

# The Encore active target detector: a Multi-Sampling Ionization Chamber

B. W. Asher<sup>a</sup>, S. Almaraz-Calderon<sup>a</sup>, L. T. Baby<sup>a</sup>, N. Gerken<sup>a</sup>, E. Lopez-Saavedra<sup>a</sup>, A. B. Morelock<sup>a</sup>, J. F. Perello<sup>a</sup>

<sup>a</sup>*Department of Physics, Florida State University, Tallahassee, Florida 32306, USA*

---

## Abstract

The *Encore* active target detector is a Multi Sampling Ionization Chamber developed at Florida State University (FSU). *Encore* has been successfully used to measure fusion reactions with CH<sub>4</sub> gas as well as ( $\alpha$ ,p) and ( $\alpha$ ,n) reactions using helium gas in the detector. The portability, self-normalizing, high-efficiency, and versatility of the *Encore* detector makes it ideal for measurements with low-intensity radioactive beams. This paper provides details on its development, operation, and analysis procedure. It also presents the results of benchmark experiments and comparison with existing data and calculations.

---

## 1. Introduction

Exotic beam facilities are at the forefront of research in experimental nuclear physics. The addition of the Facility for Rare Isotope Beams (FRIB) to the set of well-established U.S. domestic facilities like the Argonne Tandem Linac Accelerator System (ATLAS), TWINSOL facility at Notre Dame, MARS at the Texas A&M Cyclotron Institute, and RESOLUT facility at Florida State University, as well as international facilities like the Large Heavy Ion National Accelerator in France (GANIL), the Canadian national particle accelerator center (TRIUMF), and the institute of physical and chemical research in Japan (RIKEN), among others, are providing new and exciting opportunities to study nuclei away from stability that are relevant to nuclear structure, nuclear reactions, and nuclear astrophysics. However, as we push further away from stability in the chart of nuclides, beam rates become orders of magnitude lower than in the stable region. Newer detector systems are needed to address low beam currents and to perform more efficient measurements. Active target detectors are ideal to address both issues. In active target systems, the target material is also used as detection medium, measuring nuclear reactions in a large range of energies and providing large angular coverage, both of which maximize the efficiency in the detection process. For these reasons,

---

*Email addresses:* bwa15@my.fsu.edu (B. W. Asher), salmarazcalderon@fsu.edu (S. Almaraz-Calderon)

15 active target detectors have been developed around the world for projects that involve exotic nuclei. An  
16 example of such detectors are MUSIC [1], MAYA [2], ANASEN [3], TACTIC [4], TexAt [5], and various  
17 time projection chambers (TPCs) [6–8].

18 Multi Sampling Ionization Chamber (MUSIC) detectors are, in particular, an important type of active  
19 target systems. MUSIC detectors were first used for relativistic heavy ions measurements [9]. However, the  
20 MUSIC detector at Argonne National Laboratory has recently been successfully used in low energy nuclear  
21 physics research at the ATLAS facility to measure fusion reactions [10] as well as ( $\alpha$ ,p) and ( $\alpha$ ,n) reactions  
22 [11, 12].

23 At Florida State University (FSU), we have developed the *Encore* active target detector. *Encore* is a  
24 Multi Sampling Ionization Chamber based on the MUSIC detector at Argonne National Laboratory [1].  
25 The primary difference between the two is in design, with *Encore* using wired field cage rather than solid  
26 aluminum plates. A difference in its operation is the use of higher voltages to optimize electron drift times,  
27 which are aimed to operate *Encore* with shorter time-of-flights and without a radio-frequency (RF) sweeper  
28 [13] used at ATLAS to increase the time between beam bunches [1, 14] in order to make a more portable  
29 detector.

30 *Encore* uses a segmented anode to measure energy losses as the beam passes through the detector. The  
31 beam and the reaction products are then identified in an event-by-event basis by their energy loss signals  
32 within the gas. Nuclear reactions that occur within the active volume of the detector are measured per strip,  
33 allowing measurements to be performed over a large range of the excitation function using a single beam  
34 energy. *Encore* was built in house at Florida State University. It has already been utilized at the John D. Fox  
35 laboratory to measure fusion, ( $\alpha$ ,n), and ( $\alpha$ ,p) reactions with stable and radioactive beams, using methane  
36 as well as helium gas in the detector. The experimental studies that can be performed with *Encore* allow  
37 investigation of stellar processes, as well as to address nuclear structure questions.

38 In this paper, we provide a description of the assembly, characterization, and analysis procedure of the  
39 experimental data taken with *Encore*. The performance of the detector in the measurements of the  $^{16}\text{O} + ^{12}\text{C}$   
40 and  $^{19}\text{F} + ^{12}\text{C}$  fusion excitation functions above the barrier, as well as the  $^{18}\text{O}(\alpha,\text{n})^{21}\text{Ne}$  and  $^{18}\text{O}(\alpha,\text{p})^{21}\text{F}$   
41 reactions, is presented along with a comparison with existing data.

42 **2. The *Encore* detector**

43 *2.1. Assembly*

44 *Encore*'s housing is a 35 cm  $\times$  22 cm  $\times$  13 cm steel box with two rotatable 4.5" ConFlat flanges on  
45 either side in order to connect to the relevant beam line. The active region of the detector is shown in Fig. 1.  
46 It consists of a cathode and an anode separated by about 11 cm. A Frisch grid sits about a centimeter away  
47 from the anode and a voltage divider makes up the field cage between the anode and the cathode.

48 The anode is a 32.5 cm  $\times$  12.7 cm PC board which is segmented into 18 strips. Each strip is 1.5 cm  
49  $\times$  9 cm with a 0.7 mm gap in between. The middle 16 of which are subdivided into left and right sections  
50 with an alternating offset of 1 cm as it is shown in Fig. 2. The cathode is a solid aluminum plate the same  
51 dimensions as the anode. Between the anode and cathode is a voltage divider field cage made of Beryllium  
52 Copper wire about 0.3 mm in diameter. There are 13 layers of wire separated by about 0.75 cm. Each wire  
53 is connected by a 100  $M\Omega$  resistor starting from the cathode down to the Frisch grid. The Frisch grid is  
54 made of gold plated tungsten wires spaced 1.75 mm apart, soldered onto a PCB frame. The Frisch grid is  
55 part of the voltage divider chain and is grounded through a 6  $G\Omega$  resistor. These resistances were chosen  
56 such that the voltage drop between the cathode and the Frisch grid is only about  $\sim 1/5$  the voltage applied  
57 to the cathode. The voltage difference between the Frisch grid and the anode (ground) is the remaining 4/5  
58 in order to amplify the signal of the drift electrons after they pass the Frisch grid. A 2200 pF capacitor is  
59 connected from the first Be-Cu wire below the cathode to ground effectively acting as a high pass filter for  
60 noise reduction. There is also a 0.1  $\mu F$  capacitor connected from the Frisch grid directly to a SHV feed-thru  
61 in order to read out signals from the Frisch grid.

62 A negative voltage, chosen based on the gas pressure needed for the specific experiment in order to  
63 optimize the electron drift velocity for a given pressure [15], is fed to the cathode through a hermetic SHV  
64 connector. For example, in a fusion experiment using CH<sub>4</sub> gas, a typical voltage on the cathode is between  
65 1 - 2 kV, depending on the pressure of the methane gas (100 - 200 torr). In experiments with helium gas, the  
66 operating voltage is typically on the order of a few hundred volts depending on the pressure of the helium  
67 (300 - 500 torr). The large difference in pressure between the gases is primarily due to the stopping power  
68 of the gas. The difference in operating voltage between the gases is due to the electron mobility within the  
69 gas as electrons drift slower within helium [16]. The gas inside the detector is held using a 2.11 mg/cm<sup>2</sup>  
70 thick HAVAR window at the entrance of the detector, which has been tested up to 600 torr of helium gas. A  
71 gas handling system constantly circulates the gas to ensure a constant pressure. The pressure is monitored




Figure 1: A picture of the active elements of the *Encore* detector. It consists of a cathode at the top and the segmented anode at the bottom (when mounted the detector sits upside-down to the picture's orientation). A Frisch grid is located about a centimeter away from the anode and a voltage divider makes up the field cage between the anode and the cathode.

72 by a precision gauge which has an error of 0.125% of it's maximum range of 500 torr [17].

73 In order to eliminate beam scattering off the field cage, a  $3 \times 3$  cm hole was cut in the field cage at the  
74 height of the beam, and a frame was mounted to maintain tension on the field cage wires as shown in Fig. 1.  
75 A silicon detector or beam stop can be attached via a 4.5" diameter ConFlat flange at the end of the detector  
76 for beam tuning.

77 *2.2. Electronics*

78 *Encore* measures energy losses in the anode as the beam passes through the detector. The number of  
79 electrons ionized by a particle is proportional to the energy deposited into the gas. These electrons then drift  
80 up along the electric field line and are collected by the anode and ultimately read by charge integration.

81 Each side of the detector from strip 1 to 16 of the segmented anode is read out through high-density  
82 FGG lemo cables and into 2 MPR-16 pre-amplifiers. The first and last strip (strip 0 and strip 17) are  
83 read out through BNC cables and into 2 MPR-1 pre-amplifiers. All anode pre-amplifiers are grounded  
84 at the bias input. Currently, *Encore* uses analog electronics. The MPR-16's are then fed into MSCF-16  
85 shaper/amplifiers and then to the data acquisition system (DAQ). The MPR-1's are fed into single channel  
86 shaper/amplifiers and into a separate channel to the DAQ. The anode events are then reconstructed in an  
87 event-by-event basis during the analysis process.

88 The cathode and Frisch grid are also read out through MPR-1 preamplifiers. The cathode is connected  
89 to a negative bias supply that can reach voltage of  $\sim -4000$  V. Both the Frisch grid and the cathode can be  
90 used as a trigger since they both 'see' all the volume in the active region. However, we typically use the  
91 Frisch grid as a trigger for the DAQ since this signal is slightly faster and better shaped than that of the  
92 cathode, as well as bipolar and therefore more versatile for the electronic modules. The cathode is fed into a  
93 single channel shaper/amplifier and into an ADC. The Frisch grid signal is split after the preamplifier: one  
94 signal is fed to a fast-filter amplifier and used as a trigger, while the other is used as another ADC signal. A  
95 detailed electronics diagram of a typical *Encore* experiment is shown in Fig. 3.

96 At the John D. Fox laboratory, the beam can be bunched with a 12.5 MHz frequency. This is particu-  
97 larly important for experiments with radioactive beams where contaminants from the primary reaction are  
98 expected. We use a Time-to-Amplitude-converter (TAC) to measure the time-of-flight (ToF) of the beam.  
99 The detector trigger signal is used as the start and the radio-frequency (RF) signal from the accelerator as  
100 the stop, typically with the range set  $\sim 1\text{-}5 \mu\text{s}$ . A good beam separation is obtained by plotting the ToF of  
101 the beam versus the first strip in the detector (strip 0) as shown in Fig. 4. Additional timing information can

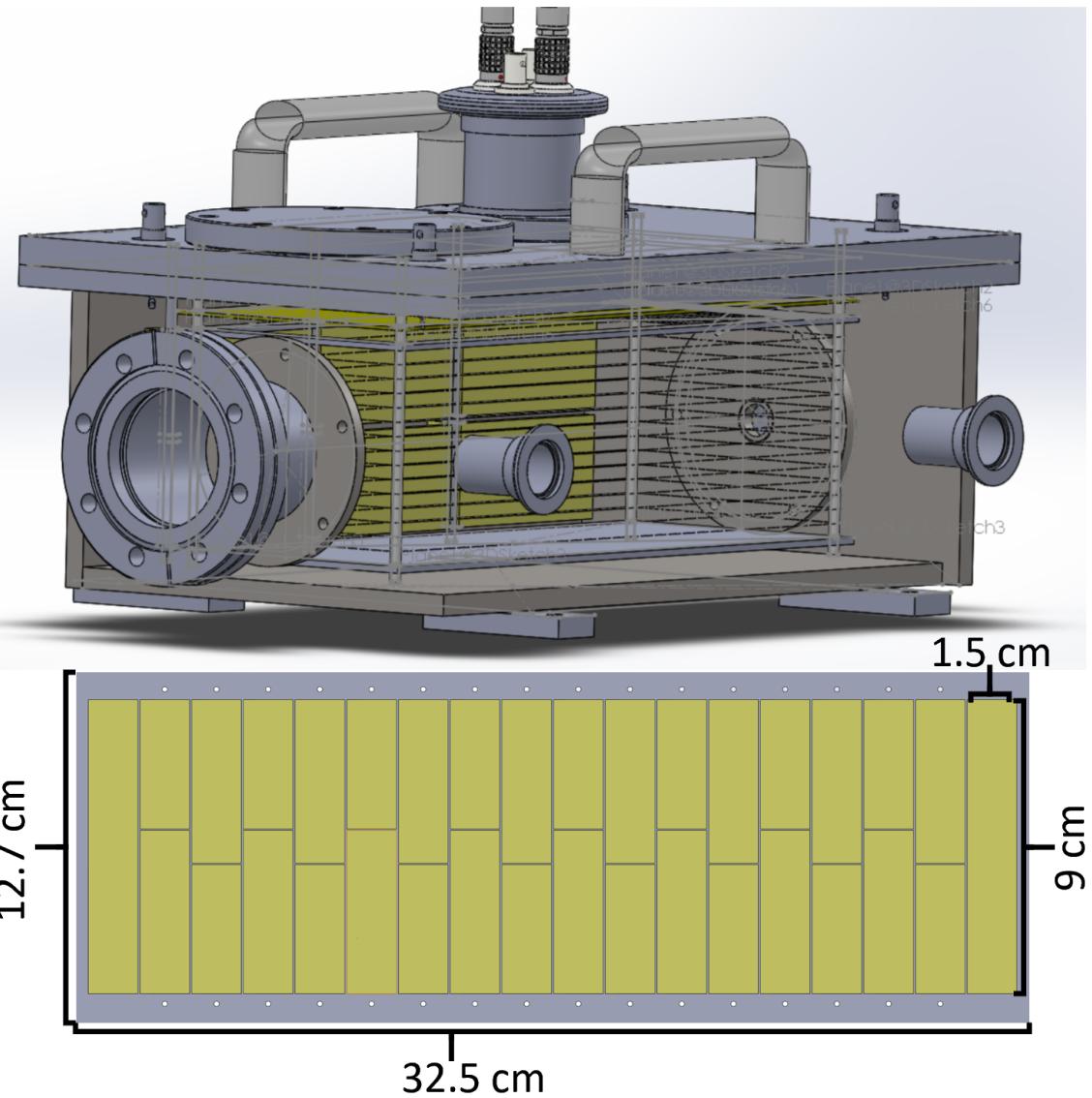



Figure 2: Upper panel: A 3D model of *Encore*. The beam passes through the center of the detector where there is a perpendicular electric field created by the field cage. This field cage is a voltage divider consisting of a cathode, wired planes, a Frisch grid, and the anode. The connections to the electronics are made through the top of the detector. The connections on the side of the detector are used for the gas handling system. Lower panel: A view of the structure of the segmented anode. It consists of 18 strips, 16 of them subdivided in left and right.

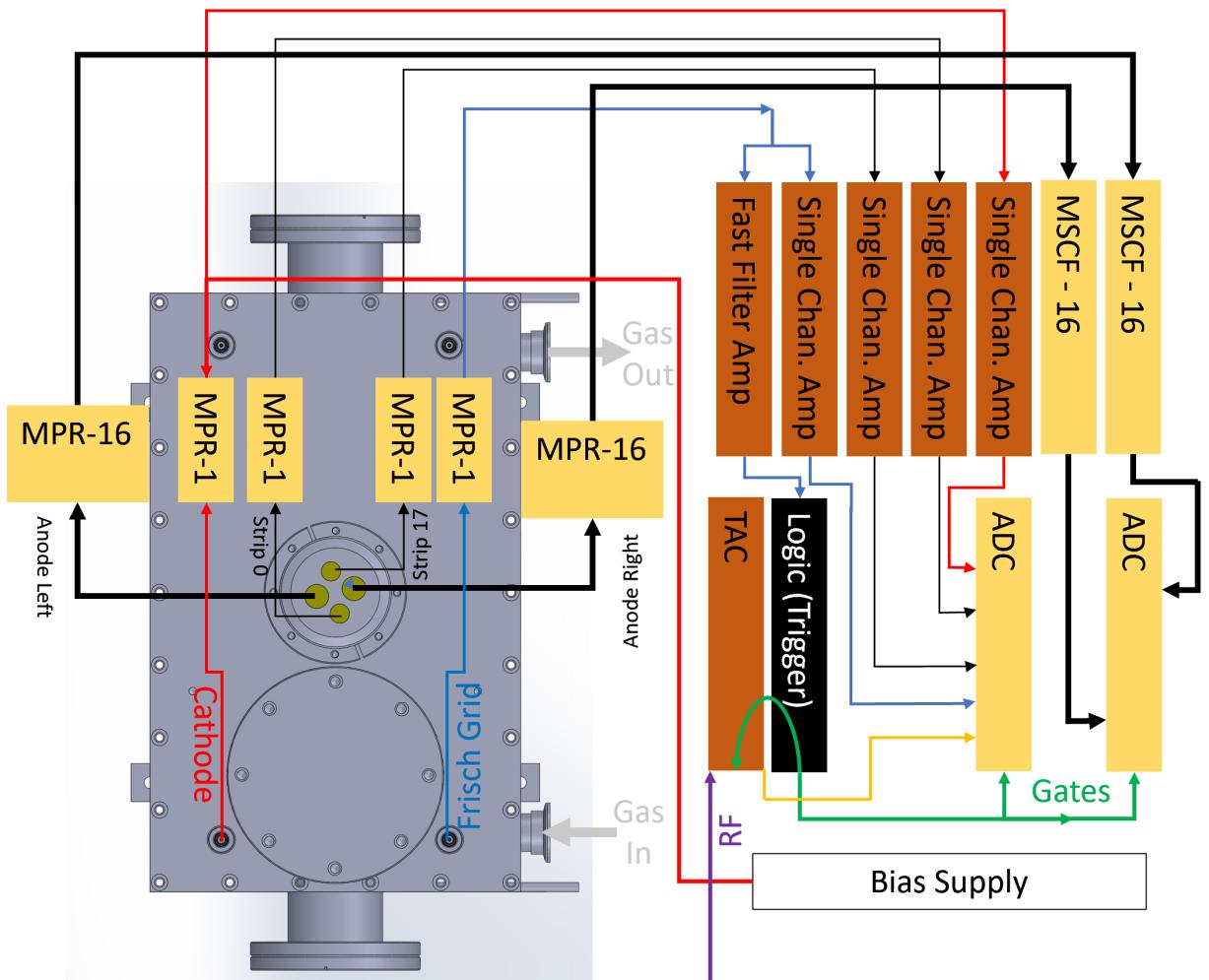



Figure 3: Electronics diagram of a typical experimental setup using *Encore* in the John D. Fox laboratory. The “Logic” box shown here is a catch-all for the various modules used including a Fan IN/Fan OUT module, Logic (and/or) module, and gate generators to make the timing and DAQ gates.

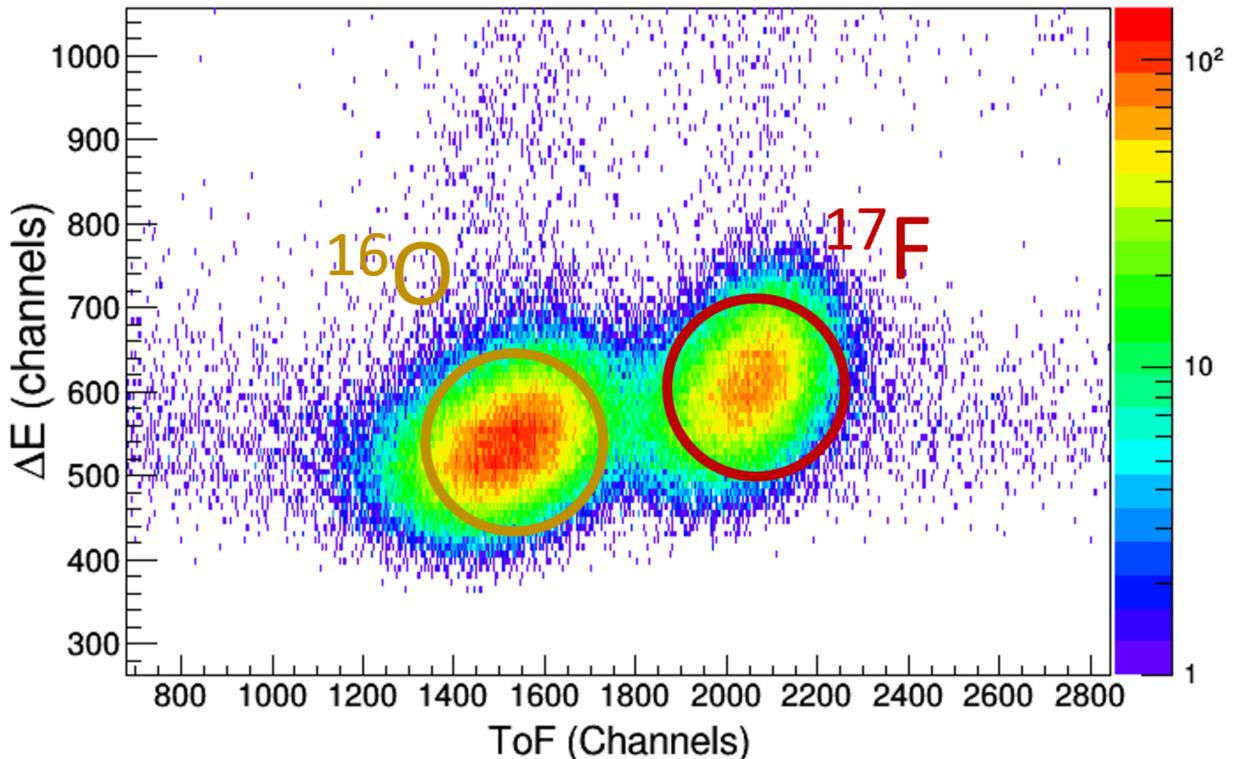



Figure 4: Time-of-flight (ToF) vs  $\Delta E$  spectrum of a  $^{17}\text{F}$  beam. The y-axis is the  $\Delta E$  signal from strip 0. The x-axis is ToF of the beam. Good separation between the  $^{17}\text{F}$  beam and its main contaminant, the primary  $^{16}\text{O}$  beam, is observed.

102 be incorporated in a similar way. For the radioactive beams from the RESOLUT radioactive beam facility  
 103 [18] at FSU, the timing signal from a micro-channel plate detector is sent to a second TAC.

104 **3. Encore's Operational Principles**

105 **3.1. Analysis**

106 *Encore* measures energy losses as the beam passes through the detector in the different strips of the  
 107 segmented anode. A beam enters into the active region, ionizing the gas and losing energy in the process.  
 108 Electrons drift up towards the anode where signals are then read out through 34 channels. The anode is  
 109 made up of 18 different strips, the middle 16 of which are further segmented into left and right as shown  
 110 in Fig. 2. This allows for 18 distinct regions to measure the energy loss of the beam as it passes through  
 111 the detector. In the analysis of the data, an event-by-event reconstruction is performed. A ‘trace’ is the  
 112 sum of energy losses along the 18 strips of the detector (strip 0, 16 strips-right, 16 strips-left, and strip 17).  
 113 *Encore*’s operation is best understood through a fusion measurement.

114 Strips 0 and 17 are control strips. Strip 0 provides a veto against scattering events in the entrance

115 window. It also defines the amount of beam that enters the detector. Strip 17 defines the amount of beam  
116 that passes through the detector without interacting.

117 Most of the time, the beam passes through the detector without nuclear interaction, producing a typical  
118 Bragg curve of the beam in the gas. When there is a nuclear interaction of a beam particle with a particle  
119 in the gas, a compound nucleus is formed with a higher nuclear charge (Z) than the beam. This results in a  
120 higher energy loss for that particle and therefore a larger signal read out of the anode according to the Bethe  
121 formula:

$$122 \frac{dE}{dx} \propto \frac{Z^2}{v^2}$$

123 where it can be seen that the energy loss per strip is proportional to the square of the nuclear charge of the  
124 particle (Z) and inversely proportional to the square of the velocity of the particle (v) in the medium.

125 The data is filtered and analyzed via ‘traces’ – the energy loss of a particle through the detector – shown  
126 in Fig. 5. These are sorted signals of energy loss vs. strip number, visually providing the energy loss of an  
127 event as it passes through the detector. Typically the detector only sees ‘beam-like’ events as shown in red  
128 in Fig. 5. Fusion events are characterized by a sudden jump in the energy loss signal. To look for signals in  
129 a given strip, beam-like events are required up until the selected strip, followed by a  $\Delta E$  spike in the signal  
130 as shown by the gold traces in Fig. 5.

131 Guided by energy loss simulations [19], we have developed an algorithm that gain matches strips. It  
132 then it looks for a  $\Delta E$  as small as one sigma away from the beam peak within a strip and sets a threshold for  
133 the following strips to ensure a clear separation between beam and fusion event. The small  $\Delta E$  is set to not  
134 miss any fusion events happening in the end of a strip as it would produce a smaller ionization signal than  
135 one happening at the beginning. The algorithm then checks the height and length of the signal and ensure  
136 that the event stops within the detector since the evaporation residue will not make it to the end of the active  
137 region of the detector.

138 Additional filters are required to ensure the correct identification of the reaction. The segmentation of  
139 the middle 16 strips into left and right allows the inclusion of a multiplicity filter in the analysis that is used  
140 to filter out the primary source of background - scattering events. In a fusion-type event an evaporation  
141 residue is formed, leaving just one particle in the detector. In a scattering event there are two particles  
142 moving at an angle with respect to each other. The left and right segmentation allows us to see the two  
143 particles and veto that event. It is important to mention that the gains in the detector are set up so that the  
144 light particles as well as the interaction of the beam with the hydrogen in the gas are not observed.

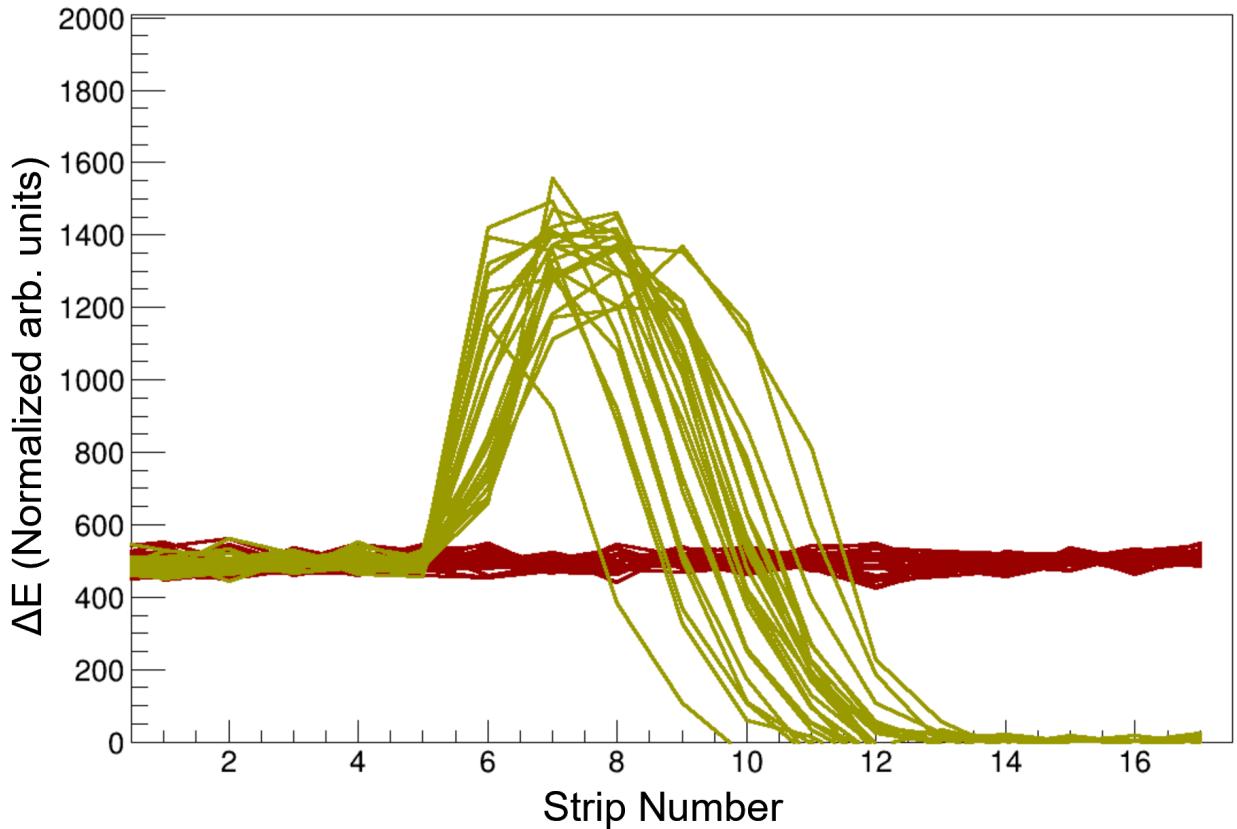



Figure 5: Energy loss traces inside of *Encore*. Typical traces of the  $^{19}\text{F}$  beam are shown in red. The Bragg curve of the beam has been normalized to channel 500 to simplify the analysis. Typical fusion events of  $^{19}\text{F} + ^{12}\text{C}$  happening in strip 6 are shown by the traces in gold.

145 An example of fusion traces occurring in strip 5 are shown in Fig. 6. In Fig. 6a, only one side of the  
 146 detector fires per strip, as is shown by a characteristic zig-zag trace in the left (blue) and right (green) side  
 147 of the detector. The gold trace is the sum of left + right signals. This ‘multiplicity one’ event is typical of  
 148 a fusion reaction where the evaporation residue travels in the same direction as the beam. In Fig. 6b, the  
 149 evaporation residue is emitted at a large angle with respect to the beam, and therefore, after strip 5, it is  
 150 observed in only one side of the detector while the other side shows no signal.

151 Examples of scattering traces occurring in strip 5 are shown in Figs. 7a and 7b. In both cases, there are  
 152 signals in both sides of the detector after strip 5, indicating that two particles are present. These ‘multiplicity  
 153 two’ events are typical of scattering events.

154 After the correct identification of the events, the total fusion events per strip as well as beam events are  
 155 counted, allowing for an absolute self-normalization of the cross sections measured.

156 For the case of  $(\alpha, n)$  and  $(\alpha, p)$  reactions, the general analysis procedure remains similar to the fusion

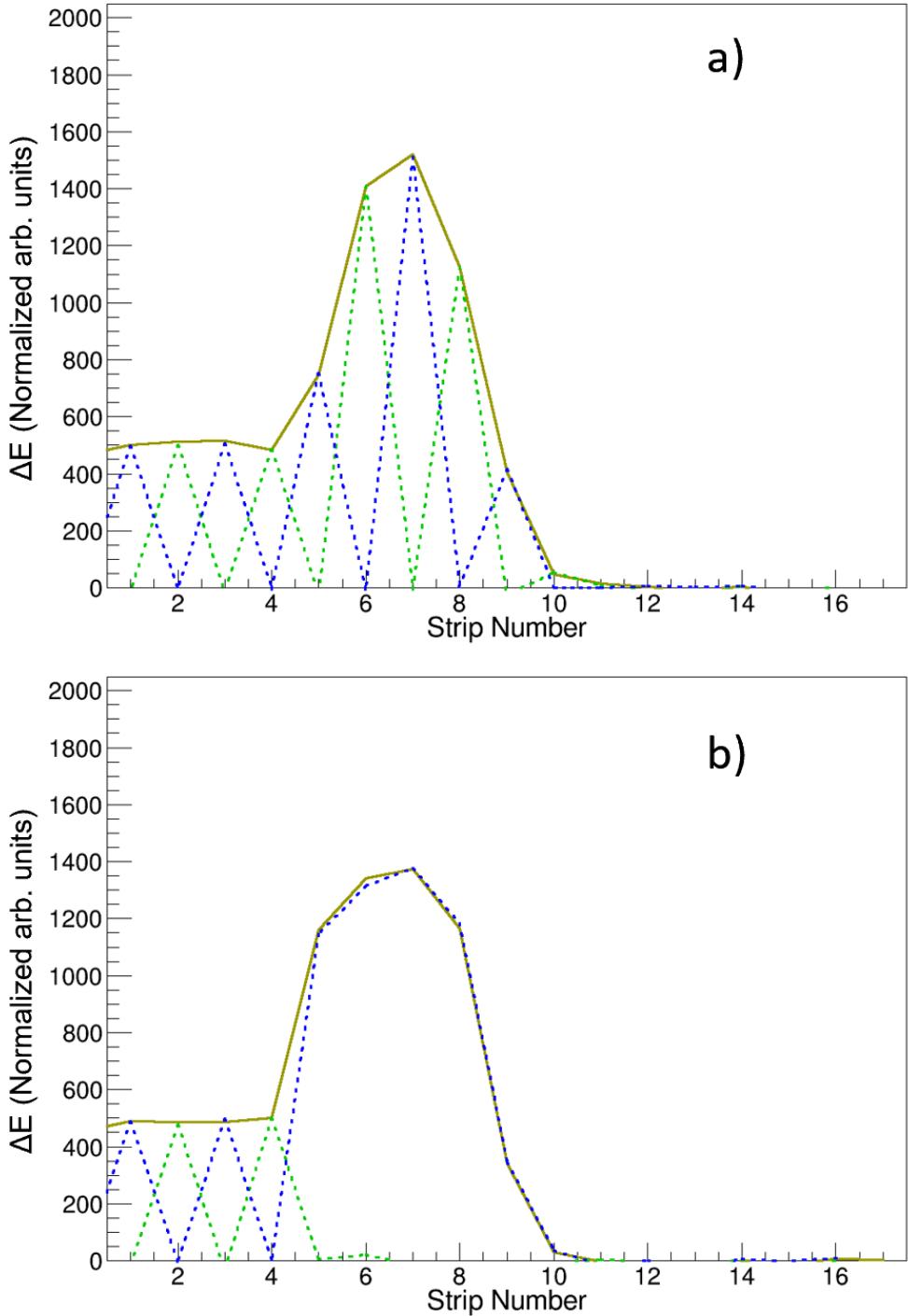



Figure 6: Typical traces in *Encore* of fusion-like events occurring in strip 5. The colors represent signals in the left (blue) and right (green) side of the segmented anode, as well as the sum of left + right signals (gold). The multiplicity information from each side of the detector is important to distinguish fusion from scattering events. In multiplicity one events, characteristic of fusion traces, only one side of the detector has a signal. Fig. 6a shows a heavy residue traveling along the beam axis (left and right alternate firing) while 6b shows a high angle heavy residue (only the left side of the detector fires as it passes through).

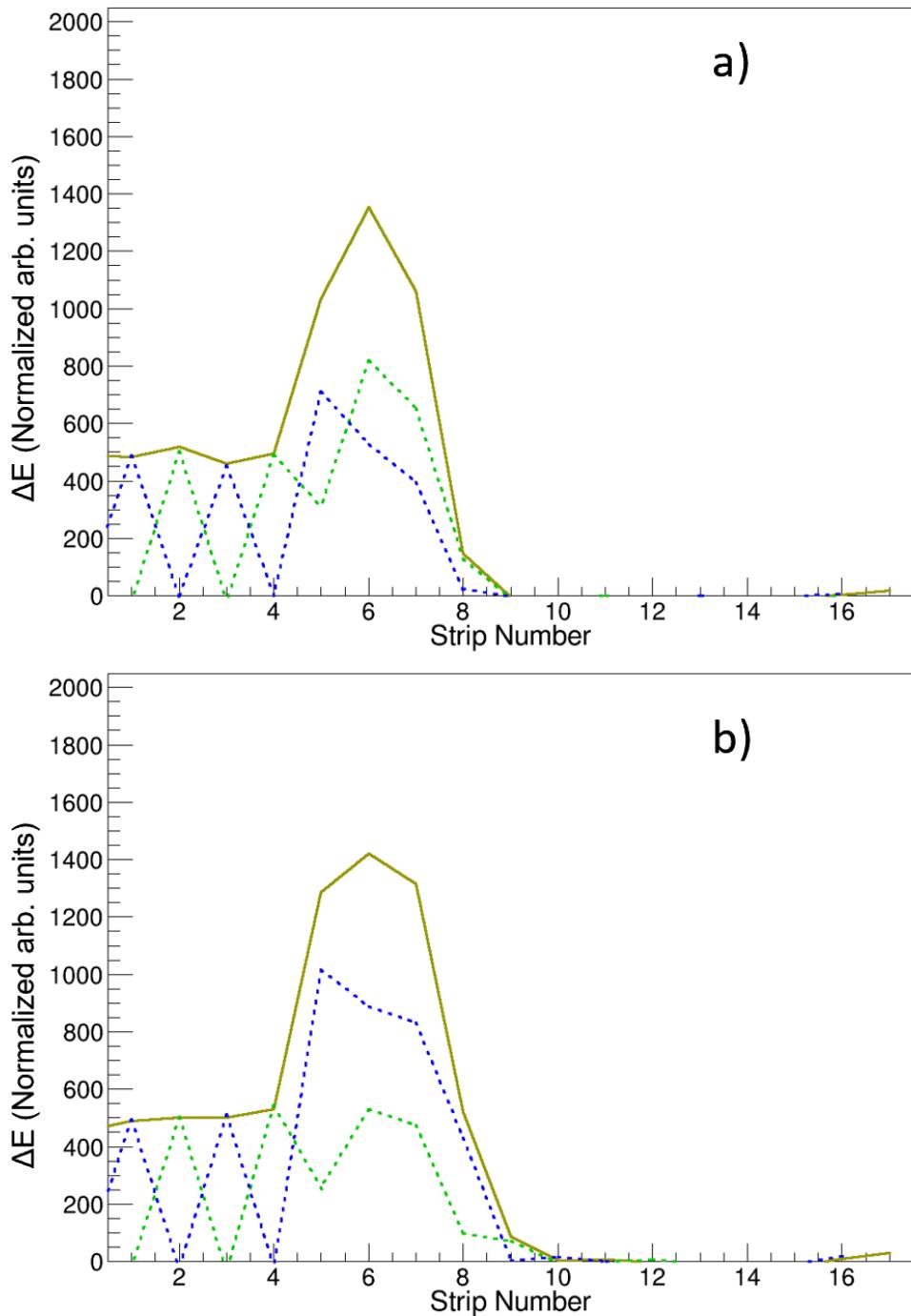



Figure 7: Typical traces in *Encore* of scattering-like events occurring in strip 5. Again, the colors represent signals in the left (blue) and right (green) side of the segmented anode, as well as the sum of left+right signals (gold). For multiplicity two events, both sides of the detector have a signal for the same strip, indicating two particles are present, which is a characteristic of scattering events. Figs. 7a and 7b both show left and right (green and blue) firing simultaneously in strips 5, 6, and 7.

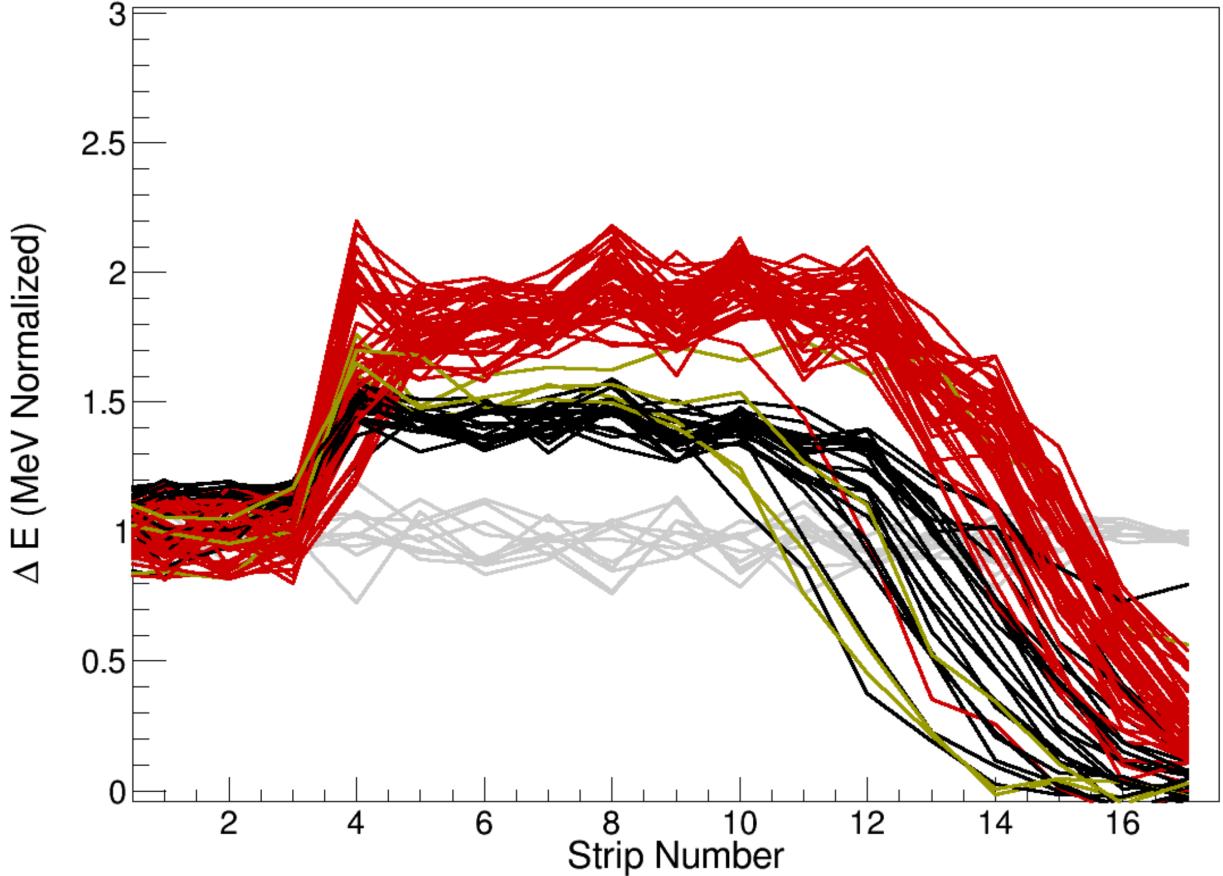



Figure 8: Traces of the  $^{18}\text{O}(\alpha, \text{p})$  and  $^{18}\text{O}(\alpha, \text{n})$  reactions happening in strip 4 of *Encore*. An  $^{18}\text{O}$  beam was used to bombard *Encore*, which was filled with helium gas. Typical beam traces of  $^{18}\text{O}$  passing through the detector are shown in grey.  $^{18}\text{O}(\alpha, \alpha')^{18}\text{O}$  events are shown in black. Typical  $^{18}\text{O}(\alpha, \text{p})^{21}\text{F}$  events are shown in gold and  $^{18}\text{O}(\alpha, \text{n})^{21}\text{Ne}$  events are shown in red. The reactions were measured simultaneously. The expected cross section for  $^{18}\text{O}(\alpha, \text{p})^{21}\text{F}$  in this region is on the order of a few mb, thus the cross section extracted for the reaction is just an upper limit.

157 one. For this type of experiments, *Encore* is filled with helium gas. The threshold in the  $\Delta E$  signals have to  
 158 be adjusted since the jump is not as drastic as it is in a fusion event. This is demonstrated by the traces of  
 159 reactions of an  $^{18}\text{O}$  beam with helium gas in *Encore* shown in Fig. 8 where  $^{18}\text{O}(\alpha, \text{p})$  and  $^{18}\text{O}(\alpha, \text{n})$  reactions  
 160 were measured simultaneously.

161 Furthermore, an averaging method of the energy loss in the strips can be used to separate  $(\alpha, \text{p})$  and  $(\alpha, \text{n})$   
 162 events from beam-like events, allowing for a simultaneous measurements of both reaction channels. This  
 163 procedure was first shown to work at ANL for the  $^{17}\text{O}(\alpha, \text{n})$  reaction [11]. The average of several strips can  
 164 be used to obtain a better separation of the different reaction channels, scattering,  $(\alpha, \text{p})$ , and  $(\alpha, \text{n})$ , as shown  
 165 in Fig. 9.

166 The associated energy value for each strip is determined by the energy of the incoming beam and the gas

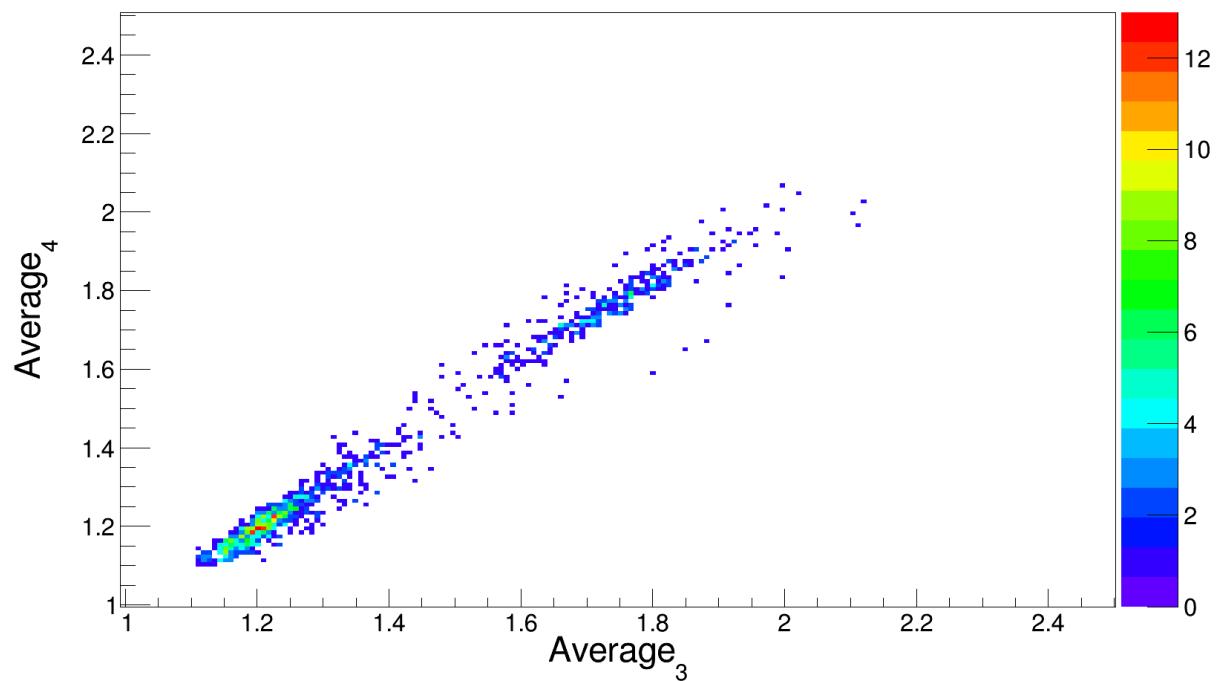
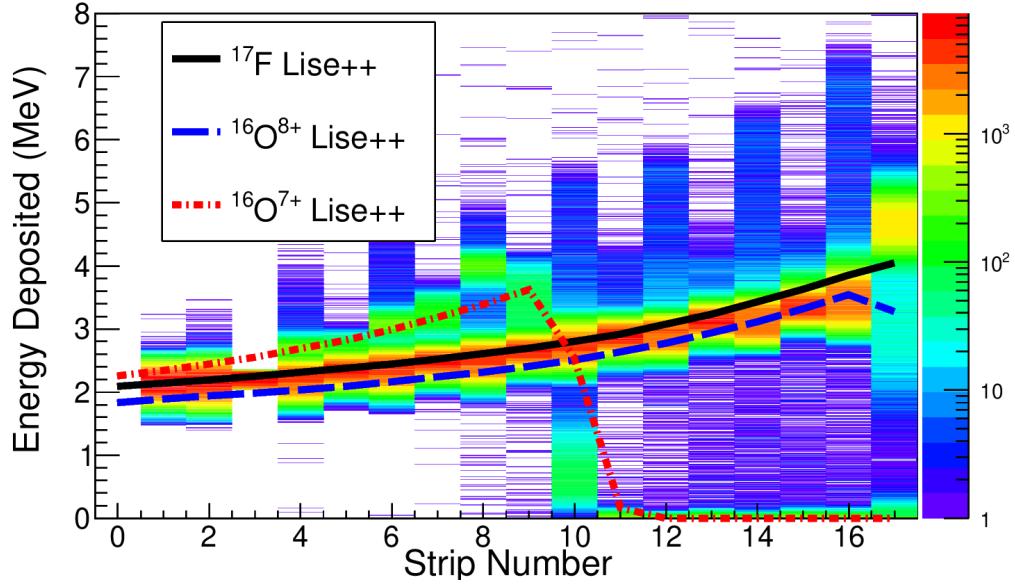
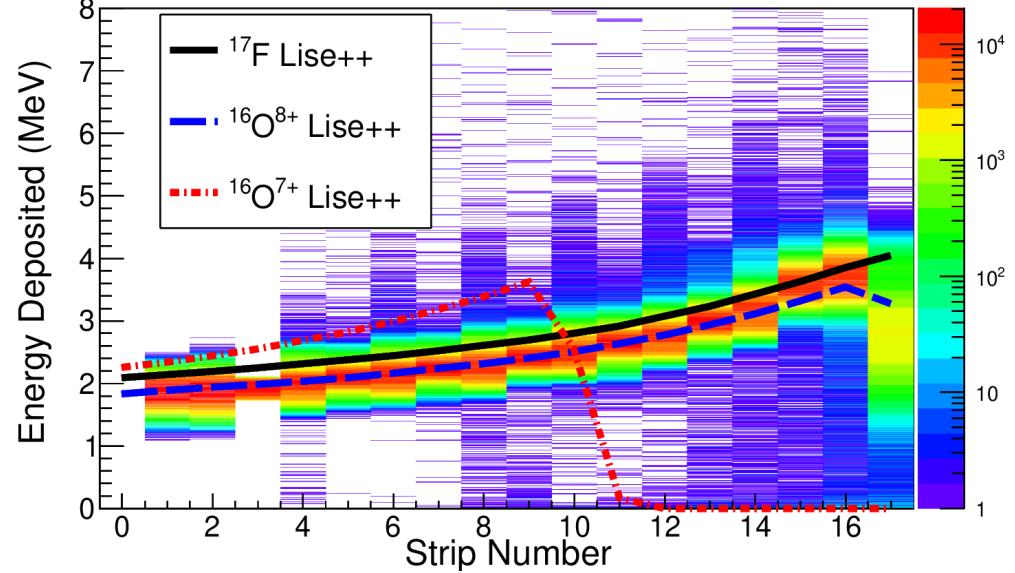



Figure 9: Average of 4-strips vs 3-strips after a reaction of  $^{18}\text{O}$  beam with helium gas in the detector happening in strip 8. The  $^{18}\text{O}(\alpha, p)^{21}\text{F}$  channel is closed in this strip. The lower-left structure is the  $^{18}\text{O}(\alpha, \alpha')^{18}\text{O}$  events, while the upper-right structure corresponds to  $^{18}\text{O}(\alpha, n)^{21}\text{Ne}$  events clearly separated from the scattering events.


167 pressure within the detector. LISE++ [20] is used to calculate the energy loss of the beam within a specific  
168 strip, assuming that the reaction happened at the middle of the strip, the error bars in the energy are due to the  
169 size of the strips. This procedure was validated at Argonne National Laboratory where the MUSIC detector  
170 was attached to the Split-Pole Spectrograph (SPS) so that the energy loss calculations with LISE++ could  
171 be compared with the energies measured in the focal plane detector of the SPS [1]. In the case of *Encore*,  
172 a silicon detector mounted in the back of the detector is also used to validate the energy loss calculations  
173 of the beam in the gas. This silicon detector is primarily used for beam tuning without gas in the detector.  
174 However, as gas is gradually added to *Encore*, the energy loss calculations from LISE++ are compared  
175 with the measurements in the silicon detector in order to validate the energy loss of the beam through the  
176 gas. Although at typical operating gas pressures, the beam stops before reaching the silicon detector, and  
177 the behavior of the Bragg curve of the beam and its components are also used as calibration points for the  
178 energy assignments. This is highlighted by the calibrated Bragg curve spectrum in *Encore* taken from our  
179 radioactive  $^{17}\text{F}$  experiment shown in Fig. 10a and 10b. In this instance, the  $^{17}\text{F}$  beam does not stop within  
180 the active region, but both the primary  $^{16}\text{O}^{8+}$  and a  $^{16}\text{O}^{7+}$  contaminant do. The Bragg curves from LISE++  
181 calculations shown by the solid ( $^{17}\text{F}$ ) and dashed ( $^{16}\text{O}^{8+}$ , and  $^{16}\text{O}^{7+}$ ) curves are in good agreement with  
182 the measured values in *Encore*, especially well before the Bragg peak. It is important to point out that in  
183 analysis of this specific case, the  $^{16}\text{O}^{7+}$  component was further gated out using the timing information as it  
184 was shown in Fig 4, and that typically only up to strip 13 is effectively used to extract a cross section since  
185 the analysis program requires additional strips to correctly identify the events in the detector.

186 Discrepancies between energy loss calculations have been reported for more exotic systems than the  
187 ones reported here [21, 22]. Therefore, energy loss effects have to be further studied as more exotic beams  
188 become available.


### 189 3.2. Beam Rate Characteristics

190 *Encore* is designed to be used with low intensity radioactive beams and operated at parameters optimal  
191 for the electron drift velocity. For example, with  $\text{CH}_4$  as a counting gas, average beam intensities of up to  
192  $2.5 \times 10^4$  pps have been used while with helium gas in the detector up to  $1 \times 10^4$  pps. However, measurements  
193 with more intense beams are desired. The intrinsic limit is the time that it takes the ionized electrons to drift  
194 to the anode. The two main obstacles to increasing the beam intensity are detector breakdown and pile-up  
195 signals.

196 As the beam rate increases, there are also more pileup events. With *Encore*, we can mark these events



(a) Calibrated Bragg curve for the  $^{17}\text{F}$  beam component passing through *Encore*.



(b) Calibrated Bragg curve for the  $^{16}\text{O}$  beam component passing through *Encore*.

Figure 10: Bragg curves measured in *Encore*. The solid black line, blue dotted lines, and the red dot-dashed lines represent  $^{17}\text{F}$ ,  $^{16}\text{O}^{8+}$ , and  $^{16}\text{O}^{7+}$  Bragg curves, respectively, as calculated by LISE++. The beam components in the spectra have been previously gated using its respective time of arrival to the detector shown in Fig. 4. Fig. 10a is a calibrated spectrum using the  $^{17}\text{F}$  component of the beam while fig. 10b is a calibrated spectrum using the  $^{16}\text{O}^{8+}$  component of the beam.

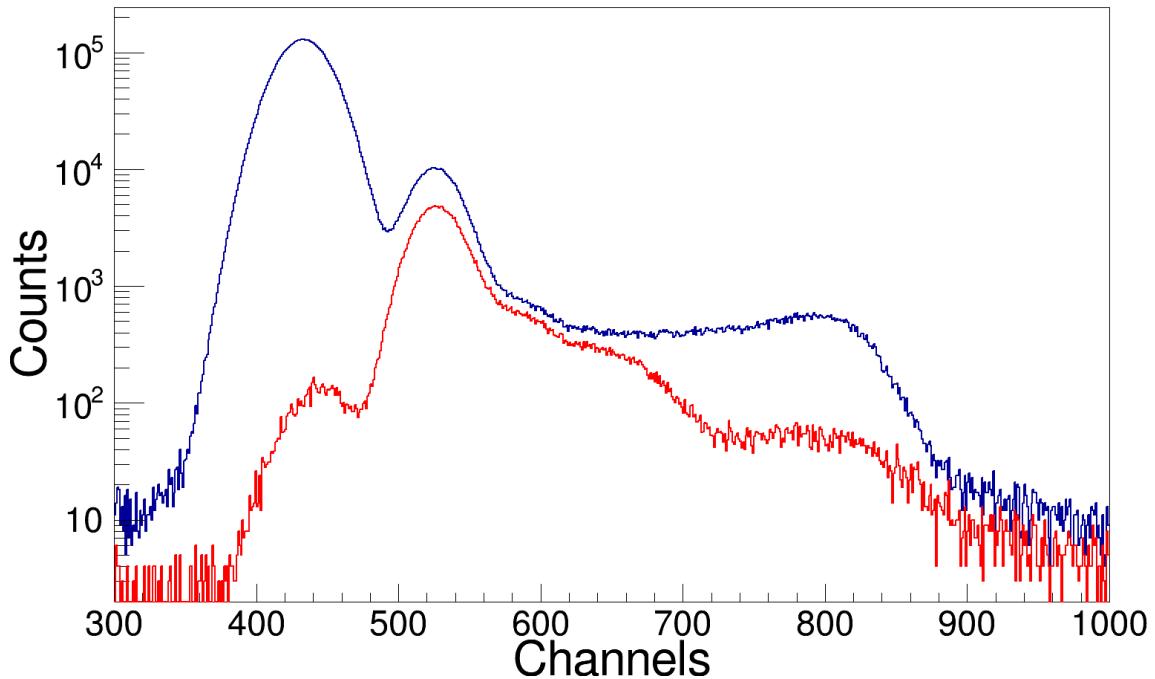



Figure 11: Pileup events within the detector as seen in Strip 2. As the incoming beam rates are increased, pileup in the detector are observed as structures in channels  $\sim 350$  and above (blue). A second trigger is used to tag these pile-up events as overlapping signals from the trigger (red) and veto the DAQ, reducing the computer dead-time. See text for details.

197 to either throw them away in the analysis or use them as a veto on the entire DAQ to reduce the computer  
 198 dead-time. The trigger signal from the Frisch grid is split to make a second copy in coincidence with a  
 199 slightly delayed gate (60 ns) so that two overlapping events are flagged. We then feed the primary trigger  
 200 to the start of a TAC and stop it with this secondary trigger. The results are shown in Fig. 11. The signals  
 201 marked in red are any signal that are produced by two overlapping events. This analysis also provides a way  
 202 of measuring the effective pileups within an experiment, which, as we have found, are typically an order of  
 203 magnitude less ( $10^3$  pile-ups per second vs  $10^4$  pps) than the “good” signal events.

204 **4. Experimental Results**

205 In order to validate the operation of *Encore* as well as the analysis method employed, we performed a  
 206 series of experiments with well-known systems and compared the data obtained with *Encore* to published  
 207 data.

208 4.1. Fusion Reactions

209 Here, we discuss the fusion excitation functions of the stable systems  $^{16}\text{O} + ^{12}\text{C}$  and  $^{19}\text{F} + ^{12}\text{C}$  as mea-  
210 sured with *Encore* at the John D. Fox laboratory at FSU. These measurements were part of an experimental  
211 campaign to understand the possible influence of the halo first excited state in  $^{17}\text{F}$  on the fusion process  
212 [23].

213 A  $^{16}\text{O}$  primary beam was used to produce a  $^{17}\text{F}$  radioactive beam via the  $^{16}\text{O}(\text{d},\text{n})^{17}\text{F}$  reaction. A  
214 liquid nitrogen-cooled gas cell was filled with deuterium gas and bombarded by a primary  $^{16}\text{O}$  beam at  
215 91.5 MeV. The radioactive  $^{17}\text{F}$  beam at 61.5 MeV at a rate of 600 pps was delivered to *Encore* using the  
216 RESOLUT radioactive beam facility. However, part of the primary  $^{16}\text{O}$  beam with the same rigidity as the  
217  $^{17}\text{F}$  reached *Encore* at 58.1 MeV and at a rate of 1100 pps. Measurements with  $^{16}\text{O}$  and  $^{17}\text{F}$  were performed  
218 simultaneously. The time-of-flight of the beams was used with strip 0 in *Encore* to separate the different  
219 beam components as it is shown in Fig. 4.

220 *Encore* was filled with  $\text{CH}_4$  gas at 168 torr. Under these conditions, the fusion excitation function of  
221 the  $^{16}\text{O} + ^{12}\text{C}$  system was measured in the energy range of  $E_{cm} = 8 \text{ MeV} - 16 \text{ MeV}$ . Results from this  
222 measurement are shown in Fig. 12 in comparison with existing published data [24–31]. The error bars in  
223 the cross sections are statistical while the error bars in the energy are due to the size of the strips in the  
224 segmented anode. The good agreement between our measurement with *Encore* and previous sets of data,  
225 especially the reproduction of the structures in the fusion excitation function, give us confidence in the  
226 analysis procedure used.

227 A separate experiment was performed to measure the fusion excitation function of the  $^{19}\text{F} + ^{12}\text{C}$  system.  
228 A 65 MeV stable  $^{19}\text{F}$  beam was delivered to *Encore* at a rate of 1000 pps. In this experiment, *Encore* was  
229 filled with 131 torr of  $\text{CH}_4$  gas. The measured fusion excitation function of the  $^{19}\text{F} + ^{12}\text{C}$  system is shown  
230 in Fig. 13 along with previous published data [24, 32, 33]. The error bars in the cross sections are statistical  
231 while the error bars in the energy are due to the size of the strips in the segmented anode. The agreement  
232 between our measurement and previous sets of data shows consistency of the analysis procedure.

233 4.2.  $(\alpha,p)$  and  $(\alpha,n)$  Reactions

234 The flexibility of the *Encore* detector allows it to be used with different counting gases. In particular,  
235 measurements with helium gas are of relevance in nuclear astrophysical scenarios.

236 We have successfully used *Encore* to measure  $^{18}\text{O}(\alpha,\text{n})^{21}\text{Ne}$  and  $^{18}\text{O}(\alpha,\text{p})^{21}\text{F}$  reactions simultaneously.  
237 For this experiment, *Encore* was filled with pure helium gas. A 52 MeV  $^{18}\text{O}$  beam at a rate of 10,000

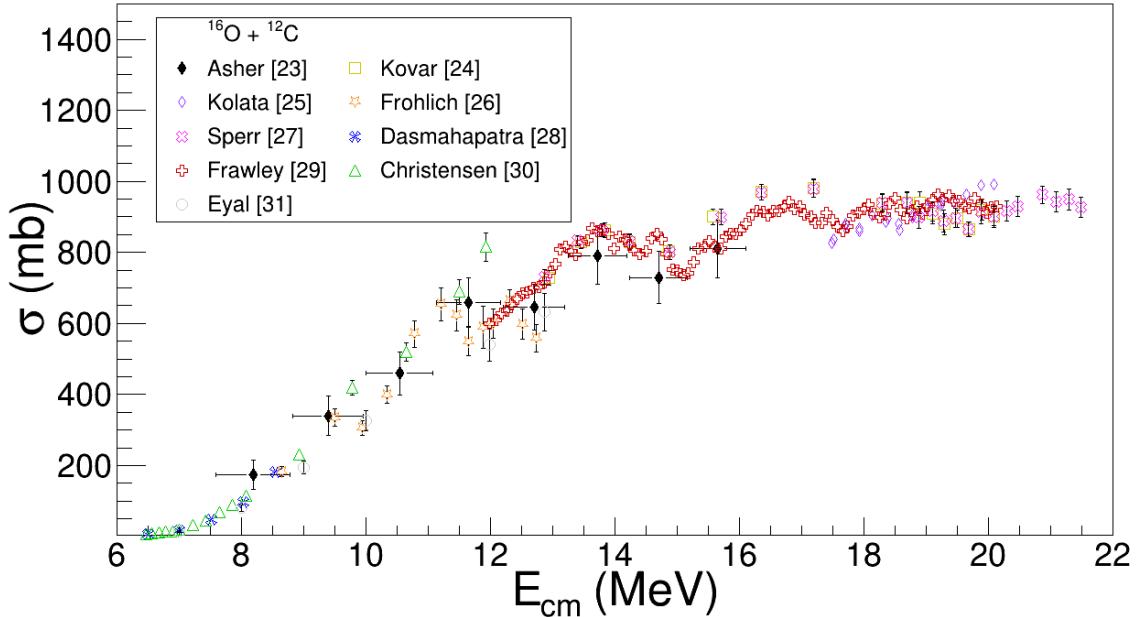



Figure 12: Results of the experimental fusion cross sections measured with *Encore* [23] for the  $^{16}\text{O} + ^{12}\text{C}$  system compared with existing data from Refs. [24–31]. Good agreement is shown between the current measurement and previously published data.

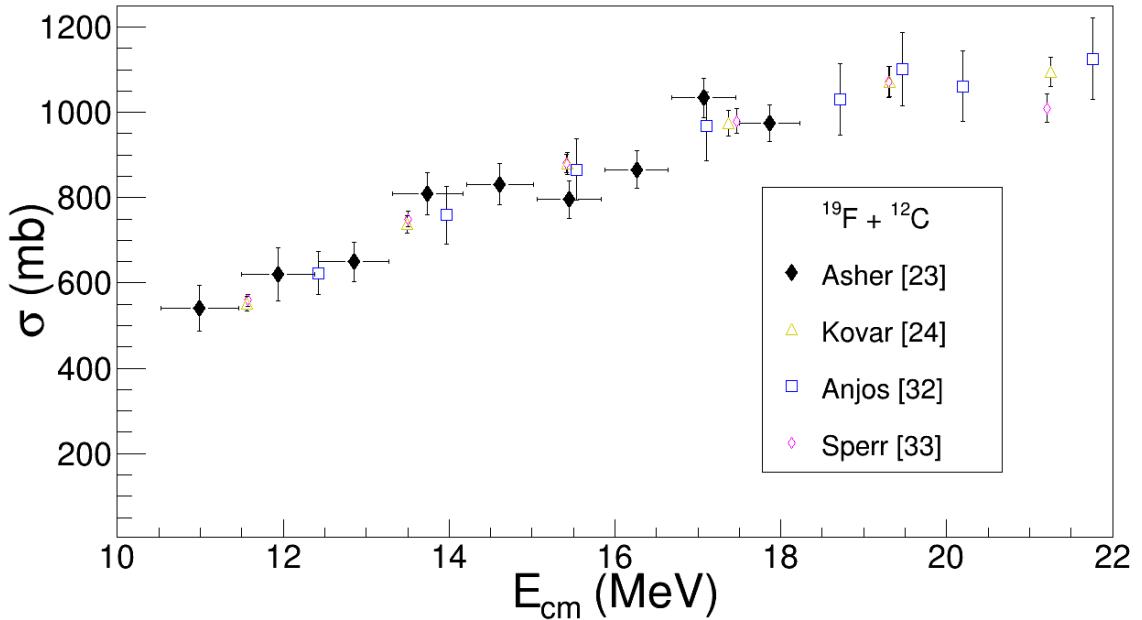



Figure 13: Results of the experimental fusion cross sections of the  $^{19}\text{F} + ^{12}\text{C}$  system measured with *Encore* [23] in comparison with existing data from Refs. [24, 32, 33]. Good agreement is observed between our measurement and data from literature.

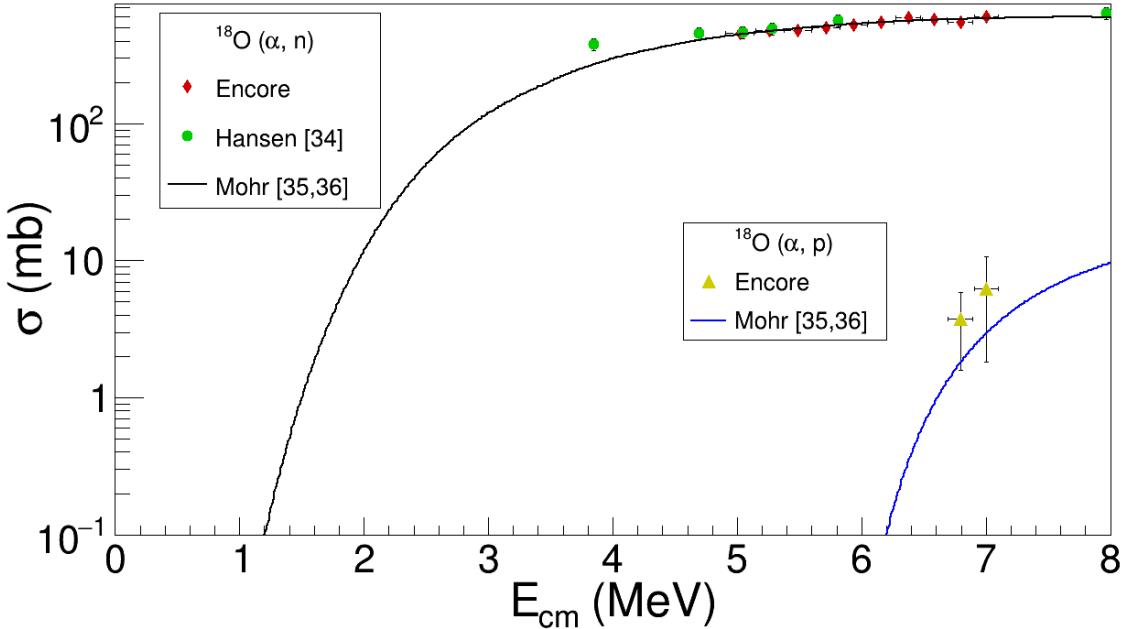



Figure 14: Results of the cross sections for the  $^{18}\text{O}(\alpha, \text{n})^{21}\text{Ne}$  and  $^{18}\text{O}(\alpha, \text{p})^{21}\text{F}$  reactions simultaneously measured with *Encore*. The measured cross sections are compared to statistical model calculations performed by P. Mohr [35, 36] and experimental data by Hansen et al. [34] (energy error-bars in the data from ref. [34] are large and omitted for clarity). The y-axis for the  $^{18}\text{O}(\alpha, \text{n})$  reaction is on the left side where cross sections are shown in linear scale. The y-axis for the  $^{18}\text{O}(\alpha, \text{p})$  reaction is on the right side where the cross sections are shown in log scale. The  $^{18}\text{O}(\alpha, \text{p})$  cross sections are about two orders of magnitude smaller than the  $^{18}\text{O}(\alpha, \text{n})$  reactions in the measured energy range, thus the data points shown are upper limits on the cross section for the  $^{18}\text{O}(\alpha, \text{p})^{21}\text{F}$  reaction.

238 pps was delivered to *Encore*, which was filled with 404 torr of helium gas. The energy and pressure in  
 239 the detector are such that both channels,  $(\alpha, \text{p})$  and  $(\alpha, \text{n})$ , are open in the first 8 strips. However, the  $(\alpha, \text{p})$   
 240 cross sections are only of the order of a few milibarns or less in this energy region as shown by statistical  
 241 model calculations. Therefore, only upper limits for the  $(\alpha, \text{p})$  cross sections could be extracted for two  
 242 of the early strips in the detector. Results of our measured cross sections are shown in Fig. 14. Very  
 243 scarce experimental data are available for these systems. Our results are compared with data from ref.  
 244 [34] and with statistical model calculations by P. Mohr [35, 36]. The measured  $(\alpha, \text{n})$  data agrees very well  
 245 with the previous measurement and with the calculations. Despite the small cross sections for the  $(\alpha, \text{p})$   
 246 reaction, there is still very good agreement between our measurements and statistical model calculations  
 247 that demonstrate the capabilities of *Encore*.

248 **5. Summary and Outlook**

249 In summary, *Encore* is an active target detector developed at FSU that measures energy losses as the  
250 beam travels through the detector using a segmented anode, thereby identifying reaction products and un-  
251 reacted beam particles. *Encore* allows for the measurement of a large portion of the reaction excitation  
252 function using a single beam energy. Several gases can be used in the detector. We have measured the  $^{16}\text{O}$   
253 +  $^{12}\text{C}$  and  $^{19}\text{F} + ^{12}\text{C}$  fusion reactions using  $\text{CH}_4$  gas. The  $^{18}\text{O}(\alpha, \text{p})^{21}\text{F}$  and  $^{18}\text{O}(\alpha, \text{n})^{21}\text{Ne}$  reactions were  
254 measured using helium gas in the detector. The results were compared with existing data and statistical  
255 model calculations, showing a good agreement among them.

256 *Encore* is a portable, versatile, highly-efficient, self-normalizing, active target detector optimized for  
257 use with low intensity radioactive beams. In the future, other gases (Ne, Ar, Kr) can be used to explore  
258 different mass ranges and Z dependencies on the measured reactions and to study other reaction processes  
259 like fission. Further improvements include the use of digital electronics as well as residue identification.

260 **Acknowledgements**

261 This work was supported by the National Science Foundation under grants PHY-1712953 and PHY-  
262 2012522, and by the State of Florida. The authors would like to thank E. Rehm, M. Avila and D. Santiago-  
263 Gonzalez for their helpful discussions and P. Mohr for providing the calculations of the cross sections for  
264 the  $^{18}\text{O}(\alpha, \text{p})$  and  $^{18}\text{O}(\alpha, \text{n})$  reactions.

265 **6. References**

266 **References**

- 267 [1] P. Carnelli, S. Almaraz-Calderon, K. Rehm, M. Albers, M. Alcorta, P. Bertone, B. Digiovine, H. Esbensen, J. F. Niello,  
268 D. Henderson, C. Jiang, J. Lai, S. Marley, O. Nusair, T. Palchan-Hazan, R. Pardo, M. Paul, C. Ugalde, [Multi-sampling](#)  
269 [ionization chamber \(music\) for measurements of fusion reactions with radioactive beams](#), Nuclear Instruments and Methods  
270 in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 799 (2015) 197 – 202.  
271 [doi:<https://doi.org/10.1016/j.nima.2015.07.030>](https://doi.org/10.1016/j.nima.2015.07.030).  
272 URL <http://www.sciencedirect.com/science/article/pii/S0168900215008591>
- 273 [2] C. Demonchy, W. Mittig, H. Savajols, P. Roussel-Chomaz, M. Chartier, B. Jurado, L. Giot, D. Cortina-Gil, M. Caamano,  
274 G. Ter-Arkopian, A. Fomichev, A. Rodin, M. Golovkov, S. Stepantsov, A. Gillibert, E. Pollacco, A. Obertelli, H. Wang,  
275 [Maya, a gaseous active target](#), Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,  
276 Detectors and Associated Equipment 573 (1) (2007) 145–148, proceedings of the 7th International Conference on Position-  
277 Sensitive Detectors. [doi:<https://doi.org/10.1016/j.nima.2006.11.025>](https://doi.org/10.1016/j.nima.2006.11.025).  
278 URL <https://www.sciencedirect.com/science/article/pii/S0168900206022558>
- 279 [3] E. Koshchiiy, J. Blackmon, G. Rogachev, I. Wiedenhöver, L. Baby, P. Barber, D. Bardayan, J. Belarge, D. Caussyn, E. Johnson,  
280 K. Kemper, A. Kuchera, L. Linhardt, K. Macon, M. MatoÅ, B. Rasco, D. Santiago-Gonzalez, [Anasen: The array for nuclear](#)  
281 [astrophysics and structure with exotic nuclei](#), Nuclear Instruments and Methods in Physics Research Section A: Accelerators,  
282 Spectrometers, Detectors and Associated Equipment 870 (2017) 1–11. [doi:<https://doi.org/10.1016/j.nima.2017.07.030>](https://doi.org/10.1016/j.nima.2017.07.030).  
283 URL <https://www.sciencedirect.com/science/article/pii/S0168900217307726>

285 [4] A. Laird, P. Amaudruz, L. Buchmann, S. Fox, B. Fulton, D. Gigliotti, T. Kirchner, P. Mumby-Croft, R. Openshaw, M. Pavan,  
 286 J. Pearson, G. Ruprecht, G. Sheffer, P. Walden, **Status of tactic: A detector for nuclear astrophysics**, Nuclear Instruments and  
 287 Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 573 (1) (2007)  
 288 306–309, proceedings of the 7th International Conference on Position-Sensitive Detectors. [doi:<https://doi.org/10.1016/j.nima.2006.10.384>](https://doi.org/10.1016/j.nima.2006.10.384)  
 289 URL <https://www.sciencedirect.com/science/article/pii/S0168900206021553>

290 [5] E. Koshchiiy, G. Rogachev, E. Pollacco, S. Ahn, E. Uberseder, J. Hooker, J. Bishop, E. Aboud, M. Barbui, V. Goldberg,  
 291 C. Hunt, H. Jayatissa, C. Magana, R. O. Dwyer, B. Roeder, A. Saastamoinen, S. Upadhyayula, **Texas active target (texat)**  
 292 **detector for experiments with rare isotope beams**, Nuclear Instruments and Methods in Physics Research Section A: Ac-  
 293 celerators, Spectrometers, Detectors and Associated Equipment 957 (2020) 163398. [doi:<https://doi.org/10.1016/j.nima.2020.163398>](https://doi.org/10.1016/j.nima.2020.163398)  
 294 URL <https://www.sciencedirect.com/science/article/pii/S0168900220300073>

295 [6] D. Suzuki, M. Ford, D. Bazin, W. Mittig, W. Lynch, T. Ahn, S. Aune, E. Galyaev, A. Fritsch, J. Gilbert, F. Montes, A. Shore,  
 296 J. Yurkon, J. Kolata, J. Browne, A. Howard, A. Roberts, X. Tang, **Prototype at-tpc: Toward a new generation active target**  
 297 **time projection chamber for radioactive beam experiments**, Nuclear Instruments and Methods in Physics Research Section A: Ac-  
 298 celerators, Spectrometers, Detectors and Associated Equipment 691 (2012) 39–54. [doi:<https://doi.org/10.1016/j.nima.2012.06.050>](https://doi.org/10.1016/j.nima.2012.06.050)  
 299 URL <https://www.sciencedirect.com/science/article/pii/S0168900212007164>

300 [7] Y. Mizoi, T. Fukuda, Y. Matsuyama, T. Miyachi, J. Nakano, N. Fukuda, M. Hirai, H. Kobilata, Y. Watanabe, H. Sakurai,  
 301 Y. Watanabe, A. Yoshida, **Multiple-sampling and tracking proportional chamber for nuclear reactions with low-energy ra-**  
 302 **dioactive isotope beams**, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De-  
 303 tectors and Associated Equipment 431 (1) (1999) 112–122. [doi:\[https://doi.org/10.1016/S0168-9002\\(99\\)00253-3\]\(https://doi.org/10.1016/S0168-9002\(99\)00253-3\)](https://doi.org/10.1016/S0168-9002(99)00253-3)  
 304 URL <https://www.sciencedirect.com/science/article/pii/S0168900299002533>

305 [8] M. Cwiok, W. Dominik, Z. Janas, A. Korgul, K. Miernik, M. Pfutzner, M. Sawicka, A. Wasilewski, Optical time projection  
 306 chamber for imaging of two-proton decay of  $^{45}\text{Fe}$  nucleus, IEEE Transactions on Nuclear Science 52 (6) (2005) 2895–2899.  
 307 [doi:10.1109/TNS.2005.862796](https://doi.org/10.1109/TNS.2005.862796).

308 [9] W. Christie, J. Romero, F. Brady, C. Tull, C. Castaneda, E. Barasch, M. Webb, J. Drummond, H. Crawford, I. Flores,  
 309 D. Greiner, P. Lindstrom, H. Sann, J. Young, **A multiple sampling ionization chamber (music) for measuring the charge of**  
 310 **relativistic heavy ions**, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De-  
 311 tectors and Associated Equipment 255 (3) (1987) 466–476. [doi:\[https://doi.org/10.1016/0168-9002\\(87\\)91213-7\]\(https://doi.org/10.1016/0168-9002\(87\)91213-7\)](https://doi.org/10.1016/0168-9002(87)91213-7)  
 312 URL <https://www.sciencedirect.com/science/article/pii/0168900287912137>

313 [10] P. F. F. Carnelli, S. Almaraz-Calderon, K. E. Rehm, M. Albers, M. Alcorta, P. F. Bertone, B. Digiovine, H. Esbensen, J. O. F.  
 314 Niello, D. Henderson, C. L. Jiang, J. Lai, S. T. Marley, O. Nusair, T. Palchan-Hazan, R. C. Pardo, M. Paul, C. Ugalde, **Mea-**  
 315 **surements of fusion reactions of low-intensity radioactive carbon beams on  $^{12}\text{C}$  and their implications for the understanding**  
 316 **of x-ray bursts**, Phys. Rev. Lett. 112 (2014) 192701. [doi:10.1103/PhysRevLett.112.192701](https://doi.org/10.1103/PhysRevLett.112.192701)  
 317 URL <https://link.aps.org/doi/10.1103/PhysRevLett.112.192701>

318 [11] M. Avila, K. Rehm, S. Almaraz-Calderon, A. Ayangeakaa, C. Dickerson, C. Hoffman, C. Jiang, B. Kay, J. Lai, O. Nusair,  
 319 R. Pardo, D. Santiago-Gonzalez, R. Talwar, C. Ugalde, **Study of  $(\alpha, p)$  and  $(\alpha, n)$  reactions with a multi-sampling ionization**  
 320 **chamber**, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and  
 321 Associated Equipment 859 (2017) 63 – 68. [doi:<https://doi.org/10.1016/j.nima.2017.03.060>](https://doi.org/10.1016/j.nima.2017.03.060)  
 322 URL <https://www.sciencedirect.com/science/article/pii/S0168900217304187>

323 [12] R. Talwar, M. J. Bojazi, P. Mohr, K. Auranen, M. L. Avila, A. D. Ayangeakaa, J. Harker, C. R. Hoffman, C. L. Jiang,  
 324 S. A. Kuvin, B. S. Meyer, K. E. Rehm, D. Santiago-Gonzalez, J. Sethi, C. Ugalde, J. R. Winkelbauer, **Experimental study**  
 325 **of  $^{38}\text{Ar} + \alpha$  reaction cross sections relevant to the  $^{41}\text{Ca}$  abundance in the solar system**, Phys. Rev. C 97 (2018) 055801.  
 326 [doi:10.1103/PhysRevC.97.055801](https://doi.org/10.1103/PhysRevC.97.055801)  
 327 URL <https://link.aps.org/doi/10.1103/PhysRevC.97.055801>

328 [13] B. B. Back, J. A. Clark, R. C. Pardo, K. E. Rehm, G. Savard, **Astrophysics experiments with radioactive beams at atlas**, AIP  
 329 Advances 4 (4) (2014) 041005. [arXiv:<https://doi.org/10.1063/1.4865588>](https://doi.org/10.1063/1.4865588), [doi:10.1063/1.4865588](https://doi.org/10.1063/1.4865588)  
 330 URL <https://doi.org/10.1063/1.4865588>

331 [14] P. Carnelli, Measurement of fusion cross sections of carbon isotopes using an active target, Ph.D. thesis, National University  
 332 of General San Martin (2014).

333 [15] T. E. Bortner, G. S. Hurst, W. G. Stone, **Drift velocities of electrons in some commonly used counting gases**, Review of Sci-  
 334 entific Instruments 28 (2) (1957) 103–108. [arXiv:<https://doi.org/10.1063/1.1715825>](https://doi.org/10.1063/1.1715825), [doi:10.1063/1.1715825](https://doi.org/10.1063/1.1715825)  
 335 URL <https://doi.org/10.1063/1.1715825>

336 [16] W. Blum, L. Rolandi, Particle Detection with Drift Chambers, Springer-Verlag, 1964.

337 [17] MKS, Mks capacitance manometers, <https://www.mksinst.com/f/627f-heated-capacitance-manometers>, ac-

341 cessed: 2021-03-01.

342 [18] I. Wiedenhöver, L. T. Baby, D. Santiago-Gonzalez, A. Rojas, J. C. Blackmon, G. V. Rogachev, J. Belarge, E. Koshchiiy,  
 343 A. N. Kuchera, L. E. Linhardt, J. Lail, K. T. Macon, M. Matos, B. C. Rascol, Studies of Exotic Nuclei at the Resolut  
 344 Facility of Florida State University, in: Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Fifth International  
 345 Conference on ICFN5. Edited by Hamilton Joseph H & Ramayya Akunuri V. Published by World Scientific Publishing Co.  
 346 Pte. Ltd, 2014, pp. 144–151. [doi:10.1142/9789814525435\\_0015](https://doi.org/10.1142/9789814525435_0015).

347 [19] D. Santiago-Gonzalez, private communication.

348 [20] O. B. Tarasov, D. Bazin, LISE++: Radioactive beam production with in-flight separators, Nuclear Instruments and Methods  
 349 in Physics Research B 266 (19-20) (2008) 4657–4664. [doi:10.1016/j.nimb.2008.05.110](https://doi.org/10.1016/j.nimb.2008.05.110).

350 [21] J. F. Ziegler, M. Ziegler, J. Biersack, **Srim - the stopping and range of ions in matter (2010)**, Nuclear Instruments and Methods  
 351 in Physics Research Section B: Beam Interactions with Materials and Atoms 268 (11) (2010) 1818–1823, 19th International  
 352 Conference on Ion Beam Analysis. [doi:https://doi.org/10.1016/j.nimb.2010.02.091](https://doi.org/10.1016/j.nimb.2010.02.091).  
 353 URL <https://www.sciencedirect.com/science/article/pii/S0168583X10001862>

354 [22] H. Paul, D. Sánchez-Parcerisa, **A critical overview of recent stopping power programs for positive ions in solid elements**,  
 355 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 312 (2013)  
 356 110–117. [doi:https://doi.org/10.1016/j.nimb.2013.07.012](https://doi.org/10.1016/j.nimb.2013.07.012).  
 357 URL <https://www.sciencedirect.com/science/article/pii/S0168583X13007520>

358 [23] B. W. Asher, S. Almaraz-Calderon, V. Tripathi, K. W. Kemper, L. T. Baby, N. Gerken, E. Lopez-Saavedra, A. B. Morelock,  
 359 J. F. Perello, I. Wiedenhöver, N. Keeley, **Experimental study of the  $^{17}\text{F} + ^{12}\text{C}$  fusion reaction and its implications for fusion  
 360 of proton-halo systems**, Phys. Rev. C 103 (2021) 044615. [doi:10.1103/PhysRevC.103.044615](https://doi.org/10.1103/PhysRevC.103.044615).  
 361 URL <https://link.aps.org/doi/10.1103/PhysRevC.103.044615>

362 [24] D. G. Kovar, D. F. Geesaman, T. H. Braid, Y. Eisen, W. Henning, T. R. Ophel, M. Paul, K. E. Rehm, S. J. Sanders, P. Sperr,  
 363 J. P. Schiffer, S. L. Tabor, S. Vigdor, B. Zeidman, F. W. Prosser, **Systematics of carbon- and oxygen-induced fusion on nuclei  
 364 with  $12 \leq a \leq 19$** , Phys. Rev. C 20 (1979) 1305–1331. [doi:10.1103/PhysRevC.20.1305](https://doi.org/10.1103/PhysRevC.20.1305).  
 365 URL <https://link.aps.org/doi/10.1103/PhysRevC.20.1305>

366 [25] J. Kolata, R. Freeman, F. Haas, B. Heusch, A. Gallmann, **On the fusion cross section for  $^{16}\text{O} + ^{12}\text{C}$** , Phys. Lett. B 65 (4)  
 367 (1976) 333 – 336. [doi:https://doi.org/10.1016/0370-2693\(76\)90235-5](https://doi.org/10.1016/0370-2693(76)90235-5).  
 368 URL <https://www.sciencedirect.com/science/article/pii/0370269376902355>

369 [26] H. Fröhlich, P. Dück, W. Galster, W. Treu, H. Voit, H. Witt, W. Kühn, S. Lee, **Oscillations in the excitation function for  
 370 complete fusion of  $^{16}\text{O} + ^{12}\text{C}$  at low energies**, Phys. Lett. B 64 (4) (1976) 408 – 410. [doi:https://doi.org/10.1016/0370-2693\(76\)90107-6](https://doi.org/10.1016/0370-2693(76)90107-6).  
 371 URL <https://www.sciencedirect.com/science/article/pii/0370269376901076>

372 [27] P. Sperr, S. Vigdor, Y. Eisen, W. Henning, D. G. Kovar, T. R. Ophel, B. Zeidman, **Oscillations in the excitation function for  
 373 complete fusion of  $^{16}\text{O} + ^{12}\text{C}$** , Phys. Rev. Lett. 36 (1976) 405–408. [doi:10.1103/PhysRevLett.36.405](https://doi.org/10.1103/PhysRevLett.36.405).  
 374 URL <https://link.aps.org/doi/10.1103/PhysRevLett.36.405>

375 [28] B. Dasmahapatra, B. Čujec, F. Lahllou, **Fusion cross sections for  $^{16}\text{O} + ^{13}\text{C}$  at low energies**, Nuclear Physics A 394 (1) (1983)  
 376 301 – 311. [doi:https://doi.org/10.1016/0375-9474\(83\)90175-6](https://doi.org/10.1016/0375-9474(83)90175-6).  
 377 URL <https://www.sciencedirect.com/science/article/pii/0375947483901756>

378 [29] A. D. Frawley, N. R. Fletcher, L. C. Dennis, **Resonances in the  $^{16}\text{O} + ^{12}\text{C}$  fusion cross section between  $E_{\text{c.m.}} = 12$  and 20 mev**,  
 379 Phys. Rev. C 25 (1982) 860–865. [doi:10.1103/PhysRevC.25.860](https://doi.org/10.1103/PhysRevC.25.860).  
 380 URL <https://link.aps.org/doi/10.1103/PhysRevC.25.860>

381 [30] P. Christensen, Z. Switkowskii, R. Dayras, **Sub-barrier fusion measurements for  $^{12}\text{C} + ^{16}\text{O}$** , Nuclear Physics A 280 (1) (1977)  
 382 189 – 204. [doi:https://doi.org/10.1016/0375-9474\(77\)90303-7](https://doi.org/10.1016/0375-9474(77)90303-7).  
 383 URL <https://www.sciencedirect.com/science/article/pii/0375947477903037>

384 [31] Y. Eyal, M. Beckerman, R. Chechik, Z. Fraenkel, H. Stocker, **Nuclear size and boundary effects on the fusion barrier of  
 385 oxygen with carbon**, Phys. Rev. C 13 (1976) 1527–1535. [doi:10.1103/PhysRevC.13.1527](https://doi.org/10.1103/PhysRevC.13.1527).  
 386 URL <https://link.aps.org/doi/10.1103/PhysRevC.13.1527>

387 [32] R. M. Anjos, V. Guimaraes, N. Added, N. Carlin Filho, M. M. Coimbra, L. Fante, M. C. S. Figueira, E. M. Szanto, C. F.  
 388 Tenreiro, A. Szanto de Toledo, **Effect of the entrance channel mass asymmetry on the limitation of light heavy-ion fusion  
 389 cross sections**, Phys. Rev. C 42 (1990) 354–362. [doi:10.1103/PhysRevC.42.354](https://doi.org/10.1103/PhysRevC.42.354).  
 390 URL <https://link.aps.org/doi/10.1103/PhysRevC.42.354>

391 [33] P. Sperr, T. H. Braid, Y. Eisen, D. G. Kovar, F. W. Prosser, J. P. Schiffer, S. L. Tabor, S. Vigdor, **Fusion cross sections of light  
 392 heavy-ion systems: Resonances and shell effects**, Phys. Rev. Lett. 37 (1976) 321–323. [doi:10.1103/PhysRevLett.37.321](https://doi.org/10.1103/PhysRevLett.37.321).  
 393 URL <https://link.aps.org/doi/10.1103/PhysRevLett.37.321>

394 [34] L. F. Hansen, J. D. Anderson, J. W. McClure, B. A. Pohl, M. L. Stelts, J. J. Wesolowski, C. Wong, **The  $(\alpha, n)$  cross sections**

397 on  $^{17}\text{O}$  and  $^{18}\text{O}$  between 5 and 12.5 mev, Nuclear Physics A 98 (1) (1967) 25–32. doi:[https://doi.org/10.1016/0375-9474\(67\)90895-0](https://doi.org/10.1016/0375-9474(67)90895-0)

398 URL <https://www.sciencedirect.com/science/article/pii/0375947467908950>

399 [35] P. Mohr, Uncertainty of the astrophysical  $^{17,18}\text{O}(\alpha, n)^{20,21}\text{Ne}$  reaction rates and the applicability of the statistical model for

400 nuclei with  $a \lesssim 20$ , Phys. Rev. C 96 (2017) 045808. doi:[10.1103/PhysRevC.96.045808](https://doi.org/10.1103/PhysRevC.96.045808)

401 URL <https://link.aps.org/doi/10.1103/PhysRevC.96.045808>

402 [36] P. Mohr, private communication.

403