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Abstract
1.	 Plant–soil feedbacks (PSF) and functional traits are two active but not well theo-

retically integrated areas of research. However, PSF and traits are both affected 
by life-history evolution, so the two should theoretically be related.

2.	 We provide a conceptual framework to link plant functional traits to two types 
of PSF metrics, and hypothesize that individual PSF (plant performance in con-
specific vs. heterospecific soil) should be related to the fast–slow trait spectrum, 
whereas pairwise PSF (the sum of the individual feedbacks for two species grow-
ing in each other's soils) should be related to trait dissimilarity. We performed 
meta-analyses to test these hypotheses by compiling two datasets, one dataset 
consisting of individual PSF values and plant trait values (specific leaf area, SLA; 
leaf N concentration, LNC; specific root length, SRL; fine root diameter, FRD; plant 
height; seed mass), and the second consisting of pairwise PSF values and trait 
dissimilarity.

3.	 Our meta-analyses showed that individual PSF values were more negative in 
faster-growing species with greater SLA, LNC and SRL, supporting the growth–
defence trade-off hypothesis. Plant height was positively correlated with indi-
vidual PSF, perhaps because large, long-lived plants defend against pathogens 
better than smaller, shorter-lived plants. We also found that larger-seeded species 
had more positive or less negative PSF, likely reflecting greater tolerance of soil 
pathogens. The direction of relationships between trait dissimilarity and pairwise 
PSF varied with trait identity. Dissimilarities in SRL and FRD were negatively cor-
related with pairwise PSF while height dissimilarity was positively correlated with 
pairwise PSF. The contrasting relationships may reflect distinct links between trait 
dissimilarity and niche and fitness differences.

4.	 Synthesis. Our results demonstrate how an integration of PSF and trait-based ap-
proaches can advance plant community ecology.
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1  | INTRODUC TION

Plant–soil feedbacks (PSF) express how plants interact with soil mi-
crobes and soil biogeochemical and physical properties. Negative 
PSF, where soil microbes and abiotic properties reduce plant perfor-
mance, can theoretically contribute to species coexistence via con-
specific negative density dependence (Bever et al., 2015; Kandlikar 
et al., 2019). This has provided a useful framework for evaluating the 
influence of soil microbes on community dynamics and biodiversity 
maintenance (Bever,  2003; Crawford et  al.,  2019; van der Putten 
et al., 2013). However, there is considerable variation in the strength 
of feedbacks observed across a broad range of species. This varia-
tion may reflect differences in local abiotic factors such as soil nutri-
ents, moisture and climate factors (Bennett & Klironomos, 2019; De 
Long et al., 2019; Smith-Ramesh & Reynolds, 2017) or it could also 
be related to variation in plant functional traits (Bever et al., 2012; Ke 
et al., 2015). Although recent experimental studies tested the rela-
tionship between PSF and plant traits (Baxendale et al., 2014; Cortois 
et al., 2016; Kuťáková et al., 2018; Münzbergová & Šurinová, 2015; 
Semchenko et  al.,  2018; Teste et  al.,  2017; Wilschut et  al.,  2019), 
there remain gaps in the conceptual framework theoretically relating 
these two areas and a global test for this relationship.

Life-history evolution has produced distinct plant strategies 
that are positioned along the fast–slow trait spectrum. For example, 
plants can invest in traits that promote rapid growth (e.g. via nutrient 
acquisition) or in traits that provide defence against antagonists (Díaz 
et al., 2016; Weiher et al., 1999; Westoby, 1998) but not both to the 
same degree, which leads to a growth–defence trade-off. For seed 
traits, previous studies provide evidence for a trade-off between in-
vestment in numerous small seeds versus fewer larger seeds. The 
seed number–seed size trade-off predicts that small-seeded species 
have an advantage in fecundity and colonization, which may aid in 
pathogen escape through increased dispersal ability, whereas large-
seeded species have greater seedling survival, competitive ability 
and pathogen tolerance (Bagchi et  al.,  2014; Dalling et  al.,  2011; 
Moles, 2018; Moles & Westoby, 2004; Muller-Landau, 2010). Plant 
height may indicate plant life span and competitive ability for light 
(Moles et al., 2009). A long-lived plant species, such as a tree, likely 
invests more in defence traits (e.g. structural traits, chemical de-
fence) than a short-lived species, such as an herbaceous species, 
which should allocate more resources to nutrient acquisition or re-
production to maximize fitness (Kulmatiski et al., 2017).

Given the important roles of soil microbes in both nutrient ac-
quisition and plant disease, we should expect relationships between 
PSF and the plant strategies traditionally linked with functional 
traits. Furthermore, plant traits should feed back to influence the 

composition and functioning of soil microbial communities by 
controlling the quality and quantity of resources entering into soil 
(Bardgett, 2017; de Vries et al., 2012; Delgado-Baquerizo et al., 2018; 
Legay et al., 2014). In other words, traits influence both the effect of 
a plant on the soil community and the response of the plant to the 
soil community. Based on the likely linkages between PSF and func-
tional traits, we hypothesize a strong relationship between traits 
involved in the growth–defence trade-off and individual PSF (the 
absolute performance of a plant in conspecific soil vs. heterospecific 
soil; Figure  1a). Specifically, fast-growing plant species with traits, 
such as small seed size, short life span, high leaf N concentration 
(LNC), specific leaf area (SLA) and specific root length (SRL) and low 
fine root diameter (FRD), should experience more negative feedback 
effects than slow-growing plants with the opposite trait syndrome 
because the former have high growth rate/nutrient acquisition but 
low defence against natural enemies (Coley, 1988; Coley et al., 1985; 
Comas & Eissenstat, 2009; Laliberté et al., 2015; Lind et al., 2013; 
Teste et al., 2017).

In contrast to the individual PSF, pairwise PSF, which essentially 
represent the sum of the individual feedbacks for two species grow-
ing in each other's soils, should be related to ecological dissimilarity 
rather than absolute trait values. Negative values of pairwise PSF in-
dicate that plants influence soils in a way that favours heterospecific 
over conspecific individuals, stabilizing coexistence through conspe-
cific negative density dependence, whereas positive values indicate 
the opposite patterns (Bever et  al.,  1997). Crawford et  al.  (2019) 
recently showed that plant phylogenetic distance has a linearly neg-
ative correlation with pairwise PSF. However, Wandrag et al. (2020) 
showed that there was a divergent trend in feedback responses to 
soil biota with increasing phylogenetic distance, and thus it is diffi-
cult to predict feedback outcomes using phylogeny alone. This trend 
may reflect high trait similarity among closely related plants while 
trait similarity decreases—or at least becomes less predictable—with 
increasing phylogenetic distance. However, little is known about 
correlations between pairwise PSF and trait dissimilarity. Directly 
linking pairwise PSF to trait dissimilarity may be more powerful for 
understanding the role of PSF in species coexistence and biodiver-
sity maintenance, but it remains a key knowledge gap.

Modern coexistence theory asserts that species coexistence 
depends on two non-exclusive processes, stabilizing differences, 
which promote coexistence, and average fitness differences, which 
promote competitive exclusion (Chesson,  2000, 2018). In theory, 
trait dissimilarity can reflect niche differences or average fitness dif-
ferences, depending on the traits considered and the biotic and abi-
otic context (Kraft et al., 2015; Mayfield & Levine, 2010). If PSF and 
traits represent two aspects of a coordinated life-history strategy, 
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then their effects on coexistence should be reinforcing (Figure 1b): 
Negative pairwise PSF (i.e. species perform better in heterospecific 
than conspecific soil) should correlate with trait dissimilarities that 
contribute to niche differences by promoting use of different soil nu-
trients (such as SLA, SRL, Cadotte, 2017) or the accumulation of spe-
cialized soil pathogens (Smith-Ramesh & Reynolds, 2017). In contrast, 
positive pairwise PSF should correlate with trait dissimilarities that 
drive fitness differences favouring one competitor over the other 
regardless of their relative abundance, thereby reflecting competi-
tive hierarchy (Chesson, 2000). For example, positive pairwise PSF 
have been observed in natural ecosystems such as ecto-mycorrhizal 
tree-dominated temperate forests (Nuñez & Dickie, 2014; Reynolds 
et  al.,  2003; Smith-Ramesh & Reynolds,  2017) because plant spe-
cies associated with ecto-mycorrhizal fungi can gain competitive 
advantages over plants associated with arbuscular mycorrhizal fungi 
by efficiently capturing soil nutrients and lowering nutrient avail-
ability that is diminishing growth of arbuscular mycorrhizal species. 
Theoretically, trait dissimilarity reflecting average fitness difference/
competitive hierarchy (e.g. height, a key trait for size-asymmetric 
competition for light, Cadotte, 2017) should correlate with positive 
pairwise PSF (Figure 1b).

Empirical support for these two hypotheses (Figure  1) would 
help explain the large variation of PSF for co-occurring plants, fa-
cilitate prediction of PSF for plant species for which no experiments 
have been conducted, and advance our understanding of the factors 
driving plant community dynamics. To meet this need, we conducted 
a comprehensive literature review and meta-analysis to test our hy-
potheses about plant traits and both individual and pairwise PSF. 
Specifically, we tested the hypotheses that (1) individual PSF will be 
negatively correlated with fast life-history traits and (2) pairwise PSF 
will be correlated with trait dissimilarity.

2  | MATERIAL S AND METHODS

2.1 | Data compilation

In this meta-analysis, we calculated individual and pairwise PSF 
using two different datasets. For individual PSF, we searched ISI 
Web of Science on 3 August 2018 without restriction on publica-
tion year using the key search term ‘plant soil feedback$’. We added 
extra studies from recent meta-analyses of Crawford et  al.  (2019) 

F I G U R E  1   A conceptual framework 
connecting plant traits and plant–
soil feedbacks (PSF) showing the key 
hypotheses tested in this study. (a) 
Individual PSF hypothetically varies with 
plant fast–slow growth continuum in 
accordance with the growth–defence 
hypothesis (Hypothesis 1). (b) Trait 
dissimilarity can lead to negative pairwise 
PSF when traits reflect resource niche 
partitioning or accumulation of specialized 
soil pathogens while they can correlate 
to positive pairwise PSF in cases where 
traits reflect average fitness differences 
driven by species-specialized mutualists 
or resource depletion. We predicted that 
trait dissimilarity is related to pairwise 
PSF (Hypothesis 2). The blue and red 
arrows indicate ‘strengthening’ (+) and 
‘weakening’ (−) effects. SLA, specific 
leaf area; LNC, leaf N concentration; 
SRL, specific root length; FRD, fine root 
diameter
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and Lekberg et al.  (2018), resulting in a total of 2,579 papers. We 
screened paper titles and abstracts to ensure that they were in the 
correct subject area, and thus 2,202 papers were removed. After 
this screening, 377 papers were assessed for eligibility using the 
following criteria: (a) plants were grown in conspecific and hetero-
specific soil; (b) conspecific soil had to be clearly influenced by one 
single plant species in the conditioning phase, and heterospecific soil 
was not affected by the focal species (we included studies where 
the authors stated that field soil was collected from certain species 
and used as soil inoculum); (c) PSF were tested for natural plants 
and studies for cultivated or crop plants were avoided; (d) studies 
reported means, standard errors or standard deviations or 95% 
confidential intervals and sample sizes for plant performance in the 
feedback phase. In total, 62 papers met these criteria (Figure  S1). 
A list of data sources used in the study were provided in the Data 
Sources section.

Data were extracted from text, tables, figures or supplemen-
tary materials. We used ImageJ to extract means, standard errors 
or standard deviations of plant biomass from figures in the chosen 
papers (Schneider et  al.,  2012). Multiple experimental treatments 
from the same study were included in our analysis to take complete 
advantage of published results. Species names of focal plants and 
paper identity (authors and publication years) were recorded. In 
total, we constructed a dataset consisting of 2,108 observations and 
216 plant species representing a variety of functional groups (e.g. 
herbs, trees and shrubs).

For pairwise PSF, we used the dataset complied by Crawford 
et al.  (2019). This dataset consisted of 1,038 observations for 508 
species pairs that were extracted from 69 peer-reviewed papers. The 
dataset included studies that conducted in forest and grassland eco-
systems, and used laboratory or field experimental approaches. The 
plant species included trees and herbs. Effect sizes of pairwise PSF 
were calculated using species average performance in conspecific 
versus heterospecific soils, standard errors and replicates (see the 
following details) for each species pair and each observation. We ob-
tained effect sizes, variances and species pairs for our meta-analysis.

2.2 | Effect size of individual PSF

Effect size of individual PSF was calculated using the natural log of 
response ratio (Brinkman et al., 2010; Hedges et al., 1999).

where Xe and Xc are plant biomass in conspecific and heterospecific 
soil, respectively. Variance of each effect size was estimated.

where SDe and SDc are standard deviations of plant biomass in conspe-
cific and heterospecific soil, respectively, and ne and nc are sample sizes 
for conspecific and heterospecific soil treatments, respectively.

2.3 | Effect size of pairwise PSF

To compare pairwise PSF across species that differ in their growth 
rates and sizes across experiments that differ widely in their method-
ologies, plant biomass was log-transformed (Crawford et al., 2019). 
The pairwise PSF for two plant species, A and B, and their respective 
soils, α and β, is.

where αA is plant A performance in conspecific soil, αB is plant B per-
formance in heterospecific soil, βA is plant A performance in heterospe-
cific soil and βB is plant B performance in conspecific soil. Variance of 
rr(IS) was estimated using the equation.

where v and n are variance and sample size of plant performances, 
respectively.

2.4 | Calculating species-level average 
individual and pairwise PSF

In our dataset, there were multiple observations (i.e. effect size 
values) for one plant species or one species pair. We did not con-
sider variations within plant species or within species pair, and thus 
species-level average PSF values were calculated by one mixed-
effect model using the mEtafor package (Viechtbauer, 2010) in R. In 
this model, species identity or species pair was used as the fixed 
effect and study as the random effect to overcome possible data de-
pendence (i.e. from multiple effect sizes in single studies; Nakagawa 
et al., 2017). Average effect size and its variance for each species 
were calculated using the formulas in this model (Borenstein, 2009).

where rri, vi and τ2 are effect size, within-experiment variance and 
between-experiment for experiment i within each subgroup (i.e. each 
species), respectively. τ2 was estimated using the restricted maximum 
likelihood approach. We also computed average pairwise PSF value 
and its variance for each species pair by performing one mixed-effects 
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models with species pair as one fixed effect and study as one random 
effect and using the formulas mentioned above.

2.5 | Plant functional traits

To test linkages between PSF values and plant traits or trait dissimi-
larity, we chose six plant functional traits that are closely associated 
with plant life-history strategies: (SLA, the one-sided area of a fresh 
leaf divided by its dry mass, mm2/mg), leaf nitrogen (N) concentra-
tion (LNC, the total amounts of N per unit of dry leaf mass, mg/g), 
specific root length (SRL, the ratio of root length to dry mass of fine 
roots, cm/g), (FRD, mm), plant height (the shortest distance between 
the upper boundary of the main photosynthetic tissues on a plant 
and the ground level, m) and seed dry mass (SM, the dry mass of an 
average seed of a species, mg). SLA, LNC, SRL and FRD are impor-
tant plant economic traits that are related to carbon and soil nutri-
ent acquisition and reflect trade-offs between growth and defence 
(Kong et al., 2019; Reich, 2014; Westoby, 1998; Wright et al., 2004). 
Plant height reflects plant size and life span. Seed mass reflects a 
trade-off between investment in numerous small seeds and fewer 
larger seeds.

We obtained all trait data from the TRY Database (Kattge 
et  al.,  2020). Trait values from different locations or populations 
were averaged to obtain mean values for each species; we did not 
consider intraspecific trait variability. Average trait values were nat-
ural log-transformed for each species and each trait prior to analyses 
because of large difference in orders of magnitude across plant spe-
cies. Trait dissimilarity was calculated using the Euclidian distance 
for each species pair, and they were log-transformed prior to meta-
analyses if needed to reduce the influences of differences in value 
sizes.

2.6 | Data analyses

A random effects model was used to estimate the overall weighted 
effect sizes using the ram function in the mEtafor package in R 
(Viechtbauer,  2010). A Z test was used to determine whether the 
weighted effect size was equal to zero. The total heterogeneity of ef-
fect size was tested using the Q statistic, which follows a chi-squared 
distribution under the null hypothesis that the effect size is the same 
for all experiments (Borenstein,  2009). Based on the results from 
this model, publication bias of non-significant results was tested by 
constructing a funnel plot to check for asymmetry or gaps in the data 
(Sterne & Egger, 2001).

We performed a series of univariate meta-regressions rather than 
single multivariate meta-regressions to test our hypotheses for fully 
exploiting our datasets. We are aware that it is of interest to assess 
the relative importance of different traits in driving the variation of 
PSF, but it is not the goal of this present study, and this study aims to 
generalize the relationships between PSF and key traits that reflect 
plant life-history strategy. Meta-regressions were then performed 

to evaluate the relationships between each individual plant trait, or 
each measure of trait dissimilarity, and species-average PSF effect 
sizes using random effects models. The random effects models in 
meta-analysis incorporate an assumption that the different studies 
are estimating different treatment effects, and these models allow 
us to test whether variables cause the heterogeneity of effect sizes 
(Borenstein, 2009). For each trait model, the total heterogeneity of 
effect sizes (QT) was partitioned into residual heterogeneity (QE) and 
variate-explained heterogeneity (QM; Borenstein,  2009). The QM 
statistic follows a chi-squared distribution under the null hypoth-
esis that the effect size is the same for all subgroups. For data of 
traits or trait similarities, values were log-transformed, if necessary, 
to meet the requirements of regression analyses. All analyses were 
performed in R (R Core Team, 2020).

3  | RESULTS

3.1 | Linkages between plant traits and individual 
PSF

Across all studies, average individual PSF was negative (95% confi-
dence interval = −0.1058 ± 0.0228, Z = −9.1057, p < 0.001). However, 
there was a significant variation in effect size (Q  =  13,594.08, 
df = 2,107, p < 0.001). Without considering the influence of mod-
erators (i.e. plant species identity and plant traits), 90.79% of total 
variance in the true effects was due to heterogeneity rather than 
sampling variance (i.e. I2  =  90.77%), reflecting the inconsistency 
across the effect sizes that needs to be explained using modera-
tors. Individual PSF values were inconsistent across plant species 
(QM = 4,302.00, df = 215, p < 0.001). We did not detect publication 
bias for this model because the funnel plot did not show asymmetry 
in effect size distribution (effect size vs. standard error, Figure S2).

Trait-based relationships with individual PSF were consistent 
with Hypothesis 1 (Figure 1a). PSF values decreased (i.e. they be-
came more negative) with increased SLA (slope = −0.2269, QM = 7. 
42, p = 0.006, n = 134, Figure 2a), LNC (slope = −0.0099, QM = 4.21, 
p = 0.040, n = 152, Figure 2b) and SRL (slope = −0.0971, QM = 5.02, 
p  =  0.025, n  =  78, Figure  2c). Plant species with greater FRD 
(slope = 0.2995, QM = 5.16, p = 0.023, n = 64, Figure 2d), plant height 
(slope  =  0.0844, QM  =  23.35, p  <  0.001, n  =  171, Figure  2e) and 
seed mass (slope = 0.0267, QM = 4.68, p = 0.031, n = 181, Figure 2f) 
showed less negative or even more positive individual PSF values.

3.2 | Linkages between trait dissimilarity and 
pairwise PSF

Pairwise PSF values were associated with dissimilarity in SRL, FRD 
and height, but the direction of the relationship varied between these 
traits; these findings partially supported hypothesis 2 (Figure  1b). 
There was no relationship between PSF values and SLA dissimilarity 
(QM = 0.42, p = 0.516, n = 183, Figure 3a) or between PSF values 
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and LNC dissimilarity (QM  =  0.48, p  =  0.488, n  =  197, Figure  3b). 
However, pairwise PSF values were negatively related to SRL dis-
similarity (slope = −0.1091, QM = 6.39, p = 0.012, n = 103, Figure 3c) 
and FRD dissimilarity (slope = −0.5989, QM = 5.56, p = 0.018, n = 91, 

Figure 3d), and they were positively related to height dissimilarity 
(slope = 0.2012, QM = 4.41, p = 0.036, n = 224, Figure 3e). No re-
lationship was detected between PSF values and SM dissimilarity 
(QM = 0.1862, p = 0.666, n = 230, Figure 3f).

F I G U R E  2   Relationships between 
individual plant–soil feedbacks and (a) 
specific leaf area, (b) leaf N concentration, 
(c) specific root length, (d) fine root 
diameter, (e) plant height and (f) 
seed mass, which test Hypothesis 1 
(Figure 1a). The solid lines indicate the 
fitted relationships, and the dashed 
red lines indicate the 95% confidence 
intervals based on univariate regression 
analyses. SLA, specific leaf area; LNC, 
leaf N concentration; SRL, specific root 
length; FRD, fine root diameter; SM, seed 
mass

(a) (b)

(c) (d)

(e) (f)
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4  | DISCUSSION

Plant–soil feedbacks and functional traits are two active research 
areas of ecology, but global evidence linking traits with PSF 

remains scarce. Integrating traits and PSF could explain variation 
in PSF among species in natural communities and advance our 
understanding of the role of PSF in generating niche and fitness 
differences and thus species coexistence. Our results help fill this 

F I G U R E  3   Relationship between 
pairwise plant–soil feedback and (a) SLA 
dissimilarity, (b) LNC dissimilarity, (c) 
SRL dissimilarity, (d) FRD dissimilarity, 
(e) Height dissimilarity and (f) SM 
dissimilarity, which test Hypothesis 2 
(Figure 1b). The solid lines indicate the 
fitted relationships, and the dashed 
red lines indicate the 95% confidence 
intervals based on univariate regression 
analyses. Panels that do not show 
the trend lines imply there were not 
statistically significant relationships 
(p > 0.05). SLA, specific leaf area; LNC, 
leaf N concentration; SRL, specific root 
length; FRD, fine root diameter; SM, seed 
mass

(a) (b)

(c) (d)

(e) (f)
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knowledge gap by demonstrating that (a) individual PSF were re-
lated to plant traits in directions consistent with known trade-offs 
between growth and defence or between seed number and seed 
size and (b) the direction of relationships between trait dissimilarity 
and pairwise PSF varied with trait identity, from negative, neutral 
to positive.

4.1 | Variation of individual PSF along the fast–slow 
trait spectrum

We tested the growth–defence hypothesis in the context of PSF 
(Hypothesis 1, Figure 1a) and found evidence of the negative rela-
tionships between PSF and traits associated with fast life histories, 
that is, SLA, LNC and SRL, and positive relationship between PSF and 
traits for slow life history, that is, FRD, seed mass and plant height 
(Figure 2), presumably because the fast-growing plants have lower 
defence against soil pathogens (Semchenko et al., 2018). This finding 
is consistent with evidence that slow-growing species with greater 
seed mass are more tolerant of conspecific neighbours (Lebrija-
Trejos et al., 2016), and that plant–soil feedbacks are a key mecha-
nism driving conspecific negative density dependence (Mangan 
et al., 2010; Maron et al., 2016). The plant height–PSF relationship 
may reflect the fact that taller plants have closer associations with 
mycorrhizal fungi than shorter plants because they are not limited by 
light and can exchange carbon for nutrients with mycorrhizal fungi 
(Cheeke et al., 2019).

Based on the trait–PSF relationships we observed, we can now 
make predictions about how PSF may vary across environmental gra-
dients. Fertile habitats are usually dominated by plant species with 
fast traits, while slow-growing species dominate infertile habitats 
(Diaz et al., 2004; Reich, 2014; Wright et al., 2004). Under nutrient-
rich conditions, negative PSF should be pervasive and play more im-
portant roles in community dynamics than that under nutrient-poor 
conditions; under nutrient-poor conditions, soil mutualisms (e.g. my-
corrhizas, N2 fixers) that drive positive PSF would be expected to be 
more important in community dynamics (Laliberté et al., 2015; Png 
et  al.,  2019). The same reasoning suggests that PSF should play a 
role in succession: early-successional plants that are characterized 
by fast growth, high nutrient acquisition, small seed size and short 
life span should be more negatively influenced by soil biota than 
late-successional plants with the opposite traits (Bauer et al., 2015; 
Kardol et al., 2006). Moreover, unpacking the relationship between 
fast-slow traits and individual PSF may enable us to better under-
stand plant population ecology, including transient and stochastic 
dynamics (Stott et al., 2010; Thuiller et al., 2007), and can be used 
to inform vegetation management, such as restoration and species 
invasions (Suding et al., 2013; Wubs et al., 2016). Observed time lags 
between alien species arrival and dominance (Coutts et  al.,  2018) 
and alien population booms-and-busts (Simberloff & Gibbons, 2004) 
may be at least partly attributed to the time required for PSF to ac-
cumulate and take effect, with slow-growing and fast-growing plant 
invaders experiencing different effects.

4.2 | Correlations between trait dissimilarity and 
pairwise PSF are complex

Plant–soil feedbacks theory has clearly shown that predicting spe-
cies coexistence requires measurement of pairwise PSF, that is, the 
relative performance of species on conspecific and heterospecific 
soil (Bever et  al.,  1997). Our results indicated that trait dissimilar-
ity showed positive or negative or no correlations with pairwise 
PSF; greater SRL dissimilarity caused more negative PSF while the 
opposite pattern was observed for height dissimilarity (Figure  3). 
These findings partially supported our prediction that pairwise PSF 
is related to trait dissimilarity (Hypothesis 2, Figure 1b), but they in-
dicated that the links between trait dissimilarity and pairwise PSF 
may be more complicated than previously expected. Our findings 
are consistent with the idea that many relationships between trait 
differences and coexistence are possible, with differing implications 
for competitive outcomes (Gross et al., 2015; Kraft et al., 2015).

The negative relationship we observed between SRL dissimi-
larity and pairwise PSF may reflect differences in plant strategies 
related to resource acquisition and defence. Plants with differ-
ent SRL dominate habitats with different resource availability, and 
SRL dissimilarity is a predictor of niche difference across herb and 
tree species (Fort et  al.,  2015; Valverde-Barrantes et  al.,  2013). 
Fast-growing species with high SRL tend to condition soil with 
high abundance of pathogens and nutrient availability, and slow-
growing species with low SRL produce soil with the opposite char-
acters (Bagchi et al., 2014; Bever et al., 2015; Wardle et al., 2004). 
Consequently, fast-growing species are promoted in soil conditioned 
by slow-growing species because of low infection from pathogens, 
whereas slow-growing species are promoted in soil conditioned by 
fast-growing species due to high nutrient availability. Of course, we 
cannot rule out the possibility that fast-growing might not estab-
lish in soil conditioned by slow-growing species due to low nutrient 
availability or allelopathic chemicals.

In contrast, between-species difference in height was associated 
with increasingly positive PSF, which should promote competitive 
exclusion. Differences in this trait likely reflect the differential abil-
ity of species to pre-empt the same resources (e.g. light) or to form 
associations with ecto-mycorrhizal fungi, creating a competitive hi-
erarchy and leading to average fitness differences (Cadotte, 2017; 
Gross et al., 2015; Herben & Goldberg, 2014; Kraft et al., 2015). The 
trait–PSF relationships we observed would further reinforce such 
competitive hierarchies. In principle, these patterns should help 
explain competitive exclusion and abundance patterns in natural 
ecosystems. For example, trees can outcompete herbaceous spe-
cies because of size-asymmetric advantages concerning light com-
petition in the early successional stage of forest ecosystems, and 
thus dominate the forests in the late successional stage. However, 
incorporating plant traits and PSF into modern species coexistence 
theory remains a considerable challenge due to limited experimental 
evidence and even theory (but see, Ke & Wan, 2020). Our work sug-
gests that finding plant trait dissimilarity–pairwise PSF correlations 
can reduce the number of potential niche dimensions, if they reflect 
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one coordinated life-history strategy. Empirical research is needed 
to test whether PSF and trait dissimilarity mirror two aspects of a 
coordinated life-history strategy.

5  | CONCLUSIONS

Our analyses provided evidence for relationships between PSF and 
functional traits. The trade-off between growth and defence can 
drive variation of individual PSF. Individual PSF was more nega-
tive in faster-growing species, but taller and larger-seeded species 
have more positive or less negative individual PSF likely because 
of greater tolerance to soil pathogens. Pairwise PSF, normally used 
to deduce species coexistence, was related to trait dissimilarity in 
terms of some functional traits. However, our results showed SRL 
differences had negative relationships with pairwise PSF, and height 
differences had positive relationships with PSF, mediating distinct 
links between trait dissimilarity and species coexistence (niche dif-
ference vs. fitness difference). Together, these results suggest that 
PSF may reinforce the effect of trait dissimilarities on coexistence. 
However, knowledge of how trait dissimilarity affects species co-
existence must improve before this conjecture can be rigorously 
tested. Extrapolating from our results, we suggest that considering 
PSF in modern species coexistence theory can help build a more 
comprehensive understanding of when PSF contribute to species 
coexistence (Ke & Wan, 2020).
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