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The anthropogenically driven climate crisis impacts bio­
diversity and ecosystems worldwide1,2. With ongoing altera­
tions in species distributions3–5 and increasing novelty in 

ecosystems6, our ability to predict the structure of future plant com­
munities has become a key research challenge of the twenty-first 
century. In addition to the direct climatic impact on habitat suit­
ability, climate-mediated biotic interactions can greatly affect plant 
community structure7–9, making changes in plant communities 
even more difficult to predict10. The reciprocal interaction between 
plants shaping their associated soil communities and the impact of 
these communities on subsequently growing plants is an especially 
important mechanism for the maintenance and trajectory of plant 
community diversity and composition11–14.

Since its inception more than 20 years ago15,16 the concept 
of plant–soil feedback (PSF) has become foundational in plant  
ecology. The conceptualization and the derivative metric (Is) of 
net pairwise PSF17 provides a defined experimental and theoreti­
cal framework to measure and quantify the contribution of PSF to 
plant species coexistence. PSF is generally measured in experiments 
encompassing two phases. In a conditioning phase, soil communi­
ties are structured via species-specific interactions with the condi­
tioning plant. In the response phase, performance is measured for 
plants growing with soil communities conditioned by conspecifics 
and heterospecifics. For a given species pair, negative pairwise PSF 
occurs if the plants exhibit a lower relative performance in con­
specific soil compared with heterospecific soil whereas positive 
pairwise PSF occurs if the plants perform relatively better in con­
specific soil. The original theory predicts that negative PSF, acting  
as a density- or frequency-dependent mechanism, stabilizes diver­
sity in plant communities by decreasing the relative performance 
of a species when it becomes more abundant while allowing  
rare species to recover from low abundances. In contrast, positive  
PSF destabilizes plant diversity by fostering the dominance of  
abundant species18,19. However, alternative outcomes are possi­

ble; for example, when negative PSF creates intransitive feedback  
loops that lead to oscillations with temporarily low species abun­
dances and potential extinction20 or when positive PSF allows for 
coexistence at the landscape scale21. In conjunction with the poten­
tial of plant–soil interactions affecting plant niche differences,  
PSF has become a key component in modern coexistence theory 
as a fitness equalizing mechanism22. The utilization of the PSF 
framework allows predictions of plant community dynamics 
using experimentally derived pairwise PSF values via simulation 
approaches13,23–25, which have been used to predict species abun­
dances in the field26.

The underlying interactions between plants and their associated 
soil communities that form the basis of PSF do not act in isolation 
but are subject to environmental context. Biotic mediators such 
as competition27–29 or herbivory30,31 and abiotic constraints such 
as atmospheric and edaphic conditions can shape these interac­
tions32,33. The context dependency of PSF has recently gained great 
attention34–37 especially in the light of anthropogenically driven 
environmental change38,39. A major aspect of the climate crisis is 
the anticipated change in precipitation patterns40,41 and thus the 
soil water content under which plant–soil biota interactions occur. 
Soil water content is an important driver of soil biota community 
structure and functioning42–44 with varying effects on different com­
munity members across a broad range of taxonomic scales45–47 and 
on the susceptibility and responsiveness of plants to soil biota48–50. 
Previous PSF studies have manipulated soil water during the con­
ditioning phase or used field-collected soils with different precipi­
tation legacies51 focusing on the context dependency of the plants’ 
influence on soil communities. Others have imposed watering 
treatments at the response phase, thereby focusing on the context 
dependency of the soil communities’ impact on the plants52,53. To 
better predict how climate change will influence plant community 
dynamics, it is important to consider that often both phases of the 
feedback loop, the conditioning of soil biota communities by the 
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plant and the impact of those communities on the subsequently 
growing plant, will be subject to a common environmental context.

Here we address this challenge by conducting a full factorial 
pairwise PSF experiment growing eight prairie plant species with 
soil communities that were either conditioned by conspecifics or 
by each of the heterospecific species in all pairwise combinations. 
We tested for the effect of different soil water regimes on PSF and 
subjected both phases, the conditioning phase and the response 
phase, to one of three different watering treatments. The treatments 
represented average and extremely high and low precipitation  
levels for the local area (Supplementary Fig. 1). We set up a total 
of nine replicate blocks and three additional blocks using sterilized 
soil. We estimated plant performance as a compound of survival 
and biomass production and determined net pairwise PSF for all 
species pairs. We further assessed if differences in soil fungal com­
munity composition at the end of the conditioning phase can be 
linked to shifts in PSF and if the similarity in fungal community 
composition between plant species can be linked to their pairwise 
PSF. To extrapolate how changes in pairwise PSF may translate to 
plant community dynamics under the different soil water regimes, 
we used a simulation model parameterized with the results of the 
PSF experiment.

Results and discussion
We found that wetter-than-average conditions produced coexistence- 
destabilizing positive PSF (relatively greater performance in con­
specific vs. heterospecific soil) while drier-than-average conditions 
produced coexistence-stabilizing negative PSF (relatively lower 
performance in conspecifc vs. heterospecific soil; Fig. 1a,b and 
Supplementary Table 1). While the majority of reported PSF values  
are negative (coexistence stabilizing)35,54, our results show that  

differences in soil water content can shift PSF in magnitude and 
even direction within the same plant community. Given our results, 
changing precipitation patterns might have dramatic consequences 
for plant community dynamics by causing shifts in the intensity or, 
more importantly, the direction of PSF. Consequently, the influence 
of PSF acting as a coexistence-stabilizing or destabilizing mecha­
nism can change over time with shifting precipitation patterns, 
especially with increasing variability and more extreme patterns in 
precipitation as expected due to climate change40,41.

The general trend towards more negative PSF in drier conditions 
was largely consistent across all species pairs, suggesting that this 
increased PSF-mediated coexistence may be general across plant 
species. However, we did uncover trends that may aid or hinder 
the use of PSF in predicting plant community structure. For exam­
ple, negative PSF in dry conditions was especially visible for plant 
pairs including a non-native species (Bothriochloa, Sorghum and 
Verbena), while the effect of the watering treatment on PSF of exclu­
sively native plant pairs seemed less pronounced (Extended Data 
Fig. 1). This is in contrast to the the general pattern of non-native 
species weakening coexistence-stabilizing negative PSF, possibly due 
to escape from species-specific pathogens35. Stronger negative PSF 
for pairs including non-native species could stabilize coexistence 
with native species and limit the spread of non-natives if conditions 
become drier in the future, while wetter conditions might destabi­
lize coexistence. To compare how the different soil-conditioning 
species affected subsequent plant performance under different 
watering treatments, we calculated z-scores to standardize plant 
performance for each species within a watering treatment. Aside 
from more negative PSFs in drier conditions, there were idiosyncra­
sies in plant performance in species-trained soil by watering treat­
ment combinations (Fig. 2a,b). There was no consistent effect of 
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Fig. 1 | Net pairwise PSFs for all plant species combinations under different watering treatments. a, The small bars show all single pairwise feedbacks, 
and the large transparent bars show the average pairwise feedback for the focal species as indicated in the panel headers. Error bars indicate 95% 
bootstrap confidence intervals of the single pairwise feedbacks based on 10,000 iterations. b, All pairwise PSFs grouped by watering treatment; box and 
whisker plots indicate the median, 25th/75th percentile and 1.5 × interquartile range (IQR). Significance of the watering treatment (Pwater) was evaluated 
using a linear mixed-effect model (Methods and Supplementary Table 1). Species codes: AT is Asclepias tuberosa, BI is Bothriochloa ischaemum, RC is 
Ratibida columnifera, RH is Rudbeckia hirta, SH is Sorghum halepense, SN is Sorghastrum nutans, SS is Schizachyrium scoparium and VB is Verbena brasiliensis. 
n = 28 pairwise PSFs per watering treatment.

Nature Ecology & Evolution | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNAtUrE ECOlOgy & EvOlUtiOn

the watering treatments across the different species-specific condi­
tioned soils on the performance of the subsequently growing plants. 
For example, while some plants conditioned the soil in a way that 
benefited the succeeding plants in dry conditions (Asclepias and 
Rudbeckia), others created soil that negatively affected subsequent 
plant performance (Sorghum and Verbena; Fig. 2b). Therefore, 
without further work relating these patterns to possible plant traits 
(for example, functional groups), changing environmental context 
can change the impact of a plant species on others within a com­
munity, contributing to the difficulty of predicting PSF-driven  
community dynamics36.

Our observed changes in PSF were driven by interactions with 
soil biota. While the identity of the soil-conditioning species and the 
watering treatment affected soil nutrient composition and the con­
centrations of single nutrients in the inoculum soils (Supplementary 
Tables 2 and 3), we accounted for possible abiotic effects by adding 
only a small volume (5% by volume) of conditioned soil to a com­
mon sterile background soil55. In addition, we repeated the analysis  
for the three sterile blocks (Methods) and found no significant 
effect of the watering treatment on PSF (Supplementary Table 1).  

However, the statistical power of this analysis is low as it was  
only based on three replicate blocks. Overall, plants performed  
better in soils with living, compared with sterile, inocula across all 
species (Extended Data Figs. 2 and 3), implying that soil mutualists 
are an important component of the soil microbial community in 
this system.

Despite the apparent importance of mutualists as indicated by 
greater plant performance in living soils, the net outcome of PSF is 
caused by the combined effects of plant mutualists and antagonists38. 
While mutualists such as arbuscular mycorrhizal fungi may contri­
bute to both negative56,57 and positive PSF58, pathogens are generally 
expected to cause negative PSF59 because of the phylogenetic con­
servatism in pathogen–host associations causing species-specific 
negative conspecific effects60. The proliferation of pathogens and 
thus intensity of plant–pathogen interactions is assumed to increase 
with wetter conditions61, creating more negative PSF. However, here 
we detected more negative PSF in drier conditions, consistent with 
other studies that found that dry soil conditions fostered negative 
PSF between species62 and within species51. To better understand 
how changes in soil biota influenced PSF, we tested how soil water 

0.2

1.4

0.9

1.5

0.4

0.8

0.3

0.9

0.1

0.3

0.7

0.7

−0.5

0.7

1

0.5

0.8

0.2

0.7

−0.1

−0.3

−0.5

−0.7

1.2

1.5

1.1

0.2

0.7

1.2

1.2

0.9

0.3

−1.3

−0.6

−1.2

−0.3

−1.9

−0.8

−1.9

−1.3

0.6

−0.2

0.9

0

0.9

−0.7

0.6

0.6

−1.2

−1.8

−1.5

−1.7

−0.5

−1.5

−0.7

−1.1

−0.7

−0.4

−0.8

−0.8

0.7

0.8

0.5

−1.1

−0.1

0.2

1

1.1

0

0.3

1.2

0.6

0.6

0.2

0.1

−0.2

2

2

0.3

0.9

0.3

0.7

0.3

−0.2

0.1

0.3

0.7

0.3

0.6

0.7

−0.2

1.5

0.1

−0.9

−0.1

0.6

−1.6

−1.4

−0.5

−0.8

−0.5

−0.7

−1.1

−1.2

0.9

0.4

0.7

−0.1

−0.2

−0.2

−0.1

−0.2

−1.5

−1.7

−2.2

−1.6

−1.7

−1.1

−1.7

−1.8

0.8

0.9

0.8

0.4

0.2

0.2

0.8

0.8

−0.4

−0.6

−0.7

−0.2

−0.1

−0.1

−0.6

0.9

−0.3

0.8

0.6

0.1

0.5

−0.3

0.4

0.3

−0.3

0.6

−0.1

−1.1

−0.5

−0.6

1.4

−0.7

2.1

−0.9

−0.9

1.5

−0.6

−0.9

0.2

−0.8

−1.2

−0.3

1.2

0.5

−0.2

0.5

−0.8

−0.3

−0.6

0.5

−0.5

−0.2

1.1

0.8

0.6

0.2

0.1

−1.5

−1.1

−1.5

−1.7

−1.2

−1.8

−1.3

0.7

1.5

1.5

0.9

1.4

1.8

0.6

1.7

Low Medium High

AT BI RC RH SH SN SS VB AT BI RC RH SH SN SS VB AT BI RC RH SH SN SS VB

VB

SS

SN

SH

RH

RC

BI

AT

Soil conditioning species

R
es

po
ns

e 
sp

ec
ie

s

AT BI RC RH SH SN SS VB

–2.0

–1.0

0

1.0

2.0

P
er

fo
rm

an
ce

 (
z-

sc
or

es
)

a

b

Low

Medium

High

Watering treatment

Fig. 2 | Standardized plant performance in conditioned soils under different watering treatments. a, Individual standardized performance of all response 
species by conditioning species combinations (watering treatments as indicated in the panel headers; negative values are indicated in red and positive 
values are indicated in blue). b, Standardized plant performance grouped by soil-conditioning species; box and whisker plots indicate the median, 
25th/75th percentile and 1.5 × IQR. Species codes: AT is Asclepias tuberosa, BI is Bothriochloa ischaemum, RC is Ratibida columnifera, RH is Rudbeckia hirta, 
SH is Sorghum halepense, SN is Sorghastrum nutans, SS is Schizachyrium scoparium and VB is Verbena brasiliensis. n = 64 combinations of conditioning and 
response species per watering treatment; z-scores of plant performance were calculated separately for each response species within a watering treatment.
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content affected soil fungal communities at the end of the condi­
tioning phase. We found no effects of the watering treatment on 
alpha diversity of the fungal communities, and only Simpson’s 
diversity was significantly affected by the conditioning species iden­
tity (Supplementary Table 4 and Extended Data Fig. 4a,b). However, 
the composition of fungal communities was significantly affected 
by the interactive effect of the watering treatment and conditioning 
plant species identity (Fig. 3a,b and Supplementary Table 5).

Due to limitations in the fungal sequence data available for only 
three replicate blocks (Methods and Supplementary Table 6), we 
could not identify specific groups that might explain the differ­
ences in plant performance during the response phase. While the 

proportion of probable and putative pathogens seemed to increase 
in the low watering treatment for some conditioning plant spe­
cies (for example, Schizachyrium), for other species it increased in  
the high watering treatment (for example, Verbena; Extended 
Data Fig. 4c,d). This partly contrasts with the observed pattern of 
plant performance in the respective conditioned soils; for instance,  
soils conditioned by Verbena in the high watering treatment exhib­
ited a high proportion of probable and putative pathogens but 
largely benefited the subsequently growing plants relative to other 
soils (Fig. 2a,b).

While the role of specific fungal taxa remains unclear in our 
study, we tested the general expectation that more similar microbial  
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community compositions between plants should lead to more 
neutral pairwise PSF regardless of whether mutualistic or antago­
nistic interactions dominate. Therefore, we calculated the average  
Bray–Curtis dissimilarity in fungal ASV composition for each 
plant pair based on three replicate blocks (Methods). Generally, we 
observed lower average dissimilarities in fungal community com­
position between the plant species in the low watering treatment 
compared with the medium and high watering treatments (Fig. 3c  
and Supplementary Table 1). The lower beta diversity might be 
a result of abiotic filtering towards more drought-tolerant taxa, 
whereas the high dissimilarities of the fungal communities between 
the plants in the medium and high watering treatments reflect a 
stronger plant-driven structuring of fungal communities during the 
conditioning phase. Lower pairwise dissimilarity in fungal commu­
nity composition between plant species was linked to more negative 
pairwise PSF, which was especially noticeable in the in low water­
ing treatment (Fig. 3d and Supplementary Table 1). This contrasts  
with the expectation that more similar microbial community  
compositions between plant species should lead to more neu­
tral pairwise PSF, irrespective of weather mutualists or pathogens  
prevail in driving PSF.

According to the optimal allocation of resources, it is expected 
that plants invest photosynthates into soil biota, helping to access the 
most limiting resource63. With greater water availability, plants can 
invest more photosynthates into soil biota, subsequently increas­
ing plant-driven selection via preferential allocation of resources 
towards the most beneficial mutualists64. Increased plant-driven 
selection during the conditioning phase might further explain the 
more distinct fungal communities between the plant species in the 
medium and high watering treatments. Assuming the eminence 
of mutualistic interactions, as indicated by the generally increased 
plant performance in the live soil blocks compared with the sterile 
blocks (Extended Data Figs. 2 and 3), this might create more posi­
tive PSF.

However, explaining the more negative PSF with increasing 
similarity in fungal community compositions between the plant 
species, especially in the low watering treatment, remains diffi­
cult and suggests further mechanisms in action not uncovered in 
our study. Attributing the net effect of the watering treatments to 
specific mechanisms of plant–soil biota interactions is challeng­
ing. Soil water differentially affects different groups of soil biota 
across a broad range of taxonomic levels45–47 that may influence 
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PSF65,66. Further, the outcome of specific plant–microbe interac­
tions can shift from mutualistic to antagonistic depending on the 
environmental context67, so the same soil community could have 
differential impacts on plant performance under different soil water 
conditions during the response phase. For example, the stronger 
negative effects of conspecific conditioned soil at drier conditions 
may result from a higher susceptibility to host-specific pathogens of 
drought-stressed plants48,49. Conversely, plants in the high watering 
treatment may be better defended against soil pathogens, mitigating 
their potential to create negative PSF and may benefit more from 
host-specific mutualistic interactions that can generate positive PSF.

Theory implies that a change from negative to positive PSF in 
wetter conditions would destabilize species coexistence within plant 
communities18,19. To test this assumption, we conducted a spatially 
explicit simulation to model a hypothetical plant community. The 
simulation was parameterized with the relative performance of the 
plant species in the differentially conditioned soils as derived from 
the PSF experiment (Fig. 2a). We found that negative pairwise PSF 
at drier conditions created a more stable pattern of plant community 
diversity in contrast to the coexistence-destabilizing effect of posi­
tive PSF in wetter soil conditions. Species richness and Simpson’s 
diversity of the simulated plant communities declined at accelerated 
rates over time in wetter conditions (Fig. 4a,b). The model assumed 
no dispersal limitation and annual life cycles (adult mortality = 1) 
for the simulated plants. This simplification was chosen to avoid 
arbitrary assumptions as our data do not reflect net differences in 
species-specific fitness or life history but only relative within species 
differences depending on the soil type. The more stable pattern at 
dry conditions was largely consistent across alternative parameter­
izations of plant mortality and the spatial scale of plant recruitment 
(Methods and Extended Data Fig. 5a). However, the decay of diver­
sity in the medium watering treatment was as fast or even faster 
compared with the high watering treatment, especially at local scales 
of plant recruitment. When offspring recruitment is concentrated 
in close vicinity around conspecifics, strong intraspecific microbial 
effects in conspecific conditioned soil might get leveraged23. For 
instance, in the medium watering treatment, Rudbeckia experiences 
a particularly positive intraspecific microbial effect relative to the 
other species and often outperforms them in the simulation runs 
under the assumption of local recruitment. In the high watering 
treatment, two species, Rudbeckia and Verbena, experience relative  
strong positive intraspecific microbial effects and often stably 
coexist at the landscape scale in the simulations despite a positive  
pairwise feedback (Extended Data Fig. 5b).

In addition to decreasing alpha diversity, the dynamics of com­
munity assembly were also more unpredictable in wet conditions as 
indicated by a higher dispersion in community composition among 
the simulated plant communities (Fig. 4c) and a faster increase in 
average community dissimilarity (Fig. 4d). Small random differ­
ences in species abundances in the initial communities (analogous 
to priority effects; for example, due to stochastic dispersal events) 
are amplified by positive PSF benefiting initially more abundant 
species over less abundant species. Thus, more positive PSF in wet­
ter conditions not only accelerates the erosion of diversity within 
plant communities but also renders plant community dynamics less 
predictable. This implies that the impact of priority effects68,69 on 
community assembly might increase if environmental change leads 
to more positive PSF.

Our study imposed the watering treatments consistently onto 
both phases of the PSF loop and thus helps to indicate a general 
direction of what to expect from future baseline shifts in average 
precipitation. Given the results, we would expect less stable patterns 
of diversity within plant communities and less predictable dynamics 
of community assembly under wetter conditions. However, climate 
change is expected to also increase the temporal variability of pre­
cipitation patterns. Periods of more extreme dry and wet conditions 

might alternate and so would the effect of PSF as a diversity stabi­
lizing or destabilizing mechanism within a given plant community. 
Especially for short-lived plants with a high generational turnover, 
high frequency in precipitation alterations could subject the phase 
of soil conditioning by one generation and the response phase of 
the succeeding generation to contrasting soil water conditions as 
targeted in studies focusing on differences in soil water during one 
of the two phases51–53.

Predicting the consequences of environmental change for eco­
logical communities is a challenge that must be met to manage 
and mitigate the effects of climate change. Our study highlights 
that plant–soil biota interactions measured as pairwise PSF may  
be used to predict how plant communities will change in response 
to differences in climate. The range of temporal scales at which  
climate change-driven alterations in precipitation patterns manifest, 
from increased short-term variability to long-term baseline shifts in 
average precipitation, calls for further studies that focus on the vari­
ous temporal windows. In addition, future work should examine  
how the roles of root-associated fungal assemblages and sapro­
trophs (that is, via litter-mediated feedbacks) might change with 
precipitation change and how other coexistence mechanisms such 
as storage effects might act in conjunction with PSF. Integrating 
the results to better understand the context dependency of PSF will  
be an important step forward to better predict the impact of future 
climate change on ecosystems as PSF has successfully been used to 
predict patterns of plant community composition and dynamics in 
many systems.

Methods
Conditioning phase. We conducted a full factorial pairwise PSF experiment  
where we subjected eight common prairie plant species (Asclepias tuberosa  
L., Bothriochloa ischaemum (L.) Keng, Ratibida columnifera (Nutt.) Wooton & 
Standl., Rudbeckia hirta L., Schizachyrium scoparium (Michx.) Nash, Sorghum 
halepense (L.) Pers., Sorghastrum nutans (L.) Nash and Verbena brasiliensis 
Vell.) to soil microbial communities that were conditioned by their conspecifics 
or heterospecifics in all pairwise combinations. To assess the effect of different 
precipitation regimes, we conducted both phases, the conditioning phase and 
the response phase, under three different watering treatments. The treatments 
relate to average and extremely high and low precipitation levels of the local area 
(Supplementary Fig. 1a).

Prior to planting, the seeds (Native American Seeds) were surface sterilized 
in a 0.45% NaOCI solution for 5 min, thoroughly rinsed with deionized water 
and germinated on sterilized sand. We transferred single seedlings to 1 l deepots 
(D60L, Stuewe & Sons Inc.) filled with common non-sterile background soil. The 
pots were vertically suspended in racks to minimize cross-contamination. The 
background soil consisted of a sand/field soil mixture in a 2:1 ratio by volume. 
Field soil was obtained from a coastal prairie at the University of Houston Coastal 
Center (La Marque, TX, USA). Additionally, we added 10 ml from a suspension of 
fresh field soil (3.5 g soil dry equivalent) and thoroughly mixed it into the upper 
5 cm of each pot to provide a common baseline microbial community. All pots 
were saturated to water holding capacity (day 0) prior to planting (day 3). Initial 
soil water after saturating the pots was sufficient for the tiny plants to establish 
before we started the different watering treatments (day 28). From then on, the 
plants were watered three times a week with fixed amounts of water corresponding 
to the watering treatments (low: 10 ml, medium: 25 ml, high: 50 ml). We monitored 
the gravimetric soil water content during the conditioning phase in weekly to 
biweekly intervals (Supplementary Fig. 1b).

The experiment was set up in nine replicate blocks, each holding all 
combinations of plant species and watering treatments, resulting in a total of 
216 pots (8 species × 3 watering treatments × 9 replicates). All of the following 
experimental procedures and measurements were done in correspondence to 
the replicate block order. The plants were grown for a total of 140 days (115 days 
under the different watering treatments) in a climate-controlled greenhouse kept 
at 26.7 °C at the University of Houston after which we harvested aboveground 
and belowground biomass (Extended Data Fig. 6). We clipped the plant shoots at 
the base of the plant and rinsed the roots from adhering soil. The plant material 
was dried at 60 °C for 72 h before weighing. The conditioned soil of each pot was 
collected and individually stored. The soil was kept at 4 °C for two months prior to 
use as inocula for the response phase. The conditioning phase took place from July 
2019 to November 2019.

Response phase. For the response phase, we grew the same eight species in 0.3 l 
deepots (D16H, Stuewe & Sons Inc.) filled with sterile, common background soil 
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that was inoculated with the live soils collected from the conditioning phase. We 
used the same sand/soil mixture as for the conditioning phase, sterilized by double 
autoclaving at 121 °C for 60 min with a 24 h rest period between sterilization 
cycles. We mixed 15 ml live inoculum soil into the upper 2 cm of the background 
substrate, which corresponds to 5% live inoculum by volume to focus on biotic 
mediated PSFs and minimizing potential abiotic effects55. We transferred single 
seedlings that were propagated from surface sterilized seeds as described above 
into the pots.

We replicated each combination of conditioned soil and plant species for the 
three watering treatments nine times in correspondence to the replicate block order 
of the conditioning phase70. Additionally, we set up sterile versions of three full 
replicate blocks (3rd, 6th and 9th blocks). These sterile blocks were set up in the same 
way as the live soil blocks but with the respective soil inocula sterilized by double 
autoclaving as described above. Thus, the response phase consisted of a total of 
2,304 pots (8 conditioned soils × 8 plant species × 3 watering treatments × (9 + 3) 
replicate blocks). We started the watering treatments immediately to ensure 
treatment constancy across both phases of the experiment. The plants were 
watered three times a week in correspondence to the watering treatments during 
the conditioning phase yet with modified fixed amounts to account for the smaller 
pot volume and a gradual decline of the soil water content over time as observed in 
the conditioning phase (Supplementary Fig. 1b; low: 10 ml, medium: 20 ml, high: 
30 ml). The plants were grown for a total of 105 days (105 days under different 
watering treatments) in a climate-controlled greenhouse at 26.7 °C after which we 
harvested aboveground and belowground biomass as described above (Extended 
Data Fig. 2). The response phase took place from January 2020 to June 2020.

Soil nutrient analyses. At the end of the conditioning phase, soil samples from 
five replicate blocks of each plant species and watering treatment (approximately 
1,000 mg) were collected. Each pot of soil was homogenized and a subsample 
(approximately 50 ml) was sent to Texas A&M AgriLife Extension Service Soil, 
Water and Forage Testing Laboratory (College Station, TX, USA) for nutrient 
analysis. Soils were dried at 65 °C for 16 h and pulverized through a 2 mm 
open-mesh sieve. Nutrients including P, K, Ca, Mg, S and Na were extracted 
using Mehlich III extractant and determined by inductively coupled plasma 
spectroscopy71. Soil pH and electrical conductivity were calculated using a 1:2 
soil water extract using deionized water and a hydrogen selective electrode and 
conductivity probe72,73. Nitrate–nitrogen (NO3–N) was extracted from soils using 
a 1 M KCl solution. Nitrate was determined by reduction of nitrate (NO3–N) 
to nitrite (NO2–N) using a cadmium column followed by spectrophotometric 
measurement74 (Supplementary Table 3).

DNA extraction and sequencing. We used next-generation sequencing to capture 
the fungal community structure for post-conditioned soils. Originally, we used 
the first five replicate blocks of each species by watering treatment combination 
(120 samples) plus 30 additional samples (5 samples of the common background 
soil, 10 samples of the initial soil suspension used for the conditioning phase and 
15 samples from empty pots containing only the background soil plus the initial 
soil suspension). DNA was extracted from a 0.25 g subsample of lyophilized soil 
by using DNeasy PowerSoil Pro Kit (catalogue number 47016, Qiagen). Quality 
and concentration of DNA were checked for each sample using a Qbit fluorometer 
(Thermo Fisher Scientific) and samples were diluted to 1 ng µl−1 as per instructions 
in the library preparation kit. Libraries of the fungal internal transcribed spacer 
(ITS) region were prepared using the QIAGEN QIAseq ITS region panels using 
phased primers according to the kit’s protocol (catalogue number 333845, Qiagen). 
The polymerase chain reaction products of all samples (150 total) were normalized 
to equimolar amounts and sequenced for 500 cycles on the Illumina MiSeq PE300 
platform. However, due to an error during library preparation, we obtained valid 
samples from only the first three replicate blocks resulting in a total of 71 samples 
(3 samples per conditioning plant species in each watering treatment; note that for 
Asclepias tuberosa in the medium watering treatment, only 2 samples were available 
after filtering), which the results reported here are based on.

Bioinformatics. We obtained 1,293,067 single-end forward-read sequences across 
all samples (72 of the 150 samples in the MiSeq run) for an average of 16,163 
reads per sample. Two samples had reads well below the other samples (8 and 764 
read sequences) and were removed from the dataset. We analysed the single-end 
forward-read sequences with DADA2 (ref. 75) in QIIME2 version 2020.8 (ref. 76) 
to identify amplicon sequence variants (ASVs)77. Reads with more than two errors 
were discarded and reads were truncated at the first instance of a quality score less 
than or equal to 2. We assigned taxonomy to representative ASV sequences using a 
QIIME2 classifier trained on the UNITE ITS reference sequences78. After filtering, 
samples were represented by an average of 15,980 reads (86,057 maximum; 
2,275 minimum), and 13,782 reads (66,447 maximum; 1,984 minimum) with an 
average read length of 275 base pairs after removing chimeric sequences. This 
resulted in 11,342 total ASVs. ASVs that occurred in less than 2 samples79 were 
excluded from analyses, resulting in a total of 851 ASVs.

We first used FUNGuild to assign fungal guilds to the ASVs80. Due to the 
low resolution of the data (Supplementary Table 6), we limited the assignment to 
putative and probable pathogens. For taxa that were ‘highly probable’ or ‘probable’, 

we used the FUNGuild assignments and classified them as probable pathogens. 
In cases where FUNGuild returned multiple probable guilds, we conducted a 
literature search to determine whether the guild was more likely pathogenic or 
saprotrophic. For ASVs that were identified to genus or species, we supplemented 
FUNGuild designations with a search of the primary literature to characterize 
additional plant pathogens (Fusarium spp., Alternaria spp. and Periconia 
macrospinosa)79. Following the same strategy, we additionally classified putative 
pathogens including taxa with a ‘possible’ confidence ranking.

Calculating pairwise PSF. We applied a model fitting approach to estimate average 
plant performance measures (compound of survival rates and biomass production) 
in the nine blocks with live inocula by using zero-inflated Gamma mixed-effect 
models (R package glmmTMB version 1.0.2; ref. 81). Plant mortality (biomass = 0; 
the zero-inflated component) was fitted to a binomial distribution using a logit link 
function. Total biomass production of the surviving plants (non-zero continuous 
variable; the conditional component) was fitted to a Gamma distribution using a 
log link function. We accounted for the experimental block as random intercept. 
We fitted separate models for each watering treatment including only the plant 
species × soil type interaction term and no intercept. Thus, the fixed effect 
coefficients represent the average mortality and the average biomass production of 
the surviving plants for each plant–soil combination at the respective link scale. To 
get a single measure, we calculated plant performance from the model coefficients 
at the response scale as μ × (1 − p), where μ is the average biomass of the surviving 
plants (fit of the conditional Gamma component) and p is the occurrence 
probability of zero biomass values (fit from the zero-inflated binomial component). 
From there, pairwise PSF was calculated as following17:

Is = ln (αA) − ln(αB) − ln(βA) + ln(βB)

where αA is the performance of species A in its own soil, αB is the performance 
of species A in the soil of species B, βA is the performance of species B in the soil 
of plant species A and βB is the performance of species B in its own soil. Thus, 
each value of Is represents the average pairwise PSF of a given species pair in the 
respective watering treatment. To get estimates of uncertainty for pairwise Is 
values, we applied parametric bootstrap (R package lme4 version 1.1–26; ref. 82) 
to the zero-inflated Gamma models using 10,000 iterations. We performed the 
downstream calculation of Is for each iteration and calculated 95% confidence 
intervals based on the bootstrap replicates.

We calculated ASV richness and Simpson’s diversity as indicators of fungal 
alpha diversity. We tested for the effects of conditioning species identity, watering 
treatment and their interaction using a linear model. Simpson’s diversity was 
transformed to effective species numbers prior to statistical testing83. As ASV 
data were available for only three replicate blocks, we accounted for the replicate 
block as an additional fixed effect in the linear model. We used Bray–Curtis 
dissimilarities based on Hellinger transformed ASV counts to test for differences 
in fungal community composition among the plant species at the end of the 
conditioning phase using permutational analyses of variance (R package vegan 
version 2.5–7; ref. 84) based on 1,000 permutations. We fitted the replicate block  
as a fixed effect before conditioning species identity, watering treatment and  
their interaction.

We further calculated the average pairwise Bray–Curtis dissimilarities (based 
on three replicates per species pair) between all plant species within the watering 
treatments and tested for the effect of the watering treatment on the average 
dissimilarities using a linear mixed model (LMM) accounting for the specific 
species pair as random intercept. We tested for the effect of the soil watering 
treatment and the average Bray–Curtis dissimilarities between the plant species 
and their interaction on average pairwise PSF using a LMM accounting for the 
specific species pair as random intercept. To test if the effect of the watering 
treatment was driven by soil biota interactions, we tested for its effect on 
pairwise PSF calculated as described above but based on the three sterile blocks. 
Significance of fixed effects for the LMMs was assessed using single-term deletions 
followed by F-tests of the nested models using the Kenward–Roger method for 
computing the denominator degrees of freedom (R package lmerTest version 
3.1–3; ref. 85).

Simulation. We ran a simulation model to estimate how changes in pairwise PSF 
driven by the watering treatments would translate into plant community dynamics. 
We simulated a hypothetical community of eight plant species using Netlogo 
version 6.1.1 (ref. 86). The simulated area is defined as a rectangular grid of 40 by 
40 cells. Each cell can be occupied by a single plant individual at a time. The cells 
hold a soil history corresponding to the identity of the previous plant occupying 
the given cell. Each individual plant has a fitness value depending on the soil 
history of the cells it is occupying. The fitness values for each plant by soil history 
combination are drawn from the relative performance values of the respective 
watering treatments. The basic model assumed no dispersal limitation and annual 
life cycles (adult mortality = 1) for the simulated plants. This simplification was 
chosen to avoid arbitrary assumptions as our data do not reflect net differences in 
species-specific fitness or life history but only relative within species differences 
depending on the soil type. Therefore, we calculated the relative performance as 
z-scores for each species within a watering treatment (Fig. 2a). These values were 
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mapped equidistantly to an interval from 1 to 100 to yield strictly positive values 
to be used as weights in the recruitment procedure. This entails that all species 
have an equal average fitness and only their relative fitness changes, depending on 
the soil history. Initially each cell gets populated with a single plant. The plant’s 
species identity is randomly selected from the pool of the eight species with equal 
probabilities. All plants of this initial generation have an equal fitness of one. At 
each time step (generation), the following procedure occurs:

The global fitness of a species is calculated by summing up the fitness across 
all individuals of the respective species in the entire simulated area. This follows 
the assumption that a species’ contribution to the pool of recruits scales with its 
abundance and the fitness of the plant individuals. The soil history of the cells 
is set to the species identity of the currently occupying plant. All plants die, and 
the empty cells get populated with a new plant. The species identity is randomly 
selected from the pool of all species with weights equal to the species’ global 
fitness. The individual fitness of the new recruits is set according to the relative 
performance value of the given species in the given soil. To estimate model 
sensitivity to this assumption, we ran additional simulations with varying fixed 
mortality rates for adult plants (0.75, 0.5 and 0.25) and limiting the spatial scale 
at which recruitment occurs. For the local recruitment procedure, we calculated 
the local fitness of the species in a given cell by summing up the fitness of all 
conspecific individuals of only the neighbouring cells up to first degree or up to 
fifth degree. The species identity of the newly recruited plant in the respective cell 
was then randomly selected from the species pool with weights equal to the species’ 
local fitness at the given location (Extended Data Fig. 5a).

We ran a total of 200 simulations across 300 time steps for each watering 
treatment and parameterization using different random seeds for each run  
(R package nlrx version 0.4.2; ref. 87). The numbers of individuals for all species 
were recorded at each time step, and species richness and Simpson’s diversity 
were calculated to assess how changes in pairwise PSF affects the maintenance or 
erosion of alpha diversity within the simulated plant communities84. We further 
assessed if the stochasticity of community dynamics (that is, predictability) is 
affected by the watering treatments. We calculated the Bray–Curtis dissimilarities 
between the 200 simulated communities for each watering treatment and 
parameterization at each generation and the distance of the single communities to 
their common centroid every 50 generations84.

For data acquisition we used Microsoft Excel version 16, and data preparation 
and visualization was done using the functionalities of the R package tidyverse 
version 1.3.0 (ref. 88). All analyses were performed in R version 4.0.2 (ref. 89).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data associated with this study is available in the Open Science Framework 
repository: https://doi.org/10.17605/osf.io/x2wds. The sequences generated for this 
study can be found in GenBank BioProject PRJNA804565.

Code availability
The code for the simulation model is available in the Open Science Framework 
repository: https://doi.org/10.17605/osf.io/x2wds.
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Extended Data Fig. 1 | Pairwise plant–soil feedbacks by growth form and naturalization status. Pairings of growth form (grass vs. forb) and naturalization 
status (native vs. exotic) are indicated in the panel headers (n forb/forb = 6, n grass/forb = 16, n grass/grass = 6, n exotic/exotic = 3, n native/exotic = 15,  
n native/native = 10). Box-whisker plots indicate the median, 25th/75th percentile and 1.5 x IQR.
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Extended Data Fig. 2 | Plant biomass of the response phase. Bars above and below the zero intercept represent aboveground biomass and belowground 
biomass of the surviving plants respectively (Mean ± SE). Focal species and watering treatment are indicated in the panel headers and soil conditioning 
species at the x-axes. Species codes: AT = Asclepias tuberosa, BI = Bothriochloa ischaemum, RC = Ratibida columnifera, RH = Rudbeckia hirta, SH = Sorghum 
halepense, SN = Sorghastrum nutans, SS = Schizachyrium scoparium, VB = Verbena brasiliensis, ST = sterilized inocculum. n = initially 9 plants per conditioned 
soil in each watering treatment; note that only surviving plants are represented here.
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Extended Data Fig. 3 | Plant mortality of the response phase. Bars represent plant mortality rates. Focal species and watering treatment are indicated in 
the panel headers and soil conditioning species at the x-axes. Species codes: AT = Asclepias tuberosa, BI = Bothriochloa ischaemum, RC = Ratibida columnifera, 
RH = Rudbeckia hirta, SH = Sorghum halepense, SN = Sorghastrum nutans, SS = Schizachyrium scoparium, VB = Verbena brasiliensis, ST = sterilized inocculum. 
n = 9 plants per conditioned soil in each water treatment.
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Extended Data Fig. 4 | Alpha diversity and relative pathogen abundance of fungal communities at the end of the conditioning phase. (a) Simpson’s 
diversity of fungal ASVs, and (b) richness of fungal ASVs. Significance of the watering treatment (Pwater) was evaluated using linear models (Methods and 
Supplementary Table 4). (c) Relative abundance of probable pathogens, and (d) relative abundance of putative pathogens. Box-whisker plots indicate the 
median, 25th/75th percentile and 1.5 x IQR. Species codes: AT = Asclepias tuberosa, BI = Bothriochloa ischaemum, RC = Ratibida columnifera, RH = Rudbeckia 
hirta, SH = Sorghum halepense, SN = Sorghastrum nutans, SS = Schizachyrium scoparium, VB = Verbena brasiliensis. n = 71 soil samples; note that for Asclepias 
tuberosa in the medium watering treatment only two samples were available.
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Extended Data Fig. 5 | Simulation results under alternative parameterizations of plant mortality and the spatial extent of recruitment under different 
watering treatments of simulated plant communities. (a) Alpha diversity (median species richness and average Simpson’s diversity). (b) Average 
relative abundance of the single species. Species codes: AT = Asclepias tuberosa, BI = Bothriochloa ischaemum, RC = Ratibida columnifera, RH = Rudbeckia 
hirta, SH = Sorghum halepense, SN = Sorghastrum nutans, SS = Schizachyrium scoparium, VB = Verbena brasiliensis. n = 200 simulated plant communities per 
watering treatment and parameterization.
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Extended Data Fig. 6 | Plant biomass of the conditioning phase. Bars above and below the zero intercept represent aboveground biomass and 
belowground biomass of the surviving plants respectively (Mean ± SE). The focal plant species is indicated in the panel headers; note the different y-axis 
scaling. Species codes: AT = Asclepias tuberosa, BI = Bothriochloa ischaemum, RC = Ratibida columnifera, RH = Rudbeckia hirta, SH = Sorghum halepense, 
SN = Sorghastrum nutans, SS = Schizachyrium scoparium, VB = Verbena brasiliensis. n = 9 plants per species in each watering treatment.
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