; = )\fgj. Then

~ c ~
(M;g];pm) — (R4agooapm,oo) as 6] — 00,

where o is the standard Taub-NUT metric such that the length of the S!-fiber
at infinity equals 1. Since the above convergence is C'*°, the rescaled sequence
(M, §j,pm) has bounded geometry and thus the standard Schauder estimate holds
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in the geodesic ball ng (pm) with respect to the rescaled metric g;. Precisely, there
is a uniform constant such that for every w € QY(M),

1l cs.a i g, < C(||%J“”||CO~°~<B§J‘ on T 19 o2 <pm>>)'
Now we rescale back to the original metric g;. With respect to the original metric,
the above Schauder estimate is equivalent to the following;:

1 (14«
195 - Vwlloo (s, () y A+ oS Vwllca(s,, (om)

0
< C(HP5 i1 Dgwllce B, o)) + HPE;,,Z “wlleos,,, (pm)))a

where r; = )\;1. Therefore, by the definition of the weighted Holder norm,

llops s, my < €120 wlloos
sV J

o By ) T 1900 By )

So the estimate (B3] has been proved in Region I.

Region II.

We will prove (83]) for every «; in Region II. We break down this region in Case
(a), (b), and (c) (with different rescaling geometries) as for Region II in Section

In each of the above cases, the rescaled spaces (M, g;,z;) have uniformly
bounded curvatures and converge to a smooth limit space. This enables us to obtain
the standard Schauder estimate in any ball of a definite radius in the rescaled spaces.
Speciﬁcally, let «; be a fixed point in Region II. Then the standard Schauder esti-

mate in Bl/ﬁ(wj) states that for any w € QY(M),

3 <1250l 11l o

Cre(BY () Co (B4 (=)
Then rescaling to the original metrics g;, we find that

(lJrOt)( j)

||p6u(mj) Vwl|cop, (@) y e 'VWHCW(BT]. (x5))

0
< CI053) 11 (@5) - Dyyllcs o, @) + 1050(@5) - wloo(Bs,, )
The above 7; > 0 is defined as follows:

. _{ N 1= = &d(z;), in Case (a) and Case (b),
j:

édj, in Case (c),

(+)( ) for

where d; = mini<;m<m, dg; (Pm, ;). We need to show that the values p
all y € B,,(x;) are equivalent. To see this, note by the triangle inequality that for

every y € B, (x;),
vt+k+a (k+0¢) vt+k+a
(§> < Y < (Z) '
6 pé v ((L']) 6

By the definition of the weighted norm, (83]) now follows.

Region III.

The rescaled metrics are g; = ﬂ;l -gj, and so coincide with Case (c) of Region II.

Regions IV_ and IV,.

We only prove the estimate ([83) for every fixed reference point x; in Region
IV_. The proof for the other region is identical.
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For a fixed @; in Region IV_, we define g; = A?g; with \; = (L_(z;))"'. In
Section [[2] the rescaled limits were separated into Case (a) and Case (b). We
follow the notation as stated there. Notice that, in each of the above cases, the
rescaled spaces have uniformly bounded curvature, allowing us to state the standard
Schauder estimate in the following way.

In Case (a), by assumption, we can pick some definite constant

7;0 = 26 S d.‘}] (pm7w])
2 10
such that for every w € Q'(M),
5 < 5 ,
ll s e 52 () (1730 a5 Do) T HwHCO(%%(Ej)))

In the above estimate, the constant C' > 0 depends only on T > 0 and the flat
product metric g (in particular, C' does not depend on Cp). Let us rescale back to
the original metric g; and take r; = (L_(x;)) - 7o > 0. Then

o (@)

||Pau($y) Vwllcos,, @) + I Vwlcas,, (@)

<c(\|péy+l< 3) - DygllcnBar, @) + 1050(@5) - wloo(ss,, @))-

All that remains to show is that the values of the weight function p((; ) are equiv-

alent for every y € Ba, (x;). To see this, denote (; = z(x;). Then by straight-
forward computations, there is a uniform constant C; > 0 such that for every
Yy € Boy,(x;), we have that |z(y) — ;| < C1. Moreover, we can show that there is
some uniform constant Cy > 0 such that CJ < (s for any j € Z. By the definition
of the weight function in Region IV_, we also have that

(k+a) v o
Pow W) _ - (L)
p((;k:a)(icj) (L_(a;))v+h+a
The above estimates then imply that there is a uniform constant C's > 0 such that
)
Gy S BT SO
CS Ps.v (mj)

This completes the proof of ([8H) in Case (a). The proof of the estimate in Case
(b) follows similarly.

Regions V_ and V.

We only need to prove the estimate (%)) for the reference point x; in Region
V_ because the estimate in Region V is identical. As in the discussion in Section
[[2] there are Case (a) and Case (b) to be considered.

First, we prove the weighted Schauder estimate (85 in Case (a). Let \; =
(L(z;))~! and g; = A3g;. Then we have shown in Section that

~ GH
(Mvgj,wj) — (’]I‘2 X Ra gOvmoo)'

Moreover, the curvatures are uniformly bounded in the above convergence, which
implies the standard Schauder estimate for every w € Q'(M), namely

15,1l + [l

|| ||C1 Q(BQJ (x; )) = ( Ca(ij(mj)) CO(ng(mj)))'
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Rescaling back to the original metrics g;, we find that

1+
o5 (@) Vewllcos,, @, + 1055 @) - Vellca s, @)
0
< C(1051(®5) - Zoyllca(ar, @) + 1050(@5) - Wlloo (s, @) )

Now the last step is to show that all the values pyf; ) (y) are equivalent for
every y € By, (x;). To see this, denote (; = z_(x;) and §; = z_(y). Then
straightforward computations imply that |{; — ;| < Cp for some uniform constant
Co > 0. By the definition of the weight function in Region V_, we see that

(k+a) v+k+a
Pow W) gy (=)
(k+a)

Py (@) (L—(aj))thte
Therefore
1 A (y)
F < W S Cla
pév ( j)

which completes the proof of Case (a).
Next we prove Case (b). We showed in Section[[2that the limit space (Moo, Goo,
Too) is a finite rescaling of (X;! , gp—,q—). Moreover, the Gromov-Hausdorff con-

k
vergence is strengthened as (M, §;, ;) CAN (Moo, foos o) Tor any k € Z which

implies the following Schauder estimate:

1o ) < O 1200 o3 oy + 19053 o)

where C' > 0 is independent of j. Now we rescale the above estimate to the original
metric whilst also rescaling w as in Case (a), which gives

14+«
108 (@) Velleo s, @, + 05 (25)

Vwllea s, @)
0
< C(Hﬂa,uﬂ(wj) - Dyyllon(Bar o) + 1052 @5) - @lloo Bar, @)

where r; = L_(x;). Similar to Case (a), there is some constant Cy > 0 which is
independent of the index j and the constant Cj such that

k4o
1 pfsf '(y)
— <L o,
Co ngf ()

By definition, the weighted Schauder estimate (83]) immediately follows from this.

Regions VI_ and VI,.

First, we consider the case where the fixed reference point x; is in Region
VI_. Then the weighted estimate (83]) becomes the standard Schauder estimate on
Bi(z;) C X} . Indeed, as the weight function in this region is uniformly bounded,
([B3) is equivalent to the standard one.

The proof in Region VI, proceeds identically. ([l
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9. THE INJECTIVITY ESTIMATE FOR %,

In this section, we will prove the uniform injectivity of the linearized operator
which is a crucial technical ingredient in proving the existence of a hyperkéahler
triple. For ease of exposition, we state a standard Liouville theorem on the flat
cylinder T? x R.

Lemma 9.1. Let T? x R be equipped with a flat product metric go and let Ao be
the lowest positive eigenvalue of —A,,. If u satisfies Ag,u = 0 and |u(z)] = O(e**)
for some A € (0,+/Ng), then u=0.

Now we state the main technical result of this subsection.

Proposition 9.2 (The injectivity estimate for ;). Consider (M, gz) with suffi-
ciently large gluing parameter B > 0. Assume that the parameters § and v satisfy
(1) 0<é< % min{d;, dy, €1, €9, Aos On, g
(2) ve(0,1),
where the constants 01,04, €1, €5 have been specified in ([Cl) and ([T3) respectively,
Ao > 0 is as in Lemma [01], 65 > 0 is as in Theorem [5.1] and 64 is as in Corollary
65 Then for every a € (0,1), there exists a uniform constant C = C(a, d,v) > 0
which is independent of B such that for every w € QY(M),

lWllcpe o = C-I1Zg@llcgs,

Proof. By Proposition B2l it suffices to show that there exists a uniform constant
C > 0 such that

||W||C§YV(M) <C- H@gﬁ“’”cgfﬁ(m)

for all w € Q'(M). We argue by contradiction and suppose that no such uniform
constant exists. Then we have the following;:

(1) a sequence of spaces (M, g;) with gluing parameters 5; — oo,
(2) a sequence of 1-forms w; € Q'(M;) such that as j — oo,

ij”ngu(M‘j,gj) =1 and ||@gjwj||cg;j+l(,\/lj7gj) — 0,

(3) a sequence of points x; € M, satisfying |p§?g’y(:cj) -w;(x;)] = 1, where

pgoé) ,, is a sequence of weight functions in (M, g;).

Now we are in a position to rescale the above sequences to produce a contradic-
tion. To start with, let g; be as above, and denote the rescaling factors as follows.
(1) Rescaling of the metrics. Let §; = )\? - g; with X; to be determined

later. Then with respect to the fixed reference point x; € M, as in (3)
above, we have the convergence

(Mj,gj,ﬂlfj) G—H> (M007d~007$00)'

(2) Rescaling of the 1-forms. The 1-forms w; will be rescaled by @; = k; - w;,

for a sequence x; > 0 to be determined later.

(3) Rescaling of the weight functions. We denote by pgfcgya) and pgzof,) the

weight functions on M, and M, respectively. Fix k= 0,1 and o € (0, 1),

and rescale the weight function p;?’rya) by ﬁyc;}a) = TJUHQ) . p;f?’rya) with

TJUH'&) to be determined later.
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The above rescaling factors are chosen to satisfy the following scale-invariance prop-
erties:

1< kA7 <10, 1<V ko A72 <10, 1< Y kAT < 10,

In this way, we will obtain a sequence of 1-forms @; € Q'(M,) with the following
properties:

~ ~(0 ~ ~
155llcn gy =1 1850 (@) @) =1, Z5,@slles, g = O

The basic strategy of the proof is to combine compactness arguments and Liou-
ville theorems. More precisely, if (Moo, Joos o) is non-collapsed, we apply Propo-
sition to obtain a limiting 1-form @n, € (Mo, foo, o) such that

- ~(0 - -~
(91 l@sollor, (Mug) = 1 1555, (Foo) - oo (@oc)| = 1, Dgoooe = 0.

Then we apply our Liouville theorems to show that the above limiting 1-form @,
with controlled weighted norm vanishes on M, which gives a contradiction. Next,
for a collapsed limit (Moo, Goos o), to understand the limiting behavior of the
operators ¥;, and the contradicting 1-forms w;, we will lift everything to an appro-
priately chosen non-collapsed (local) normal cover such that C**-compactness still
applies on such a covering space. On the other hand, we will show that there is a
representation @; = fF07 + fY0F + f70% + f70% such that (fF, f7, 7, f}) converges
to a 4-tuple of harmonic functions (fZ, f%, fZ, fL ). In addition, we will also show
that at least one of f%, f%  fZ and f! has a positive weighted Holder norm at .
The desired contradiction then arises from various versions of Liouville theorems
for harmonic functions in the different collapsed regions.

We will now produce the desired contradiction in each of the regions discussed
in Section Specifically, we will explain how to choose A;, x;, 7;, and apply a
Liouville theorem in each region.

Region 1.

Assume that the reference point «; is in Region I. Then the rescaled limit is the
Taub-NUT space (Moo, foo; o) With a limiting monopole p, . We choose the
rescaling factors as follows:

1 1 1
>\j _ A2 T(kJra) — 02T, (Bz)u-i-k-i-a, Kj = 92T, (Bj 2)1/—1.

Jjo J J

Then we have that dj_ (Pm 0o o) < C and the rescaled weight function in the
limit space is given by

~(k+a) (.’1}) — 1’ T € Bl(pm,oo)a
000 (dgo (T, Prmoe))VTHHY, @ € Moo \ Ba(Pim.oo)-

The limiting 1-form @, € Q'(M) then satisfies
~ ~(0 ~ ~
Duoo =0, |05, (Boo) - Goo(@oo) = 1, nolcy (mo) = 1
Notice that the above norm bound implies that for all x € My \ B2(pm,c0),

|‘1}00(w)| < (dgoo (w>pm,00))_y'

Since Ws is in the kernel of Z;_, W is harmonic with respect to the Taub-NUT
metric Joo. Applying Lemma .14l and using v > 0, we conclude that 0., = 0.
Region II.
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Now we discuss the case that the reference points x; are in Region II. In Section
[[2 the rescaled geometries were separated into Case (a), Case (b), and Case (c).
We work with the same division in what follows.

We start with our analysis in Case (a). By Lemma [[4] the rescaled limit in
Case (a) is a Ricci-flat Taub-NUT space (Mo, Joo, Too) such that the S'-fiber at
infinity has length at least og > 0. The rescaling factors in this case are

N = (@)™ 7T = e (d ()T = €T (A ()

In the rescaled limit space, the limiting reference point &, satisfies dj_ (Too, Prm,o0)
= 1. Moreover, the rescaled weight function in the limit space is given by

~(k —v—k—«
PEE (@) = (g (Prsoes ) V757, @€ Moo\ Ba(pmyoo):

and the limiting 1-form @, € Q!'(M) satisfies
- (0 - -
Dooe =0, [P0, (Boo) - Goo(oc) = 1, @sclco ao) < 1.

The above weighted norm bound implies that for every € € Mo \ B2(Pm, ), the
limiting 1-form @, satisfies the pointwise estimate

Goc(@)] < (e (o))

Applying Lemma [£.T4] we deduce that &, = 0 on M, which completes the proof

of Case (a).
In Case (b), the rescaled limit is R3\ {03}. Let us choose the rescaling factors
as follows:

_ k -5 —v—k—a 2T v—
A= (o) 70 75 = 0T (dy(2)) 7RO Ky = T (d(g))

In terms of the above rescaled metric, the reference point @ satisfies dg, (€0, 0%) =
1. Moreover, the rescaled weight function in the limit space is given by

[)(k—i-a)(m) _ (dgo (037 m))*ufk*a, €T e R3 \ {03}

00,0,V
We will now analyze the limiting behavior of the operator %;, under the collaps-
ing sequence (M, g;, ;). Our basic strategy is to reduce the convergence of the
1-form @; to the convergence of the coefficient functions. Let

Gy = IGO0 £ 0
where
1 1
07 =N B} - du, HgEAj-ﬁj dy, 07 =X -B7 - dz, 925)\3"3]- - dt.
By straightforward computations,
(9'2) |9;|§J = ‘9%61 = ‘ejzléj —= 1, ‘9§|6J — 0.

Now let us construct the limits of the above coefficient functions. We start with
the Gromov-Hausdorff convergence

N
W=

- GH
(Mvgj>wj) — (R3>gouwoo)
with [#| = 1. For any fixed R > 10, let A% ,(
R’

to the Euclidean metric go. The first step is to obtain the limits of the coefficient
functions f7, f7, 7, f; with controlled weighted norms in the flat annulus A%’ R(OS)

0%) be an annulus in R? with respect

under the Gromov-Hausdorff convergence. Letting R — oo, we will apply Arzela-
Ascoli to obtain global limiting functions.
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First, fixing any R > 0, we consider a Euclidean annulus A% R(()3) C R3. We
B
claim that there are limiting functions f% g, é’o’R, f5% r and féo,R on AQ%")R((P) C

R3. Indeed, for any fixed R > 0, there exist 5o(R) > 0 and No(R) > 0 such that
{Basy(Yoo.x) }2_, with N < Np is a finite collection of Euclidean balls covering
A% L(0%) which satisfies

R

(1) A‘(;S’R(O3) C Uivzl BQ§0 (yoo,k) C A(ii 3R(03)’

_ R’
(2) %O < dgo(yoo,kvyoo,k') <5 forall 1<k <k <N.
We will verify that there exists a subsequence (still denoted by j) such that the
above finite cover satisfies the following compatibility:

(C1) (ff,f], f},f}) converges to harmonic functions (fZ ., f2 1. fZ ks flo i) on
every Bas, (Yoo,k)-
(C2) The above locally defined limiting functions can be patched together in the

sense that if Bos, (Yoo, k) N Bas, (Yoo,k’) 7 0, then

ffo,k(yoo) = fo,k'(yoo)a fgo,k(yoo) = foyo,k’ (Yoo)
fozo,k(yOO) = ozo,k’ (yOO)u fgo,k:(yOO) = fcio,k:’ (yOO)>

holds for all Yoo € Bas, (Yoo,k) N Basy (Yoo, k’)-

The above compatibility properties immediately imply that there are well-defined
harmonic limiting functions fZ g, f2 g, fZ g and fi g on A%,R(OS)-

To show property (C1), by taking some subsequence, it suffices to show that
for each ball Bas,(Yoox) in the above finite cover, there is some subsequence in
the original sequence {j} such that the coefficient functions [ converge to a
harmonic function f(fo - For this purpose, we need to locally unwrap the collapsed
fibers and discuss the convergence of the coefficient functions 7', on non-collapsed
local universal covers.

We take a sequence of geodesic balls Bas, (y;,5) with

-\ GH
(Baso (Yj.k), 95) = (Baso (Yoo,k), 90)-
Denote by ¢; (— 0) the length of the collapsing S'-fiber at y; and define

[y =T¢; (yjr) = Image[mi (Be; (y;)) — m1(Bas, (¥5))],

where €; > 0 is chosen such that 2¢; < ¢; < 4¢;. In our situation, m (Bas, (¥;.x)) =
I'; and I'; is isomorphic to Z. Now let
pr; : (Baso (Yj,k), 955 Usk) — (B2so (Yjk)s G5 Yjok)

be the universal covering map with Bas, (Y1) = Bas,(¥;,x)/I';. On the universal
covers, we have the following diagram of equivariant Gromov-Hausdorff convergence

eqGH

(B2§o(yj,k)agjarjvﬁj,k> (Yk,ﬁoo,Foo,Qoo,k)

pT; l lproo

- GH
(B2§0(yj,k)agjayj,k) —_— (3250 (yoo,k)ngayoo,k)

which satisfies the following properties:
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el) the universal covers (Bos,(Yi k), i, Yir) are non-collapsed and have uni-
o\d], J 75
formly bounded curvature,
e2) the limiting Lie group I's, is diffeomorphic to R and acts isometrically on
( g Lie group T'w p y
the limit space (Yi, foo, Yoo k)s
e3) the universal covering maps pr,; converge to a Riemannian submersion
g maps pr; g

Prog : (Yis Joos Uook) — (Basy (Yoo k), 90, Yoo k)

with B2§o (yoo,k) f Yk/FOO, R

(ed) for every 2o, € Y, the orbit 'y, - 25 is a geodesic in Y} and isometric
to (R, dt?). In particular, (?k,goo, Uoo) is isometric to Bag, (03) x R in the
Euclidean space R%.

Indeed, property (el) follows from Lemmall:2l Properties (e2) and (e3) follow from
the definition of equivariant convergence.

Proof of Property (e4). Define the rescaled coordinate functions
Tj=T Y5 =Y 25 =75 %
where v; = \; - B8 3, By direct computation, it is easy to see that
Agxy = Agy; = Ag,2; =0,
and by ([@.2), away from the monopole points, we have that
Vg, 5la, = IVg,u5la, = Vg2l — 1.
To see that the orbits are totally geodesic, we will prove that

(9.3) V3, %5 = V3

qj-yj‘gj = |v§jzj|§j — 0.

It suffices to verify this for x; as the proofs for y; and z; are identical to this case.
First, Bochner’s formula gives that

1
(94) §A§j|ij

Due to Cheeger-Colding (see [CC96]), there exist cutoff functions ¢; : M — [0,1]
with

2 2 2

(o {1 T € Br(p),
@i (z) {0, x € M\ Bagr(p;),

and an absolute constant Cy > 0 such that R|Vg ¢;ls + R?|Az ¢;] < Co. Inte-
grating (@.4) over Bygr(p;) yields

][ goj|V2xj|_§j dvolg,
Bar(p;)

1 / 212
= — @i V=% dvolg,
Volg, (Bsr(p;)) Bar(p;) ! 7193 !

1 / 1 )
= =0 A, (Va5 — 1) dvolg,
Volg, (Bar(pj)) JBur(p,) 2 I 7195 g
1 / 9
= (Ag,5) - (V|5 — 1) dvolz, — 0
2V01gj (B4R(pj)) Bar(pj) w T !
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as j — oo. Therefore, by volume comparison,
9.5) ][ 922,12, dvoly, — 0
Br(p;) ‘

as j — 00. Let poo € R?\ {03} with Bas, (pso) C R?\ {0%} and choose a sequence

of geodesic balls Bas, (p;) such that (Bas,(p;), §;) G, (B2s, (Pso); 90). By Lemma

[T the curvatures on Bs, (p;) are uniformly bounded by C'- 5,2, where C' > 0 is an
absolute constant. On the other hand, since Ay z; = 0, (.3 can be strengthened
to
sup |V2xj|§7, — 0.
BEO (Pj) '
This completes the proof of ([@3]).

To finish the proof of Property (e4), note that by (@.3]), the second fundamental
form of each I'o-orbit is vanishing. In other words, each I'y-orbit is a geodesic
in f/k. Combined with the facts that the limiting projection pr., is a Riemannian
submersion and Bas, (Yoo,k) is a Euclidean ball, we conclude that )A/k = Ba;,(0®) xR
and oo is isometric to the Euclidean metric. |

We will apply the above equivariant convergence to construct harmonic functions
F2 g Fgo o, and fL, in Bas, (Yoo k). We only show the construction of fZ .
Notice that Proposition implies that the I';-invariant lifted functions fj‘” satisfy
the uniform weighted Schauder estimate

15 lere syt <€

with respect to the lifted weight function. Applying Arzela-Ascoli, after passing to
a subsequence, there is a limiting function f7, ; that satisfies

Ifskllcre () < €
Combined with the above equivariant convergence, we find that the limit function

f;”ok is I'so-invariant and descends to a function fZ , in Bag, (Yoo ). Now we prove
that fZ ; is a harmonic function on Bas,(yso). As the lifted 1-forms @; also satisfy

<,

15ll oo o =
there is a limiting 1-form @o i that satisfies ||@eo i Hcl,u(?k) < C. The contradiction
5.v

assumption then implies that
2@00(2100)/9 =0in i}k
The standard elliptic regularity theory for Z;_ now shows that the 1-form @ 1 is

C*° which in turn implies that f(fok € Coo(?k). Lemma[0.3 will be used throughout
what follows. Its proof is left to the reader.

Lemma 9.3. Let (M*,g) be an oriented Riemannian 4-manifold and let w €
QY (M*) satisfy Dyw = 0, where 9, = dT & d*. Then Ayw = 0, where Ay is
the Hodge Laplacian on (M*,g).

Lemma [0.3] implies that Ag__( Aooﬁk) = 0. Applying Property (e4), Ay, ( §o7k) =
Ay (fZ ) = 0. The construction of the harmonic limiting functions f7_ ,, fZ ,

and f! , is verbatim.
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We are now ready to prove (C2). To this end, we take the union of disjoint balls
Boo = Bas, (Yoo,k) U Basy (Yoo k) Basg (Yoo,k) N Basg (Yoo,kr) 7 0.

Let B; = Bas,(yj.k) U Bas, (yj k). Then we have that (B, g;) CH, (Boos 90). By
the same arguments as above, B; has uniformly bounded curvature and the univer-
sal covering space (Ej, g;) is non-collapsed. Moreover, the equivariant convergence
with properties (el)—(e5) as above still holds in this case. By passing to some sub-
sequence, the lifted coefficient functions ff are Cl’o‘/—converging to some invariant

limiting function f(qu,k, on By for any o € (0, «) satisfying
forwle, = fon
Therefore, f;co,k,k/ descends to a function f7, ; ;, on B with

fgo,k,k"Bzgo('yoo,k) = fgo,k'
In addition, f§O7k,k, is harmonic on By, so we have managed to extend the local
harmonic limiting function fZ , to the union B. Repeating the above arguments,
we can extend the limiting functions to the whole annulus A% R(O?’).
R’

The above construction gives a control of the harmonic functions (fZ g, f2 .,

1% g, L g) on the flat annulus Ap = A% 3(03) with respect to the weighted norm:
. . L

(9.6)
1

5 @)l (1 (@) |+ 7L p(@0)| + 11 p(@oc)] + 1 p(@a0)l) = 55

||fozo,RHC;)';’(AR) + Hfgo,R”c;f(AR) + ||f§o,RHC§:;"(AR) + Hféo,R”C&lf(AR) <C.

We are now able to define a global harmonic 4-tuple on the punctured Euclidean
space R3 \ {03} by applying standard exhaustion arguments. Let R — +oo. By
applying ([@.0) and Arzela-Ascoli, there exists a global 4-tuple of harmonic functions
(f=, 8, 2, ) on R®\ {03} such that

1

~(0 x z
P50 @oo)| - (112 @o0)| + 12 @)] + [ F @oo) | + | fhe (@) > 25,
||f<fo”0§f(ﬂ&3\{o3})+HfgoHcg)';’(uw\{o‘%})‘|'Hfgo||c;;j(u§3\{o3})+||féo|‘c§;j(ua3\{03}) <C.

The weighted norm bound implies that the limiting functions have the following
controlled behavior:

(%l + 721+ 1] + 1FD(@) < C(dgo(,0%) Vo e R\ {0°),

By the standard removable singularity theorem, the 4-tuple of harmonic functions
(fZ, 4, f, fL.) extend to the entire Euclidean space R®. Using 0 < v < 1 and
applying the standard Liouville theorem for harmonic functions, we conclude that
L =fy = fz = fL, =0. So a contradiction arises, which completes the proof of
Case (b).

Now we consider Case (c). We have shown in Section [7.2] that the rescaled limit
in Case (c) is a punctured flat cylinder (T? x R) \ P,,,. More precisely, we chose a
sequence of punctured unbounded domains U ; containing x; such that

o

~ GH
(0G5 ;) < (T2 X B)\ Parys 90, 2 ).
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Then the curvatures are uniformly bounded away from the singular points, that is,
points in Py, .

Let us denote d; = mini <, <mg{dm (Pm,x;)} and choose the following rescaling
factors

A\ = dj—l7 FEte) 52T .(d_—l)v+k+o¢’ Ky = 027 .(dj)y—l_

J J

So the rescaled weight function in the limit space satisfies

(dgo (P, )V TrFe x € Bfé) (pm,) for some 1 < m < my,

ﬁg’;;?lé/) (w) - Qv,k,a; RS ﬂ:;:o:l AR (2L6/’T6/)’
662(0:)7 T € (T2 X R) \ UZ(]:l Bg%/ (pm)7

’

where 1f € [1, £&] is some constant of definite size and Q, 4 o depends only on v, k
and a.

Similar to Case (b), to apply the Liouville theorem on the collapsed limit, we
will construct a globally defined 4-tuple of harmonic functions (fZ, f¥, fZ, fL,) on
the limit space.

Fix R > 0, denote by Tr(S) the R-tubular neighborhood of a compact set S.
Applying Lemma [Z.2] we have the following curvature estimate on the sequence of
annuli 755 (P, ) \ T%j (P ):

| Rmg, || (
L

G G5 < KO : RQa
oo T3§(7’mo)\T% (Pm[)))

where Ky > 0 is an absolute constant. Applying the same arguments as in Case (b),
one can construct a 4-tuple of harmonic functions (fZ, 4, fZ, fL) on (T2xR)\ P,
which satisfy the following weighted estimates on (T2 x R) \ P,:

1

P05 @) - (175 @o0)] + 11 (@o0)] + 11 @) + | (@) ) = 35,

(9.7)
1zl + 1% oz + 12los + I filors <C.

This implies that

2 @)+ 1% @)+ 12 @) + o (@)] < C(dgy(@,pm)) @ € BY (),
2 @)+ |2 @)] + 115 (@)] + [ (@)] < Ce0@), |2(@)| > 2,

for some sufficiently large Zy > 0, since Ay fZ = Ay % = Ay f2 = Dy, fLo =0
on the punctured cylinder (T? x R)\ Py,,. Since we have required that 0 < v < 1, it
is standard to verify that the singularities in P,,, are removable. It follows that the
harmonic functions fZ, f%, fZ and fI extend to the entire flat cylinder T? xR and
satisfy the asymptotic behavior as in ([@8). Applying Lemma to the coefficient
functions with the growth condition (@.8]), we conclude that fZ = f¥ = fz =
fi. =0on T? x R. This contradicts ([@.1), so the proof of Case (c) is complete.

Region III.

The proof for Region III is identical to Case (c) of Region II.

Regions IV_ and Region IV .

We only focus on the case that the reference points x; are located in Region
IV_. The proof for Region IV is verbatim. Region IV_ has two different types of
rescaling geometries of Section [.2] which are given by Case (a) and Case (b).

(9.8)
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For fixed reference points x; located in Case (a), we have the following conver-
gence:

o

(U]ag_ﬂw]) G—H> ((TQ X R)\,Pmoa907woo)7

where go is a flat product metric on T? x R and [c]j is defined in (TI7)). We choose
the rescaling factors as follows:

— e — —v—k—« _ v—
A= (Lo (@)~ 7 =e 0T (L ()R Ry =efCT) (L ()7L
The limiting weight function is then

(dgo (pm, @) TFTe @ € B% (py,) for some 1 < m < my,
0
Pte) = Quian € ("0, A% (24, TY),
ed#(@), ze(T*xR)\U", B%),), (D),

where g € [1, £] is some constant of definite size and @y, depends only on v, k
and a. The rest of the proof is identical to the proof of Case (c) in Region II.

Next we prove Case (b). We showed in Section [.2] that in this case we have the
following convergence:

- GH
(Uj,gj,l'j) — (T2 x R, go, wOO)7
where g is a flat product metric on T? x R. The rescaling factors are chosen as
A= (Lo(ag) ™t Y = e T (L ()R
iy = CT ) (L (),

where z; = z(x;). We also translate the z-coordinate by Z(x) = z(x) — z;, which
gives the limiting weight function ﬁg;;i) (x) = e2*® for every & € T? x R. With
z replaced by Z, the remainder of the contradiction argument is the same as Case
(c) of Region II.

Regions V_ and V..

First, we assume that the reference points x; are located in Region V.. As
discussed in Section [T.2] it is natural to subdivide Region V into Case (a) and
Case (b). In this region, we choose the corresponding rescaling factors

—20-(T_+T1—24) e20-(T—+Ty— )

1 k4o €
Sl E Ty

L. (z;) 7j (L, (z;))"TFte

where z; = zy (x;).
First, the rescaled limit in Case (a) is the flat cylinder T? x R and we have the
convergence

~ GH
(Ujvgj,wj) — (T2 X Ra gOvmoo)'

Hence, under the z-coordinate translation Z; (x) = z4 (&) — z;, the limiting weight
(k+a)
00,0,V
ments are exactly the same as those for Case (b) of Region IVy. This completes
the proof of this case.

Next, we consider Case (b) of Region V. If the x; satisfy 10{;” < 2, (z;) < Co,

function is p (x) = e %%+ ®) With 2, replaced by Z,, the remaining argu-

12
then we have the convergence (M, g;, x;) <, (Moo, Joos o) for any £ € Zy, where
the limit space is a fixed rescaling of (X gl+’ gb,»q+). Also passing to a subsequence,
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we have z;(x;) — ¢o € [10(],Co]. Hence, using the same translation Z, (z) =
z4 () — zj, the limiting weight function is

k4o —§53.(x — ~ v
P @) = e @ (1 gt 2 (2)F, @€ Xy, \ By (a4)-
On the other hand, the limiting 1-form G, € Q'(X}, ) satisfies the following:
~ ~(0 ~ ~
2@b+w00 =0, |p<(>o),6,u($oo) woo(woo)‘ =1, Hwoo|‘CgV(X§+) =1
Notice that v € (0,1) and z; > 1. We also have the C°-bound
|Goo(@)] < O - 5™, @ € X3\ By (a4)-

If 6 € (0,0p), applying Theorem [5.] then gives that we have that W., =0 on Xgi.
The proof is the same if the x; are in Region V_. The only difference appears
in Case (b), where the C%-bound of the limiting harmonic 1-form @, becomes

[Doc(@)] < Cr- e @) (2 (@))%, @ € X\ Byp(q-).

We are now able to apply a much simpler Liouville theorem (Lemma T4 to the
above decaying harmonic 1-form @, from which the contradiction arises.

Regions VI_ and VI,.

If the x; are located in Region VI_, the proof is identical to Case (b) of Region
V_. If &, are located in Region VI, the proof is the same as Case (b) of Region
V.

Combining all of the above regions, the proof of Proposition [3.2]is complete. [

10. PERTURBATION TO GENUINE HYPERKAHLER METRICS

Theorem [M0.5 is the main existence theorem of a hyperkéhler triple and will
be proved in Section [[0.Jl Then in Section [[0.2] we will prove the main theorems
introduced in Section

10.1. The existence of a hyperkéhler triple. We begin with some general re-
marks about perturbing a closed, definite triple w to a genuine hyperkahler triple.
This material is from [Fos19], with some minor changes. We seek a triple of closed
2-forms @ = (61,02, 05) such that w = w + 6 is an actual hyperkéhler triple on M,
which is the system

1
5(&)1' + 91') A (wj + 9j) = 4;; dvoly,1a,

which is equivalent to
1 1. (2 .
(101) 5(&)1 Nwj+w; A Hj +w; A 0; +0; \ 9]) = 66” (wj + Qj + 2w; A 93)
j=1
Now split @ into its self-dual and anti-self-dual parts with respect to g, writing
0 =01 + 6. We define a matrix A = (A4;;) by

3
(10.2) 0F = Ajjw;
j=1
and define also a matrix Sg- = (5;;) by

1
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For any 3 x 3 real matrix B, we denote by
1
t(B) = B — = Tr(B) 1d
the trace-free part of B. Then we can write (I0.I) as the matrix equation

(10.3) tF(QuAT + QuA + AQLAT) = tf(—Qu — So- ).

For simplicity, in our context, we always identify a triple of self-dual 2-forms with a
3 x 3-matrix as in (I02]). Then observe that a solution of the following gauge-fixed
system

(10.4) drn+ & = %o(tf(—Qw - sd_,,)), d'n =0,

is also a solution of (I0.3). Here Fo denotes the local inverse near zero of the
local diffeomorphism &g : .7 (R3) — % (R?) on the space of trace-free symmetric
3 x 3-matrices .75(R?) defined by

Go(A) = tf(QuwA” + AQu + AQLAT).

Moreover, n = (11, 72,73) with 7; € Q' (M), & = (&1, &2, &) with & € HT (M) (the
space of self-dual harmonic 2-forms with respect to g.,), and d*n is the self-dual
or anti-self-dual part of dn = 0 — £ with respect to g,,, respectively.

The linearization of the elliptic system ([I0.4) at 7 = 0 is precisely the operator
(LH) mentioned in the Introduction:

ZL=(2ald)R®: (B (M) HT (M) @R® — (Q°(M) & Q3 (M)) @ R,
where
Z=d* +d": QY M) — (X (M) & Q3 (M)).
For any sufficiently large gluing parameter S > 1, denote by wé\/’ = (w1, wa,ws)
the approximate definite triple on M which was constructed in Section 6l To prove
the existence of a hyperkahler triple, we will solve the gauge-fixed elliptic system

([I04) based at w = wé\/'. We will use the following version of the implicit function
theorem; see for example [RS05, Theorem 4.4.2].

Lemma 10.1. Let .7 : A — B be a Cl-map between two Banach spaces such
that F (z) — F(0) = Z(x) + A (x), where the operator £ : A — B is linear and
A(0) =0. Assume that

(1) &£ is an isomorphism with | £~ < C1,

(2) there are constants r > 0 and Cy > 0 with r < == such that

3C1C>
(@) |4 (@) =AWl < Co-(lzla+lylla)- =yl for allz,y € B,(0) C

A,
(b) [1Z(0)lls < 55
Then there exists a unique solution to F(x) =0 in A such that
[z]lo < 2C1 - . F(0)]|s-
To apply the above implicit function theorem, we need to verify the above prop-
erties in our context. Recall that w/g,\’t = (w1, ws,ws) is the closed, definite triple on

M constructed in Section [B] which induces a Riemannian metric gg such that the
triple w™ is self-dual with respect to g. Define the following Banach spaces:

A= (GO M) S H (M) OB, B = (CF, (A (M) o,
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where HT (M) is the space of self-dual harmonic 2-forms on M, AT(M) is the
space of self-dual 2-forms on M, and Q' (M) = {n € Q'(M)|d*n = 0}. Notice that
Proposition implies that

dim(Ht(M)) = b3 (M) = 3.
Clearly the closed self-dual 2-forms wé\/’ = (w1, wz,ws) form a basis of HT(M).

Let 2 and B be equipped with the following weighted Hélder norms: for (n,£1) €
2A and &1 € B, let us set

1.8l = s aey + 1€ 2o 1N = 1€ oo ouey
The operator .% : 2l — B is defined by
F(m,€%) = d*n+ € = Fo(H(-Qs — Sa-n)).
which is given by the system ([0.4]). The corresponding linearization is
Ly =[dold) @R : A — B.
So the nonlinear part is given by
N (.6) = o (t£(=Q5) ) = Fo (tH(-Qs = Sun)).
First, we will check Property (1) in Lemma [T0.11

Proposition 10.2. Let the gluing parameter 5 > 1 be sufficiently large. Then there
exists a constant C > 0 independent of B such that for every &€+ = (¢],&5,&5) € B,
there ezists a unique pair

(1.6 = ((mmem). (6 .65.6)) €2
which solves £, (n,€T) = €1 and satisfies the estimate

(10~5) ”77”0;:1‘}(/\/1) + ||£_+||L2(M) < Cewéﬂ : ||£+||Cg:5‘+l(/\/1)v

where § and v are the constants in Proposition [0.2]

Proof. First, we prove that £, is surjective. It follows from Hodge theory that
Qi(./\/l) =HT (M) @ dt (QH(M)).

This clearly implies that the operator .%,;, = (d* ®1d) ®R3 : A — B is surjective.

The remainder of the proof is a contradiction argument. We will argue on the
level of forms which will imply the result for triples. If (I0.E) does not hold for
a uniform constant, then there exist sequences 3; — oo and 7; € QY (M), Ej €

Hy (M) with (d¥n;,&5) L2(m) = 0, such that

(10.6) 10 Bi || d T, +€_j‘|0233+1(/\/!) =0 asj— oo,

(10.7) 1751l o2 pay + 165 112 My = 1.

Pairing éf and d*n; + éj"' gives Hé}"H%Q(M) = (dtn; + éf’gfﬁ?(/\/{)- Using (I0.6),
we find that

= 1068, - 0+a)\—
I e < e [ 1) v,
1

—105-8.: 1| = 0+a)y — 2
< e 10551”5?|L2<M>{/M(P§,yf1)) 2dvolgﬁj} ,
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where €; — 0 as j — oo. It is easy to check that

(0+a)y—2
/M(p&l/-i-l) dvolg, < C,

where C' is independent of 3;, so that as j — oo,

5.8: 1 &
(10.8) 0B EF L2y — 0.

Next, since each triple wé‘;‘ is harmonic and spans H; (M) at every point, we
can write
(109) g—i_ = )\1(4)1 + )\QWQ + )\3(4)3.

Recall by the definition of the triple wé\;‘, for every 1 <p,q < 3,

1
5/ wp/\wq:/ qudvolwé\/;.
M M 7

Hence for any self-dual harmonic form ¢+ € H, (M),

3
€ 720y = 2 Z ApAq /M Qpq dvolwé\; .

p,q=1

Thus, applying the volume estimate C‘lﬁf < Volgﬁj M) < C’BJQ- and Proposition
[6.4] we have the estimate

Cilﬁf@\ig‘ + /\%,j + )‘g,j) < ||5;H%2(M)'

The above and (I0.8) imply that 8, - A ;- €195 — 0 as j — oo for k =1,2,3. We
then have that

Hf_j”cg‘v:xH(M) = || A1 w1 + Az jwa + >\3,jw3||Cg)"s‘+1(M)

S Agllellogs v T A25lallepe, o+ Assllesllogs, -

Since HwkHCS;,‘,ﬁl(M) < Ce®Pi for 1 < k < 3, the above implies that

||g;'r||cgf+l(M) < Cejﬁfle_wﬂj

for some sequence €; — 0 as j — oo, so we have proved that [|€]|| ;0. — 0 as
J 3 1Cs ) (M)

j — oo. Hence we have proved that our sequence satisfies
+
lld 77j‘|cg:3+1(/v1) — 0 and ||77j||c§:1§*(/\/1) —1
as j — oo, which contradicts Proposition a
In Lemma [I03] we will verify Property (2) of Lemma [I011

Lemma 10.3. Consider (M, gp) with sufficiently large 8 > 1. Let § and v be
the constants in Proposition [@2. Then there are constants rq > 0 and C > 0
(independent of B) such that for every vy = (n1,€]) € B.(0) C 2, vo = (m2,€5) €
B, (0) C 2 with r < rg, we have that

(10.10) [A (v1) = A (v2) [l < C([lvrlla + Jvzlla) - [[vr — v2 |-
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Proof. By definition, for any v = (w,£"),
N (0) = Fo H(-Qp) ) = Fo(H(-Qs = i)
and hence
N (v1) = N (v3) = So(tf(—Qﬂ - Sd*n2)> - 3o(tf(—Qﬁ - Sd*m))‘

Since Fo : S (R?) — 7 (R?) is a smooth map on the space of trace-free symmetric
(3 x 3)-matrices .#5(R?), there is some universal constant C' > 0 such that

| A (v1) = A (v2)| S Cld"m xd my — d”m % d ™
<C(ld"m|+|d"n2|) - |d” (m — n2)].
Multiplying by the weight function gives us
Pl (@) - |A (w1) = A (v2)]
< C(p@) - (d-m| +1dm)) - (
(0) <

where we have used the pointwise estimate p; ()
norms leads to

A (1) = A (v2)lleg (om0

< C(llvtlley, o + Ioalles ) - (Ilor = velley, a)-

By similar computations, we also have the Holder seminorm estimate

N (v1) — JV(UQ)}

Oy (M)
< C(llorllezp oy + I2llcppo) - (lon = velloze )
So we obtain the estimate (I0.I0) for the nonlinear errors. O

Proposition 10.4. Consider (M, gg) with sufficiently large gluing parameter 8 >
1. Let 6 and v be chosen as in Proposition 0.2 Then there exists a constant C > 0
independent of B such that

|7 O)lls < Ce
where 64 > 0 is the constant in Corollary [6.5
Proof. In our context, it holds that % (0) = —So(tf(—Qg)). Since Jo : S (R3) —

S (R?) is a smooth map on the space of trace-free symmetric (3 x 3)-matrices and
T0(0) = 0, we have that

17 O0)]ls < Ol t(Qp) -

Since the weight function in the damage zones (inside Region IV ) satisfies | pf;?;) ()]

5q-8
< e717 | the desired error estimate follows from the estimate in Corollary ]

Now we are ready to prove the existence of a hyperkahler triple on M.
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Theorem 10.5. Consider (M, gg) with sufficiently large gluing parameter 5> 1.
Denote by wé\" the definite triple constructed by Proposition[6.4l Let § and v be the

constants in Proposition 0.2 Then there exists a hyperkahler triple wEIK such that
M HK —508
. — o < 0
(10.11) |w5” — wg HCS;VH(M) < Ce ,

where C' > 0 and dg > 0 are independent of B. In particular, M is diffeomorphic
to the K3 surface.

Proof. Tt suffices to verify the conditions of Lemma [I0.1l In fact, Proposition [0.2}
Lemma [T0:3] and Proposition [0.4] verify Property (1), Property (2a) and Property
(2b) in Lemma [I0.] respectively. So applying the implicit function theorem given
by Lemma [I0.1] the existence of the hyperkahler triple ng follows. The error

estimate (IQ0.IT]) follows directly from the implicit function theorem.
Since the hyperkahler triple ng determines a hyperkahler metric on M, and
since x(M) = 24 by Proposition [6.6] M must be diffeomorphic to the K3 surface.
O

10.2. Completion of main proofs. In this subsection, we prove Theorems [A]
and [Bl Let us begin with the following e-regularity theorem for collapsed Einstein
manifolds due to Naber and the fourth author of this paper; see [NZ16] for more
details.

Theorem 10.6. Let (M™,g,p) satisfy Ricy = Ag and |A\| < n—1. Given a manifold
(Z%, 2F) with k = dim(Z*) < n, there are uniform constants &y > 0, wo > 0 and
Co > 0 which depend only on n and the geometry of B1(2*) such that the following
property holds: if
deu (Ba(p), B2(2")) < éo,

then the group T's,(p) = Image[m(Bs,(p)) — m1(Ba2(p))] has a nilpotent subgroup
N of index bounded by wo such that rank(N) <n — k.

Furthermore, if rank(N) = n — k, then supg, (p) | Rm| < Co. Conversely, if
supp, () | Rm| < Co, then rank(N) = n — k.

Proof of Theorem [Al. First, we consider the simpler case that there is only one
cluster of monopoles, i.e., m = 1. Without loss of generality, one can assume that
all the monopoles in the neck region are located on the same torus fiber of T? x R.

We start the proof by describing the hyperkahler metrics ﬁg and the continuous
map F : K3 — [0,1]. Given any sufficiently large parameter S > 1, denote
by gg the approximate metric which is almost Ricci-flat and determined by the
approximate triple constructed in Section [6] with

C~'4% < Diam,, (M) < C3.

By Theorem [T0.A] there exists a hyperkéhler triple wEIK which has the associated
hyperk&hler metric §g. The estimate (I0.I1]), and the fact that the weight function
is bounded below by a positive constant (independent of ), imply that

||wévl — WEIKHCO(M) < Ce %5,
The isomorphism (I4]) then implies that

(10.12) 195 — gsllcomy < Ce™™P.
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Next, using the definition of the weighted Holder norms, the estimates (I0.11]) and

([I012), together with the isomorphism (4], we obtain the bound
A —d
(10.13) 195 — gsllcoe (ary < Ce™™”

for some C > 0 and §; > 0 independent of 3. Let fzg be the rescaling of the
hyperkéhler metric gg with Diamy, (M) = 1. Denote by hg the rescaling of gg
with Diamy, (M) = 1. Then
. _ 508
lhg = hgllcoay < Ce™ 2.
Now we are ready to define the map Fjg : M — [0, 1]. First, recalling the notation
in Section [6] we extend the function z on the neck region to a function Z on M as

follows:
G -2 weXi\{= =G,
z(z)—2T-, zeX} Nn{¢ <z_<T_},
Z(m) = Z(:E), T < N(T—7T+)a
2T+ — Z+((I§), T € X§+ N {CJ S Z4 S T+},
oy — ¢, me XA\ {z 2 G
and then define
Z(x) — ( + 2T
Fp(z) = =)~ &

2T +T-) =G — ¢

It then follows from the gluing construction that there is some point ¢; € (0, 1)
such that Fy’ L(t1) is a singular S'-bundle over T? with exactly (b_ + b, ) vanishing
circles. In fact, the vanishing circles occur at the monopoles of the neck region
N, constructed in Section 6.2} which itself is a Gibbons-Hawking space over T? x
R. Moreover, for each ¢t € (0,t1) U (¢1,1), the fiber Fﬁ_l(t) is diffeomorphic to a
Heisenberg nilmanifold with

b*a te (Ovtl)a
bJr, te (tl, 1)

deg(F; (1)) = {

By Section [6] there is some uniform constant Cy > 0 such that for each regular
fiber,

Cy'p~" < Diam;, (F3'(1)) < CoB™",  Cy'B7% < Diam;, (S') < CoB >

With these diameter estimates, we are ready to prove the uniform curvature esti-
mates by applying Theorem[I0.6l Fix any € € (0,1072) and choose 3 > 0 sufficiently
large such that
. _ 50 - €

Dlamﬁﬁ (F,B 1(t)) < T,
where g > 0 is the dimensional constant from Theorem Now, for a ball
around each regular point B.(z) C F[;l([(), 1]\ T5(S)) with § ={0,1,1},

Ds,c () = Image[n1 (Bs,c()) — Be(x)] = 71 (Nil®),

hence rank(I's,(z)) = 3. Then by Theorem [[0.6] we know that SUDB, , (x) |Rm;”3 |
< Co,e, where Cp . > 0 depends only on e and is independent of 8. The higher
order curvature estimates can be proved by considering a local universal cover and
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applying the standard regularity theory for non-collapsing Einstein metrics. This
completes the proof of item (1) of Theorem [Al

Now we proceed to prove item (2). We still apply Theorem [[0.6] to determine the
curvature blow-up behavior around the singular fiber. In fact, if z € T, /o (Fy L(ty)),
it suffices to show that

(10.14) sup |Rm; |— o0 asf— oco.
B.2(2) ’

Notice that
Lej2(x) = Image[m1(B.j2(x)) — Bij1o(2)] 2 Z S Z,

hence rank(I'./5(x)) = 2 < 3. Theorem therefore implies (T0.14]).

The next part is to prove the classification of the bubble limits of item (2) of
the statement of the theorem. Fixing the gluing parameter 8 > 1, we analyze the
curvature behavior of the approximate metric gg in the gluing construction scaled
such that

C14% < Diam,, (M, q) < CB%.

There are two cases to analyze.

First, let the reference point 3 be a point of maximal curvature of a Tian-Yau
piece. It follows directly from the construction that, as 8 — 400, the curvature
| Rmy,, |(z) is uniformly bounded but does not go to 0. So (M, gg, x ) converges to
a complete hyperkihler Tian-Yau space (X*, gry, o) in the pointed C*-topology
for any k € Z,. We will show that (M, gz, @) also converges to the same Tian-
Yau space (X4, gry, Too) in the pointed C*-topology for any k € Z,. In fact, the
estimate (I0.I3) implies that (M, g, zg) converges to the same Tian-Yau space
(X%, g7y, Too) in the pointed C**-topology. The stronger convergence follows from
the regularity result for non-collapsed Einstein metrics in [AC92]. Since the rescal-
ing factor 43 is much smaller than exponential, the bubble limit of (M, fzg) around
g is a complete hyperkahler Tian-Yau space.

Next, we consider the case in which the reference point xg is very close to one of
monopoles, i.e., xg € Bﬁ,% (pm) in terms of the metric ilg, where pp, € Py_4p, =

{p1,.--,pv_+s, }. Applying Lemma [Z4 we have that
(M’ ﬂ ' gﬁ’wﬁ) — (R4,gTN; woo),

where gry is the Taub-NUT metric and the convergence is with respect to the
pointed C*-topology for any k € Z,. Applying the error estimate (I0.13) and the
same arguments as above, we see that (M, 3 - hg,xg) converges to (R, g7y, ZToo)
in the pointed C*-topology for any k € Z,. This implies that in terms of the
hyperkahler metric ﬁﬁ, we have the pointed C*-convergence for any k € Z,

(M7ﬂ4 : Bﬁvmﬂ) — (R4agTN7mOO)'

So the proof of (2) is done.

The above completes the proof in the case of 1 singular point of convergence
in the interior of the interval. We are now in a position to generalize the gluing
construction in Section [6] to produce multiple singular points of convergence in the
interior of the interval.
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First, we fix two hyperkihler Tian-Yau spaces (X , g, ,p—) and (X gl+’ Gby Dy )
with b, by € {1,...,9}. Let {w;}72, be positive integers satisfying

wy + -+ Wy, =b_ by

For each 1 < 5 < m, we choose the neck region N{ﬁj to be a Gibbons-Hawking

space over a finite flat cylinder (T2 x [T}, Tj41], go) with w; monopoles. As in the
construction of Section [7 each pair of monopoles in N;fj has definite and bounded

distance. Now let G; : T> x R — R be a global sign-changing Green’s function
which satisfies

~Dg, G =2 5y,
s=1
Then there are constants k; > 0 and kj < 0 such that

Ve (G — kj 2)| < CreM®, 2 < =100 B,
Ve (G = kf2)| < Cre ™7, 2> 100- 8,
ki = -k = mw;.

Note that the first step of the gluing is to modify the above Green’s function by
adding a linear function: let V; = G + (¢;z + B) be such that two adjacent neck
regions have compatible slopes, that is,

k;+1 —+ €j+1 = k;r —+ Zj and k; —+ 51 = 271'[7,.
Immediately, we have that ki + ¢; = 27(b_ — wy). Eventually, one can check that
at the right end of the last neck region ijm,

m

i+ b = 27 (b= = Y wy) = —27by.

Jj=1

Applying the construction in Section [l we obtain a manifold

(10.15) M =

Xp (m)YNa, T -1,) - N, (T =1, Tog) | X3, (T +1),
vy \ 2 W Vg1

where the attaching maps W¥q,...¥,, are chosen analogously to ¥_, and ¥,,41

is chosen analogously to W,. Furthermore, there is an approximate hyperkahler
triple w™ on M which is hyperkihler away from the damage zones and satisfies the
conclusions of Proposition[6.4l The weight function on M is defined in an analogous
way to ([8), and the arguments in the previous sections are easily modified to prove
the existence of a hyperkéahler metric gg close to gs.

To satisfy the matching conditions analogous to those in Section [6.3] the pa-
rameters T are then all chosen proportional to 8 so that the diameter of the neck
region J\Cj‘jj(—Tj — 1,T;41) in the metric gg is proportional to £3/2. Thus, for
the sequence of unit diameter hyperkahler metrics 715, these neck regions limit to
nontrivial intervals, therefore there are exactly m distinct singular points of con-
vergence t; € (0,1),5 = 1...m, in the interior of the interval. The analysis of the
regular collapsing regions and the bubbling regions is the same as above. (Il
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Proof of Theorem [Bl. This is a consequence of the above construction. Indeed, let
No (=11 —1,T3),..., Ny (=T — 1, Tins1)

be the neck regions in (I0.I3) such that for each 1 < j < m, the neck region
Nf}j (—=T; — 1,Tj41) has exactly w; monopoles with the same z-coordinate. Notice
that the degree of the nilmanifold fiber is determined by the ending slope of the
Green’s function. Corollary implies that the degree of the nilpotent fibers will
jump by w; when crossing a singular fiber in ijj(—Tj —1,Tj41). One can also
see that there are w; Taub-NUT bubbles at each singular point ¢; € (0,1),5 =
1...m. ]

Remark 10.7. If we take each collection of w; monopole points in Nf}j (—=T;—1,Tj41)

to have distance exactly proportional to 3~1 from each other (in the flat metric
on T? x R), then the corresponding bubble limit will be a multi-Taub-NUT ALF-
Ay, 1 metric instead of w; distinct Taub-NUT bubbles. It is also possible to obtain
nontrivial bubble trees. For example, if the pairwise distance of the monopole points
is proportional to 372, then there will be a first bubble an ALF orbifold with a
cyclic orbifold point of order w;, and a deepest bubble an ALE-A,,, 1 metric.

APPENDIX A. UNIFORM ESTIMATES FOR HERMITE FUNCTIONS

In this appendix, we give the proofs of Lemma 5] Lemma [£.6] and Lemma [4.7]
in Section

Proof of Lemma E5L Since -LW(F(2),U(z)) = F"(2)U(z) — F(z)U"(z) = 0, we
obtain

W(F(2),U(2)) = W(F(0),U(0)) = 2F (0)4(0).

Moreover, direct computation gives that
e h
F0) =24 / et g = /G- 1“(5 + 1)
0

and U(0) = %F(% + %) Applying the Legendre duplication formula (see (1.2.3) in

[Leb72]),
POL(E+Y)
T a7 0
we have that W(F(2),U(z)) = 27" - /jm-T(h +1) > 0. O

Proof of Lemma L6l First, we prove the uniform estimates in item (1) of Lemma
By the definition of F and U, it suffices to prove that

(o9}
(A1) Co - eF") < / eFWdt < (14 /m)el o),
0
(A.2) Co - eV(0) < / VWt < (14 y/a)el ),
0
where Cy > 0 is a uniform constant independent of h and j. We only prove the

first inequality. The second can be proved in exactly the same way.
To prove the integral estimates in (A]), let us write

[e%s} 2to [ee)
(A.3) / POt = / eIt +/ "W,
0 0 2to
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In our computations, we will make a change of variable ¢t = ¢y - (1 + &) such that
¢ € (—1,1). Applying Taylor’s theorem to F(t) — F(tg), we have that
F//(g)

(A.4) F(t) = F(to) = F(to(1+€)) = F(to) = —,

2 (2
: tO ' 6 ’
where 6 is some number between ¢ and tg. Notice that

(A.5) F'(t)= -2 h > 0.

— 3

Since 6 is between to and t € [0,2to], (AJF) implies that F”(9) < F"(2ty) < 0.
Combining this with (A4]) then ylelds the following upper bound for the first term

in (A3):

2t 2t L ey s
/ eF® gt = F (to) / () =F(to) g4 < eF (o) to - / o= Trtgg de.
0 0 —1

Immediately F”'(2tg) = (2 + 4t2) so we have that

2to 1
/ POt < Fto) ¢y / e—(tg'*‘%)'f?df < \/—7 eFto) <\ /7. eF(to)
0 -1 t2 _|_ h
Next, we estimate the second term in ([AL3). The property F”(t) < 0 implies
that F(t) is monotone decreasing, so we have that F'(t) < F'(2tg) for any ¢t > 2t.
Applying Taylor’s theorem again, we derive that F(t) < F(2to) + F'(2to) - (t — 2to),
which in turn implies that

T PO gy < GF2t0) /OO F(2to)(t—2t0) gy _ €
e <e e .
Lto 2to _F/(Qto)
Since F'(t) < 0 for all ¢ > ¢y, we have that F(2ty) < F(tp). Also notice that
F'(2ty) = 4t0+h < 0 with 0 <ty < +o00. Hence,
/ FOgp < 20 Fuo) < o),
2to 4t0 h

Combining the above, we deduce that
/ eFOdt < (14 /m)el o),
0

The lower bound estimate in (A also follows from Laplace’s method. Indeed,

* P 2o o) Fto) 2lo) Ft) (4_y0)2 Flto)
e \Vdt > e"\dt > e"\'o e 2 oV dt > Cy - e\,
0 to to(y)

So the proof of (AJ)) is done. The proof of (A2) is identical.

Now we prove the asymptotics in item (2) of Lemma For simplicity, we
will calculate the asymptotic behavior in y. For fixed h and j, as y — oo, it is
straightforward to verify that

eF (2to)

h? _ h? _
(A.6) to=y+ % +0(y™3) and sy = % +0(y™3).
These asymptotics imply that

(A7)
F(to) =y* 4+ hlogy + O(y~2) and U(sg) = —h + hlogh — hlog(2y) + O(y~2).
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First, we prove the asymptotics for F. As in the proof of item (1), we have that

oo 2t o)
/ GF0) gy — GFl(t0) / " F(O=F(to) gy | / PO g
0 0 2to
1 oo
_ to@F(tD) / 67t§62+h(log(1+6)76)d6 + / GF(t)dt.
—1 2t0

Notice that

1 oo
lim to/ e~toe +hlog(1+e) =€) g vr and  lim e F(0) / eFWap = 0.
—1 2t0

to—00 to—00
Moreover, by (A), lim, 1 to(y) — oo. It follows that
lim ]:(Z)
Z—r00 \/_6 2 +F to z))

Combining the above limit and (A7), the proof of ([I5]) is complete.
In the case j € Z; and h > 0, we will prove the asymptotic behavior of &. We
write

S S
/ eU(t)dt _ SOeU(so) / e—sgez+h(log(1+e)—e)d6
0 —1

= 59eV(50) / e 5o . (1+e)re"de.

—1
We claim that

o0

lim [ (70 — 1) (14 e)"e "de = 0.

sp—0 -1

In fact, it is straightforward to see that for any sg > 0, we have that —1 < e~ s —
1 < 0. Also for any fixed h > 0,

/ (1+e)re™"de < .
-1
Applying the dominated convergence theorem yields

oo

lim (675(2]62 —1)-(1+e&)lede = 0.

sp—0 1

This completes the proof of the claim.
Next, by the definition of the gamma function,

/ (1+e) e de = eh/ e Mshds = "h "I (h + 1),
0

-1

Therefore,
lim 7806 24+ h(log(1+€)— e)d6 _ ehh h— 1F(h+ 1)
so—0 1
Since limy_, o so = 0 and U satisfies (A7), we eventually obtain (EIG]). O

Proof of Lemma [A7 First, we prove item (1). Let us begin by discussing the case
h =0 and j € Z4. Direct computations give that tg = y and sg = 0. So, by

definition, we have that F(z) = ﬁ and U(z) = % I now follows.
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Next, we prove the case j € Z; and h > 0. Let us denote a = 2y. By elementary
calculations,
2

a 9 o G h
t — = - t = — h, t = —=.
0 — So ok 0T 50 1 +n, toSo 5
So we have that

F(to) +U(sg) = —(t2 + s3) + a(to — s0) + hlog(toso)

a? h 9 h
Z—h+h10g<§> =jz —h+hlog(§>.

Therefore eF()+0(2) < e=h+hlog(}) . Applying Lemma [LH then leads to
eF(z)+U(z) 67h+hlog(%)
<
W(z) = gm2="T(h+1)

Now we prove the monotonicity formulas in item (2). Let y = /jz and a = 2y.
Then, by definition,

< Cp.

~ a
F = =% — (to(a))* + ato(a) + hlog(to(a)).
~ a? 2
U= -5 (so(a))® — aso(a) + hlog(se(a)).
We show that F is increasing in a and Uis decreasing in a. To see this, just observe
that
dF a h hy =
L (-2 —)th(a) = \/ 5 s
da 4+ O(a)+ 0( )+a+ tO( ) O(G’) 2 4

so that F (2) —nz is increasing for z > 2n. Similarly, the monotonicity of U (2)+nz
follows from the bound

P
2

—
%
»-l}l@
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