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ABSTRACT
The presence of an invisible substructure has previously been detected in the gravitational lens galaxy SDSSJ0946+1006 through
its perturbation of the lensed images. Using flexible models for the main halo and the subhalo perturbation, we demonstrate
that the subhalo has an extraordinarily high central density and steep density slope. We robustly infer the subhalo’s projected
mass within 1 kpc to be ∼2–3.7 × 109 M� at >95 per cent CL for all our lens models, while the average log-slope of the
subhalo’s projected density profile over the radial range 0.75–1.25 kpc is constrained to be steeper than isothermal (γ 2D � −1).
By modeling the subhalo light, we infer a conservative upper bound on its luminosity LV < 1.2 × 108 L� at 95 per cent CL that
shows that the perturber is dark matter dominated. We analyse lensing galaxy analogues in the Illustris TNG100-1 simulation
over many lines of sight, and find hundreds of subhalos that achieve a mass within 1 kpc � 2 × 109 M�. However, less than
1 per cent of the mock observations yield a log-slope steep enough to be consistent with our lensing models, and they all have
stellar masses exceeding that allowed by observations by an order of magnitude or more. We conclude that the presence of such
a dark highly concentrated subhalo is unexpected in a Lambda cold dark matter universe. While it remains to be determined
whether this tension can be reduced by adding more complexity to the primary lens model, it is not significantly alleviated if the
perturber is assumed to be a LOS structure, rather than a subhalo.
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1 IN T RO D U C T I O N

A key prediction of the cold dark matter (CDM) paradigm is the
presence of dark matter subhalos within larger host haloes (Klypin
et al. 1999; Moore et al. 1999). This prediction is shared by closely
related models like self-interacting dark matter and warm dark matter
models. However, these models make distinct predictions for the
density profile, concentrations, and shapes of subhalos (Vogelsberger,
Zavala & Loeb 2012; Rocha et al. 2013; Lovell et al. 2014). Detecting
these subhalos and inferring their properties provides an essential test
of dark matter physics.

In order to test the cold dark matter paradigm, one should ideally
probe the structure of dark matter haloes that are sufficiently ‘dark’
such that baryonic physics cannot alter its overall mass or density
profile significantly. There are two principle strategies to accomplish
this. In the Milky Way, dark matter haloes can be detected by their
perturbations of stellar tidal streams (Carlberg 2012; Carlberg &
Grillmair 2013; Erkal & Belokurov 2015). This strategy has recently
led to the detection of a 106−108 M� subhalo in the GD1 stellar
stream (Bonaca et al. 2019). In distant galaxies that act as strong
gravitational lenses, dark matter subhalos [or small field haloes along
the line of sight (LOS)] can be detected via their perturbations of
highly magnified images (Mao & Schneider 1998; Metcalf & Madau
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2001; Koopmans 2005). The presence of dark matter substructure
can be established statistically (Dalal & Kochanek 2002; Kochanek
& Dalal 2004; Xu et al. 2015; Hezaveh et al. 2016a; Cyr-Racine et al.
2016), or else individual perturbers can be detected for strong enough
perturbations (Vegetti & Koopmans 2009); in the latter category, de-
tections have been claimed in four lens systems thus far (Vegetti et al.
2010, 2012; Nierenberg et al. 2014; Hezaveh et al. 2016b). A great
many more subhalos are expected to be detected among the avalanche
of strong lenses expected from the upcoming Euclid and LSST
surveys, after high-resolution follow-up imaging of these lenses.

Several papers have compared the mass function of detected
substructures (as well as field haloes along the LOS; cf. Despali
& Vegetti 2016; Li et al. 2017) perturbing lensed arcs to the
expectation of CDM, showing broad consistency albeit with low
statistical significance (Vegetti et al. 2014; Ritondale et al. 2019).
More recently, the mass-concentration relation of substructure in
quasar lenses has been compared to the expectation of CDM (Gilman
et al. 2020). These approaches show great promise, but are still
hampered by small number statistics. Additionally, the inferred dark
matter halo masses themselves depend on assumptions about the
density profiles and tidal radii of the subhalos, complicating the
analysis (Minor, Kaplinghat & Li 2017).

Another approach, completely unexplored to date, is to constrain
the density profile of individual perturbers and test their inferred
properties (e.g. concentration) against the expectation from �CDM
(Vegetti & Vogelsberger 2014). While the concentration of relatively
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low-mass perturbers is difficult to infer, in principle the mass and
concentration of large perturbers can be constrained. Despite only
four individual detections, here we benefit from the fact that the
largest perturbations are the most likely to be detected, and thus
our initial set of detections is likely to be biased toward relatively
massive and/or concentrated perturbers. The question is then, can
we constrain the individual concentrations and masses of detected
subhalos and test these against the expected mass-concentration
relation and its scatter in CDM simulations?

In this paper we constrain, for the first time, the concentration of a
dark matter subhalo perturbing a gravitationally lensed arc, originally
discovered by Vegetti et al. (2010) using HST observations of the lens
system SDSSJ0946+1006. By comparing to analogous subhalos in
the IllustrisTNG simulations, we will show that its remarkably high
mass and concentration are in tension with CDM at the >99 per cent
confidence level. Moreover, the lack of a distinct stellar light signal
(implying LV � 108 L�) implies that star formation and gas physics
are unlikely to resolve the discrepancy. This motivates considering
modified dark matter physics as a possible explanation.

The paper is organized as follows. In Section 2 we will describe
the lens modeling procedure. In Section 3 we describe the analysis
carried out on SDSSJ0946+1006. The best-fitting models are com-
pared in Section 3.1, and the subhalo mass/concentration constraints
are presented and compared to CDM predictions in Section 3.2.
More robust constraints on the density profile – specifically a mass
scale and density log-slope – are inferred in Sections 3.3 and 3.4,
respectively. In Section 3.5 we infer a conservative upper bound on
the stellar luminosity of the subhalo. In Section 4 we compare these
results to subhalos of analogous lens galaxies within the IllustrisTNG
simulation to investigate whether CDM is capable of producing
such high concentrations. The simulated sample is described in
Section 4.1, while the comparison of subhalo candidates to the
lensing constraints is made in Section 4.2. In Section 4.3 we estimate
the likelihood of such a high concentration subhalo generating a
similar-sized subhalo perturbation in CDM, and interpret the results
in Section 4.4. In Section 5 we discuss whether the tension with
CDM can be reduced if the perturber is a field halo along the LOS,
rather than a subhalo. In Section 6 we discuss whether dark matter
physics, in particular self-interacting dark matter, can explain the
high concentration of the subhalo. Finally, we give our conclusions
in Section 7.

2 L E N S MO D E L I N G

The gravitational lens SDSSJ0946+1006 is remarkable in that it is
an individual galaxy that is lensing two different source galaxies at
different redshifts, z = 0.609 and z ≈ 2.4 (Gavazzi et al. 2008; Son-
nenfeld et al. 2012; Collett & Auger 2014), earning it the nickname
‘the Jackpot’. (More recently a third faint source at z ≈ 6 has been
found by Collett & Smith 2020). The subhalo discovered in Vegetti
et al. (2010) was found perturbing the images from the closest source,
at z = 0.609. Although stronger constraints on the mass distribution
of the lens (and indirectly, the subhalo) may be possible by analyzing
both lensed sources; this complicates the analysis and we therefore
focus only on the lower redshift source galaxy in this paper.

Our method for modeling the data uses a combination of parame-
terized surface brightness profiles to represent the z = 0.609 source
galaxy. When evaluating the likelihood, image pixels are ray traced
to the source plane and the following image is convolved with the
point spread function (PSF; details on the ray tracing are given at
the end of this section). This allows for fast likelihood evaluations
and rapid exploration of the parameter space that consists of both

lens and source model parameters, thereby reducing computational
cost compared to reconstructing pixellated sources. However, to use
elliptical profiles would be too restrictive a prior, for two reasons:
(i) actual galaxies rarely (if ever) have perfectly elliptical isophotes;
(ii) even if the true source is elliptical, if one is modeling a subhalo
with an incorrect mass or concentration, this systematic can often
be (at least partially) absorbed into the inferred source galaxy by
perturbing the isophotes. Thus, if one does not allow enough freedom
in the source galaxy model, the danger arises that the constraints on
concentration and mass may appear stronger than they really are.

To allow the requisite freedom in the source galaxy model, we
start with a cored Sersic profile, where the core is defined by the
replacement r2 → r2 + r2

c . We then perturb the isophotes to allow
for non-elliptical profiles, as follows: first, the unperturbed isophotes
are ‘generalized ellipses’ with a radial coordinate defined by

r0(x, y) =
(

|x − x0|C0+2 +
∣∣∣∣y − y0

q

∣∣∣∣
C0+2

) 1
C0+2

, (1)

where q is the axial ratio and C0 is the ‘boxiness’ parameter, such
that C0 = 0 corresponds to a perfectly elliptical profile. We then add
Fourier mode perturbations to the isophotes, as follows:

r(x, y) = r0(x, y)

{
1 +

N∑
m=1

[am cos(mθ ) + bm sin(mθ )]

}
. (2)

From experimentation we find that parameter exploration can
become difficult beyond 4–5 Fourier modes, and the m = 2 mode
is quite degenerate with the axial ratio parameter q. Thus, when
modeling the diffuse components of the source galaxy, we include
the modes m = 1, 3, 4, 5, 6, with sine and cosine terms for each. For
high m modes, fluctuations can easily become quite rapid, leading
to noisy source solutions. To regulate this, we switch to the scaled
amplitudes αm = mam, βm = mbm, which are the amplitudes of the
azimuthal derivative dr/dθ . By using these scaled amplitudes as free
parameters, we can set an upper prior limit on the rate of change
of the contours that applies equally to all modes. Our method for
perturbing the isophotes is essentially identical to that employed by
the GALFIT algorithm for fitting galaxy images (Peng et al. 2010),
except that instead of including a phase angle parameter, we use the
scaled amplitudes for both sine and cosine terms as free parameters;
this ensures that there is no coordinate singularity in the limit of very
small amplitudes.

Since the Hubble PSF is relatively undersampled compared to
the pixel size, the images produced can be sensitive to how the
ray tracing is done, particularly near the critical curve. To mitigate
this, we split each image pixel into 2 × 2 subpixels and ray-trace
the centre point of each subpixel to the source plane, assigning it
the surface brightness given by the source profile at the position
of the ray-traced point. These surface brightness values are then
averaged to find the surface brightness of the image pixel. After the
ray-tracing is complete, the resulting pixel values are then convolved
with the PSF. We find that 2 × 2 splitting achieves sufficient accuracy
without adding too much computational burden; a greater number
of subpixels changes the surface brightness values very little while
adding significant computational cost.

In a companion paper (Minor et al. 2021) we apply this method
of lens modeling to a large number of mock data with a gravita-
tional lens similar to that of SDSSJ0946+1006, but with a wide
variety of subhalo perturbations. We find that for sufficiently large
perturbations, the mass and concentration can be meaningfully
constrained, and are recovered without bias. However, the inferred
mass and concentration of the perturbing subhalo are degenerate for
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Table 1. Inferred lens model parameters and their priors, and log-evidence and best-fitting χ2 per pixel. The first 12 parameters
describe the primary lens galaxy, while the following five parameters describe the subhalo. The ellipticity components are
defined in terms of the axial ratio q and orientation θ (measured east of north) as shown in the first column. The final six
parameters are derived parameters that relate to the subhalo, namely the projected mass enclosed within 1 kpc, the average (2D)
log-slope of the projected density profile from 0.5 to 1 kpc; the total subhalo mass; the concentration c200; the perturbation
radius; and the mass enclosed within the perturbation radius divided by the log-slope α of the primary lens galaxy. The
uncertainties are Bayesian credible intervals derived from the 2.5 per cent and 97.5 per cent percentiles of the posterior
probability distributions, which are equivalent to 2σ errors if the distribution is Gaussian. Note that we omit the inferred
non-linear parameters related to the source galaxy, which are described in Section 3.

tNFW tNFWmult CoreCusp CoreCuspmult Prior

Re (arcsec) 1.362+0.002
−0.002 1.347+0.005

−0.005 1.363+0.001
−0.001 1.359+0.002

−0.002 [1.3, 1.4]

α 1.32+0.04
−0.04 1.37+0.05

−0.05 1.34+0.05
−0.05 1.30+0.05

−0.05 [0.5, 1.5]

e1 ≡ (1 − q)cos (2θ ) 0.057+0.010
−0.009 0.068+0.011

−0.011 0.061+0.014
−0.013 0.056+0.010

−0.010 [–0.15, 0.15]

e2 ≡ (1 − q)sin (2θ ) −0.041+0.009
−0.009 −0.034+0.010

−0.009 −0.050+0.009
−0.009 −0.032+0.010

−0.009 [–0.15, 0.15]

xc (arcsec) 0.0042+0.0024
−0.0020 0.0132+0.0028

−0.0027 0.0041+0.0017
−0.0019 0.0102+0.0026

−0.0026 [–0.05, 0.05]

yc (arcsec) −0.0016+0.0026
−0.0020 −0.0162+0.0035

−0.0032 −0.0018+0.0024
−0.0024 −0.0100+0.0029

−0.0028 [–0.05, 0.05]


1 0.074+0.003
−0.003 0.072+0.003

−0.003 0.075+0.004
−0.004 0.070+0.003

−0.003 [–0.1, 0.1]


2 −0.069+0.002
−0.002 −0.071+0.003

−0.003 −0.070+0.003
−0.003 −0.070+0.003

−0.003 [–0.1, 0.1]

A3 ... 0.0067+0.0021
−0.0020 ... 0.0067+0.0019

−0.0021 [–0.04, 0.04]

B3 ... −0.0174+0.0030
−0.0031 ... −0.0146+0.0033

−0.0029 [–0.04, 0.04]

A4 ... 0.0174+0.0027
−0.0026 ... 0.0169+0.0028

−0.0027 [–0.04, 0.04]

B4 ... −0.0228+0.0038
−0.0038 ... −0.0195+0.0037

−0.0040 [–0.04, 0.04]

log (m200/M�) 9.70+0.11
−0.09 10.48+0.12

−0.13 ... ... [8, 11.95]

rs(kpc) 0.021+0.029
−0.011 0.844+0.260

−0.230 ... ... [0.01, 5], log

log (κ0) ... ... 0.184+0.113
−0.332 0.096+0.149

−0.239 [–2.0, 0.3]

γ inner ... ... 1.742+0.302
−0.211 0.766+0.379

−0.251 [0.5, 2.9]

rt(kpc) 24.2+68.5
−19.9 38.7+56.8

−25.7 0.586+0.197
−0.056 1.288+0.351

−0.204 [0.1, 100], log

xc, sub (arcsec) −0.652+0.008
−0.010 −0.691+0.016

−0.018 −0.646+0.011
−0.011 −0.698+0.017

−0.020 [–1.7, 1.2]

yc, sub (arcsec) 0.950+0.011
−0.019 1.009+0.026

−0.024 0.956+0.019
−0.014 1.010+0.022

−0.021 [–1.8, 1.5]

M2D(1 kpc) (109 M�) 2.50+0.29
−0.31 3.33+0.3

−0.26 2.75+0.24
−0.28 3.31+0.31

−0.28 ...

γ 2D(0.75, 1.25 kpc) −1.98+0.05
−0.16 −1.27+0.11

−0.13 −3.27+0.27
−0.17 −1.79+0.23

−0.25 ...

msub, tot (1010 M�) 0.469+0.202
−0.154 2.61+1.29

−1.06 0.312+0.035
−0.040 0.700+0.131

−0.113 ...

c200 1560+1440
−859 70.5+17.8

−11.9 ... ... ...

rδc (arcsec) 0.351+0.010
−0.013 0.308+0.016

−0.014 0.355+0.009
−0.011 0.323+0.0160

−0.016 ...
M(rδc)

α
(109 M�) 2.02+0.25

−0.26 2.69+0.31
−0.25 2.14+0.19

−0.22 2.91+0.33
−0.30 ...

log10 E −1537.7 −1504.9 −1537.7 −1510.0 ...

χ2
bf per pixel 1.66 1.61 1.66 1.63 ...

sufficiently small perturbations. A more direct constraint is provided
by inferring the subhalo’s projected mass within a characteristic
radius and the average slope near this radius as derived parameters,
which are also well recovered for perturbations in the mock data
(Minor et al. 2021, fig. 6), justifying the approach used in this paper.
These derived parameters will be motivated in Sections 3.3 and 3.4.

3 R E SULTS OF LENSING ANALYSIS

For our primary modeling runs, the subhalo is modeled with a
smoothly truncated Navarro-Frenk-White (tNFW) profile (Baltz,
Marshall & Oguri 2009) with outer log-slope of −5 well beyond the
truncation radius (for comparison, a different subhalo profile will also
be considered in Section 3.4). All parameters of the density profile
were varied freely: the mass m200, scale radius rs, and truncation
radius rt. Note that although we are describing a subhalo, one can
formally define m200 as the virial mass such a halo would have in the

field in the absence of tidal stripping, thus providing an upper limit on
the inferred subhalo mass. (The true mass of the subhalo will also de-
pend on how it is truncated, meaning it is determined by both m200 and
rt; note that even for a subhalo with very little tidal stripping, rt may
indicate the virial radius at infall, which would be smaller than the
virial radius at the lens redshift.) For ease of parameter exploration,
for our mass parameter we use log10(m200) and adopt a uniform prior
in this parameter; we vary rs and rt but adopt log priors in these pa-
rameters. The prior limits on the lens parameters are listed in Table 1.

We considered two different primary models. In model tNFW, the
host lens galaxy is modeled with just an elliptical power law profile; in
model tNFWmult, we also use an elliptical power law, but in addition
we add m = 3 and m = 4 multipole terms to the projected density of
the lens, with the same power law index as the elliptical component,
to capture departures from ellipticity for the primary lens. The latter
model is inspired by the fact that the lens galaxy light shows evidence
of perturbed isophotes, possibly as a result of a recent encounter with
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a nearby galaxy (Sonnenfeld et al. 2012; Gavazzi et al. 2008). Gavazzi
et al. (2008) showed that approximately half of the mass within the
Einstein radius is baryonic, hence the total projected density profile
is likely to show marked deviations from ellipticity. This is further
supported by the fact that Vegetti et al. (2010) showed that their
solution preferred to have smooth corrections to the gravitational
potential of the lens (which they modeled as pixellated potential
corrections) that indicated departures from ellipticity.

Although using analytic source profiles allows for very fast
likelihood evaluations compared to pixellated source inversion, it has
the disadvantage of being less automated in the sense that the user
must choose how many profiles to employ, whether to add boxiness
or Fourier modes, and what prior limits to choose. Thus, achieving
a good fit requires at least a few iterations. For our initial run, we
simply used one cored Sersic profile with a boxiness parameter and
four Fourier modes (m = 1, 3, 4, 5). Remarkably, although substantial
residuals remained in our best-fitting model, the lens parameters are
roughly consistent with Vegetti et al. (2010) and the subhalo was
still detected in approximately the same location. This suggests that
the existence and location of the subhalo is not strongly dependent
on the source prior, although we will see that its location does vary
slightly from model to model.

Likewise, doing a pixel inversion from our best-fitting model
yielded a source pixel map that is quite similar to the inferred source
in Vegetti et al. (2010; Fig. 2b shows our final inversion). From the
pixel map, we recognize two bright regions near the centre, as well
as a possible peak with high ellipticity that intersects the lower-right
part of the caustic; in the next iteration we add Sersic profiles to
represent these, with the addition of two Fourier modes (m = 1, m =
3). In addition, there is also a small bright-spot near the centre of the
caustic, so we add a spherical Sersic profile to capture this. It also
became clear that the large diffuse component is not fully captured
by a single profile, even with the addition of Fourier modes. In our
final iteration, we thus use two cored Sersic profiles to represent the
diffuse component, each with boxiness parameters and four Fourier
modes (m = 1, 3, 4, 5). In addition, there is fainter emission near
the upper cusp of the astroid caustic that is clearly perturbed by the
subhalo, as well as within the additional caustic generated by the
subhalo; finally, there is a large region of faint emission to the left of
the large diffuse component. We add cored Sersic profiles to capture
these, including two Fourier modes for the largest component. In
total, then, we include eight source profiles in our fit, for a grand total
of 109 parameters in the tNFW model, and 113 parameters in the
tNFWmult model (with the addition of m = 3, m = 4 multipoles). The
two profiles representing the primary diffuse component each have
four Fourier modes, while the three largest additional components
include only two (m = 1, 3) Fourier modes.

The pixel mask we choose is identical to that of Vegetti et al.
(2010), while we adopt the same model PSF as in Vegetti et al. (2010)
and Gavazzi et al. (2008). To handle the large number of non-linear
parameters in our final run, we use the PolyChord nested sampling
algorithm, which evaluates the Bayesian evidence in addition to
posterior samples.

3.1 Best-fitting models

In Fig. 1, we plot the data image along with lensed images and
residuals (with critical curves) from the best-fitting parameters in
models tNFW and tNFWmult, using the analytic source model
outlined above. The location of the subhalo is quite evident from
its strong perturbation of the critical curve in the upper left. The
residuals are down to noise-level in many places, with very little

correlated residuals along the location of the arcs, indicating our
analytic model is capturing the primary features of the source galaxy.
In Fig. 2 we show the best-fitting analytic source and caustics from
the tNFW model (with tNFWmult being quite similar), and compare
this to a source reconstruction obtained by a source pixel inversion
from the same lens model. For the latter, we use a Cartesian grid with
adaptive splitting (Dye & Warren 2005) if the pixel magnification
is 4 or greater, and curvature regularization where the regularization
parameter is chosen to optimize the Bayesian evidence (Suyu et al.
2006). The colour bars are chosen such that identical colours in either
figure represent the same surface brightness values. The comparison
shows that the essential components are clearly well reproduced
by the analytic source, while fluctuations due to fitting noise are
largely absent. Note that the analytic source has a bright region which
peaks with a considerably higher surface brightness compared to the
pixellated source; this is because such a high peak is discouraged
in the pixel version due to the regularization prior that enforces
smoothness even in the central regions of the source.

Close inspection of Fig. 1 shows that below the subhalo, there
is some residual signal (up to ≈4σ noise), which at first glance might
seem to indicate a detail of the source that is not being well-captured.
We found that placing a faint source blob near (0.4,-0.4) in the source
plane can remove approximately half of the residual emission below
the subhalo – however, this produces a partner image to the lower-
right of the bottom arc, partly outside the mask, and with greater
magnification. When the mask is removed, however, we found that
there is no discernible signal where the partner image is supposed to
be in the HST image. For the same reason, close inspection shows
these residuals are not entirely eliminated in the pixel reconstructions
in Vegetti et al. (2010). We therefore argue that the residual signal
below the subhalo is likely due to unsubtracted foreground light from
the primary lens galaxy. (This issue will be investigated further in
Section 3.5.) The same systematic may also be responsible for other
faint correlated residuals in the vicinity of the top arc. We note,
however, that the presence of the subhalo is not sensitive to such
faint foreground features – indeed we verified that the same subhalo
solution is inferred even if the region surrounding the residual signal
is masked out. We note that for the brightest pixels near the subhalo,
containing the leftmost ‘knob’ of the top arc, the residuals are
consistent with the background noise (i.e. less than 3 × σ noise ≈ 0.01).

The best-fitting parameters and uncertainties are listed in Table 1,
along with the Bayesian model evidence and best-fitting χ2 per
pixel values (the latter are calculated after doing a final optimization
from the best-fitting point in the chain using Powell’s method).1

For reference, joint posteriors in the subhalo parameters for the
tNFWmult model are plotted in Fig. B4 of Appendix B. The Einstein
radius of the primary lens is ≈1.35−1.36 arcsec, depending on the
model, which is slightly higher than in Vegetti et al. (2010) but
significantly lower the 1.4 arcsec value inferred by Collett & Auger
(2014); likewise, the latter infer a slope that is near-isothermal (α
≈ 1.03), compared to ≈1.3 in our analysis. This may be explained

1The χ2 values in the table are from the analytic source reconstruction (e.g.
Fig. 2a), not from the source pixel reconstruction shown in Fig. 2(b). While the
latter produces χ2/pixel <1 due to fitting of noise and inclusion of additional
fine source structure in highly magnified regions, we only quote the former
since the actual fitting procedure involved the analytic reconstruction. We
note, however, that the subhalo is in a relatively demagnified region within
the critical curve, as evidenced by the large caustic it produces in the source
plane, and hence is not sensitive to fine source structure. For this reason,
we found that the subhalo constraints are essentially unchanged even if we
include only the first few Sersic components.
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(a) (b)

(d) (e)

(c)

Figure 1. HST image along with our best-fitting lensing reconstructions and residuals using a truncated NFW (tNFW) profile for the subhalo. In (a) we show the
foreground-subtracted HST F814W image from Gavazzi et al. (2008). The best-fitting model lensed images and residuals for the ‘tNFW’ model with elliptical
host galaxy are shown in (b) and (c). Figures (d) and (e) show the same for our ‘tNFWmult’ model where multipoles are added to the host galaxy’s projected
density; this is the model most favoured by the Bayesian evidence. The black curves are the critical curves of the lens mapping that show the strong perturbation
by the subhalo in the upper left.

by the covariance between the subhalo mass and the Einstein radius,
as seen in Fig. B4: as the subhalo mass is reduced, the Einstein
radius must be increased. Hence, in the limit of zero subhalo mass,
a significantly larger Einstein radius would be required to fit the
data. Likewise, our posteriors show that a larger Einstein radius is
correlated with a shallower slope, which may explain the difference
in the inferred slope parameter.

Between the different subhalo models, the Bayesian evidence
strongly prefers the tNFWmult model, with an evidence ratio of
nearly 30 orders of magnitude. Indeed, close inspection of Fig. 1
reveals that certain residuals are improved in the tNFWmult model;
this should be taken with some caution, however, since it is possible
(in principle) that lending more freedom to the source model might
allow tNFW to achieve nearly as a good a fit as in tNFWmult.
Nevertheless, there are certain residuals that are also present in
the best-fitting models in Vegetti et al. (2010) that used pixellated
sources, and at least a few of these residuals (notably above the
centre region of the bottom arc) do seem to be somewhat improved
by the shifting of critical curves achieved in the tNFWmult
model.

To get a better sense of how the solutions differ, in Fig. 3 we
show the projected density of each best-fitting solution by plotting
the log(convergence) values at each pixel within the mask. Note that
in tNFWmult the contours are notably boxy as a result of the high
multipole amplitudes A4, B4, whereas the subhalo is less concentrated
(although more massive, as we will see shortly). By comparison,
the galaxy isophotes do show departures from ellipticity, but not
nearly as boxy as the density contours in tNFWmult. It should be
emphasized, however, that the data are not sensitive to the density
contours everywhere; there are no images on the right-hand side of
the mask, for example, and thus no direct information on the shape of
the contours there. Thus, while this solution may indicate departures
from ellipticity in the vicinity of the images, it does not necessarily
imply the complete contours have the boxy shape indicated by Fig. 3.
Repeating our analysis with a pixellated source may shed further light
on the question of whether the data prefers such a strong departure
from ellipticity. The important takeaway here is that the way we
model the shape of the primary galaxy’s contours can influence the
properties of the inferred subhalo, a feature we will discuss further
in Section 3.3.
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High concentration subhalo in SDSSJ0946+1006 1667

(a) (b)

Figure 2. Reconstructed source galaxy, analytic versus a pixel inversion from the best-fitting tNFW model with elliptical host galaxy. The analytic source
contains a region with relatively high surface brightness; however, the colour scale is chosen so that the colours in each figure correspond to approximately the
same surface brightness values. Black curves show the caustic curves of the lens mapping; note the large caustic generated by the subhalo in the lower left.

(a) (b)

Figure 3. Projected density of the lens in each model, plotted as log(convergence) values at each image pixel within the mask. Note the contours are notably
boxy in the tNFWmult model, which includes multipole terms in the projected density to capture departures from ellipticity and is preferred by the Bayesian
evidence.

3.2 Constraints on mass and concentration of the subhalo

To compare the inferred concentration of the subhalo to �CDM con-
straints, we define a derived parameter to be the halo concentration
c200 ≡ rs/r200, where r200 is the approximate virial radius the halo
would have if it were in the field where tidal stripping is absent.
Joint posteriors in m200 and c200 are plotted in Fig. 4, where the red
and blue shaded regions refer to model tNFW (the elliptical model)
and tNFWmult (which has added multipoles), respectively. Note that
in the tNFW model, a mass of ∼5 × 109 M� is preferred with a
minimum concentration of several hundred, whereas in tNFWmult,
a mass of ∼3 × 1010 M� is preferred with minimum concentration
of 60. For an initial comparison we plot the mass-concentration
relation of field haloes from Dutton & Macciò (2014; black solid
line) along with the 2σ scatter in concentration (black dashed lines).
As the figure suggests, we find the inferred concentration in the

tNFWmult model exceeds the median concentration for CDM field
haloes by at least ≈5σ , where σ is the posterior uncertainty in the
concentration.

However, comparing to field haloes at the lens redshift is insuffi-
cient, since it is well known that subhalos are denser than similar mass
haloes in the field, for two reasons: (i) subhalos fell in earlier when
the critical density of the Universe was higher; (ii) most subhalos
have endured some tidal stripping that preferentially removes more
mass from the outer regions and renders the subhalo denser overall
compared to unstripped haloes of similar mass. To directly test
against CDM predictions, we turn to cosmological simulations and
examine the subhalo population in simulated galaxies analogous to
the lensing galaxy in J0946+1006, to evaluate whether our subhalo
is truly an outlier that cannot be explained with CDM. We will do so
using IllustrisTNG in Section 4.
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1668 Q. Minor et al.

Figure 4. Posteriors in log(m200) versus concentration c200 for the two
fiducial models. For each model, the dark/light shaded regions enclose
68 per cent and 95 per cent of the total probability, respectively. Black solid
curve denotes the median halo concentration-mass relation, along with ±2σ

scatter (black dashed curves). Curves of constant perturbation radius are
shown (blue/red curves), generated by starting from the best-fitting models,
varying m200, and finding the concentration that reproduces the mass within
the perturbation radius (approximately 1 kpc).

3.3 Interpretation in terms of the subhalo’s perturbation
radius and estimated robust mass

It is evident from Fig. 4 that the model used for the host galaxy can
influence the inferred properties of the subhalo significantly: when
the primary lens galaxy is allowed to have non-elliptical contours
by adding multipoles, the subhalo prefers to be more massive but
less concentrated. The natural question arises: if the primary lens
model is refined further − perhaps by a multicomponent model
or allowing for twist of isodensity contours − might the inferred
subhalo have a sufficiently low concentration to be consistent
with CDM?

To address this question, it is essential to have an understanding of
what is actually being constrained about the subhalo. In Minor et al.
(2017) it was shown that for perturbing subhalos, one can robustly
infer the subhalo’s projected mass enclosed within its perturbation
radius rδc, defined as the distance from the subhalo centre to the
point on the critical curve that is being perturbed the most. Provided
the detection is of high significance, this mass estimate is robust to
changes in the subhalo’s assumed density profile and tidal radius
(unlike the total subhalo mass which can be quite sensitive to these
systematics). While approximate formulas can be derived for the
perturbation radius rδc under the assumption of an isothermal (or
truncated isothermal) profile, in the case of an NFW profile rδc must
be found numerically via a root finding algorithm. For example,
in model tNFW, the best-fitting model recovers rδc ≈ 0.36 arcsec
≈ 1.3 kpc, whereas Model tNFWmult gives rδc ≈ 0.31 arcsec ≈
1.1 kpc. The primary reason for the difference is that the position
of the subhalo differs slightly in each model, the difference being
comparable to a single pixel length (0.05 arcsec). In order to compare
different models, we will evaluate the projected mass within 1 kpc
as being robust to good approximation. The inferred robust mass
for tNFW is M2D(1 kpc) = (2.5 ± 0.3) × 109 M�, while model

tNFWmult has M2D(1 kpc) =(3.3 ± 0.3) × 109 M�, where the
uncertainties give the 95 per cent credible intervals.2

To verify that the subhalo’s mass enclosed within 1 kpc is being
robustly inferred in our models, we start with our best-fitting models
and vary the subhalo mass m200 over a table of values; for each
m200, we solve for the required concentration parameter c200 to keep
the perturbation radius rδc (and with it, the robust mass) constant.
The corresponding curves are plotted for Models 1 and 2 in Fig. 4
(red and blue curves, respectively). Note that the posteriors follow
essentially the same trend as the curves do, indicating that the mass
within 1 kpc is being kept approximately constant over the parameter
space covered by the posterior.

For any lens model that achieves a good fit, the inferred position
of the subhalo (and hence its perturbation radius) would seem
unlikely to differ by more than the PSF full width at half-maximum,
approximately two pixel lengths (∼0.1 arcsec). Thus it would appear
reasonable to expect that any lensing solution with an equally strong
fit will produce a posterior that lies close to the band swept out by
the blue/red curves in Fig. 4. If true, this implies that if a solution
was found that allowed for a low enough concentration (�20) to be
consistent with CDM, the subhalo’s m200 would have to be well above
1011 M�. With such a high mass, the subhalo’s stellar component
would likely be visible. For example, from fig. 10 of Behroozi,
Wechsler & Conroy (2013) the median stellar mass in a galaxy with
halo mass 2 × 1011 M� is estimated to be M∗ ∼ 1.6 × 109 M�,
reaching down to M∗ ∼ 1.2 × 109 M� for the 16th percentile of
galaxies. Since the subhalo is conservatively estimated to have a
luminosity no greater than LV ≈ 1.2 × 108 L� (see Section 3.5),
this would require a V-band stellar mass-to-light ratio greater than
10 M�/L�, which would be extraordinarily high. The requirement
becomes even more stringent under the assumption that the perturber
is a halo along the LOS to the lens, as we will demonstrate in
Section 5.

Nevertheless, although the inferred subhalo mass within 1 kpc is
robust to changes in the subhalo’s density profile, it is not exactly
robust to changes in the primary lens galaxy model, as evident in
the slightly different bands followed by the posteriors in Fig. 4.
Whether a more sophisticated primary lens model can produce a low
enough mass and concentration, sufficiently below the red band in
Fig. 4, remains an open question. We will return to these arguments
in Section 4.4 in the context of a more rigorous comparison to CDM
subhalos using the Illustris TNG100-1 simulation.

3.4 Characterizing the constraints on the subhalo’s density
profile

To get a sense of how well the density profile is being constrained,
we redo the analysis with a different density profile for the subhalo,
this time the ‘cuspy halo model’ of Muñoz, Kochanek & Keeton

2More precisely, the robust quantity is M2D(rδc)/α, where α is the slope of
the host halo’s density profile at the position of the subhalo (as discussed in
Minor et al. 2017). This implies that the inferred subhalo mass can be biased
if the inferred α is biased. However, among our four lens models we fit, the
inferred slope α are all consistent with each other within 90 per cent CL,
suggesting the inferred slope is not sensitive to bias due the subhalo model
being fit. If, however, the true density slope is shallower than our lens models
are finding, the inferred subhalo mass would be reduced. For example, if the
slope is close to isothermal (α ≈ 1), as found in Collett & Auger (2014), this
would reduce our subhalo masses by roughly 25 per cent. Modeling both the
subhalo and the second lensed source with a sufficiently flexible host galaxy
model may shed light on whether the density slope is biased here or not.
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High concentration subhalo in SDSSJ0946+1006 1669

(a) (b)

Figure 5. Projected density profiles, for two different subhalo models (tNFW and CoreCusp). Figure (a) shows the models with an elliptical primary lens, while
figure (b) shows the models where multpoles are added to the primary lens galaxy to capture deviations from ellipticity. The inferred average log-slope from r
= 0.3 kpc to r = 1 kpc is similar regardless of the subhalo profile used.

[2001; this is also the ‘CoreCusp’ model in Andrade et al. (2019)
with core size set to zero]. In this model, the parameters are the
inner and outer slopes and the break radius a. We fix the outer
slope to −5 to be consistent with our tNFW runs, and vary the
inner slope γ and break radius a freely. (Note that in the special
case γ = 2, the profile is quite similar to the Pseudo-Jaffe profile
used in Vegetti et al. (2010) except with outer slope −5 instead
of −4.) As with the tNFW fits, we run two versions: one with an
elliptical host galaxy (simply labeled ‘CoreCusp’), and one with
multipoles (labeled ‘CoreCuspmult’). The inferred parameter values
and uncertainties are given in Table 1. In Fig. 5 we plot the inferred
projected density profiles by showing the 68 per cent and 95 per cent
probability region of the projected density calculated over a large
number of radial bins. Fig. 5(a) shows the density profiles for the
CoreCusp and tNFW models with elliptical host, while Fig. 5(b)
shows the corresponding profiles with multipoles added. Note that in
either case, the inferred density and its log-slope within the interval
between approximately 0.5 and 1 kpc are approximately consistent
with each other; in the case with multipoles, the log-slopes are both
approximately isothermal over this interval, although they steepen as
they reach 1 kpc.

For the purpose of comparing to the IllustrisTNG results in
Section 4, we define a derived parameter γ 2D, avg to be the average
log-slope from 0.75 to 1.25 kpc. In the tNFW model, γ 2D, avg is
largely determined by the scale radius or concentration parameter.
Hence, we see that, to first approximation, both M2D(1 kpc) and
γ 2D, avg are determined robustly regardless of the profile, which are
useful physical quantities to test against subhalos in cosmological
simulations. Note that this does not mean that γ 2D, avg is coming out
exactly the same in tNFW versus tNFWmult. In Fig. 6(a) we plot the
tNFW models with and without the multipoles for direct comparison.
Note the slopes are significantly shallower in the models that include
multipoles. This is directly related to the fact that tNFWmult allows
for lower concentrations compared to tNFW. In Fig. 6(b) we plot
the corresponding projected mass profiles; here it is clear that the
masses are roughly similar near 1 kpc. Since the perturbation radius
is approximately 1 kpc, this is consistent with the conclusion of
Minor et al. (2017) that the subhalo’s projected mass within this

radius is a robust measurement. (In this case the masses become
equal around 0.7 kpc; this is because the position of the subhalo is
not exactly the same in either case, differing by about a pixel length,
which is discussed in Appendix B).

3.5 Revisiting the upper bound on the subhalo’s stellar
luminosity

In Vegetti et al. (2010), an upper limit on the subhalo’s luminosity L
� 5 × 106 L� is derived based on the residuals after subtracting their
best-fitting lens model. However, searching for a luminous signal in
the residuals carries the risk that the lensed images from the model
may have absorbed part of the subhalo’s light and subtracted it out;
this is especially true for pixellated sources that have a fair amount
of freedom to absorb local fluctuations in surface brightness. In this
section we revisit this bound and consider whether foreground light
may be disguised by the lensed image near the subhalo.

One way to check whether the subhalo’s foreground light may be
present is to test the lens model in different bands. In Sonnenfeld
et al. (2012) this lens is modeled in several different HST bands
(without including a substructure). For comparison, in Fig. 7 we
plot their image using the F336W filter with the foreground galaxy
subtracted out, side-by-side with the foreground-subtracted F814W
image from Gavazzi et al. (2008) used in our lens modeling. In the
shorter-wavelength F336W band there is a much smaller signal from
foreground light, and indeed there are clearly fewer residuals from
the foreground subtraction. In addition, the bright ‘knob’ near the
subhalo in the F814W image is barely visible in the F336W image.
To test whether this feature may have a component of foreground
light, we plot seven points in the vicinity of the subhalo (black points
with varous markers) and show their partner images on the bottom
arc using our best-fitting tNFWmult model. Note that although the
surface brightness is dramatically reduced very close to the subhalo
(filled circle, filled square, open circle), this is also true for the partner
images in the lower right. This suggests that the variation in surface
brightness is due to the source galaxy itself, rather than any disguised
foreground light near the subhalo. This is a useful consistency check
for our lens model, and suggests that if the subhalo’s stellar light is
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1670 Q. Minor et al.

(a) (b)

Figure 6. Projected density and mass profiles, for tNFW models with versus without multipoles added to the primary lens galaxy’s projected density. Note from
figure (b) that the solutions have similar projected masses around 1 kpc, even though the profile shape and the total subhalo mass is rather different in either case.

Figure 7. Image of SDSSJ0946+1006 in two different HST filters: F814W on the left (from Gavazzi et al. 2008), which is used for the primary lensing fits
in this paper; and F336W on the right, from Sonnenfeld et al. (2012). Both images have the foreground galaxy subtracted out. To illustrate the lens mapping
near the subhalo, seven points in the top arc are shown (black points with various markers) along with their partner images on the bottom arc according to our
best-fitting lens model (tNFWmult). Note that in F336W, the surface brightness is dramatically reduced near the subhalo (filled circle, filled square, and open
circle), but this is also true for the partner images in the lower right, indicating the lens mapping is consistent in both bands.

visible in the image, it is clearly subdominant compared to the lensed
source.

To place more rigorous constraints on the subhalo’s luminosity,
the most direct approach is to include a light profile for the subhalo
in our model whose parameters are varied simultaneously with the
lens/source parameters. We carry out this strategy by modeling the
subhalo’s light with a Gaussian profile, varying the total luminosity
LV and half-light radius r1/2 as free parameters. The surface brightness
from the subhalo is added to the light from the lensed sources before
convolving with the PSF. We allow the half-light radius to vary from

0.005 arcsec up to 0.3 arcsec (or from ≈18 pc up to ≈1.1 kpc). In all
other respects, our model is identical to the tNFWmult model.

Since the light profile approaches a point source at the low end
of the prior range in r1/2, numerical error can arise since the extent
of the profile is small compared to the size of an image pixel. To
solve this issue, we implement a ‘zoom’ feature where any pixels
whose borders lie close enough to the subhalo light (we choose the
distance criterion to be within twice the half-light radius) are split
into subpixels, such that the subpixels have lengths no longer than
1
4 r1/2 in either direction; if a pixel already satisfies this criterion,
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High concentration subhalo in SDSSJ0946+1006 1671

no splitting occurs. The surface brightness is then evaluated at each
subpixel, and these values are averaged to find the surface brightness
of each parent pixel. With our choice of subpixel size, the surface
brightness is quite accurate and does not significantly improve with
further splittings. (Finally, we note that while we are using the zoom
feature for a foreground light profile here, it can also be used for
compact lensed sources as well.)

The best-fitting half-light radius of the subhalo is r1/2 = 0.74+0.15
−0.10

kpc, while the stellar luminosity constraint is surprisingly stringent,
giving LV = (1.1 ± 0.1) × 108 L� (the uncertainties here give the
95 per cent credible interval). In addition, the subhalo’s dark matter
constraints are slightly different than in tNFWmult: the best-fitting
M2D(1 kpc) is ≈2 × 109 M�, which is significantly smaller, while
the scale radius has shrunk considerably to ≈0.1 kpc. The question
remains, however; can the apparently large subhalo luminosity be
trusted?

Comparing the residuals to those of our fiducial models (Fig. 1b)
show that the residuals below the subhalo are much reduced by
the inclusion of the stellar light profile. However, as discussed in
Section 3, these residuals – which are located a few pixel-lengths
away from the inferred subhalo centre – are likely to be due to
unsubtracted foreground light from the primary lens galaxy. This can
be seen in fig. 2 of Sonnenfeld et al. (2012), where they subtracted
the foreground galaxy using an elliptical Sersic model: the residuals
in question (the F814W image is plotted in row 2 of that figure) form
part of a continuum that go all the way to the central region where
the foreground galaxy is brightest. (The foreground subtraction in
Gavazzi et al. 2008, used in this paper, employed a more sophisticated
B-spline technique to remove the residuals, making this continuum
less apparent.) As a result, the true luminosity of the subhalo is
likely to be lower than our solution suggests. We thus regard LV

< 1.2 × 108 L� to be a conservative upper bound on the subhalo’s
stellar luminosity. The true luminosity is likely to be lower than this,
but need not be as low as the bound derived in Vegetti et al. (2010).

Finally, we note that Collett & Smith (2020) have recently
discovered a third lensed source at redshift z= 5.975 using the MUSE
spectrograph, one of whose images is very close to the location of
the perturbing subhalo. However, the partner image (the larger of the
two) from this source is observed to the lower right of where the
large arcs are, and there is no discernible signal in that region in the
F814 image. Therefore, we do not expect this high-redshift source to
affect our upper bound on the subhalo luminosity derived here.

4 C O M PA R I S O N TO SU B H A L O P O P U L AT I O N S
W I T H I N A NA L O G U E L E N S I N G G A L A X I E S I N
THE ILLU STR IS TNG100-1 SIMULATION

In the preceding sections, we have identified three properties of the
subhalo in J0946+1006 for which we have constraints in order to
fit the lensing data well. Conservatively, the following bounds are
required: the projected mass within 1 kpc, M2D(1 kpc) � 2 × 109

M�; the average log-slope of the 2D density profile from 0.75 to
1.25 kpc γ 2D < −1; and the V-band luminosity LV < 1.2 × 108 L�.
To address the question whether such a highly concentrated subhalo is
consistent with CDM, we now explore whether subhalos that satisfy
these properties arise in cosmological simulations.

To find analogues of the main lensing galaxy, we require a
cosmological simulation that includes the effects of baryons on the
mass distribution of galaxies. This is partly because the radiative
cooling of baryons and subsequent adiabatic contraction (AC) of
the dark matter halo results in a denser galaxy, with larger Einstein
radius, compared to the same galaxy in a dark-matter-only (DMO)

simulation (Blumenthal et al. 1986; Gnedin et al. 2004). The bary-
onic physics, in particular adiabatic contraction and active galactic
nucleus (AGN) feedback, also affects the radial distribution and mass
function of the subhalos (Despali & Vegetti 2016), which is critical
for the comparison we are making here. We choose IllustrisTNG for
this purpose, which is a suite of both hydrodynamical and DMO N-
body simulations. The hydrodynamical suite of simulations includes
the effect of gas cooling, as well as a prescription for subgrid physics
including star formation/evolution, black hole seeding and evolution,
and stellar and AGN feedback, while the DMO runs are strictly N-
body simulations based on the CDM model (Nelson et al. 2017;
Pillepich et al. 2017; Springel et al. 2017; Marinacci et al. 2018;
Naiman et al. 2018; Nelson et al. 2019a).

4.1 Sample selection

Although our primary results will be obtained using a full hydro-
dynamical simulation in IllustrisTNG, we will also analyse and
compare to its DMO counterpart to gauge the effects of baryons
on the satellite populations. We choose in particular the TNG100-1
and TNG100-1-DARK simulations, both of which have a box length
of about 100 Mpc and the smallest dark matter particle mass of all
the publicly available simulations in the TNG suite, with mDM =
7.5 × 106 M� for the hydrodynamical run, and mDM = 8.9 × 106

M� for the DMO run (TNG50 will have smaller mass particles but
is not yet publicly available; Nelson et al. 2019b). Note that with this
resolution, subhalos with masses less than 7.5 × 109 M� will have
fewer than 1000 particles, and hence might be vulnerable to artificial
disruption due to being unresolved (Carlsten et al. 2020). For this
reason, we restrict our search to subhalos with total dark matter
masses greater than 5 × 109 M� so as to exclude subhalos with less
than ∼700 particles, to ensure all subhalos have ∼1000 particles or
more. We do the same for the DMO run despite the slightly lower
resolution (as we will see, however, among lower mass subhalos only
a tiny fraction are expected to produce a large enough M2D(1 kpc),
eliminating the subhalos with lower particle counts).

We find analogue lensing galaxies in a manner similar to Despali
& Vegetti (2016), by selecting TNG100-1 hosts and subhalos at a
redshift z = 0.2 with masses close to those measured for J0946+1006
(Auger et al. 2010). We accomplish this by searching the TNG100-1
API for host haloes with total masses 1 × 1013−6 × 1013 M� and
stellar masses between 8 × 1010 and 8 × 1012 M� to match the host
(for the DMO run we only use the total mass criteria). From the hosts
that match our search criteria, we select subhalos with total masses
8 × 109−4 × 1011 M�, and dark matter masses 5 × 109−4 × 1011

M� to address the resolution issues aforementioned. In the DMO
run, we only use the latter range.

Although our expectation that a strong candidate would have
undergone significant tidal stripping suggests restricting our selection
of subhalos to those closest to their host haloes, we cannot predict
where in the subhalo’s orbit it is or when it passed pericentre as
we restrict our analysis to one snapshot (or redshift). We therefore
select all subhalos within rvir of their hosts, as they may have
been stripped at some earlier redshift when at pericentre of their
orbits. Additionally, we expect the subhalo to be close to its host
in projection. This can be true for any subhalo depending upon the
LOS, further motivating relaxing the condition of distance from host.

This yielded a total of 3056 subhalos from 167 different hosts
for the hydrodynamical run, and 4909 subhalos from 188 hosts in
the DMO run. For the hydrodynamical run, we further discarded
subhalos that have less than 30 star particles, none of which had
a projected mass within 1 kpc of at least 109 M�; likewise, we
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1672 Q. Minor et al.

Figure 8. Projected mass within radius 1 kpc from subhalo centre, plotted with respect to total mass for simulated subhalos in the hydrodynamical TNG100-1
run [left-hand panel (a)] and the DMO TNG100-1-DARK run [right-hand panel (b)]. In both panels the grey triangle points are from the full spherical average
over 1000 LOS, while the filled coloured circles are the same subhalos averaged over the top 10 per cent of highest density in 1 kpc LOS. In panel (a), the circles
are colour coded by M∗(1 kpc), while in panel (b) they are solid violet. The 2σ error bands for M2D, DM(1 kpc) are also included for the ‘tNFWmult’ lensing
model, where the subhalo is modeled with a tNFW profile and our model allows for departures from ellipticity in the host galaxy. All the plotted subhalos lie
within rvir from the host galaxy centre.

discarded subhalos with less than 8.5 × 108 M� projected mass in
1 kpc, which is below the minimum requirement of 109 M�. This
leaves us with a final sample of 2205 subhalos for the hydrodynamical
run.

For each subhalo, a spherically averaged density profile is con-
structed by binning the dark matter particles in radial mass bins,
and 2D mass and surface density profiles are constructed similarly
by binning in cylindrical shells and averaging over 1000 random
LOS. Previous studies have pointed out that due to the triaxiality
of dark matter haloes, LOS along the long axis of a halo can
result in a significantly higher projected density and thus a stronger
lensing signal due to selection bias (Sereno et al. 2015). In view
of this, the strongest subhalo perturbations may be generated by
subhalos whose long axes are oriented nearly along our LOS. In the
following analysis, we explore this possibility by selecting the top
10 per cent of LOS which return the highest projected density within
1 kpc and produce profiles by averaging over these LOS for each
subhalo, and contrasting their properties to the sample averaged over
all LOS (https://www.overleaf.com/project/5e31dc3c2192ad00016
cf4bb). Finally, to obtain γ 2D and circumvent the issue of noise
near the inner regions of the profiles of these subhalos, we fit the
profile with a power law from 0.75 to 1.25 kpc, and determine the
slope for both the full spherical average, as well as the high density
LOS. It should be borne in mind, however, that we are probing a
regime in which the resolution is not sufficient to produce smooth
density profiles for many subhalos; although our averaging procedure
mitigates the noise, this may still lead to some artificial scatter in the
inferred subhalo slopes.3

3The Illustris TNG50 simulation will solve this issue, at the cost of a smaller
sample of subhalos due to smaller box size. The higher resolution of TNG50
will be able to better resolve the stellar profiles, as well as better resolution in
mass by an order of magnitude and improved spatial resolution by a factor of
∼2 compared to TNG100-1 (Pillepich et al. 2019). A reanalysis combining
the results here of TNG100-1 with those from TNG50 would be useful for
more robust measurements of the inner slope of the density profile, while

4.2 Subhalo candidates and comparison to lensing constraints

In Fig. 8, we plot the projected DM mass of each subhalo within
1 kpc, M2D, DM(1 kpc), versus the total subhalo mass for both the
hydrodynamical [panel (a)] and DMO [panel (b)] simulation runs.
The grey triangle points represent the full spherical average over 1000
random LOS for each subhalo, while the circles colour coded by M∗(1
kpc) represent the average over the top 10 per cent of the highest den-
sity LOS for each subhalo. Note that the required M2D, DM(1 kpc) is
achieved only for the subhalos of total mass ∼1010 M� or greater. The
remaining subhalos with M2D, DM(1 kpc) < 109 M� are eliminated
from the proceeding analysis. This cut also eliminates most of the
subhalos with low stellar content below 108 M� within 1 kpc. The
colour coding for the circle points reveals a trend in which the stellar
mass in 1 kpc increases for larger projected halo mass within 1 kpc.
Consistency with the lensing results (given by the horizontal shaded
bar) therefore requires at least ∼2 × 109 M� of stellar mass within
1 kpc, despite the observed subhalo luminosity implying a much
smaller stellar mass, a point to which we will return in Section 4.4.

In panel (b) of Fig. 8, we plot all 4909 subhalos found in TNG100-
1-DARK. The trend of the points is similar to panel (a); however, with
a shallower slope. Additionally, less of the subhalo population falls
in the 2σ band for M2D(1 kpc) than the hydro run in panel (a), and
those that fall in, do as a result of selection bias, which is visible in a
comparison between the violet circle points and the full spherically
averaged grey triangle points: the high density averaged ones (violet)
obtain a large boost in projected mass within 1 kpc compared to the
grey triangles. The large boost implies selection bias is amplified
in DMO subhalos, which are more spherical in hydrodynamical
simulations as a result of the added central potential from the baryons
(Dubinski 1994; Kazantzidis et al. 2004). Additionally, the trend is
less steep in panel (b) than in panel (a), indicating subhalos are denser
in the hydrodynamic run, particularly for higher subhalo masses.

TNG100-1 gives us access to a larger population of subhalos in this mass
range (Nelson et al. 2019b).
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High concentration subhalo in SDSSJ0946+1006 1673

Figure 9. Slope of the surface density profile versus projected mass in 1 kpc for the TNG subhalos in the range M(1 kpc) = 2 − 5 × 109 M� and γ 2D ≤ −0.5
for both the hydrodynamical [panel (a)] and DMO [panel (b)] runs. Plotted are the full spherical average over 1000 LOS (grey triangles) as well as the average
over the top 10 per cent highest density LOS in 1 kpc, colour coded by M∗(1 kpc)/MDM(1 kpc) in panel (a), and solid violet for panel (b). Both panels include the
68 per cent and 95 per cent contours from lensing constraints for our most conservative model, in which the subhalo is modeled with a tNFW profile and our model
allows for departures from ellipticity in the host galaxy (which we term the ‘tNFWmult’ model), and the cosmological relation for dark matter for z = 1, 3, 5 at 3σ .

Next, we examine the density slope constraints. In Section 3.4, we
showed that the log-slope of the subhalo’s projected density profile is
well constrained from the lensing signal over the approximate range
from 0.1 up to 1 kpc. However, since the surface density profiles of
the subhalos in TNG100-1 are often noisy near the central regions
within 1 kpc due to poor resolution (see Appendix), we pick the upper
end of this range and fit a line to the binned profiles between 0.75
and 1.25 kpc to obtain the average log-slope γ 2D for each subhalo.

In Fig. 9 we plot the average log-slope of the projected density
profiles, γ 2D, with respect to M2D(1 kpc), for all subhalos with 2 × 109

< M2D, DM(1 kpc) < 5 × 109 M� and γ 2D < −0.5. Here again, panel
(a) corresponds to the hydrodynamical run, while panel (b) is the
DMO run, and the grey triangles again represent the full spherical
average over 1000 LOS, whereas the coloured circles are the average
over the top 10 per cent of the highest density LOS for each subhalo.
In Fig. 9(a) the circles are colour coded by the ratio of stellar mass
over dark matter mass within 1 kpc of the subhalo’s centre. As
in Fig. 8, the LOS is a significant factor, with the grey triangle
markers being significantly shifted towards shallower slopes and
smaller M2D, DM(1 kpc) from the colour-coded points. This effect is
more significant for the DMO run, which is again consistent with
a greater triaxiality expected for the DMO haloes (Dubinski 1994;
Kazantzidis et al. 2004). The corresponding lensing constraints for
the slope and the projected mass within 1 kpc are also plotted as
contours at 68 per cent and 95 per cent CL. We show only our most
conservative model ‘tNFWmult’, which modeled the subhalo with
a tNFW profile and had the highest Bayesian evidence among the
lens models we fit. A similar comparison that includes the other
lens models, which have even steeper slopes compared to the model
shown, is shown in Appendix B.

We also include the cosmological relation for dark matter-only
field haloes with concentrations 3σ above the median for redshifts
z = 1, 3, 5 from Dutton & Macciò (2014). Note that even at the
3σ level, typical CDM field haloes with masses within this range
generally produce slopes shallower than −1; this can be seen in
Fig. 9(b), where aside from some scatter, subhalos generally reside
in the region where slopes are shallower than −1, in contrast with

Fig. 9(a) which shows the hydrodynamical subhalo population
having steeper slopes. This suggests that for many of the subhalos
that achieve M2D(1 kpc) in the hydrodynamical run, tidal stripping,
and adiabatic contraction has steepened the profiles by contracting
more dark matter into 1 kpc. However, in the vast majority of
cases this does not result in a steep enough slope to fit the lensing
constraints. Roughly ∼60 of the hydrodynamical subhalos are steep
enough to be consistent with our inferred slope constraints when
averaged over the top 10 per cent of high density LOS (coloured
circles), while only six subhalos are steep enough when measured
from the full spherical average (grey triangles). In addition, none of
the subhalos are consistent with both the inferred slope and M2D(1
kpc) when averaged over all LOS. The difference is starker in the
DMO simulation [panel (b)], where none of the subhalos produce a
steep enough slope even for the highest density LOS.

4.3 Likelihood of a perturbing subhalo being as concentrated
as the subhalo in SDSSJ0946+1006

Since the projected slope and mass can depend significantly on the
LOS, we can ask the following question: supposing one makes
a large number of mock ‘observations’ over many LOS for each
subhalo in our TNG sample, what fraction of such observations
would involve M2D(1 kpc) and γ 2D(0.75–1.25 kpc) values consistent
with our lensing constraint? This gives an idea of the likelihood of
seeing a lensing perturbation by a subhalo as concentrated as the
one in SDSSJ0946+1006. To address this question, it would be a
mistake to use all 1000 individual LOS: the noisiness of the profiles
affects the slope calculation, as discussed in Section 4.1. However,
we find that averaging the profiles over as few as 20 nearby LOS
reduces the noise dramatically (see Appendix B for comparison of
different LOS averaging). Thus, we generate mock ‘observations’ by
averaging 20 nearby LOS. The procedure is carried out as follows:
for each subhalo, we calculate M2D(1 kpc); any LOS whose M2D(1
kpc) lies outside the range 3–4 × 109 M� favoured by our fiducial
lens model is discarded. The remaining LOS are sorted by their
M2D values and divided into groups of 20 LOS (with a few groups

MNRAS 507, 1662–1683 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1662/6342121 by Sim
ons Foundation user on 21 June 2022



1674 Q. Minor et al.

Figure 10. Fraction of mock ‘observations’ in our TNG100 sample for which
a subhalo’s projected density log-slope is steeper than a given threshold
γ 2D(0.75–1.25 kpc). Here we include only the observations that produce
a projected mass within 1 kpc M2D(1 kpc) in the range 3−4 × 109 M�,
for comparison to our fiducial lensing model (‘tNFWmult’); the 95 per cent
credible interval in γ 2D from our lens model is shown as the vertical shaded
bar. (Joint constraints in M2D(1 kpc) and γ 2D are shown in Fig. 9). For each
subhalo, 1000 LOS were generated, and each mock ‘observation’ consists of
20 similar LOS over which the profiles are averaged to reduce noise. Note
than less than 1 per cent of the mock observations involve slopes that satisfy
the lensing constraint. The fraction is even smaller for our other lens models
(shown in Appendix B.).

possibly obtaining one extra LOS); each group constitutes a mock
‘observation’, over which the profiles are averaged and the resulting
slope γ 2D(0.75–1.25 kpc) is calculated. This process is repeated for
each subhalo in our TNG100-1 sample, both for the hydrodynamical
and DMO simulations. Note that in referring to each ‘observation’,
we are not simulating the lensing perturbation of the subhalos here,
but rather just calculating the projected mass and (smoothed) density
slope of each simulated subhalo.

In Fig. 10 we plot the fraction of mock observations for which
the projected (smoothed) density slopes are steeper than a given
threshold γ 2D. The blue curve corresponds to subhalos in the
TNG100-1 hydrodynamical simulation, whereas the red curve gives
the DMO simulation. The vertical shaded bar gives the 95 per cent
credible interval from the lensing constraint for our fiducial model
(defined by the 2.5 per cent and 97.5 per cent percentiles of the
marginalized posterior in γ 2D). Note that less than 1 per cent of the
observations have projected density slopes consistent with the lensing
constraint; in the DMO simulation, none of the observations produce
steep enough density slopes. The situation is even starker for our
other lens models, for which not a single mock observation produced
a steep enough slope to match the lensing constraints even in the
hydrodynamical simulation (see Appendix B for the corresponding
plots with all lens models).

This result can be interpreted as follows. The angular size of
a lensing perturbation is determined primarily by the subhalo’s
projected mass and proximity to the lens’s critical curve (Minor
et al. 2017), whereas to first approximation, the density slope affects
the perturbation’s shape, but not its size (Minor et al. 2021). This
means that any of the mock observations in Fig. 10 would produce a
lensing perturbation of similar angular size if the simulated subhalo
were placed at the position of the subhalo in SDSSJ0946, and thus
the majority of them are likely to be detectable. However, fewer than

1 per cent of these observations would produce a projected density
slope as steep as what the lensing constraints are telling us. This
suggests that the subhalo in SDSSJ0946+1006 is truly an outlier
in CDM (at the 99 per cent confidence level) in terms of its central
density slope, and hence concentration, given the size of the observed
lensing perturbation.

Note that this argument can be made independently of the stellar
mass of the subhalo. However, as we discuss in the following
section, even those subhalos that do achieve densities and slopes that
match our lensing constraints have stellar masses that far exceed the
conservative upper bound on the subhalo’s stellar mass, significantly
worsening the tension with CDM.

4.4 Discussion

Although the subhalo in SDSSJ0946+1006 is clearly an outlier in
our subhalo sample in TNG100-1, as Figs 9 and 10 show, we do
find a few subhalos whose projected density profiles are consistent
with the lensing constraints within 99 per cent confidence level (CL)
for specific LOS. How are such high densities and density slopes
achieved?

To understand this, we first consider the simulated subhalos’ stellar
mass. Among the sample of subhalos with M2D, DM(1 kpc) ≥2 × 109

M�, Fig. 8 shows that nearly all of them have total stellar masses
greater than 109 M�. Given the stellar luminosity constraint LV <

1.2 × 108 L� found in Section 3.5, achieving a stellar mass this
high would require the actual subhalo to have a V-band mass-to-light
ratio greater than 8 M�/L�, which would be extraordinarily high
and would imply a very steep stellar initial mass function (IMF).
In old stellar populations typical for dwarf satellites, a Salpeter-like
IMF generally produces M∗/LV ≈ 2 M�/L� (Martin, de Jong & Rix
2008). Direct measurements of the stellar IMF in Milky Way satellite
galaxies infer a stellar IMF that is shallower than Salpeter, and hence
imply even lower M∗/LV (Geha et al. 2013; Gennaro et al. 2018);
this is also consistent with the expectation from scaling relations in
Local Group dwarfs (Woo, Courteau & Dekel 2008) and the low
measured M∗/LV in low surface brightness dwarfs (Du et al. 2020).
While super-Salpeter IMF’s have been deduced in high-redshift giant
elliptical galaxies via spectroscopy and/or lensing (Conroy & van
Dokkum 2012; Newman et al. 2013), an IMF extreme enough to
produce M∗/LV > 8 M�/L� has only been observed in the centres
of massive galaxies (Conroy, van Dokkum & Villaume 2017), likely
as a result of extreme starburst conditions (Chabrier, Hennebelle &
Charlot 2014) unlikely to occur in a dwarf galaxy. If we assume a
value that is likely a typical upper limit for dwarf galaxies, M∗/LV ≈
2 M�/L�, our lensing constraint would imply M∗ � 2.4 × 108 M�.

Among the simulated subhalos in our sample that achieve M2D(1
kpc)≥2 × 109 M� along some LOS, none have stellar masses equal
to or smaller than our conservative upper bound of 2.4 × 109

M�. Since TNG100-1 has been shown to produce stellar masses
roughly consistent with observations of dwarf galaxies in the Local
Volume down to at least Mhalo ∼ 1011 M� (Carlsten et al. 2021),
this suggests that subhalos with such high projected masses must
necessarily be accompanied by a stellar mass that exceeds that
of the subhalo in SDSSJ0946+1006. However, the strong upper
bound on the subhalo’s stellar mass does not by itself disqualify the
simulated subhalos in our sample, since we do not necessarily expect
the simulation to reproduce the correct stellar mass within 1 kpc.
The stellar softening length ≈0.7 kpc implies the stellar density
within 1 kpc must be taken with a grain of salt (Pillepich et al.
2017). Nevertheless, all the subhalo candidates with steep enough
slopes (the < 1 per cent of observations in Fig. 10) have at least
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3 × 109 M� in stellar mass within 1 kpc, an order of magnitude
higher than our upper bound on the observed subhalo. Most also
contain more stellar mass than dark matter mass within 1 kpc. This
strongly suggests that the dark matter mass within 1 kpc has been
boosted significantly by adiabatic contraction, an effect that may also
be steepening the slope within 1 kpc (Gnedin et al. 2004). This is
supported by the fact that none of the mock ‘observations’ produced a
steep enough density slope in the DMO simulation (Fig. 10). Indeed,
previous work suggests that IllustrisTNG has over-contracted dark
matter haloes at higher galaxy masses, producing high central dark
matter fractions compared to observational constraints (Lovell et al.
2018). (See Appendix A for a direct comparison of the stellar and
dark matter density profiles for 21 of the closest candidate subhalos.)
If the high concentration of these dark matter subhalos was achieved
primarily through AC, then they are no longer consistent with the
lensing results since the true stellar mass is likely to be below 3 × 108

M�, not enough for AC to be a significant factor in reality – again,
unless the stellar mass-to-light ratio takes an unprecedented value
M∗/LV � 8 M�/L�.

We conclude that the subhalo in the lens SDSSJ0946+1006
appears to be a remarkable outlier in �CDM, in two respects.
Its projected mass within 1 kpc, constrained by the lensing, is an
outlier given the upper bound on its luminosity, unless its stellar
mass-to-light ratio takes an extraordinarily high value (making it an
outlier in stellar mass). In addition, its density slope is an outlier (at
>99 per cent confidence, by Fig. 10), unless a lens model could be
found that produces a strong fit and infers a shallower density slope;
but even if such a lensing solution could be found, this would imply
a large halo mass and hence would again require a very high stellar
mass-to-light ratio.

4.5 Can a more sophisticated primary lens model reconcile the
inferred subhalo properties with �CDM?

Perhaps the most plausible scenario for reconciling the subhalo with
�CDM is if a good-fitting lensing solution could be found that pro-
duces a projected mass within 1 kpc � 2 × 109 M�. As Fig. 8 shows,
subhalos with M2D ≈ 1.5 × 109 M� can have stellar masses reaching
down to 108 M�, which would make it consistent with our upper
bound on the stellar mass. Since M2D(1 kpc) is robust to changes in
the subhalo profile, however, this would likely require some change
in the host galaxy model that would allow the subhalo to be placed
at a slightly different position with respect to the critical curve.

In Vegetti et al. (2010), the authors modeled this lens with the
addition of pixellated corrections to the gravitational potential and
showed that the data prefer a localized perturbation in the location
of the inferred subhalo, regardless of the overall structure of the
smooth lens model. Nevertheless, the question remains whether
a more limited degeneracy might allow for the subhalo to be
somewhat less dense than our inferences allow. Prior work has
suggested that the properties of individual substructures can indeed
be degenerate with the structure of the primary lens galaxy due
to fundamental lensing degeneracies (Wagner 2018a), such as the
source position transformation (Schneider & Sluse 2014; Wagner
2018b). While Enzi et al. (2020) have shown that complexity in
the lensing potential is generally not degenerate with the inferred
amount of low-mass substructures in gravitational lenses; there may
be significant degeneracy with the detailed properties of high-mass
substructures. Such degeneracies, when accounted for, may plausibly
weaken constraints on the properties of substructure or time delay
cosmography (Enzi et al. 2020; Denzel et al. 2021).

In this work, we have taken a step toward investigating this effect
by introducing multipole terms to allow the lens model to deviate
from a purely elliptical density profile. The trend we observe is that
although the elliptical solution (without multipoles) infers a smaller
M2D(1 kpc), it requires a steeper slope to fit the lensing data, pre-
sumably to produce a strong enough perturbation. For example, our
tNFW model with a perfectly elliptical host galaxy finds M2D(1 kpc)
≈ 2.5 × 109 M�, but requires a significantly steeper slope γ 2D ≈ −2,
making it more difficult to reconcile with substructures in Illustris-
TNG (see Fig. B1 in Appendix B, purple contour). As we shall see
in Section 5, a similar trend is evident when the perturber is assumed
to be a LOS halo, rather than a subhalo: solutions with smaller
M2D require a steeper slope. Thus it remains to be seen whether a
more sophisticated model for the lens galaxy might allow for a good
solution with M2D(1 kpc) � 2 × 109 M� and a slope shallow enough
to be consistent with the subhalos in Illustris TNG. Fitting both of
the lensed sources (and perhaps even a third source recently detected
by Collett & Smith 2020) with a flexible host galaxy and subhalo
model, perhaps in combination with spatially resolved kinematics,
may shed light on this by better constraining the host galaxy’s density
slope and contour shape in the vicinity of the subhalo.

5 W H AT IF TH E P E RTU R B E R I S A L O S H A L O
R AT H E R T H A N A SU B H A L O ?

Several studies have suggested that a significant fraction of lensing
perturbations are caused by dark matter haloes lying along the LOS
to the lensed source, instead of being subhalos of the lensing galaxy
(Xu et al. 2012; Li et al. 2017; Despali et al. 2018). Unfortunately
in our fits, the tidal radius of the perturber is largely prior dominated
and hence cannot be used to determine a priori whether the perturber
is indeed a subhalo or not. This raises the question, can the inferred
density of the perturber in SDSSJ0946+1006 be reduced if it lies
along the LOS, such that the tension with CDM is mitigated? For
example, if the perturber lies behind the lensing galaxy at z = 0.4,
its angular diameter distance is nearly 50 per cent higher compared
to the lens redshift (z = 0.222). Assuming the perturbation radius
would be constrained to have a similar angular size (∼0.3 arcsec),
then the same mass within this perturbation radius would now be
spread over roughly 1.5 kpc in radius, perhaps implying a lower
central density. On the other hand, if the perturber lies in front of
the lens at lower redshift, its Einstein radius becomes larger, perhaps
indicating the perturber does not need to be so massive. Either effect
could possibly reduce the mass of the perturber contained within
1 kpc. In this section, we investigate whether the assumption of a
LOS perturber can lessen the tension with CDM.

The complicating factor in these scenarios is the role played by
recursive lensing: instead of one lens plane, there are now two,
and the lensing proceeds in two stages as the lensed light from the
more distant galaxy is in turned lensed by the closer one (Schneider,
Ehlers & Falco 1992). This recursive lensing has observable effects
that can alter the quality of the fit, for better or worse. This is most
obviously true when the perturber is behind the primary lens at high
redshift, so that the convergence from the perturber is essentially
lensed by the primary lens galaxy. This has the effect of smearing
its convergence into an arc, or in extreme cases even leading to
multiple ‘images’ of the same perturber (i.e. perturbations in two
different locations in the lens plane).

We now investigate whether changing the redshift of the perturber
can lead to a less dense halo without significantly degrading the fit,
taking into account the full effect of recursive lensing by solving
the recursive lensing equation (Schneider et al. 1992). In principle
one could redo the analyses of Section 3, but varying the perturber’s
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(a) (b)

Figure 11. Best-fitting perturber’s projected mass within 1 kpc and average log-slope γ 2D(0.75–1.25 kpc) as the perturber’s redshift is varied. In (a) the M2D(1
kpc) is given by the solid curve, while the χ2 of the fit is given by the dashed curve with corresponding values given by the axis on the right. In (b) the log-slope
is given by the (solid curve), again with the χ2 given by the dashed curve for comparison. These plots were generated by taking the best-fitting model with
tNFW profile, gradually varying the redshift in either direction with steps of 
z = 0.02 and reoptimizing the χ2 function.

redshift as an additional model parameter. However, the degeneracies
between the subhalo parameters (m200, rs, rt, zpert) would require
running the nested sampling algorithm for a much longer time to
achieve convergence, straining our computational resources. We thus
opt for a simpler investigative approach: starting from the best-
fitting model for the subhalo, we gradually change the redshift of
the perturber, by steps 
z = 0.02, reoptimizing the chi-square at
every step using Powell’s method to find a new set of best-fitting lens
and source parameters. First, we reduce the redshift down to z =
0.05, bringing the perturber in front of the lens plane; the procedure
is then repeated going in the other direction up to z = 0.45. Provided
that the redshift is changed slowly enough, one is still tracing out the
approximate best-fitting model as a function of redshift.

The results are plotted in Fig. 11 for the tNFW model (the
corresponding plots for the tNFWmult model whose behaviour is
qualitatively similar, are given in Appendix C, Fig. C1). In Fig. 11(a)
we plot the perturber’s projected mass within 1 kpc (solid line, left
axis) along with the best-fitting χ2 value (dashed line, right axis) as
a function of the perturber’s redshift. Surprisingly, Fig. 11 shows the
the variation in goodness-of-fit is equally apparent at both high and
low redshifts. The recursive lensing effect is entirely responsible for
this variation in the χ2: if the recursive lensing effect is ‘turned off’,
so that the convergences are simply added together, one can always
achieve an equally good chi-square by rescaling the masses and scale
lengths regardless of redshift. Hence, the fact that the χ2 increases
at low redshifts shows that the recursive lensing effect is not only
important behind the lens plane, but also in front as the redshift gets
lower. This is because the perturber is strongly lensing by itself (with
Einstein radius of ∼0.1 arcsec) and its Einstein radius increases as
it comes closer, for fixed m200 and rs values.4 Hence, to achieve a
similar perturbation radius (in angular size), the mass of the perturber
must be reduced, driving the mass within 1 kpc to be lower for z =

4For completeness’ sake, we note that if you bring the perturber much closer
than z = 0.05, its Einstein radius will finally decrease again as the mass
‘spreads out’ over the lens plane, driving the surface density per arcsec to be
low. But the perturber in this case is so dense that this effect has not kicked
in yet by z = 0.05.

0.05, but by this point, the fit is degraded significantly, with the χ2

increasing by ∼500. (See Appendix C for a discussion of how the
perturbation size varies with redshift.)

Although one achieves a similar (or perhaps slightly better) fit
down to zpert = 0.15, the mass scale M2D(1 kpc) is only slightly
reduced. To get down to 1 M� within 1 kpc, the perturber must be
brought down to z = 0.05, and the fit is quite poor by this time
with significant residuals in the vicinity of the subhalo. In addition,
Fig. 11(b) shows that the log-slope γ 2D(1 kpc) becomes extremely
steep in this limit, diving below −3.6 at z = 0.05, due to the best-
fitting tidal radius becoming very small. This indicates an extremely
high concentration (indeed, approaching the limit of a point mass)
and the slope is much steeper than that of field haloes in CDM, as
Fig. 9 shows (black curves give the log-slope for concentrations 3σ

above the median value at different redshifts). Therefore, the limit of
low redshift, while leading to a lower M2D(1 kpc), also exacerbates
the concentration issue and leads to a significantly poorer fit.5

We conclude that the assumption of a LOS perturber does not
significantly lessen the tension with CDM; indeed, it likely worsens
the tension, since field haloes are in general less dense than subhalos
of similar mass. In addition, even if a slightly better fit might
be achieved down to zpert = 0.15, the upper bound on the stellar
luminosity of the perturber becomes stricter: the luminosity distance
at z = 0.15 is less than 70 per cent its value at the primary lens
redshift, which leads to the upper bound on luminosity being less
than half as bright, making it harder to explain with a very massive
halo. Thus, although both scenarios are in tension with CDM, we

5A related question is whether the perturber could be a black hole within
the Milky Way. We did a PolyChord run with a point mass perturber (and no
multipoles) at the redshift of the lens and found a best-fittingting solution with
χ2/pixel ≈1.71, only modestly worse than the tNFW or CoreCusp models
listed in Table 1. Following the above procedure, if we gradually reduce the
perturber redshift down to z = 10−6 (about 4 kpc away), the pertuber has a
best-fittingting mass ≈1.1 × 104 M�, consistent with a large intermediate-
mass black hole. However, there are strong residuals in the vicinity of the
perturber and we have χ2/pixel ≈1.95, indicating the fit is severely degraded
in the low-redshift limit, consistent with the results using tNFW in this section.
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consider the scenario of a perturbing subhalo to be more plausible
than that of a LOS halo.

6 D ISC U SSION : CAN DARK MATTER PHYSI CS
E X P L A I N TH E H I G H C O N C E N T R AT I O N O F
T H E SU B H A L O I N L E N S SD S S J 0 9 4 6+1 0 0 6 ?

Having established that the subhalo in SDSSJ0946+1006 is an
outlier in CDM based on the lensing constraints, we ask if a
modification of the dark matter particle physics can explain its high
central density and concentration? Alternatives to cold, collisionless
CDM (such as warm dark matter or self-interacting dark matter)
are typically invoked to mitigate the cusp-core or ‘too big to fail’
problems by reducing the central densities of small dark matter haloes
(Vogelsberger et al. 2012; Lovell et al. 2014), which would appear
to exacerbate the problem here.

However, one intriguing possibility is the phenomenon of core
collapse due to dark matter self-interactions (Ahn & Shapiro 2005;
Elbert et al. 2014). In the self-interacting dark matter model, the
self-interactions between dark matter particles thermalize the central
regions of dark matter haloes, producing a constant density core
(Dave et al. 2001). Over long enough time-scales, however, the cen-
tral core collapses as heat is transferred outward (the ‘gravothermal
catastrophe’ familiar in globular clusters; Quinlan 1996), resulting
in high central densities. For subhalos, the collapse time-scale can
be significantly shorter than for field haloes (Nishikawa, Boddy &
Kaplinghat 2020). It has been argued that this phenomena could
be playing a role in setting the observed diversity of dark matter
densities measured in the Milky Way satellite galaxies (Kahlhoefer
et al. 2019; Zavala et al. 2019; Kaplinghat, Ren & Yu 2020; Sameie
et al. 2020; Turner et al. 2021). Could this core collapse phenomenon
also be responsible for the observed properties of the substructure
in SDSSJ0946+1006? It is not possible to answer this question at
present. The interplay between the velocity dependence of the cross-
section, the orbit of the subhalo, the concentration at infall, and
the tidal field of the host halo allow for a rich variety of evolution
in the subhalo density (Kahlhoefer et al. 2019), which needs to be
investigated in detail. We highlight in passing another intriguing
possibility that core collapse could also explain the apparent high
concentration of the dark matter substructure discovered in the GD-1
stellar stream by Bonaca et al. (2019).

7 C O N C L U S I O N S

We have fit several lens models to the gravitationally lensed images
in SDSSJ0946+1006 and confirm the discovery of a dark and
remarkably concentrated subhalo made by Vegetti et al. (2010). Our
most robust measurement is the subhalo’s projected mass within
1 kpc of its centre of (2−3.7) × 109 M�, with our highest evidence
model inferring M2D(1 kpc) = (3.3 ± 0.3) × 109 M�. This mass
inference is robust to changes in the subhalo’s assumed density
profile or tidal radius, as 1 kpc is quite close to the subhalo’s
lensing perturbation radius defined in Minor et al. (2017). This is
an extraordinarily high central density given our conservative upper
bound on its stellar luminosity LV ≈ 1.2 × 108 L�. In addition to
the mass, we find the average log-slope of the subhalo’s projected
density profile over the range 0.75–1.25 kpc to be steeper than
isothermal for all models, with the highest-evidence model giving
γ2D = −1.27+0.11

−0.13. Our reconstructions of the lensed images and
source galaxy when the subhalo is modeled with a tNFW profile are
shown in Figs 1 and 2, and the inferred lens parameters for all models
are given in Table 1.

To test whether such a dense subhalo is expected to occur in
�CDM, we compared our inferred subhalo mass and density slope
to those of subhalos within 167 analogue lensing galaxies in the
Illustris TNG100-1 hydrodynamical simulation, and 188 analogue
lensing galaxies in the Illustris TNG100-1-DARK DMO simulation.
The results are encapsulated in Figs 9 and 10. We conclude with the
points listed below.

(i) By generating mock ‘observations’ along many LOS for each
subhalo in our Illustris TNG100 sample, we find that while many
subhalos have projected masses within 1 kpc that satisfy the lensing
constraint, fewer than 1 per cent of such observations produce
projected density slopes consistent with the lensing constraints at
the 95 per cent confidence level (Fig. 10). This implies that if a
CDM subhalo produces a lensing perturbation of similar angular
size to what is observed in SDSSJ0946+1006, the likelihood of the
subhalo having a density slope as steep as our lensing constraints
is < 1 per cent. This conclusion can be made independently of the
subhalo’s stellar mass.

(ii) Among the simulated subhalos that have a projected mass
within 1 kpc of >2 × 109 M� along at least one LOS, as required by
the lensing constraints, all of them have stellar masses exceeding our
conservative upper bound for the observed subhalo (M∗ < 2.4 × 108

M�) for which we assume a stellar mass-to-light ratio M∗/LV =
2 M�/L�, consistent with a Salpeter-like IMF. This is the case
regardless of the subhalo’s density slope (i.e. concentration). For
the actual subhalo to have a stellar mass consistent with the TNG100
candidates would require at least M∗/LV � 8 M�/L�, which would
be unprecedentedly high in a dwarf galaxy.

(iii) The small subset of simulated subhalos that are consistent
with the lensing constraints (both projected mass and density slope)
within 99 per cent CL for specific LOS all have very high stellar
masses within 1 kpc (� 3 × 109 M�, higher than the dark matter
mass). These subhalos are likely to have had their central dark matter
fractions boosted by adiabatic contraction, a view that is supported by
the fact that none of the mock observations in the DMO simulation
achieve a steep enough slope (red curve in Fig. 10). In view of
our upper bound on the subhalo’s stellar mass (2.4 × 108 M�),
adiabatic contraction is unlikely to have been a significant factor
in the observed subhalo.

(iv) We find that the tension with CDM cannot be mitigated if
the perturber is a field halo along the LOS, rather than a subhalo of
the lens galaxy: although the perturber’s best-fitting projected mass
within 1 kpc drops below 2 × 109 M� for a low-redshift perturber, the
goodness-of-fit plummets along with it, and the best-fitting density
slope becomes much steeper (Fig. 11). In addition, the constraint on
the perturber’s luminosity becomes more stringent at low redshift,
requiring an even smaller stellar mass, while the lack of tidal stripping
in the field makes the density slope harder to explain.

Thus, the central dark matter density, the concentration, and the
apparent darkness of the observed subhalo in SDSSJ0946+1006
make it an extreme outlier in the �CDM model.

Perhaps the most plausible way to reconcile the subhalo with CDM
is if a lensing solution could be found with projected mass M2D(1 kpc)
� 2 × 109 M� within 1 kpc, since subhalos in this range can have a
stellar mass consistent with our upper bound (M∗ < 2.4 × 108 M�).
Since M2D(1 kpc) is robust to changes in the subhalo model, such a
solution would likely require a more sophisticated model for the host
galaxy, which may be degenerate with the inferred subhalo properties
(see Section 4.5). However, our lensing solutions that achieve smaller
M2D(1 kpc) require significantly steeper slopes (Fig. B1), worsening
the tension with CDM, so it is unclear whether such a solution would
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be viable. Fitting both of the lensed sources in SDSSJ0946+1006
with a more flexible host galaxy model (along with the subhalo) may
provide clarity on this question, perhaps in combination with spatially
resolved kinematic data for the lens galaxy. In addition, repeating
our analysis in Illustris TNG50 would also provide a more robust
measurement of the subhalos’ dark matter slopes along individual
LOS, particularly at lower subhalo masses.

If the unexpected properties of the perturbing subhalo in
SDSSJ0946+1006 are due to the particle physics of dark matter,
such as dark matter self-interactions, one may expect that many more
perturbers of its kind will be detected among the thousands of strong
lenses expected to be discovered by the Euclid and LSST surveys.
Such highly concentrated subhalos may also be detected by their
perturbations of tidal streams; indeed, such a detection may have
already occurred (Bonaca et al. 2019). If so, we may be catching our
first glimpses of a population of low-mass concentrated dark matter
subhalos whose properties would allow us to directly constrain the
particle physics of dark matter in the coming years.
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A P P E N D I X A : C A N D I DAT E S U B H A L O S F RO M
I LLUSTRI S TNG1 0 0 -1

To take a closer look at the closest subhalo candidates in TNG100-
1, we further investigated 21 subhalos that had the closest match
with the lensing constraints by selecting subhalos with 2.7 × 109

M� < M2D, DM(1 kpc) < 4.2 × 109 M� and γ 2D < −1. These
subhalos are shown in panel 1 of Fig. A1. Notice here that only
two of these subhalos make the cut when full spherical averaging
was used. For these subhalos, we plot and show the 3D stellar
and dark matter density profiles, grouping them by increasing
projected mass within 1 kpc [panels (b), (c), and (d) in Fig. A1].
In all the panels, the stellar densities are either higher than the
dark matter densities or are comparable near the central region
of the subhalo. The subhalos with the highest projected mass
in 1 kpc [panel (d) in Fig. A1] have stellar densities that are
higher than their respective dark matter densities by as much as
an order of magnitude. These high stellar densities strongly indicate
that adiabatic contraction may have modified the dark matter halo

Figure A1. The 21 TNG100-1 subhalo candidates in closest range to the lensing constraints from the tNFW model with multinest [panel (a)]. 3D dark matter
(solid line) and stellar (dashed line) density profiles corresponding to the subhalo candidates in panel (a), arranged by increasing projected mass in 1 kpc [panels
(b), (c), (d)].

MNRAS 507, 1662–1683 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1662/6342121 by Sim
ons Foundation user on 21 June 2022

http://dx.doi.org/10.1093/mnras/stv416
http://dx.doi.org/10.1088/0004-637X/752/2/163
http://dx.doi.org/10.1093/mnras/stx3304
http://dx.doi.org/10.1111/j.1365-2966.2006.10733.x
http://dx.doi.org/10.1093/mnras/stab1725
http://dx.doi.org/10.1111/j.1365-2966.2008.14005.x
http://dx.doi.org/10.1093/mnras/stu1284
http://dx.doi.org/10.1111/j.1365-2966.2010.16865.x
http://dx.doi.org/10.1038/nature10669
http://dx.doi.org/10.1093/mnras/stu943
http://dx.doi.org/10.1111/j.1365-2966.2012.21182.x
http://dx.doi.org/10.1051/0004-6361/201731207
http://dx.doi.org/10.1051/0004-6361/201834218
http://dx.doi.org/10.1111/j.1365-2966.2008.13770.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20484.x
http://dx.doi.org/10.1093/mnras/stu2673
http://dx.doi.org/10.1103/PhysRevD.100.063007


1680 Q. Minor et al.

structures of these subhalos, steepening them further than the NFW
expectation. We thus conclude that the subhalo analogues found in
TNG100-1 are analogues because AC steepens their slopes and/or
pushes enough mass into 1 kpc, combined with tidal truncation
during the subhalo’s pass through pericentre along its orbit in its
host halo.

APPENDIX B: C OMPARISON O F A LL FOUR
LENS ING MOD ELS TO ILLUSTRIS TNG100-1
SAMPLE

Here we make a comparison of all four of our lensing models (whose
inferred parameters are given in Table 1) to the subhalo sample in
the IllustrisTNG simulation presented in Section 4.

In Fig. B1 we make a plot that is identical to Fig. 9, except that all
four of our lens models are shown. Note that the models with elliptical
host galaxy (tNFW and CoreCusp) both have consistent subhalo
masses within 1 kpc, while the models that include multipoles (tN-
FWmult and CoreCuspmult) have nearly identical inferred masses
within 1 kpc. This is a consequence of the fact that the subhalo’s
perturbation radius (defined by the distance of the subhalo’s centre
to the point of maximum warping of the lens’ critical curve), is nearly
1 kpc, and hence the projected mass within 1 kpc is independent of
the subhalo’s density profile (Minor et al. 2017). However, the tNFW,
CoreCuspmult, and CoreCusp models all infer significantly steeper
slopes γ 2D(0.75–1.25 kpc) compared to the tNFWmult model, and
hence are even more difficult to explain in IllustrisTNG-100.

Next, we examine the likelihood of the simulated subhalos having a
projected mass and density slope consistent with the model. Using the
same procedure for generating mock ‘observations’ as in Section 4.3,
we plot the cumulative distributions in γ 2D. The results are shown
in Fig. B2. We now examine two different ranges in M2D(1 kpc):
2–3 × 109 M�, favoured by the tNFW and CoreCusp models, and
3–4 × 109 M�, favoured by the models with multipoles (tNFWmult,
CoreCuspmult). Vertical bars show the 95 per cent credible interval
(defined by the 2.5 per cent and 97.5 per cent percentiles of the

marginalized posterior in γ 2D) for each model. To examine whether
our results are dependent on how we average the profiles over nearby
LOS, we plot the distributions for 20 LOS averaging (solid curve)
and 50 LOS averaging (dashed curve) for both the hydro (blue) and
DMO (dashed) simulations. Note the resulting curves are relatively
unchanged whether we average over 20 or 50 LOS, although the
50 LOS averaging gives a less smooth distribution due to having
fewer observations overall. Remarkably, in the tNFW, CoreCusp, and
CoreCuspmult models, none of the observations give a steep enough
slope to be consistent with the lensing constraints. For our most
conservative model, tNFWmult (which is the one shown in Fig. 10),
the fraction is < 1 per cent. The fractions become negligible in the
DMO sample for all models. We conclude from this that the actual
subhalo is an outlier in its density slope (and hence concentration)
in CDM for all models. In addition, as discussed in Section 4.4, the
few subhalos that do achieve a steep enough slope for some LOS all
have >109 M� within 1 kpc, far exceeding our conservative bound
on the subhalo’s stellar mass.

From the lens modeling point of view, one might hold out hope
that a more sophisticated model could yield a solution that is more in
accord with �CDM predictions – either by reducing M2D(1 kpc), or
by yielding a shallower slope. However, as discussed in Section 3.3,
there may be relatively little wiggle room for this (a third possibility,
that the perturber is a LOS halo rather than a subhalo, was discussed
in Section 5). The most robust inference that can be made from the
subhalo is its perturbation radius and the subhalo’s projected mass
enclosed therein. The four models we fit to the subhalo yielded pertur-
bation radii whose values (roughly 1 kpc) differ by as much as a pixel
length, as one might expect; it is this difference that results in different
inferred masses within 1 kpc, spanning a range 2–3.5 × 109 M�.

In Fig. B3 we plot the critical curves from all four models,
along with the subhalo position in each model; note that all four
models have a critical curve perturbation of similar size, but differ
slightly in the subhalo position (resulting in a slightly different rδc).
The covariance between subhalo position and perturbation radius
is evident in the posteriors. For example, in Fig. B4 we plot joint

Figure B1. The same as Fig. 9, except here we plot the contours for all four models: tNFW and CoreCusp, both the elliptical case as well as with multipoles.
Here the points from the high density LOS average are colour coded by M∗(1 kpc)/MDM(1 kpc) in panel (a), and by total halo mass in panel (b).
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High concentration subhalo in SDSSJ0946+1006 1681

Figure B2. The same as Fig. 10, except we plot two different ranges in M2D(1 kpc): figure (a) plots the 2–3 × 109 M� range favoured by the elliptical tNFW and
CoreCusp models, while figure (b) plots the 3–4 × 109 M� range favoured by the models that include multipoles (tNFWmult and CoreCuspmult). Vertical bars
representing the 95 per cent credible interval for each lens model are overlaid. We plot the cumulative distribution in γ 2D for two different levels of averaging:
for the solid curves, each mock ‘observation’ is produced by averaging the profiles for 20 nearby LOS (out of 1000 total for each subhalo), while for the dashed
curves, 50 LOS are averaged. Note that for all but one of the lens models, less than 0.1 per cent of observations produce density slopes consistent with the lensing
constraints; the only exception is tNFWmult, our most conservative model, for which the fraction is < 1 per cent.

Figure B3. Critical curves for all four lens models we fit to
SDSSJ0946+1006, whose inferred parameters are listed in Table 1 The best-
fitting position of the subhalo’s centre for each model is shown by the filled
circles, whose colours match the corresponding critical curve colours. Note
the size of the subhalo’s perturbation to the critical curve (in the upper left)
is fairly consistent in all four models. However, the position of the subhalo
differs noticeably in the models that include multipoles compared to those
that do not; as a result, the inferred perturbation radius differs by up to roughly
0.05 arcsec, the width of an image pixel.

posteriors in the subhalo parameters for the tNFWmult model. The
joint posteriors in rδc versus xc, sub and yc, sub show that if the subhalo
is moved toward higher x and/or lower y, rδc increases; the same
relationship is evident in all the models we fit. A similar covariance
with the centre coordinates is seen with M2D(1 kpc) as well. However,
as all models agree on the size of the critical curve perturbation itself
(Fig. B3), we consider it unlikely that a model could produce a much
smaller rδc without degrading the fit. This is supported by the results
of Section 5: when the perturber is modeled as a field halo along the
LOS instead of a subhalo, for sufficiently low redshift (z � 0.1) the
goodness-of-fit plummets as the best-fitting M2D(1 kpc) drops below
2 × 109 M� (see Fig. 11).

MNRAS 507, 1662–1683 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/1662/6342121 by Sim
ons Foundation user on 21 June 2022



1682 Q. Minor et al.

Figure B4. Posteriors in the subhalo lensing parameters for model tNFWmult, whose uncertainties are tabulated in Table 1. The host galaxy parameters are
omitted here except for RE, the Einstein radius parameter; we have also omitted the subhalo position parameters, which have very little degeneracy with the
other parameters, to avoid clutter. The structural parameters of the subhalo rs, rt are given in kpc. Note that c200, M2D(1 kpc), and γ 2D(0.75, 1.25) are both
derived parameters.
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APPENDIX C : VARIATION O F BEST-FITTING
S U B H A L O MA S S A N D P E RTU R BAT I O N R A D I U S
WITH RED SHIFT FOR TNFW, TNFWMULT
M O D E L S

In Fig. C1 we plot the M2D(1 kpc) and χ2 as the perturber redshift is
varied, starting from the tNFWmult model. Note that, as in Fig. 11,
the fit becomes significantly degraded as the perturber mass drops
down to 2 × 109 M� for low redshift. Likewise, the required slope
becomes very steep at low redshift.

It is interesting to consider how the perturbation radius of the
subhalo in SDSSJ0946+1006 changes as a function of redshift, since
this has some bearing on whether M2D(1 kpc) can be considered
a robust quantity. In Fig. C2 we plot the perturbation radius in
units of kpc (solid line, left axis) and arcsec (dashed line, right
axis). Note that at low redshift, the angular size of the perturbation
remains approximately the same, while the physical size becomes
smaller. This is easily understood, since the angular diameter distance
becomes smaller as the redshift is reduced. Naively one might expect
the mass within the (angular) perturbation radius is preserved, and
hence there would be a greater overall mass within 1 kpc since this
corresponds to a bigger angular size at low redshift. However, as
discussed above, the lensing efficiency of the perturber increases at
lower redshift, requiring a smaller mass to keep the same perturbation
scale, and this is the dominant effect, as Fig. C2 shows.

The change in the perturbation at high redshift is more subtle: the
size of the perturbation decreases as the perturber is moved behind
the lens, in both physical and angular units. The decreased size in
kpc, in particular, defies the naive expectation that the larger angular
diameter distance leads to a greater physical size for the perturbation
radius. This is a result of the recursive lensing that gradually smears
the perturber’s convergence into an arc, and requires the perturber to
be closer to the critical curve for an optimal fit. (A secondary effect
is that the dashed line is showing the unlensed angular size of the

Figure C2. The perturber’s perturbation radius (defined in Section 3.3) as a
function of redshift. The perturbation radius is given in kpc (solid curve) and
arcsec (dashed curve, axis on right). These plots were generated by taking the
best-fitting model with tNFW profile, gradually varying the redshift in either
direction with steps of 
z = 0.02 and reoptimizing the χ2 function.

perturbation radius, i.e. the angular size it maps to in the perturber’s
lens plane, which is slightly smaller than the observed angular size
after being lensed by the primary lens galaxy.) Note that outside the
redshift range from 0.15 to 0.35, the perturbation radius dips below
0.8 kpc, hence the projected mass within 1 kpc may be less robustly
determined; on the other hand, we have seen in Fig. 11(a) that the
fit becomes severely degraded outside this range, so this is less of a
concern. Over this redshift range, the projected mass within 1 kpc is
approximately constant and greater than 2 × 109 M�.

(a) (b)

Figure C1. Same as Fig. 11, except using the tNFWmult model instead of tNFW. Note that as with the tNFW model, the log-slope becomes very steep in the
limit of low redshift. Likewise, the perturber mass drops below 2 × 109 M� for low redshift, but the fit becomes significantly degraded in this limit.
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