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Abstract

We study multi-task reinforcement learning (RL) in tabular episodic Markov deci-
sion processes (MDPs). We formulate a heterogeneous multi-player RL problem,
in which a group of players concurrently face similar but not necessarily identical
MDPs, with a goal of improving their collective performance through inter-player
information sharing. We design and analyze an algorithm based on the idea of
model transfer, and provide gap-dependent and gap-independent upper and lower
bounds that characterize the intrinsic complexity of the problem.

1 Introduction

In many real-world applications, reinforcement learning (RL) agents can be deployed as a group
to complete similar tasks at the same time. For example, in healthcare robotics, robots are paired
with people with dementia to perform personalized cognitive training activities by learning their
preferences [42, 21]; in autonomous driving, a set of autonomous vehicles learn how to navigate
and avoid obstacles in various environments [27]. In these settings, each learning agent alone may
only be able to acquire a limited amount of data, while the agents as a group have the potential
to collectively learn faster through sharing knowledge among themselves. Multi-task learning [7]
is a practical framework that can be used to model such settings, where a set of learning agents
share/transfer knowledge to improve their collective performance.

Despite many empirical successes of multi-task RL (see, e.g., [51, 28, 27]) and transfer learning
for RL (see, e.g., [26, 39]), a theoretical understanding of when and how information sharing or
knowledge transfer can provide benefits remains limited. Exceptions include [16, 6, 11, 17, 32, 25],
which study multi-task learning from parameter- or representation-transfer perspectives. However,
these works still do not provide a completely satisfying answer: for example, in many applica-
tion scenarios, the reward structures and the environment dynamics are only slightly different for
each task—this is, however, not captured by representation transfer [11, 17] or existing works on
clustering-based parameter transfer [16, 6]. In such settings, is it possible to design provably effi-
cient multi-task RL algorithms that have guarantees never worse than agents learning individually,
while outperforming the individual agents in favorable situations?

In this work, we formulate an online multi-task RL problem that is applicable to the aforementioned
settings. Specifically, inspired by a recent study on multi-task multi-armed bandits [43], we for-
mulate the ε-Multi-Player Episodic Reinforcement Learning (abbreviated as ε-MPERL) problem, in
which all tasks share the same state and action spaces, and the tasks are assumed to be similar—i.e.,
the dissimilarities between the environments of different tasks (specifically, the reward distributions
and transition dynamics associated with the players/tasks) are bounded in terms of a dissimilarity
parameter ε ≥ 0. This problem not only models concurrent RL [34, 16] as a special case by taking
ε = 0, but also captures richer multi-task RL settings when ε is nonzero. We study regret minimiza-
tion for the ε-MPERL problem, specifically:
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1. We identify a problem complexity notion named subpar state-action pairs, which captures
the amenability to information sharing among tasks in ε-MPERL problem instances. As
shown in the multi-task bandits literature (e.g., [43]), inter-task information sharing is not
always helpful in reducing the players’ collective regret. Subpar state-action pairs, intu-
itively speaking, are clearly suboptimal for all tasks, for which we can robustly take advan-
tage of (possibly biased) data collected for other tasks to achieve a lower regret in a certain
task.

2. In the setting where the dissimilarity parameter ε is known, we design a model-based algo-
rithm MULTI-TASK-EULER (Algorithm 1), which is built upon state-of-the-art algorithms
for learning single-task Markov decision processes (MDPs) [3, 46, 36], as well as algo-
rithmic ideas of model transfer in RL [39]. MULTI-TASK-EULER crucially utilizes the
dissimilarity assumption to robustly take advantage of information sharing among tasks,
and achieves regret upper bounds in terms of subpar state-action pairs, in both (value func-
tion suboptimality) gap-dependent and gap-independent fashions. Specifically, compared
with a baseline algorithm that does not utilize information sharing, MULTI-TASK-EULER

has a regret guarantee that: (1) is never worse, i.e., it avoids negative transfer [33]; (2) can
be much superior when there are a large number of subpar state-action pairs.

3. We also present gap-dependent and gap-independent regret lower bounds for the ε-MPERL
problem in terms of subpar state-action pairs. These lower bounds nearly match the upper
bounds when the episode length of the MDP is a constant. Together, the upper and lower
bounds can be used to characterize the intrinsic complexity of the ε-MPERL problem.

2 Preliminaries

Throughout this paper, we denote by [n] := {1, . . . , n}. For a set A in a universe U , we use
AC = U \ A to denote its complement. Denote by ∆(X ) the set of probability distributions over
X . For functions f, g, we use f ! g or f = O(g) (resp. f " g or f = Ω(g)) to denote that there
exists some constant c > 0, such that f ≤ cg (resp. f ≥ cg), and use f ! g to denote f ! g and
f " g simultaneously. Define a ∨ b := max(a, b), and a ∧ b := min(a, b). We use E to denote the

expectation operator, and use var to denote the variance operator. Throughout, we use Õ(·) and Ω̃(·)
notation to hide polylogarithmic factors.

Multi-task RL in episodic MDPs. We have a set of M MDPs
{

Mp = (H,S,A, p0,Pp, rp)
}M

p=1
,

each associated with a player p ∈ [M ]. Each MDP Mp is regarded as a task. The MDPs share the
same episode length H ∈ N+, finite state space S, finite action space A, and initial state distribution
p0 ∈ ∆(S). Let ⊥ be a default terminal state that is not contained in S. The transition probabilities
Pp : S × A → ∆(S ∪ {⊥}) and reward distributions rp : S × A → ∆([0, 1]) of the players

are not necessarily identical. We assume that the MDPs are layered1, in that the state space S can
be partitioned into disjoint subsets (Sh)Hh=1, where p0 is supported on S1, and for every p ∈ [M ],
h ∈ [H ], and every s ∈ Sh, a ∈ A, Pp(· | s, a) is supported on Sh+1; here, we define SH+1 = {⊥}.
We denote by S := |S| the size of the state space, and A := |A| the size of the action space.

Interaction process. The interaction process between the players and the environment is as fol-
lows: at the beginning, both (rp)Mp=1 and (Pp)Mp=1 are unknown to the players. For each episode

k ∈ [K], conditioned on the interaction history up to episode k − 1, each player p ∈ [M ] indepen-
dently interacts with its respective MDP Mp; specifically, player p starts at state sk1,p ∼ p0, and at

every step (layer) h ∈ [H ], it chooses action akh,p, transitions to next state skh+1,p ∼ Pp(· | skh,p, akh,p)
and receives a stochastic immediate reward rkh,p ∼ rp(· | skh,p, akh,p); after all players have finished

their k-th episode, they can communicate and share their interaction history. The goal of the players

is to maximize their expected collective reward E
[
∑K

k=1

∑M
p=1

∑H
h=1 r

k
h,p

]

.

1This is a standard assumption (see, e.g., [44]). It is worth noting that any episodic MDP (with possibly
nonstationary transition and reward) can be converted to a layered MDP with stationary transition and reward,
with the state space size being H times the size of the original state space.
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Policy and value functions. A deterministic, history-independent policy π is a mapping from S
to A, which can be used by a player to make decisions in its respective MDP. For player p and step
h, we use V π

h,p : Sh → [0, H ] and Qπ
h,p : Sh × A → [0, H ] to denote its respective value and

action-value functions, respectively. They satisfy the following recurrence known as the Bellman
equation:

∀h ∈ [H ] : V π
h,p(s) = Qπ

h,p(s,π(s)), Qπ
h,p(s, a) = Rp(s, a) + (PpV

π
h+1,p)(s, a),

where we use the convention that V π
H+1,p(⊥) = 0, and for f : Sh+1 → R, (Ppf)(s, a) :=

∑

s′∈Sh+1
Pp(s′ | s, a)f(s′), and Rp(s, a) := Er̂∼rp(·|s,a) [r̂] is the expected immediate reward

of player p. For player p and policy π, denote by V π
0,p = Es1∼p0

[

V π
1,p(s1)

]

its expected reward.

For player p, we also define its optimal value function V "
h,p : Sh → [0, H ] and the optimal action-

value function Q"
h,p : Sh ×A → [0, H ] using the Bellman optimality equation:

∀h ∈ [H ] : V "
h,p(s) = max

a∈A
Q"

h,p(s, a), Q"
h,p(s, a) = Rp(s, a) + (PpV

"
h+1,p)(s, a), (1)

where we again use the convention that V "
H+1,p(⊥) = 0. For player p, denote by V "

0,p =

Es1∼p0

[

V "
1,p(s1)

]

its optimal expected reward.

Given a policy π, as V π
h,p for different h’s are only defined in the respective layer Sh, we “collate”

the value functions (V π
h,p)

H
h=1 and obtain a single value function V π

p : S ∪ {⊥} → R. Formally, for

every h ∈ [H + 1] and s ∈ Sh,

V π
p (s) := V π

h,p(s).

We define Qπ
p , V

"
p , Q

"
p similarly. For player p, given its optimal action value function Q"

p, any of its

greedy policies π"
p(s) ∈ argmaxa∈A Q"

p(s, a) is optimal with respect to Mp.

Suboptimality gap. For player p, we define the suboptimality gap of state-action pair (s, a) as
gapp(s, a) = V "

p (s)−Q"
p(s, a). We define the mininum suboptimality gap of player p as gapp,min =

min(s,a):gapp(s,a)>0 gapp(s, a), and the minimum suboptimality gap over all players as gapmin =

minp∈[M ] gapp,min. For player p ∈ [M ], define Zp,opt :=
{

(s, a) : gapp(s, a) = 0
}

as the set of

optimal state-action pairs with respect to p.

Performance metric. We measure the performance of the players using their collective regret, i.e.,
over a total of K episodes, how much extra reward they would have collected in expectation if they
were executing their respective optimal policies from the beginning. Formally, suppose for each
episode k, player p executes policy πk(p), then the collective regret of the players is defined as:

Reg(K) =
M
∑

p=1

K
∑

k=1

(

V "
0,p − V πk(p)

0,p

)

.

Baseline: individual STRONG-EULER. A naive baseline for multi-task RL is to let each player
run a separate RL algorithm without communication. For concreteness, we choose to let each
player run the state-of-the-art STRONG-EULER algorithm [36] (see also its precursor EULER [46]),
which enjoys minimax gap-independent [3, 8] and gap-dependent regret guarantees, and we refer
to this strategy as individual STRONG-EULER. Specifically, as it is known that STRONG-EULER

has a regret of Õ(
√
H2SAK + H4S2A), individual STRONG-EULER has a collective regret of

Õ(M
√
H2SAK +MH4S2A). In addition, by a union bound and summing up the gap-dependent

regret guarantees of STRONG-EULER for the M MDPs altogether, it can be checked that with prob-
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ability 1− δ, individual STRONG-EULER has a collective regret of order2

ln

(
MSAK

δ

)







∑

p∈[M ]






∑

(s,a)∈Zp,opt

H3

gapp,min
+

∑

(s,a)∈ZC
p,opt

H3

gapp(s, a)




 +MH4S2A ln

SA

gapmin






.

(2)

Our goal is to design multi-task RL algorithms that can achieve collective regret strictly lower than
this baseline in both gap-dependent and gap-independent fashions when the tasks are similar.

Notion of similarity. Throughout this paper, we will consider the following notion of similarity
between MDPs in the multi-task episodic RL setting.

Definition 1. A collection of MDPs (Mp)Mp=1 is said to be ε-dissimilar for ε ≥ 0, if for all p, q ∈
[M ], and (s, a) ∈ S ×A,

∣
∣Rp(s, a)−Rq(s, a)

∣
∣ ≤ ε, ‖Pp(· | s, a)− Pq(· | s, a)‖1 ≤

ε

H
.

If this happens, we call (Mp)Mp=1 an ε-Multi-Player Episodic Reinforcement Learning (abbrev. ε-
MPERL) problem instance.

If the MDPs in (Mp)Mp=1 are 0-dissimilar, then they are identical by definition, and our interaction
protocol degenerates to the concurrent RL protocol [34]. Our dissimilarity notion is complementary
to those of [6, 16]: they require the MDPs to be either identical, or have well-separated parame-
ters for at least one state-action pair; in contrast, our dissimilarity notion allows the MDPs to be
nonidentical and arbitrarily close.

We have the following intuitive lemma that shows the closeness of optimal value functions of differ-
ent MDPs, in terms of the dissimilarity parameter ε:

Lemma 2. If (Mp)Mp=1 are ε-dissimilar, then for every p, q ∈ [M ], and (s, a) ∈ S × A,
∣
∣
∣Q"

p(s, a)−Q"
q(s, a)

∣
∣
∣ ≤ 2Hε; consequently,

∣
∣
∣gapp(s, a)− gapq(s, a)

∣
∣
∣ ≤ 4Hε.

3 Algorithm

We now describe our main algorithm, MULTI-TASK-EULER (Algorithm 1). Our model-based al-
gorithm is built upon recent works on episodic RL that provide algorithms with sharp instance-
dependent guarantees in the single task setting [46, 36]. In a nutshell, for each episode k and each
player p, the algorithm performs optimistic value iteration to construct high-probability upper and
lower bounds for the optimal value and action value functions V "

p and Q"
p, and uses them to guide

its exploration and decision making process.

Empirical estimates of model parameters. For each player p, the construction of its value func-
tion bound estimates relies on empirical estimates on its transition probability and expected reward
function. For both estimands, we use two estimators with complementary roles, which are at two
different points of the bias-variance tradeoff spectrum: one estimator uses only the player’s own
data (termed individual estimate), which has large variance; the other estimator uses the data col-
lected by all players (termed aggregate estimate), which has lower variance but can easily be biased,
as transition probabilities and reward distributions are heterogeneous. Such an algorithmic idea of
“model transfer”, where one estimates model in one task using data collected from other tasks has
appeared in prior works (e.g., [39]). Specifically, at the beginning of episode k, for every h ∈ [H ]
and (s, a) ∈ Sh ×A, the algorithm has its empirical count of encountering (s, a) for each player p,
along with its total empirical count across all players, respectively:

np(s, a) :=
k−1
∑

l=1

1

(

(slh,p, a
l
h,p) = (s, a)

)

, n(s, a) :=
k−1
∑

l=1

M
∑

p=1

1

(

(slh,p, a
l
h,p) = (s, a)

)

. (3)

2The originally-stated gap-dependent regret bound of STRONG-EULER ([36], Corollary 2.1) uses a slightly
different notion of suboptimality gap, which takes an extra minimum over all steps. A close examination of their
proof shows that STRONG-EULER has regret bound (2) in layered MDPs. See also Remark 21 in Appendix C.4.

4



Algorithm 1: MULTI-TASK-EULER

Input :Failure probability δ ∈ (0, 1), dissimilarity parameter ε ≥ 0.

Initialize: Set Vp(⊥) = 0 for all p in [M ], where ⊥ is the only state in SH+1 ;

1 for k = 1, 2, . . . ,K do

2 for p = 1, 2, . . . ,M do

// Construct optimal value estimates for player p

3 for h = H,H − 1, . . . , 1 do

4 for (s, a) ∈ Sh ×A do

5 Compute:

6 ind-Qp(s, a) = R̂p(s, a) + (P̂pV p)(s, a) + ind-bp(s, a);

7 ind-Q
p
(s, a) = R̂p(s, a) + (P̂pV p)(s, a)− ind-bp(s, a);

8 agg-Qp(s, a) = R̂(s, a) + (P̂V p)(s, a) + agg-bp(s, a);

9 agg-Q
p
(s, a) = R̂(s, a) + (P̂V p)(s, a)− agg-bp(s, a);

10 Update optimal action value function upper and lower bound estimates:

11 Qp(s, a) = min
{

H − h+ 1, ind-Qp(s, a), agg-Qp(s, a)
}

;

12 Q
p
(s, a) = max

{

0, ind-Q
p
(s, a), agg-Q

p
(s, a)

}

;

13 for s ∈ Sh do

14 Define πk(p)(s) = argmaxa∈A Qp(s, a) ;

15 Update V p(s) = Qp

(

s,πk(p)(s)
)

, V p(s) = Q
p

(

s,πk(p)(s)
)

.

// All players p interact with their respective environments, and update

reward and transition estimates

16 for p = 1, 2, . . . ,M do

17 Player p executes policy πk(p) on Mp and obtains trajectory (skh,p, a
k
h,p, r

k
h,p)

H
h=1.

18 Update individual estimates of transition probability P̂p, reward R̂p and count np(·, ·)
using the first parts of Equations (3), (4) and (5).

19 Update aggregate estimates of transition probability P̂, reward R̂ and count n(·, ·) using the

second parts of Equations (3), (4) and (5).

The individual and aggregate estimates of immediate reward R(s, a) are defined as:

R̂p(s, a) :=

∑k−1
l=1 1

(

(slh,p, a
l
h,p) = (s, a)

)

rlh,p

np(s, a)
, R̂(s, a) :=

∑k−1
l=1

∑M
p=1 1

(

(slh,p, a
l
h,p) = (s, a)

)

rlh,p

n(s, a)
.

(4)
Similarly, for every h ∈ [H ] and (s, a, s′) ∈ Sh × A × Sh+1, we also define the individual and
aggregate estimates of transition probability as:

P̂p(s
′ | s, a) :=

∑k
l=1 1

(

(slh,p, a
l
h,p, s

l
h+1,p) = (s, a, s′)

)

np(s, a)
,

P̂(s′ | s, a) :=

∑k
l=1

∑M
p=1 1

(

(slh,p, a
l
h,p, s

l
h+1,p) = (s, a, s′)

)

n(s, a)
.

(5)

If n(s, a) = 0, we define R̂(s, a) := 0 and P̂(s′ | s, a) := 1

|Sh+1| ; and if np(s, a) = 0, we define

R̂p(s, a) := 0 and P̂p(s′ | s, a) := 1

|Sh+1| . The counts and reward estimates can be maintained by

MULTI-TASK-EULER efficiently in an incremental manner.

Constructing value function estimates via optimistic value iteration. For each player p, based
on these model parameter estimates, MULTI-TASK-EULER performs optimistic value iteration to

5



compute the value function estimates for states at all layers (lines 3 to 15). For the terminal
layer H + 1, V "

H+1(⊥) = 0 trivially, so nothing needs to be done. For earlier layers h ∈ [H ],
MULTI-TASK-EULER iteratively builds its value function estimates in a backward fashion. At
the time of estimating values for layer h, the algorithm has already obtained optimal value esti-
mates for layer h + 1. Based on the Bellman optimality equation (1), MULTI-TASK-EULER es-
timates (Q"

p(s, a))s∈Sh,a∈A using model parameter estimates and its estimates of (V "
p (s))s∈Sh+1 ,

i.e., (V p(s))s∈Sh+1 and (V p(s))s∈Sh+1 (lines 5 to 12).

Specifically, MULTI-TASK-EULER constructs estimates of Q"
p(s, a) for all s ∈ Sh, a ∈ A in two

different ways. First, it uses the individual estimates of model of player p to construct ind-Q
p

and

ind-Qp, upper and lower bound estimates of Q"
p (lines 8 and 9); this construction is reminiscent of

EULER and STRONG-EULER [46, 36], in that if we were only to use ind-Q
p

and ind-Qp as our opti-

mal action value function estimate Qp and Q
p
, our algorithm becomes individual STRONG-EULER.

The individual value function estimates are key to establishing MULTI-TASK-EULER’s fall-back
guarantees, ensuring that it never performs worse than the individual STRONG-EULER baseline.
Second, it uses the aggregate estimate of model to construct agg-Q

p
and agg-Qp, also upper and

lower bound estimates of Q"
p (lines 6 and 7); this construction is unique to the multitask learning

setting, and is our new algorithmic contribution.

To ensure that agg-Qp and ind-Qp (resp. agg-Q
p

and ind-Q
p
) are valid upper bounds (resp. lower

bounds) of Q"
p, MULTI-TASK-EULER adds bonus terms ind-bp(s, a) and agg-bp(s, a), respectively,

in the optimistic value iteration process, to account for estimation error of the model estimates
against the true models. Specifically, both bonus terms comprise three parts:

ind-bp(s, a) := brw
(

np(s, a), 0
)

+ bprob
(

P̂p(· | s, a), np(s, a), V p, V p, 0
)

+

bstr
(

P̂p(· | s, a), np(s, a), V p, V p, 0
)

,

agg-bp(s, a) := brw
(

n(s, a), ε
)

+ bprob
(

P̂(· | s, a), n(s, a), V p, V p, ε
)

+

bstr
(

P̂(· | s, a), n(s, a), V p, V p, ε
)

,

where

brw (n,κ) := 1 ∧ κ+Θ

(√

L(n)

n

)

,

bprob
(

q, n, V , V ,κ
)

:= H ∧ 2κ+Θ







√
√
√
√vars′∼q

[

V (s′)
]

L(n)

n
+

√
√
√
√Es′∼q

[

(V (s′)− V (s′))2
]

L(n)

n
+

HL(n)

n






,

bstr
(

q, n, V , V ,κ
)

:= κ+Θ








√
√
√
√S Es′∼q

[

(V (s′)− V (s′))2
]

L(n)

n
+

HSL(n)

n








,

and L(n) ! ln(MSAn
δ ).

The bonus terms altogether ensures strong optimism [36], i.e.,

for any p and (s, a), Qp(s, a) ≥ Rp(s, a) + (PpV p)(s, a). (6)

In short, strong optimism is a stronger form of optimism (the weaker requirement that for any p
and (s, a), Qp(s, a) ≥ Q"

p(s, a) and V p(s) ≥ V "
p (s)), which allows us to use the clipping lemma
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(Lemma B.6 of [36], see also Lemma 20 in Appendix C.4) to obtain sharp gap-dependent regret
guarantees. The three parts in the bonus term serve for different purposes towards establishing (6):

1. The first component accounts for the uncertainty in reward estimation: with probabil-

ity 1 − O(δ),
∣
∣
∣R̂p(s, a)−Rp(s, a)

∣
∣
∣ ≤ brw

(

np(s, a), 0
)

, and
∣
∣
∣R̂(s, a)−Rp(s, a)

∣
∣
∣ ≤

brw
(

n(s, a), ε
)

.

2. The second component accounts for the uncertainty in estimating (PpV "
p )(s, a): with proba-

bility 1−O(δ),
∣
∣
∣(P̂pV "

p )(s, a)− (PpV "
p )(s, a)

∣
∣
∣ ≤ bprob

(

P̂p(· | s, a), np(s, a), V p, V p, 0
)

and
∣
∣
∣(P̂V "

p )(s, a)− (PpV "
p )(s, a)

∣
∣
∣ ≤ bprob

(

P̂(· | s, a), n(s, a), V p, V p, ε
)

.

3. The third component accounts for the lower order terms for strong optimism: with probabil-

ity 1 − O(δ),
∣
∣
∣(P̂p − Pp)(V p − V "

p )(s, a)
∣
∣
∣ ≤ bstr

(

P̂p(· | s, a), np(s, a), V p, V p, 0
)

, and
∣
∣
∣(P̂− Pp)(V p − V "

p )(s, a)
∣
∣
∣ ≤ bstr

(

P̂(· | s, a), n(s, a), V p, V p, ε
)

.

Based on the above concentration inequalities and the definitions of bonus terms, it can be shown
inductively that, with probability 1−O(δ), both agg-Qp and ind-Qp (resp. agg-Q

p
and ind-Q

p
) are

valid upper bounds (resp. lower bounds) of Q"
p.

Finally, observe that for any (s, a) ∈ Sh ×A, Q"
p(s, a) has range [0, H − h+1]. By taking intersec-

tions of all confidence bounds of Q"
p it has obtained, MULTI-TASK-EULER constructs its final upper

and lower bound estimates for Q"
p(s, a), Qp(s, a) and Q

p
(s, a) respectively, for (s, a) ∈ Sh × A

(line 11 to 12). Similar ideas on using data from multiple sources to construct confidence inter-
vals and guide explorations have been used by [37, 43] for multi-task noncontextual and contextual
bandits. Using the relationship between the optimal value V "

p (s) and and optimal action values
{

Q"
p(s, a) : a ∈ A

}

, MULTI-TASK-EULER also constructs upper and lower bound estimates for

V "
p (s), V p(s) and V p(s), respectively for s ∈ Sh (line 15).

Executing optimistic policies. At each episode k, for each player p, its optimal action-value func-
tion upper bound estimate Qp induces a greedy policy πk(p) : s /→ argmaxa∈A Qp(s, a) (line 14);
the player then executes this policy in this episode to collect a new trajectory and use this to update
its individual model parameter estimates. After all players finish their episode k, the algorithm also
updates its aggregate model parameter estimates (lines 16 to 19) using Equations (3), (4) and (5),
and continues to the next episode.

4 Performance guarantees

Before stating the guarantees of Algorithm 1, we define an instance-dependent complexity measure
that characterizes the amenability to information sharing.

Definition 3. The set of subpar state-action pairs is defined as:

Iε :=
{

(s, a) ∈ S ×A : ∃p ∈ [M ], gapp(s, a) > 96Hε
}

,

where we recall that gapp(s, a) = V "
p (s)−Q"

p(s, a).

Definition 3 generalizes the notion of subpar arms defined for multi-task multi-armed bandit learn-
ing [43] in two ways: first, it is with regards to state-action pairs as opposed to actions only; second,
in RL, suboptimality gaps depend on optimal value function, which in turn depends on both imme-
diate reward and subsequent long-term return.

To ease our later presentation, we also present the following lemma.

Lemma 4. For any (s, a) ∈ Iε, we have that: (1) for all p ∈ [M ], (s, a) /∈ Zp,opt, where we recall

that Zp,opt =
{

(s, a) : gapp(s, a) = 0
}

is the set of optimal state-action pairs with respect to p; (2)

for all p, q ∈ [M ], gapp(s, a) ≥ 1
2gapq(s, a).
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The lemma follows directly from Lemma 2; its proof can be found in the Appendix along with
proofs of the following theorems. Item 1 implies that any subpar state-action pair is suboptimal for
all players. In other words, for every player p, the state-action space S × A can be partitioned to
three disjoint sets: Iε, Zp,opt, (Iε∪Zp,opt)C . Item 2 implies that for any subpar (s, a), its suboptimal
gaps with respect to all players are within a constant of each other.

4.1 Upper bounds

With the above definitions, we are now ready to present the performance guarantees of Algorithm 1.
We first present a gap-independent collective regret bound of MULTI-TASK-EULER.

Theorem 5 (Gap-independent bound). If
{

Mp

}M

p=1
are ε-dissimilar, then MULTI-TASK-EULER

satisfies that with probability 1− δ,

Reg(K) ≤ Õ

(

M
√

H2|IC
ε |K +

√

MH2|Iε|K +MH4S2A

)

.

We again compare this regret upper bound with individual STRONG-EULER’s gap independent regret
bound. Recall that individual STRONG-EULER guarantees that with probability 1− δ,

Reg(K) ≤ Õ
(

M
√
H2SAK +MH4S2A

)

.

We focus on the comparison on the leading terms, i.e., the
√
K terms. As M

√
H2SAK !

M
√

H2|Iε|K + M
√

H2
∣
∣IC

ε

∣
∣K, we see that an improvement in the collective regret bound

comes from the contributions from subpar state-action pairs: the M
√

H2|Iε|K term is reduced

to
√

MH2|Iε|K, a factor of Õ(
√

1
M ) improvement. Moreover, if

∣
∣IC

ε

∣
∣ 1 SA and M 2 1,

MULTI-TASK-EULER provides a regret bound of lower order than individual STRONG-EULER.

We next present a gap-dependent upper bound on its collective regret.

Theorem 6 (Gap-dependent upper bound). If
{

Mp

}M

p=1
are ε-dissimilar, then

MULTI-TASK-EULER satisfies with probability 1− δ,

Reg(K) ! ln(
MSAK

δ
)







∑

p∈[M ]






∑

(s,a)∈Zp,opt

H3

gapp,min
+

∑

(s,a)∈(Iε∪Zp,opt)C

H3

gapp(s, a)




+

∑

(s,a)∈Iε

H3

minp gapp(s, a)







+ ln(
MSAK

δ
) ·MH4S2A ln

MSA

gapmin
,

where we recall that gapp,min = min(s,a):gapp(s,a)>0 gapp(s, a), and gapmin = minp gapp,min.

Comparing this regret bound with the regret bound obtained by the individual STRONG-EULER

baseline, recall that by summing over the regret guarantees of STRONG-EULER for all players p ∈
[M ], and taking a union bound over all p, individual STRONG-EULER guarantees a collective regret
bound of

Reg(K) ! ln(
MSAK

δ
)







∑

p∈[M ]






∑

(s,a)∈Zp,opt

H3

gapp,min
+

∑

(s,a)∈(Iε∪Zp,opt)C

H3

gapp(s, a)




+

∑

(s,a)∈Iε

∑

p∈[M ]

H3

gapp(s, a)







+ ln(
MSAK

δ
) ·MH4S2A ln

SA

gapmin
,
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that holds with probability 1− δ. We again focus on comparing the leading terms, i.e., the terms that
have polynomial dependences on the suboptimality gaps in the above two bounds. It can be seen that
an improvement in the regret bound by MULTI-TASK-EULER comes from the contributions from the

subpar state-action pairs: for each (s, a) ∈ Iε, the regret bound is reduced from
∑

p∈[M ]
H3

gapp(s,a)
to

H3

minp gapp(s,a)
, a factor of O( 1

M ) improvement. Recent work of [44] has shown that in the single-task

setting, it is possible to replace
∑

(s,a)∈Zp,opt

H3

gapp,min
with a sharper problem-dependent complexity

term that depends on the multiplicity of optimal state-action pairs. We leave improving the guarantee
of Theorem 6 in a similar manner as an interesting open problem.

Key to the proofs of Theorems 5 and 6 is a new bound on the surplus [36] of the value function
estimates. Our new surplus bound is a minimum of two terms: one depends on the usual state-
action visitation counts of player p, the other depends on the task dissimilarity parameter ε and the
state-action visitation counts of all players. Detailed proofs can be found at Appendix C.

4.2 Lower bounds

To complement the above upper bounds, we now present gap-dependent and gap-independent regret
lower bounds that also depend on our subpar state-action pair notion. Our lower bounds are inspired
by regret lower bounds for episodic RL [36, 8] and multi-task bandits [43].

Theorem 7 (Gap-independent lower bound). For any A ≥ 2, H ≥ 2, S ≥ 4H , K ≥ SA, M ∈ N,
and l, lC ∈ N with l + lC = SA and l ≤ SA − 4(S +HA), there exists some ε that satisfies: for
any algorithm Alg, there exists an ε-MPERL problem instance with S states, A actions, M players

and an episode length of H such that
∣
∣
∣I ε

192H

∣
∣
∣ ≥ l, and

E
[

RegAlg(K)
]

≥ Ω
(

M
√
H2lCK +

√
MH2lK

)

.

We also present a gap-dependent lower bound. Before that, we first formally define the notion
of sublinear regret algorithms: for any fixed ε, we say that an algorithm Alg is a sublinear regret
algorithm for the ε-MPERL problem if there exists some C > 0 (that possibly depends on the
state-action space, the number of players, and ε) and α < 1 such that for all K and all ε-MPERL

environments, E
[

RegAlg(K)
]

≤ CKα.

Theorem 8 (Gap-dependent lower bound). Fix ε ≥ 0. For any S ∈ N, A ≥ 2, H ≥ 2, M ∈ N, with
S ≥ 2(H − 1), let S1 = S − 2(H − 1); and let

{

∆s,a,p

}

(s,a,p)∈[S1]×[A]×[M ]
be any set of values

that satisfies: (1) each ∆s,a,p ∈ [0, H/(48
√
M)], (2) for every (s, p) ∈ [S1] × [M ], there exists at

least one action a ∈ [A] such that ∆s,a,p = 0, and (3) for every (s, a) ∈ [S1]× [A] and p, q ∈ [M ],
∣
∣∆s,a,p −∆s,a,q

∣
∣ ≤ ε/4. There exists an ε-MPERL problem instance with S states, A actions, M

players and an episode length of H , such that S1 = [S1], |Sh| = 2 for all h ≥ 2, and

gapp(s, a) = ∆s,a,p, ∀(s, a, p) ∈ [S1]× [A]× [M ];

for this problem instance, any sublinear regret algorithm Alg for the ε-MPERL problem must satisfy:

E
[

RegAlg(K)
]

≥ Ω











lnK










∑

p∈[M ]

∑

(s,a)∈IC
(ε/768H)

:

gapp(s,a)>0

H2

gapp(s, a)
+

∑

(s,a)∈I(ε/768H)

H2

minp gapp(s, a)




















.

Comparing the lower bounds with MULTI-TASK-EULER’s regret upper bounds in Theorems 5 and 6,
we see that the upper and lower bounds nearly match for any constant H . When H is large, a key
difference between the upper and lower bounds is that the former are in terms of Iε, while the latter
are in terms of IΘ( ε

H ). We conjecture that our upper bounds can be improved by replacing Iε with
IΘ( ε

H )—our analysis uses a clipping trick similar to [36], which may be the reason for a suboptimal
dependence on H . We leave closing this gap as an open question.
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5 Related Work

Regret minimization for MDPs. Our work belongs to the literature of regret minimization for
MDPs, e.g., [5, 18, 8, 3, 9, 19, 10, 46, 36, 49, 45, 44]. In the episodic setting, [3, 10, 46, 36, 49]

achieve minimax
√
H2SAK regret bounds for general stationary MDPs. Furthermore, the EULER

algorithm [46] achieves adaptive problem-dependent regret guarantees when the total reward within
an episode is small or when the environmental norm of the MDP is small. [36] refines EULER,
proposing STRONG-EULER that provides more fine-grained gap-dependentO(logK) regret guaran-
tees. [45, 44] show that the optimistic Q-learning algorithm [19] and its variants can also achieve
gap-dependent logarithmic regret guarantees. Remarkably, [44] achieves a regret bound that im-
proves over that of [36], in that it replaces the dependence on the number of optimal state-action
pairs with the number of non-unique state-action pairs.

Transfer and lifelong learning for RL. A considerable portion of related works concerns transfer
learning for RL tasks (see [40, 24, 50] for surveys from different angles), and many studies investi-
gate a batch setting: given some source tasks and target tasks, transfer learning agents have access
to batch data collected for the source tasks (and sometimes for the target tasks as well). In this set-
ting, model-based approaches have been explored in e.g., [39]; theoretical guarantees for transfer of
samples across tasks have been established in e.g., [25, 41]. Similarly, sequential transfer has been
studied under the framework of lifelong RL in e.g., [38, 1, 15, 22]—in this setting, an agent faces a
sequence of RL tasks and aims to take advantage of knowledge gained from previous tasks for better
performance in future tasks; in particular, analyses on the sample complexity of transfer learning
algorithms are presented in [6, 29] under the assumption that an upper bound on the total number of
unique (and well-separated) RL tasks is known. We note that, in contrast, we study an online setting
in which no prior data are available and multiple RL tasks are learned concurrently by RL agents.

Concurrent RL. Data sharing between multiple RL agents that learn concurrently has also been
investigated in the literature. For example, in [20, 35, 16, 12], a group of agents interact in parallel
with identical environments. Another setting is studied in [16], in which agents solve different RL
tasks (MDPs); however, similar to [6, 29], it is assumed that there is a finite number of unique tasks,
and different tasks are well-separated, i.e., there is a minimum gap. In this work, we assume that
players face similar but not necessarily identical MDPs, and we do not assume a minimum gap.
[17] study multi-task RL with linear function approximation with representation transfer, where it
is assumed that the optimal value functions of all tasks are from a low dimensional linear subspace.
Our setting and results are most similar to [32] and [13]. [32] study concurrent exploration in similar
MDPs with continuous states in the PAC setting; however, their PAC guarantee does not hold for
target error rate arbitrarily close to zero; in contrast, our algorithm has a fall-back guarantee, in that
it always has a sublinear regret. Concurrent RL from similar linear MDPs has also been recently
studied in [13]: under the assumption of small heterogeneity between different MDPs (a setting
very similar to ours), the provided regret guarantee involves a term that is linear in the number of
episodes, whereas our algorithm in this paper always has a sublinear regret; concurrent RL under the
assumption of large heterogeneity is also studied in that work, but additional contextual information
is assumed to be available for the players to ensure a sublinear regret.

Other related topics and models. In many multi-agent RL models [47, 31], a set of learning
agents interact with a common environment and have shared global states; in particular, [48] study
the setting with heterogeneous reward distributions, and provide convergence guarantees for two pol-
icy gradient-based algorithms. In contrast, in our setting, our learning agents interact with separate
environments. Multi-agent bandits with similar, heterogeneous reward distributions are investigated
in [37, 43]; herein, we generalize their multi-task bandit problem setting to the episodic MDP setting.

6 Conclusion and Future Directions

In this paper, we generalize the multi-task bandit learning framework in [43] and formulate a multi-
task concurrent RL problem, in which tasks are similar but not necessarily identical. We provide
a provably efficient model-based algorithm that takes advantage of knowledge transfer between
different tasks. Our instance-dependent regret upper and lower bounds formalize the intuition that
subpar state-action pairs are amenable to information sharing among tasks.
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There still remain gaps between our upper and lower bounds which can be closed by either a finer
analysis or a better algorithm: first, the dependence on Iε in the upper bound does not match the
dependence of IΘ(ε/H) in the lower bound when H is large; second, the gap-dependent upper bound

has O(H3) dependence, whereas the gap-dependent lower bound only hasΩ(H2) dependence; third,
the additive dependence on the number of optimal state-action pairs can potentially be removed by
new algorithmic ideas [44].

Furthermore, one major obstacle in deploying our algorithm in practice is its requirement for knowl-
edge of ε; an interesting avenue is to apply model selection strategies in bandits and RL to achieve
adaptivity to unknown ε. Another interesting future direction is to consider more general parameter
transfer for online RL, for example, in the context of function approximation.
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A Proofs of Lemmas 2 and 4

A.1 Proof of Lemma 2

Lemma 2. If (Mp)Mp=1 is ε-dissimilar, then for every p, q ∈ [M ], and (s, a) ∈ S ×A,
∣
∣
∣Q"

p(s, a)−Q"
q(s, a)

∣
∣
∣ ≤ 2Hε,

consequently,
∣
∣
∣gapp(s, a)− gapq(s, a)

∣
∣
∣ ≤ 4Hε.

Proof. For the first claim, we prove a stronger statement by backward induction on h, namely, for
every p, q ∈ [M ], every h ∈ [1, H + 1], and (s, a) ∈ Sh ×A,

∣
∣
∣Q"

p(s, a)−Q"
q(s, a)

∣
∣
∣ ≤ 2(H − h+ 1)ε.

Base case: For h = H + 1, we have Q"
p(s, a) = 0 for every (s, a) ∈ Sh × A, and p ∈ [M ]. It

follows trivially that
∣
∣
∣Q"

p(s, a)−Q"
q(s, a)

∣
∣
∣ = 0 ≤ 2(H − h+ 1)ε.

Inductive case: Suppose by inductive hypothesis that for some h ∈ [1, H ] and, for every (s, a) ∈
Sh+1 ×A and p, q ∈ [M ],

∣
∣
∣Q"

p(s, a)−Q"
q(s, a)

∣
∣
∣ ≤ 2(H − h)ε.

We first prove the following auxiliary statement: for every s ∈ Sh+1 and p, q ∈ [M ],
∣
∣
∣V "

p (s)− V "
q (s)

∣
∣
∣ ≤ 2(H − h)ε. (7)

Let ap = argmaxa∈A Q"
p(s, a) and aq = argmaxa∈A Q"

q(s, a). The above auxiliary statement

can be easily proven by contradiction: without loss of generality, suppose that V "
p (s) − V "

q (s) =
Q"

p(s, ap) − Q"
q(s, aq) > 2(H − h)ε. Since Q"

q(s, ap) ≥ Q"
p(s, ap) − 2(H − h)ε, it follows that

Q"
q(s, ap) > Q"

q(s, aq), which contradicts the fact that aq = argmaxa∈A Q"
q(s, a).

We now return to the inductive proof, and we show that given the inductive hypothesis, for every
(s, a) ∈ Sh ×A and p, q ∈ [M ],
∣
∣
∣Q"

p(s, a)−Q"
q(s, a)

∣
∣
∣

≤
∣
∣Rp(s, a)−Rq(s, a)

∣
∣+

∣
∣
∣
∣
∣
∣

∑

s′∈Sh+1

[

Pp(s
′ | s, a)V "

p (s
′)− Pq(s

′ | s, a)V "
q (s

′)
]

∣
∣
∣
∣
∣
∣

≤ε+

∣
∣
∣
∣
∣
∣

∑

s′∈Sh+1

[

Pp(s
′ | s, a)V "

p (s
′)− Pq(s

′ | s, a)V "
p (s

′)
]

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

s′∈Sh+1

Pq(s
′ | s, a)

(

V "
p (s

′)− V "
q (s

′)
)

∣
∣
∣
∣
∣
∣

≤ε+ ‖Pp(· | s, a)− Pq(· | s, a))‖1
(

max
s′∈Sh+1

∣
∣
∣V "

p (s
′)
∣
∣
∣

)

+ ‖Pq(· | s, a)‖1
(

max
s′∈Sh+1

∣
∣
∣V "

p (s
′)− V "

q (s
′)
∣
∣
∣

)

≤ε+
ε

H
·H + 2(H − h)ε

=2(H − h+ 1)ε,

where the first inequality follows from Eq. (1) and the triangle inequality; the second inequality
follows from Definition 1 and the triangle inequality; the third inequality follows from Hölder’s
inequality; and the fourth inequality uses Definition 1 and Eq. (7).

For the second claim, we note that from the first claim, we have for any p, q, s,
∣
∣
∣V "

p (s)− V "
q (s)

∣
∣
∣ =

∣
∣
∣
∣
max
a∈A

Q"
p(s, a)−max

a∈A
Q"

p(s, a)

∣
∣
∣
∣
≤ 2Hε,

therefore, for any p, q, s, a,
∣
∣
∣gapp(s, a)− gapq(s, a)

∣
∣
∣ ≤

∣
∣
∣V "

p (s)− V "
q (s)

∣
∣
∣+
∣
∣
∣Q"

p(s, a)−Q"
p(s, a)

∣
∣
∣ ≤ 4Hε.
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A.2 Proof of Lemma 4

Lemma 4. For any (s, a) ∈ Iε, we have that: (1) for all p ∈ [M ], (s, a) /∈ Zp,opt, where we recall

that Zp,opt =
{

(s, a) : gapp(s, a) = 0
}

is the set of optimal state-action pairs with respect to p; (2)

for all p, q ∈ [M ], gapp(s, a) ≥ 1
2gapq(s, a).

Proof. For any (s, a) ∈ Iε, there exists some p0 such that gapp0
(s, a) > 96Hε. From Lemma 2 we

know that
∣
∣
∣gapp(s, a)− gapp0

(s, a)
∣
∣
∣ ≤ 4Hε. Therefore, for all p,

gapp(s, a) ≥ gapp0
(s, a)− 4Hε > 92Hε ≥ 0.

This proves the first item.

For the second item, for all p, q ∈ [M ],

gapp(s, a)

gapq(s, a)
=

gapq(s, a)− 4Hε

gapq(s, a)
≥ 1−

4Hε

gapq(s, a)
≥ 1−

4

92
≥

1

2
.

B Additional Definitions Used in the Proofs

In this section, we define a few useful notations that will be used in our proofs. For state-action pair
(s, a) ∈ S ×A, player p ∈ [M ], episode k ∈ [K]:

1. Define nk(s, a) (resp. nk
p(s, a), P̂

k, P̂k
p, R̂k, R̂k

p) to be the value of n(s, a) (resp. np(s, a),

P̂, P̂p, R̂, R̂p) at the beginning of episode k of MULTI-TASK-EULER.

2. Denote by Q
k
p (resp. Qk

p
, V

k
p, V

k
p , ind-bkp(s, a), agg-bkp(s, a)) the values of Qp (resp.

Q
p
, V p, V p, ind-bp(s, a), agg-bp(s, a)) right after MULTI-TASK-EULER finishes its opti-

mistic value iteration (line 15) at episode k.

3. Define the surplus [36] (also known as the Bellman error) of (s, a) at episode k and player
p as:

Ek
p (s, a) := Q

k
p(s, a)−Rp(s, a)− (PpV

k
p)(s, a).

4. Define wk
p (s, a) :=

nk
p(s,a)

nk(s,a) be the proportion of player p on (s, a) at the beginning of

episode k; this induces (s, a)’s mixture expected reward:

R̄k(s, a) :=
M∑

q=1

wk
q (s, a)Rq(s, a),

and mixture transition probability:

P̄k(· | s, a) :=
M∑

q=1

wk
q (s, a)Pq(· | s, a).

5. Define ρkp(s, a) := P((sh, ah) = (s, a) | πk(p),Mp) to be the occupancy measure of

πk(p) over Mp on (s, a), where h ∈ [H ] is the layer s is in (so that s ∈ Sh). It can be seen

that ρkp , when restricted to Sh ×A, is a probability distribution on this set.

Define ρk(s, a) :=
∑M

p=1 ρ
k
p(s, a); it can be seen that ρk(s, a) ∈ [0,M ]. Define

n̄k
p(s, a) :=

∑k
j=1 ρ

j
p(s, a), and n̄k(s, a) :=

∑k
j=1 ρ

j(s, a).3

6. Define Nk(s) :=
∑

a∈A nk(s, a) and Nk
p (s) :=

∑

a∈A nk
p(s, a) to be the total number of

encounters of state s by all players, and by player p only, respectively, at the beginning of
episode k.

3These are the cumulative occupancy measures up to episode k, inclusively; this is in contrast with the
definition of nk(s, a) and nk

p(s, a), which do not count the trajectories observed at episode k.
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7. Define N1 ! M ln(SAK
δ ), and N2 ! ln(MSAK

δ ); define τ(s, a) :=

min
{

k : n̄k(s, a) ≥ N1

}

, and τp(s, a) := min
{

k : n̄k
p(s, a) ≥ N2

}

. With high proba-

bility, so long as k ≥ τ(s, a) (resp. k ≥ τp(s, a)), nk(s, a) and n̄k(s, a) (resp. nk
p(s, a)

and n̄k
p(s, a)) are within a constant factor of each other; see Lemma 11.

8. Define ˇgapp(s, a) :=
gapp(s,a)

4H ∨ gapp,min

4H ; recall the definitions of gapp(s, a) and gapp,min
in Section 2.

Define Reg(K, p) :=
∑K

k=1

(

V "
0,p − V πk(p)

0,p

)

as player p’s contribution to the collective regret; in

this notation, Reg(K) =
∑M

p=1 Reg(K, p).

Define the clipping function clip(α,∆) := α1(α ≥ ∆).

We also adopt the following conventions in our proofs:

1. As ε-dissimilarity with ε > 2H does not impose any constraints on
{

Mp

}M

p=1
(recall

Definition 1), throughout the proof, we only focus on the regime that ε ≤ 2H .

2. We will use πk(p) and πk
p interchangeably. To avoid notational clutter, we will also some-

times slightly abuse notation and use V πk

p,h , V πk

p to denote V πk(p)
p,h , V πk(p)

p , respectively.

C Proof of the Upper Bounds

Proof outline. This section establishes the regret guarantees of MULTI-TASK-EULER (Theorems 5
and 6). The proof follows a similar outline as STRONG-EULER’s analysis [36], with important
modifications tailored to the multitask setting. The proof has the following structure:

1. Subsection C.1 defines a “clean” event E that we show happens with probability 1 − δ.
When E happens, the observed samples are representative enough so that standard concen-
tration inequalities apply. This will serve as the basis of our subsequent arguments.

2. Subsection C.2 shows that when E happens, the value function upper and lower bounds are
valid; furthermore, MULTI-TASK-EULER satisfies strong optimism [36], in that all players’
surpluses are always nonnegative for all state-action pairs at all time steps.

3. Subsection C.3 establishes a distribution-dependent upper bound on
MULTI-TASK-EULER’s surpluses when E happens, which is key to our regret theorems.
In comparison with STRONG-EULER [36] in the single task setting, MULTI-TASK-EULER

exploits inter-task similarity, so that its surpluses on state-action pair (s, a) for player p are
further controlled by a new term that depends on the dissimilarity parameter ε, along with
nk(s, a), the total visitation counts of (s, a) by all players.

4. Subsection C.4 uses the strong optimism property and the surplus bounds established in the
previous two subsections to conclude our final gap-independent and gap-dependent regret
guarantees, via the clipping lemma of [36] (see also Lemma 20).

5. Finally, Subsection C.5 collects miscellaneous technical lemmas used in the proofs.

C.1 A clean event

Below we define a “clean” event E in which all concentration bounds used in the analysis hold,
which we will show happens with high probability. Specifically, we will define E = Eind ∩Eagg ∩
Esample, where Eind, Eagg, Esample are defined respectively below.

In subsequent definitions of events, we will abbreviate ∀k ∈ [K], h ∈ [H ], p ∈ [M ], s ∈ Sh, a ∈
A, s′ ∈ Sh+1 as ∀k, h, p, s, a, s′. Also, recall that L(n) ! ln(MSAn

δ ).
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Define event Eind as:

Eind = Eind,rw ∩ Eind,val ∩ Eind,prob ∩ Eind,var, (8)

Eind,rw =






∀k, h, p, s, a #

∣
∣
∣R̂k

p(s, a)−Rp(s, a)
∣
∣
∣ ≤

√

L(nk(s, a))

2nk(s, a)






, (9)

Eind,val =






∀k, h, p, s, a #

∣
∣
∣(P̂k

pV
"
p − PpV

"
p )(s, a)

∣
∣
∣ ≤ 4

√

varPp(·|s,a)[V
"
p ]L(n

k
p(s, a))

nk
p(s, a)

+
2HL(nk

p(s, a))

nk
p(s, a)






,

(10)

Eind,prob =






∀k, h, p, s, a, s′ #

∣
∣
∣(P̂k

p − Pp)(s
′ | s, a)

∣
∣
∣ ≤ 4

√

L(nk
p(s, a)) · Pp(s′ | s, a)

nk
p(s, a)

+
2L(nk

p(s, a))

nk
p(s, a)






,

(11)

Eind,var =

{

∀k, h, p, s, a #

∣
∣
∣
∣
∣
∣
∣

1

nk
p(s, a)

nk
p(s,a)
∑

i=1

(V "
p ((s

p
i )

′)− (PpV
"
p )(s, a))

2 − varPp(·|s,a)[V
"
p ]

∣
∣
∣
∣
∣
∣
∣

,

(12)

≤ 4

√

H2varPp(·|s,a)[V
"
p ]L(n

k
p(s, a))

nk
p(s, a)

+
2H2L(nk

p(s, a))

nk
p(s, a)

}

,

where in Equation (12), (spi )
′ denotes the next state player p transitions to, for the i-th episode

it experiences (s, a). Eind captures the concentration behavior of each player’s individual model
estimates.

Lemma 9. P(Eind) ≥ 1− δ
3 .

Proof. The proof follows a similar reasoning as the proof of e.g., [36, Proposition F.9] using Freed-
man’s Inequality. We would like to show that each of Eind,rw, Eind,val, Eind,prob, Eind,var happens

with probability 1 − δ
12 , which would give the lemma statement by a union bound. For brevity, we

only show that P(Eind,var) ≥ 1 − δ
12 , and the other probability statements follow from a similar

reasoning.

Fix h ∈ [H ], (s, a) ∈ Sh ×A, and p ∈ [M ]. We will show

P






∃k ∈ [K]#

∣
∣
∣
∣
∣
∣
∣

1

nk
p(s, a)

nk
p(s,a)
∑

i=1

(V "
p ((s

p
i )

′)− (PpV
"
p )(s, a))

2 − varPp(·|s,a)[V
"
p ]

∣
∣
∣
∣
∣
∣
∣

≥ 4

√

H2varPp(·|s,a)[V
"
p ]L(nk

p(s, a))

nk
p(s, a)

+
2H2L(nk

p(s, a))

nk
p(s, a)







≤
δ

12MSA
.

(13)

For every j ∈ N+, define stopping time kj as the j-th episode when (s, a) is experienced by player
p, if such episode exists; otherwise, kj is defined as ∞. it suffices to show that

P






∃j ∈ N+# kj < ∞∧

∣
∣
∣
∣
∣
∣

1

j

j
∑

i=1

(V "
p ((s

p
i )

′)− (PpV
"
p )(s, a))

2 − varPp(·|s,a)[V
"
p ]

∣
∣
∣
∣
∣
∣

≥ 4

√

H2varPp(·|s,a)[V
"
p ]L(j)

j
+

2H2L(j)

j







≤
δ

12MSA
.

(14)
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For every k ∈ N+, Define Fk−1 as the σ-field generated by all players’ observations up to episode
k − 1, along with all players’ observations at episode k up to them taking action at step h. Define

Xk := I((skh,p, a
k
h,p) = (s, a)) ·

(

(V "
p (s

k
h+1,p)− (PpV

"
p )(s, a))

2 − varPp(·|s,a)[V
"
p ]
)

,

it can be seen that Xk is Fk-measurable, and E
[

Xk | Fk−1

]

= 0, i.e. {Xk}∞k=1 is a martingale

difference sequence adapted to {Fk}∞k=1. In addition,

E
[

X2
k | Fk−1

]

≤E
[

I((skh,p, a
k
h,p) = (s, a))(V "

p (s
k
h+1,p)− (PpV

"
p )(s, a))

4 | Fk−1

]

≤H2 · I((skh,p, akh,p) = (s, a)) · varPp(·|s,a)[V
"
p ] =: Uk;

Note that
∣
∣Xk/H2

∣
∣ ≤ 1; by [14, Corollary 1.4] applied to

{

Xk/H2
}∞
k=1

, for any λ ≥ 0,









Yk(λ) = exp




λ(

k
∑

i=1

Xi

H2
)−



(eλ − λ− 1)
k
∑

i=1

Ui

H4


















∞

k=0

is a nonnegative supermartingale. Applying optional sampling theorem on Yk(λ) and stopping time
kj , we get E

[

Ykj (λ)I(kj < ∞)
]

≤ E
[

Y0(λ)
]

= 1. As a result, for any fixed thresholds b, v ≥ 0
[?, see]Theorem 1.6]freedman1975tail,

P





kj
∑

i=1

Xi ≥ b ∧
kj
∑

i=1

Ui ≤ v ∧ kj < ∞





=P





kj
∑

i=1

Xi

H2
≥

b

H2
∧

kj
∑

i=1

Ui

H4
≤

v

H4
∧ kj < ∞





≤ exp

(

−
(b/H2)2

2(v/H4) + 2(b/H2)

)

= exp

(

−
b2

2v + 2H2b

)

.

Note that if kj < ∞,
∑kj

i=1 Xi =
∑j

i=1(V
"
p ((s

p
i )

′) − (PpV "
p )(s, a))

2 − varPp(·|s,a)[V
"
p ], and

∑kj

i=1 Ui = j ·H2 · varPp(·|s,a)[V
"
p ], and the above inequality can be rewritten as: for any b, v ≥ 0,

P





j
∑

i=1

(V "
p ((s

p
i )

′)− (PpV
"
p )(s, a))

2 − varPp(·|s,a)[V
"
p ] ≥ b ∧ j ·H2 · varPp(·|s,a)[V

"
p ] ≤ v ∧ kj < ∞





≤ exp

(

−
b2

2v + 2H2b

)

.

Now, by the doubling argument of [4, Lemma 2] (observe that j ·H2 · varPp(·|s,a)[V
"
p ] ∈ [0, H4j]),

we have that for all j ∈ N+:

P






kj < ∞∧

∣
∣
∣
∣
∣
∣

1

j

j
∑

i=1

(V "
p ((s

p
i )

′)− (PpV
"
p )(s, a))

2 − varPp(·|s,a)[V
"
p ]

∣
∣
∣
∣
∣
∣

≥ 4

√

H2varPp(·|s,a)[V
"
p ]L(j)

j
+

2H2L(j)

j







≤ ln(4j) ·
δ

48j2MSA
.

A union bound over all j ∈ N+ yields Equation (14).
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Define event Eagg as:

Eagg = Eagg,rw ∩ Eagg,val ∩ Eagg,prob ∩ Eagg,var, (15)

Eagg,rw =






∀k, h, s, a #

∣
∣
∣R̂k(s, a)− R̄k(s, a)

∣
∣
∣ ≤

√

L(nk(s, a))

2nk(s, a)






, (16)

Eagg,val =

{

∀k, h, p, s, a #
∣
∣
∣(P̂kV "

p − P̄kV "
p )(s, a)

∣
∣
∣ , (17)

≤ 4

√
√
√
√

(
∑M

q=1 w
k
q (s, a)varPq(·|s,a)[V

"
p ]
)

L(nk(s, a))

nk(s, a)
+

2HL(nk(s, a))

nk(s, a)

}

, (18)

Eagg,prob =






∀k, h, s, a, s′ #

∣
∣
∣(P̂k − P̄k)(s′ | s, a)

∣
∣
∣ ≤ 4

√

P̄k(s′ | s, a) · L(nk(s, a))

nk(s, a)
+

2L(nk(s, a))

nk(s, a)






,

(19)

Eagg,var =

{

∀k, h, p, s, a #

∣
∣
∣
∣
∣
∣
∣

1

nk(s, a)

nk(s,a)
∑

i=1

(V "
p (s

′
i)− (PpiV

"
p )(s, a))

2 −
M
∑

q=1

wk
q (s, a)varPq(·|s,a)[V

"
p ]

∣
∣
∣
∣
∣
∣
∣

,

(20)

≤ 4

√
√
√
√

H2
(
∑M

q=1 w
k
q (s, a)varPq(·|s,a)[V

"
p ]
)

L(nk(s, a))

nk(s, a)
+

2H2L(nk(s, a))

nk(s, a)

}

,

where in Equation (20), s′i and pi denote the next state and the player index for the i-th time some
player experiences (s, a), respectively, where within an episode, we order the experiences of the
players by their indices from 1 to M . Eagg captures the concentration behavior of the aggregate
model estimates.

Lemma 10. P(Eagg) ≥ 1− δ
3 .

Proof. The proof follows a similar reasoning as the proof of e.g., [36, Proposition F.9] using Freed-
man’s Inequality. We would like to show that each of Eagg,rw, Eagg,val, Eagg,prob, Eagg,var happen

with probability 1 − δ
12 , which would give the lemma statement by a union bound. For brevity,

we show that P(Eagg,var) ≥ 1 − δ
12 , and the other probability statements follow from a similar

reasoning.

Fix h ∈ [H ], (s, a) ∈ Sh ×A and p ∈ [M ]. It suffices to show that

P






∃k ∈ [K]#

∣
∣
∣
∣
∣
∣
∣

1

nk(s, a)

nk(s,a)
∑

i=1

(

(V "
p (s

′
i)− (PpiV

"
p )(s, a))

2 − varPpi(·|s,a)[V
"
p ]
)

∣
∣
∣
∣
∣
∣
∣

≥ 4

√
√
√
√

H2
(
∑nk(s,a)

i=1 varPpi (·|s,a)[V
"
p ]
)

L(nk(s, a))

(nk(s, a))2
+

2H2L(nk(s, a))

nk(s, a)







≤
δ

12MSA
,

(21)

because 1
nk(s,a)

∑nk(s,a)
i=1 varPpi(·|s,a)[V

"
p ] =

∑M
q=1 w

k
q (s, a)varPq(·|s,a)[V

"
p ].

Define a micro-episode as an (episode, player) pair; we order them lexicographically, i.e. (1, 1) 5
. . . 5 (1,M) 5 . . . 5 (K, 1) 5 . . . 5 (K,M). For micro-episode (k, p), denote its index as
l = (k − 1)M + p; it can be easily seen that the ordering of micro-episodes’ indices is consistent
with their lexical ordering. For every j ∈ N+, define stopping time lj ∈ N+ as follows: it is the
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index of the j-th micro-episode when (s, a) is experienced by some player, if such micro-episode
exists; and lj is defined to be ∞ otherwise. With this notation, it suffices to show:

P






∃j ∈ N+# lj < ∞∧

∣
∣
∣
∣
∣
∣

1

j

j
∑

i=1

(

(V "
p (s

′
i)− (PpiV

"
p )(s, a))

2 − varPpi(·|s,a)[V
"
p ]
)

∣
∣
∣
∣
∣
∣

≥ 4

√
√
√
√H2

(
∑j

i=1 varPpi (·|s,a)[V
"
p ]
)

L(j)

j2
+

2H2L(j)

j







≤
δ

12MSA
,

(22)

For every l ∈ N+, Define Fl−1 as the σ-field generated by all players’ observations up to micro-
episode l − 1, along with micro-episode l’s corresponding player (player index ((l − 1) mod M) +
1)’s observations up to them taking action at step h. Define

Xl := I((skh,p, a
k
h,p) = (s, a)) ·

(

(V "
p (s

k
h+1,p)− (PpV

"
p )(s, a))

2 − varPp(·|s,a)[V
"
p ]
)

,

where in the above expression, to avoid notation clutter, we use k and p to denote microepisode l’s
episode number and corresponding player number k(l) = 6l/M7 and p(l) = ((l− 1) mod M) + 1,
respectively.

It can be seen that Xl is Fl-measurable, and E
[

Xl | Fl−1

]

= 0, i.e. {Xl}∞l=1 is a martingale

difference sequence adapted to {Fl}∞l=1. In addition,

E
[

X2
l | Fk−1

]

≤E
[

I((skh,p, a
k
h,p) = (s, a))(V "

p (s
k
h+1,p)− (PpV

"
p )(s, a))

4 | Fk−1

]

≤H2 · I((skh,p, akh,p) = (s, a)) · varPp(·|s,a)[V
"
p ] =: Ul;

Note that
∣
∣Xl/H2

∣
∣ ≤ 1; by [14, Corollary 1.4] applied to

{

Xl/H2
}∞
l=1

, for any λ ≥ 0,








Yk(λ) = exp




λ(

l∑

i=1

Xi

H2
)−



(eλ − λ− 1)
l∑

i=1

Ui

H4


















∞

l=0

is a nonnegative supermartingale. Also, note that if lj < ∞,
∑lj

i=1 Xi =
∑j

i=1(V
"
p (s

′
i) −

(PpiV
"
p )(s, a))

2 − varPpi(·|s,a)[V
"
p ], and

∑lj
i=1 Ui =

∑j
i=1 H

2 · varPpi (·|s,a)[V
"
p ].

Using the same reasoning as in the proof of Lemma 9 (and observing that
∑lj

l=1 Ul ∈ [0, H4j]), we
have that for all j ∈ N+:

P






kj < ∞∧

∣
∣
∣
∣
∣
∣

1

j

j
∑

i=1

(

(V "
p (s

′
i)− (PpiV

"
p )(s, a))

2 − varPp(·|s,a)[V
"
p ]
)

∣
∣
∣
∣
∣
∣

≥ 4

√

H
∑j

i=1 varPpi (·|s,a)[V
"
p ]L(j)

j2
+

2H2L(j)

j







≤ ln(4j) ·
δ

48j2MSA
.

A union bound over all j ∈ N+ implies that Equation (22) holds.

Define

Esample = Eind,sample ∩ Eagg,sample,

Eagg,sample =

{

∀s, a, k # n̄k(s, a) ≥ N1 =⇒ nk(s, a) ≥
1

2
n̄k(s, a)

}

,

Eind,sample =

{

∀s, a, k, p # n̄k
p(s, a) ≥ N2 =⇒ nk

p(s, a) ≥
1

2
n̄k
p(s, a)

}

,

where we recall from Section B that N1 ! M ln(SAK
δ ), and N2 ! ln(MSAK

δ ).
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Lemma 11. P(Esample) ≥ 1− δ
3 .

Proof. We first show P(Eagg,sample) ≥ 1 − δ
6 . Specifically, fix h ∈ [H ] and (s, a) ∈ Sh × A,

define random variable Xk =
∑M

p=1

(

1

(

(skh,p, a
k
h,p

)

= (s, a))− ρkp(s, a)

)

. Also, define Gk as

the σ-algebra generated by all observations up to episode k. It can be readily seen that {Xk}Kk=1 is

a martingale difference sequence adapted to filtration {Gk}Kk=0. Freedman’s inequality (specifically,

Lemma 2 of [4]) implies that for every fixed k, with probability 1− δ
6K ,

∣
∣
∣nk(s, a)− n̄k−1(s, a)

∣
∣
∣ ≤ 4

√

n̄k−1(s, a) ·M ln

(
6SAK2

δ

)

+ 4M ln

(

6SAK2

δ

)

, (23)

If Equation (23) happens, then by AM-GM inequality that

√

n̄k−1(s, a) ·M ln
(

6SAK2

δ

)

≤

1
4 n̄

k−1(s, a) + 16M ln
(

6SAK2

δ

)

, we have

n̄k−1(s, a)− nk(s, a) ≤
1

4
n̄k−1(s, a) + 20M ln

(

6SAK2

δ

)

,

implying that

nk(s, a) ≥
3

4
n̄k−1(s, a)− 20M ln

(

6SAK2

δ

)

.

Additionally, as n̄k−1(s, a) ≥ n̄k(s, a)−M always holds, we have

nk(s, a) ≥
3

4
n̄k(s, a)− 21M ln

(

6SAK2

δ

)

.

In summary, for any fixed k, with probability 1− δ
6K , if n̄k(s, a) ≥ N1 := 84M ln

(
6SAK2

δ

)

,

nk(s, a) ≥
1

2
n̄k(s, a).

Taking a union bound over all k ∈ [K], we have P(Eagg,sample) ≥ 1− δ
6 .

It follows similarly that P(Eind,sample) ≥ 1 − δ
6 ; the only difference in the proof is that, we need

to take an extra union bound over all p ∈ [M ] - hence an additional factor of M within ln(·) in the
definition of N2. The lemma statement follows from a union bound over these two statements.

Lemma 12. P(E) ≥ 1− δ.

Proof. Follows from Lemmas 9, 10, and 11, along with a union bound.

C.2 Validity of value function bounds

In this section, we show that if the clean event E happens, then for all k and p, the value function

estimates Q
k
p , Qk

p
, V

k
p , V k

p are valid upper and lower bounds of the optimal value functions Q"
p, V "

p

(Lemma 15). As a by-product, we also give a general bound on the surplus (Lemma 14) which will
be refined and used in the subsequent regret bound calculations. Before going into the proof of the
above two lemmas, we need a technical lemma below (Lemma 13) that gives necessary concentra-
tion results which motivate the bonus constructions; its proof can be found at Section C.2.1.

Lemma 13. Fix p ∈ [M ]. Suppose E happens, and suppose that for episode k and step h, we have

that for all s′ ∈ Sh+1, V k
p(s

′) ≤ V "
p (s

′) ≤ V
k
p(s

′). Then, for all (s, a) ∈ Sh ×A:

1. ∣
∣
∣R̂k

p(s, a)−Rp(s, a)
∣
∣
∣ ≤ brw

(

nk
p(s, a), 0

)

, (24)
∣
∣
∣R̂k(s, a)−Rp(s, a)

∣
∣
∣ ≤ brw

(

nk(s, a), ε
)

. (25)
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2. ∣
∣
∣(P̂k

p − Pp)(V
"
p )(s, a)

∣
∣
∣ ≤ bprob

(

P̂k
p(· | s, a), nk

p(s, a), V
k
p, V

k
p, 0
)

, (26)
∣
∣
∣(P̂k − Pp)(V

"
p )(s, a)

∣
∣
∣ ≤ bprob

(

P̂k(· | s, a), nk(s, a), V
k
p, V

k
p, ε
)

. (27)

3. For any V1, V2 : Sh+1 → R such that V k
p ≤ V1 ≤ V2 ≤ V

k
p ,

∣
∣
∣(P̂k

p − Pp)(V2 − V1)(s, a)
∣
∣
∣ ≤ bstr

(

P̂k
p(· | s, a), nk

p(s, a), V
k
p, V

k
p, 0
)

, (28)

∣
∣
∣(P̂k − Pp)(V2 − V1)(s, a)

∣
∣
∣ ≤ bstr

(

P̂k(· | s, a), nk(s, a), V
k
p, V

k
p, ε
)

. (29)

Lemma 14. If event E happens, and suppose that for episode k and step h, we have that for all

s′ ∈ Sh+1, V k
p(s

′) ≤ V "
p (s

′) ≤ V
k
p(s

′). Then, for (s, a) ∈ Sh ×A,

Q
k
p(s, a)−

(

Rp(s, a) + (PpV
k
p)(s, a)

)

∈
[

0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)
]

,

(30)
and
(

Rp(s, a) + (PpV
k
p)(s, a)

)

−Qk
p
(s, a) ∈

[

0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)
]

,

(31)
where we recall that

ind-bkp(s, a) = brw
(

nk
p(s, a), 0

)

+bprob
(

P̂k
p(· | s, a), nk

p(s, a), V
k
p, V

k
p, 0
)

+bstr
(

P̂k
p(· | s, a), nk

p(s, a), V
k
p, V

k
p, 0
)

,

agg-bkp(s, a) = brw
(

nk(s, a), ε
)

+bprob
(

P̂k(· | s, a), nk(s, a), V
k
p, V

k
p, ε
)

+bstr
(

P̂k(· | s, a), nk(s, a), V
k
p, V

k
p, ε
)

.

Proof. We only show Equation (30) for brevity; Equation (31) follows from an exact symmetrical
reasoning.

Recall that Q
k
p(s, a) = min

(

ind-Q
k
p(s, a), agg-Q

k
p(s, a), H

)

. We compare each term in the min(·)

operator with (Rp(s, a) + (PpV
k
p)(s, a)):

• For ind-Q
k
p(s, a), using Lemma 13 and our assumption on V

k
p and V k

p on Sh+1, we have:

ind-Q
k
p(s, a)−

(

Rp(s, a) + (PpV
k
p)(s, a)

)

= (R̂k
p −Rp)(s, a) + brw

(

nk
p(s, a), 0

)

+ ((P̂k
p − Pp)V

"
p )(s, a) + bprob

(

P̂k
p(· | s, a), nk

p(s, a), V
k
p, V

k
p, 0
)

+ (P̂k
p − Pp)(V

k
p − V "

p ))(s, a) + bstr
(

P̂k
p(· | s, a), nk

p(s, a), V
k
p, V

k
p, 0
)

∈ [0, 2ind-bkp(s, a)].

• For agg-Q
k
p(s, a), using Lemma 13 and our assumptions on V

k
p and V k

p over Sh+1, we
have:

agg-Q
k
p(s, a)−

(

Rp(s, a) + (PpV
k
p)(s, a)

)

= (R̂k
p −Rp)(s, a) + brw

(

nk(s, a), ε
)

+ ((P̂k − Pp)V
"
p )(s, a) + bprob

(

P̂k(· | s, a), nk(s, a), V
k
p, V

k
p, ε
)

+ ((P̂k − Pp)(V
k
p − V "

p ))(s, a) + bstr
(

P̂k(· | s, a), nk(s, a), V
k
p, V

k
p, ε
)

∈ [0, 2agg-bkp(s, a)],
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• For H − h+ 1, we have:

(H − h+ 1)− (Rp(s, a) + (PpV
k
p)(s, a)) ∈ [0, H − h+ 1],

where we use the observation that R(s, a) ∈ [0, 1], and (PpV
k
p)(s, a) ∈ [0, H − h], and

their sum is in [0, H ].

Combining the above three establishes that

Q
k
p(s, a)− (R(s, a) + (PpV

k
p)(s, a)) ∈

[

0, (H − h+ 1) ∧ 2ind-bkp(s, a) ∧ 2agg-bkp(s, a)
]

.

Lemma 15. Under event E, for every k ∈ [K], and every p ∈ [M ], and for every h ∈ [H ], For all
(s, a) ∈ Sh ×A,

Qk
p
(s, a) ≤ Qπk

p (s, a) ≤ Q"
p(s, a) ≤ Q

k
p(s, a), (32)

and

V k
p(s) ≤ V πk

p (s) ≤ V "
p (s) ≤ V

k
p(s), (33)

here, recall that V πk
p is the value function of policy πk(p) with respect to Mp defined in Section 2.

Proof. The proof of this lemma extends [36, Proposition F.1] to our multitask setting.

For every k and p, we show the above holds for all layers h ∈ [H ] and every (s, a) ∈ Sh × A; to
this end, we do backward induction on layer h.

Base case: For layer h = H + 1, we have V k
p(⊥) = V πk

p (⊥) = V "
p (⊥) = V

k
p(⊥) = 0.

Inductive case: By our inductive hypothesis, for layer h+ 1 and every s ∈ Sh+1,

V k
p(s) ≤ V πk

p (s) ≤ V "
p (s) ≤ V

k
p(s).

We will show that Equations (32) and (33) holds holds for all (s, a) ∈ Sh ×A.

We first show Equation (32). First, Qπk

p (s, a) ≤ Q"
p(s, a) for all (s, a) ∈ Sh ×A is trivial.

To show Q"
p(s, a) ≤ Q

k
p(s, a) for all (s, a) ∈ Sh ×A, by Lemma 14 and inductive hypothesis, we

have:

Q"
p(s, a) = Rp(s, a) + (PpV

"
p )(s, a) ≤ Rp(s, a) + (PpV

k
p)(s, a) ≤ Q

k
p(s, a).

Likewise, we show Qπk

p (s, a) ≥ Qk
p
(s, a) for all (s, a) ∈ Sh × A, using Lemma 14 and inductive

hypothesis:

Qπk

p (s, a) = Rp(s, a) + (PpV
πk

p )(s, a) ≥ Rp(s, a) + (PpV
k
p)(s, a) ≥ Qk

p
(s, a).

This completes the proof of Equation (32) for layer h.

We now show Equation (33) for layer h. Again V πk

p (s) ≤ V "
p (s) for all s ∈ Sh is trivial.

To show V "
p (s) ≤ V

k
p(s) for all s ∈ Sh, observe that

V "
p (s) = max

a∈A
Q"

p(s, a) ≤ max
a∈A

Q
k
p(s, a) = V

k
p(s).

To show V πk

p (s) ≥ V k
p(s) for all s ∈ Sh, observe that

V πk

p (s) = Qπk

p (s,πk(p)(s)) ≥ Qk
p
(s,πk(p)(s)) = V k

p(s).

This completes the induction.
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C.2.1 Proof of Lemma 13

Proof of Lemma 13. Equations (24), (26), and (28) essentially follow the same reasoning as in [36];
we still include their proofs for completeness. Equations (25), (27), and (29) are new, and require a
more involved analysis. Our proof also relies on a technical lemma, namely Lemma 16; we defer its
statement and proof to the end of this subsection.

1. Equation (24) follows directly from the definition of Eind,rw. Equation (25) follows from

the definition of Eagg,rw, and the fact that
∣
∣R̄k(s, a)−Rp(s, a)

∣
∣ ≤ ε.

2. We prove Equation (26) as follows:

∣
∣
∣(P̂k

pV
" − PpV

"
p )(s, a)

∣
∣
∣

≤O





√

varPp(·|s,a)[V
"]L(nk

p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)





≤O






√
√
√
√

var
P̂k
p(·|s,a)

[V "]L(nk
p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)






≤O







√
√
√
√

var
P̂k
p(·|s,a)

[V
k
p] L(nk

p(s, a))

nk
p(s, a)

+

√
√
√
√

‖V "
p − V

k
p‖2P̂k

p(·|s,a)
L(nk

p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)







≤O







√
√
√
√

var
P̂k
p(·|s,a)

[V
k
p] L(nk

p(s, a))

nk
p(s, a)

+

√
√
√
√

‖V k
p − V k

p‖2P̂k
p(·|s,a)

L(nk
p(s, a))

nk
p(s, a)

+
HL(nk

p(s, a))

nk
p(s, a)







≤bprob
(

P̂k
p(· | s, a), nk

p(s, a), V
k
p, V

k
p, 0
)

,

where the first inequality is from the definition of Eind,val; the second inequality is from
Equation (34) of Lemma 16; the third inequality is from Lemma 24; the fourth inequality

is from our assumption that for all s′ ∈ Sh+1, V k
p(s

′) ≤ V "(s′) ≤ V
k
p(s

′), and thus
∣
∣
∣(V "

p − V k
p)(s

′)
∣
∣
∣ ≤
∣
∣
∣(V

k
p − V k

p)(s
′)
∣
∣
∣ for all s′ in the support of P̂k

p(· | s, a).
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We prove Equation (27) as follows:
∣
∣
∣(P̂k − Pp)(V

"
p )(s, a)

∣
∣
∣

≤ε +
∣
∣
∣(P̂k − P̄k)(V "

p )(s, a)
∣
∣
∣

≤ε +O







√
√
√
√

(
∑M

q=1 w
k
q (s, a)varPq(·|s,a)[V

"
p ]
)

L(nk(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)







≤ε +O





√

var
P̂k(·|s,a)[V

"
p ] L(n

k(s, a))

nk(s, a)
+

√

L(nk(s, a))

nk(s, a)
· εH +

HL(nk(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)





≤2ε+O







√
√
√
√var

P̂k(·|s,a)[V
k
p] L(n

k(s, a))

nk(s, a)
+

√
√
√
√

‖V k
p − V "

p ‖2P̂k(·|s,a)
L(nk(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)







≤2ε+O







√
√
√
√var

P̂k(·|s,a)[V
k
p] L(n

k(s, a))

nk(s, a)
+

√
√
√
√

‖V k
p − V k

p‖2P̂k(·|s,a)
L(nk(s, a))

nk(s, a)
+

HL(nk(s, a))

nk(s, a)







≤bprob
(

P̂k(· | s, a), nk(s, a), V
k
p, V

k
p, ε
)

,

where the first inequality is from the observation that ‖P̄k(· | s, a) − Pp(· | s, a)‖1 ≤ ε
H

and Lemma 25; the second inequality is from the definition of Eagg,val; the third in-
equality is from Equation (35) of Lemma 16; the fourth inequality is from Lemma 24

and the observation that for constant c > 0, c
√

L(nk(s,a))
nk(s,a) · εH ≤ ε + c2

4
L(nk(s,a))
nk(s,a) by

AM-GM inequality; the fifth inequality is from our assumption that for all s′ ∈ Sh+1,

V k
p(s

′) ≤ V "(s′) ≤ V
k
p(s

′), and thus
∣
∣
∣(V "

p − V k
p)(s

′)
∣
∣
∣ ≤
∣
∣
∣(V

k
p − V k

p)(s
′)
∣
∣
∣ for all s′ in the

support of P̂k(· | s, a).

3. We prove Equation (28) as follows:
∣
∣
∣(P̂k

p − Pp)(V2 − V1)(s, a)
∣
∣
∣

≤
∑

s′∈Sh+1

∣
∣
∣(P̂k

p − Pp)(s
′ | s, a)

∣
∣
∣ · (V2 − V1)(s

′)

≤O






∑

s′∈Sh+1





√

L(nk
p(s, a)) · Pp(s′ | s, a)

nk
p(s, a)

+
L(nk

p(s, a))

nk
p(s, a)



 · (V2 − V1)(s
′)






≤O






∑

s′∈Sh+1





√

L(nk
p(s, a)) · P̂k

p(s′ | s, a)
nk
p(s, a)

+
L(nk

p(s, a))

nk
p(s, a)



 · (V2 − V1)(s
′)






≤O





∑

s′∈Sh+1

√

P̂k
p(s′ | s, a)(V

k
p − V k

p)(s
′) ·

√

L(nk
p(s, a))

nk
p(s, a)

+
∑

s′∈Sh+1

HL(nk
p(s, a))

nk
p(s, a)





≤O







√
√
√
√

S‖V k
p − V k

p‖2P̂k
p(·|s,a)

L(nk
p(s, a))

nk
p(s, a)

+
SHL(nk

p(s, a))

nk
p(s, a)







≤bstr
(

P̂k
p(· | s, a), n(s, a), V

k
p, V

k
p, 0
)

,
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where the first inequality is from the elementary fact that
∣
∣
∑n

i=1 ai
∣
∣ ≤

∑n
i=1|ai|; the second

inequality is from the definition of Eind,prob; the third inequality is from the definition of
Eind,prob and Lemma 26; the fourth inequality is by algebra and 0 ≤ (V2 − V1)(s′) ≤
min(H, (V

k
p − V k

p)(s
′)) for all s′ ∈ Sh+1; the fifth inequality is by Cauchy-Schwarz.

We now prove Equation (29):
∣
∣
∣(P̂k − Pp)(V2 − V1)(s, a)

∣
∣
∣

≤
∣
∣
∣(P̄k − Pp)(V2 − V1)(s, a)

∣
∣
∣+
∣
∣
∣(P̂k − P̄k)(V2 − V1)(s, a)

∣
∣
∣

≤ε +
∑

s′∈Sh+1

∣
∣
∣(P̂k − P̄k)(s′ | s, a)

∣
∣
∣ · (V2 − V1)(s

′)

≤ε +O






∑

s′∈Sh+1





√

L(nk(s, a)) · P̄k(s′ | s, a)
nk(s, a)

+
L(nk(s, a))

nk(s, a)



 · (V2 − V1)(s
′)






≤ε +O






∑

s′∈Sh+1





√

L(nk(s, a)) · P̂k(s′ | s, a)
nk(s, a)

+
L(nk(s, a))

nk(s, a)



 · (V2 − V1)(s
′)






≤ε +O





∑

s′∈Sh+1

√

P̂k(s′ | s, a)(V k
p − V k

p)(s
′) ·

√

L(nk(s, a))

nk(s, a)
+

∑

s′∈Sh+1

HL(nk(s, a))

nk(s, a)





≤ε +O







√
√
√
√

S‖V k
p − V k

p‖2P̂k(·|s,a)
L(nk(s, a))

nk(s, a)
+

SHL(nk(s, a))

nk(s, a)







≤bstr
(

P̂k(· | s, a), n(s, a), V k
p, V

k
p, ε
)

,

where the first inequality is triangle inequality; the second inequality is from the elementary
fact that

∣
∣
∑n

i=1 ai
∣
∣ ≤

∑n
i=1|ai|, along with ‖P̄k(· | s, a) − Pp(· | s, a)‖1 ≤ ε

H and
Lemma 25; the third inequality is from the definition of Eagg,prob; the fourth inequality
is from the definition of Eagg,prob and Lemma 26; the fifth inequality is by algebra and

0 ≤ (V2 − V1)(s′) ≤ min(H, (V
k
p − V k

p)(s
′)) for all s′ ∈ Sh+1; the last inequality is by

Cauchy-Schwarz.

Lemma 13 relies on the following technical lemma on the concentrations of the conditional variances.
Specifically, Equation (34) is well-known (see, e.g., [2, 30]); Equations (35) and (36) are new, and
allow for heterogeneous data aggregation in the multi-task RL setting. We still include the proof of
Equation (34) here, as it helps illustrate our ideas for proving the two new inequalities.

Lemma 16. If event E happens, then for any s, a, k, p, we have:
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Proof. 1. By the definition of E, we have
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this, when combined with Lemma 26, implies that
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Now, observe that
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where the second inequality uses Lemma 27. Using the elementary fact that|A−B| ≤ C ⇒
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Combining Equations (37) and (38), using algebra, we get
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establishing Equation (34).

2. We first show Equation (35). By the definition of E, we have
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this, combined with Lemma 26, implies that
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For the first term on the left hand side, observe that for each i, |(PpiV
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Equation (35) is a direct consequence of Equations (39), (40) and (41) along with algebra.

We now show Equation (36) using Equation (35). By Lemma 25, for every q,
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This, together with Equation (35), implies
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establishing Equation (36).

C.3 Simplifying the surplus bounds

In this section, we show a distribution-dependent bound on the surplus terms, namely Lemma 19,
which is key to establishing our regret bound. It can be seen as an extension of Proposition B.4
of [36] to our multitask setting using the MULTI-TASK-EULER algorithm, under the ε-dissimilarity
assumption. Before we present Lemma 19 (Section C.3.1), we first show and prove two auxiliary
lemmas, Lemma 17 and Lemma 18.
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Lemma 17 (Bounds on V
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Proof. First, Lemmas 15 and 14 together imply that if E holds, Equations (30) and (31) holds for
all p, k, s, a. Under this premise, we show Equation (42) by backward induction.
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where the first inequality is from Equations (30) and (31) for (s, a) and player p at episode k, and the
second inequality is from the inductive hypothesis; the third inequality is by algebra. This completes
the induction.

We now show Equation (43). By the definition of ind-bkp(s, a) and algebra,
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Lemma 18. If E happens, we have the following statements holding for all p, k, s, a:

1. For two terms that appear in ind-bkp(s, a), they are bounded respectively as:
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2. For two terms that appear in agg-bkp(s, a), they are bounded respectively as:

‖V k
p − V k

p‖2P̂k(·|s,a) ! 2‖V k
p − V k

p‖2Pp(·|s,a) +
H2SL(nk

p(s, a))

nk
p(s, a)

+Hε (46)

√
√
√
√

var
P̂k(·|s,a)

[

V
k
p

]

L(nk(s, a))

nk(s, a)
!

√
√
√
√

varPp(·|s,a)

[

V πk

p

]

L(nk(s, a))

nk(s, a)
+

√
√
√
√‖V k

p − V k
p‖2Pp(·|s,a)L(n

k(s, a))

nk(s, a)

+
H
√
SL(nk(s, a))

nk(s, a)
+

√

HεL(nk(s, a))

nk(s, a)
(47)

Proof. First, Lemmas 15 and 14 together imply that if E happens, the value function upper and
lower bounds are valid. Conditioned on E happening, we prove the two items respectively.

1. For Equation (44), using the definition of Eind,prob and AM-GM inequality, when E happens,
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where the first inequality is from Equation (48), and the fact that V
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For Equation (45), we have:
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For Equation (47), we have:
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√

HεL(nk
p(s, a))

nk
p(s, a)

!

√
√
√
√

varPp(·|s,a)

[

V πk

p

]

L(nk
p(s, a))

nk
p(s, a)

+

√
√
√
√

‖V k
p − V k

p‖2Pp(·|s,a)L(n
k
p(s, a))

nk
p(s, a)

+

√
SHL(nk

p(s, a))

nk
p(s, a)

+

√

HεL(nk
p(s, a))

nk
p(s, a)

,

where the first inequality is from Lemma 24 and the observation that when E happens,
∣
∣
∣(V

k
p − V "

p )(s
′)
∣
∣
∣ ≤

∣
∣
∣(V

k
p − V k

p)(s
′)
∣
∣
∣ for s′ ∈ Sh+1; the second inequality uses Equation (36) of

Lemma 16 and Equation (46); the third inequality is from Lemma 24 and the observation that when

E happens,
∣
∣
∣(V

"
p − V πk

p )(s′)
∣
∣
∣ ≤
∣
∣
∣(V

k
p − V k

p)(s
′)
∣
∣
∣ for s′ ∈ Sh+1.

C.3.1 Distribution-dependent bound on the surplus terms

Lemma 19 (Surplus bound). If E happens, then for all p, k, s, a:

Ek
p (s, a) !Bk,lead

p (s, a) + E





H
∑

t=h

Bk,fut
p (st, at) | (sh, ah) = (s, a),πk(p),Mp



 ,

where

Bk,lead
p (s, a) = H ∧







5ε+O







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk(s, a))

nk(s, a)














∧O







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk
p(s, a))

nk
p(s, a)







,

Bk,fut
p (s, a) = H3 ∧O

(

H3SL(nk
p(s, a))

nk
p(s, a)

)

.

Proof of Lemma 19. First, Lemmas 15 and 14 together imply that if E holds, for all p, k, s, a,

Ek
p (s, a) ≤ 2

(

H ∧ ind-bkp(s, a) ∧ agg-bkp(s, a)
)

. We now bound ind-bkp(s, a) and agg-bkp(s, a) re-

spectively.
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Bounding ind-bkp(s, a): We have

ind-bkp(s, a)

=O







√
√
√
√

var
P̂k
p(·|s,a)

[V
k
p] L(nk

p(s, a))

nk
p(s, a)

+

√

L(nk
p(s, a))

nk
p(s, a)

+

√
√
√
√

S‖V k
p − V k

p‖2P̂k
p(·|s,a)

L(nk
p(s, a))

nk
p(s, a)

+
SHL(nk

p(s, a))

nk
p(s, a)







≤O







√

varPp(·|s,a)[V
πk

p ] L(nk
p(s, a))

nk
p(s, a)

+

√

L(nk
p(s, a))

nk
p(s, a)

+

√
√
√
√

S‖V k
p − V k

p‖2Pp(·|s,a) L(n
k
p(s, a))

nk
p(s, a)

+
SHL(nk

p(s, a))

nk
p(s, a)







≤O







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk
p(s, a))

nk
p(s, a)

+

√
√
√
√

S‖V k
p − V k

p‖2Pp(·|s,a) L(n
k
p(s, a))

nk
p(s, a)

+
SHL(nk

p(s, a))

nk
p(s, a)







≤O







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk
p(s, a))

nk
p(s, a)

+ ‖V k
p − V k

p‖2Pp(·|s,a) +
SHL(nk

p(s, a))

nk
p(s, a)







where the first inequality is by expanding the definition of ind-bkp(s, a) and algebra; the second
inequality is from Equations Equation (44) and (45) of Lemma 18, along with algebra; the third

inequality is by the basic fact that
√
A +

√
B !

√
A+B; the fourth inequality is by AM-GM

inequality.

Bounding agg-bkp(s, a): We have:

agg-bkp(s, a)

!4ε+O







√
√
√
√var

P̂k(·|s,a)[V
k
p] L(nk(s, a))

nk(s, a)
+

√

L(nk(s, a))

nk(s, a)
+

√
√
√
√

S‖V k
p − V k

p‖2P̂k(·|s,a)
L(nk(s, a))

nk(s, a)
+

SHL(nk(s, a))

nk(s, a)







!5ε+O







√

varPp(·|s,a)[V
πk

p ] L(nk(s, a))

nk(s, a)
+

√

L(nk(s, a))

nk(s, a)
+

√
√
√
√S‖V k

p − V k
p‖2Pp(·|s,a) L(n

k(s, a))

nk(s, a)
+

SHL(nk(s, a))

nk(s, a)







!5ε+O







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk(s, a))

nk(s, a)
+

√
√
√
√S‖V k

p − V k
p‖2Pp(·|s,a) L(n

k(s, a))

nk(s, a)
+

SHL(nk(s, a))

nk(s, a)







≤5ε+O







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk(s, a))

nk(s, a)
+ ‖V k

p − V k
p‖2Pp(·|s,a) +

SHL(nk(s, a))

nk(s, a)







where the first inequality is by expanding the definition of agg-bkp(s, a) and algebra; the second
inequality is from Equations (47) and Equation (46) of Lemma 18, along with the observation that
√

SεHL(nk(s,a))
nk(s,a) ≤ SHL(nk(s,a))

nk(s,a) + ε by AM-GM inequality; the third inequality is by the basic fact

that
√
A+

√
B !

√
A+B; the fourth inequality is from AM-GM inequality.
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Combining the above upper bounds, and using the observation that L(nk(s,a))
nk(s,a) ≤ L(nk

p(s,a))

nk
p(s,a)

, we get

ind-bkp(s, a) ∧ agg-bkp(s, a) ∧H

≤O







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk
p(s, a))

nk
p(s, a)







∧







5ε+O







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk(s, a))

nk(s, a)














∧H

+O



‖V k
p − V k

p‖2Pp(·|s,a) +

(

SHL(nk
p(s, a))

nk
p(s, a)

∧H

)



≤Bk,lead(s, a) +O



‖V k
p − V k

p‖2Pp(·|s,a) +

(

SHL(nk
p(s, a))

nk
p(s, a)

∧H

)


 .

We now show that

‖V k
p−V k

p‖2Pp(·|s,a)+

(

SHL(nk
p(s, a))

nk
p(s, a)

∧H

)

! E





H
∑

t=h

Bk,fut(st, at) | (sh, ah) = (s, a),πk(p),Mp



 ,

(50)
which will conclude the proof. To this end, we simplify the left hand side of Equation (50) using
Lemma 17:

‖V k
p − V k

p‖2Pp(·|s,a) +

(

SHL(nk(s, a))

nk(s, a)
∧H

)

!E













H

H∑

t=h+1

E








1 ∧

√

SL(nk
p(st, at))

nk
p(st, at)



 | sh+1












2

| (sh, ah) = (s, a),πk(p),Mp







+

(

SHL(nk(s, a))

nk(s, a)
∧H

)

!H3E







H
∑

t=h+1

E








1 ∧

√

SL(nk
p(st, at))

nk
p(st, at)





2

| sh+1




 | (sh, ah) = (s, a),πk(p),Mp






+

(

SHL(nk(s, a))

nk(s, a)
∧H

)

!E





H
∑

t=h

H3 ∧
H3SL(nk

p(st, at))

nk
p(st, at)

| (sh, ah) = (s, a),πk(p),Mp





!E





H
∑

t=h

Bk,fut(st, at) | (sh, ah) = (s, a),πk(p),Mp



 ,

where the first inequality is from Equation (43) of Lemma 17; the second inequality is by Cauchy-
Schwarz and E[X ]2 ≤ E[X2] for any random variable X ; and the third inequality is by the law of
total expectation and algebra.

C.4 Concluding the regret bounds

In this section, we present the proofs of Theorems 5 and 6.

To bound the collective regret of MULTI-TASK-EULER, we first recall the following general result
from [36], which is useful to establish instance-dependent regret guarantees for episodic RL.

Lemma 20 (Clipping lemma, [36], Lemma B.6). Fix player p ∈ [M ]; suppose for each episode k,

it follows πk(p), the greedy policy with respect to Q
k
p . In addition, there exists some event E and a

collection of functions
{

Bk,lead
p , Bk,fut

p

}

k∈[K]
⊂ (S × A → R) , such that if E happens, then for
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all k ∈ [K], h ∈ [H ] and (s, a) ∈ Sh ×A, the surplus of Q
k
p satisfies that

0 ≤ Ek
p (s, a) ! Bk,lead

p (s, a) + E





H
∑

t=h

Bk,fut
p (st, at) | (sh, ah) = (s, a),πk(p),Mp



 ,

then, on E:

Reg(K, p) !
∑

s,a

∑

k

ρkp(s, a) clip
(

Bk,lead
p (s, a), ˇgapp(s, a)

)

+H
∑

s,a

∑

k

ρkp(s, a) clip

(

Bk,fut
p (s, a),

gapp,min

8SAH2

)

,

here, recall that clip(α,∆) = α1(α ≥ ∆), and ˇgapp(s, a) =
gapp(s,a)

4H ∨ gapp,min

4H .

Remark 21. Our presentation of the clipping lemma is slightly different than the original one [36,
Lemma B.6], in that:

1. We consider layered MDPs, while [36] consider general stationary MDPs where one state
may be experienced at multiple different steps in [H ]. Specifically, in a layered MDP, the
occupancy distributions ωk,h defined in [36] is only supported over Sh × A. As a result,
in the presentation here, we no longer need to sum over h – this is already captured in the
sum over all s across all layers.

2. Our presentation here is in the context of multitask RL, which is with respect to a player
p ∈ [M ], its corresponding MDP Mp, and its policies used throughout the process
{

πk(p)
}K

k=1
. As a result, all quantities have p as subscripts.

3. Since every (state, action, step) in every MDP is trivially 1-transition optimal (see Defini-
tion B.3 of [36]), when applying Lemma B.6 to Mp, we set αs,a,h = 1 and ˇgapp(s, a) =
gapp,min

2H ∨ gapp(s,a)

4H .

We are now ready to prove Theorems 5 and 6, MULTI-TASK-EULER’s main regret theorems.

C.4.1 Proof of Theorem 5

Proof of Theorem 5. From Lemma 20 and Lemma 19, we have that when E happens,

Reg(K) =
M
∑

p=1

Reg(K, p)

≤
∑

s,a

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

︸ ︷︷ ︸

(A)

+H
∑

s,a

∑

k,p

ρkp(s, a) clip

(

Bk,fut(s, a),
gapp,min

8SAH2

)

︸ ︷︷ ︸

(B)

,

(51)

We bound each term separately. We can directly use Lemma 22 to bound term (B) as:

H
∑

s,a

∑

k,p

ρkp(s, a) clip

(

Bk,fut(s, a),
gapp,min

8SAH2

)

! MH4S2A

(

ln

(
MSAK

δ

)
)2

. (52)

For term (A), we will group the sum by (s, a) ∈ Iε and (s, a) /∈ Iε separately.
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Case 1: (s, a) ∈ Iε. In this case, we have that for all p, ˇgapp(s, a) =
gapp(s,a)

4H ≥ 24ε. We
simplify the corresponding term as follows:

∑

(s,a)∈Iε

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

≤
∑

(s,a)∈Iε

∑

k,p

ρkp(s, a) clip






H ∧




5ε+O





√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)








 ,

minp gapp(s, a)

4H







≤
∑

(s,a)∈Iε

∑

k,p

ρkp(s, a)






H ∧ clip




5ε+O





√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)



 ,
minp gapp(s, a)

4H












!
∑

(s,a)∈Iε

∑

k,p

ρkp(s, a)



H ∧

√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)





where the first inequality is from the definition of Bk,lead; the second inequality is from the basic
fact that clip(A ∧ B,C) ≤ A ∧ clip(B,C); the third inequality uses Lemma 28 with a1 = 5ε,

a2 =

√

(1+varPp(·|s,a)[V πk
p ])L(nk(s,a))

nk(s,a) , and ∆ =
minp gapp(s,a)

4H , along with the observation that

clip(5ε,
minp gapp(s,a)

16H ) = 0, since for all (s, a) ∈ Iε and all p ∈ [M ], gapp(s, a) ≥ 96εH .

We now decompose the inner sum over k,
∑K

k=1, to
∑τ(s,a)−1

k=1 and
∑K

k=τ(s,a). The first part is

bounded by:

∑

(s,a)∈Iε

τp(s,a)−1
∑

k=1

M
∑

p=1

ρkp(s, a)



H ∧

√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)



 ≤
∑

(s,a)∈Iε

τp(s,a)−1
∑

k=1

M
∑

p=1

ρkp(s, a)H ≤ SAHN1,

which is ! MHSA ln
(

SAK
δ

)

.

For the second part,

∑

(s,a)∈Iε

K
∑

k=τ(s,a)

M
∑

p=1

ρkp(s, a)



H ∧

√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)





!
∑

(s,a)∈Iε

K
∑

k=τ(s,a)

M
∑

p=1

ρkp(s, a)

√

(1 + varPp(·|s,a)[V
πk

p ])L(n̄k(s, a))

n̄k(s, a)

!

√
√
√
√

∑

(s,a)∈Iε

K
∑

k=τ(s,a)

M
∑

p=1

ρkp(s, a) ·
L(n̄k(s, a))

n̄k(s, a)
·

√
√
√
√

∑

(s,a)∈Iε

K
∑

k=1

M
∑

p=1

ρkp(s, a)
(

1 + varPp(·|s,a)[V
πk

p ]
)

,

where the first inequality is by dropping the “H∧” operator; the second inequality is by Cauchy-
Schwarz.

36



We bound each factor as follows: for the first factor,

∑

(s,a)∈Iε

K
∑

k=τ(s,a)

M
∑

p=1

ρkp(s, a) ·
L(n̄k(s, a))

n̄k(s, a)
=

∑

(s,a)∈Iε

K
∑

k=τ(s,a)

ρk(s, a) ·
L(n̄k(s, a))

n̄k(s, a)

≤L(MK)
∑

(s,a)∈Iε

K
∑

k=τ(s,a)

ρk(s, a)

n̄k(s, a)

≤
∑

(s,a)∈Iε

L(MK) ·
∫ n̄K(s,a)

1

1

u
du

≤|Iε|L(MK)2 ! |Iε|

(

ln

(
MSAK

δ

)
)2

,

where the first inequality is because L is monotonically increasing, and n̄k(s, a) ≤ MK; the sec-
ond inequality is from the observation that ρk(s, a) ∈ [0,M ], n̄k(s, a) ≥ 2M , and u /→ 1

u is
monotonically decreasing; the last two inequalities are by algebra.

For the second factor,

∑

(s,a)∈Iε

K∑

k=1

M∑

p=1

ρkp(s, a)
(

1 + varPp(·|s,a)[V
πk

p ]
)

!MKH +
M∑

p=1

K∑

k=1

∑

(s,a)∈S×A

ρkp(s, a)varPp(·|s,a)[V
πk

p ]

!MKH +
M
∑

p=1

K
∑

k=1

Var





H
∑

h=1

rkh,p | πk(p)





!MKH2.
(53)

where the first inequality is by the fact that ρkp are probability distributions over every layer h ∈ [H ];
the last two inequalities are by a law of total variance identity (see, e.g., [3, Equation (26)]). To
summarize, the second part is at most

∑

(s,a)∈Iε

K
∑

k=τ(s,a)

M
∑

p=1

ρkp(s, a)



H ∧

√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)



 !
√

MKH2|Iε| ln
(
MSAK

δ

)

.

Combining the bounds for the first and the second parts, we have:

∑

(s,a)∈Iε

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

!
(√

MKH2|Iε|+MHSA
)

ln

(
MSAK

δ

)

.

Case 2: (s, a) /∈ Iε. We simplify the corresponding term as follows:

∑

(s,a)/∈Iε

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

!
∑

(s,a)/∈Iε

∑

k,p

ρkp(s, a) clip







H ∧







√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk
p(s, a))

nk
p(s, a)







,
ˇgapp(s, a)

4H








!
∑

(s,a)/∈Iε

∑

k,p






H ∧

√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk
p(s, a))

nk
p(s, a)
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For each p and (s, a), we now decompose the inner sum over k,
∑K

k=1, to
∑τp(s,a)−1

k=1 and
∑K

k=τp(s,a)
. The first part is bounded by:

∑

(s,a)/∈Iε

M
∑

p=1

τp(s,a)−1
∑

k=1

ρkp(s, a)



H ∧

√

(1 + varPp(·|s,a)[V
πk

p ])L(nk
p(s, a))

nk
p(s, a)



 ≤
∑

(s,a)/∈Iε

M
∑

p=1

τp(s,a)−1
∑

k=1

ρkp(s, a)H

≤MHSAN2,

which is ! MHSA ln
(

MSAK
δ

)

.

For the second part,

∑

(s,a)/∈Iε

M
∑

p=1

K
∑

k=τp(s,a)

ρkp(s, a)






H ∧

√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk
p(s, a))

nk
p(s, a)







!
∑

(s,a)/∈Iε

M
∑

p=1

K
∑

k=τp(s,a)

ρkp(s, a)

√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(n̄k
p(s, a))

n̄k
p(s, a)

≤

√
√
√
√

∑

(s,a)/∈Iε

M
∑

p=1

K
∑

k=τp(s,a)

ρkp(s, a) ·
L(n̄k

p(s, a))

n̄k
p(s, a)

·

√
√
√
√

∑

(s,a)/∈Iε

K
∑

k=1

M
∑

p=1

ρkp(s, a)
(

1 + varPp(·|s,a)[V
πk

p ]
)

We bound each factor as follows: for the first factor,

∑

(s,a)/∈Iε

M
∑

p=1

K
∑

k=τp(s,a)

ρkp(s, a) ·
L(n̄k(s, a))

n̄k(s, a)
≤L(K) ·

∑

(s,a)/∈Iε

M
∑

p=1

K
∑

k=τp(s,a)

ρkp(s, a)

n̄k(s, a)

≤L(K) ·
∑

(s,a)/∈Iε

M
∑

p=1

∫ n̄K
p (s,a)

1

1

u
du

≤
∣
∣
∣IC

ε

∣
∣
∣ML(K)2 ≤

∣
∣
∣IC

ε

∣
∣
∣M

(

ln

(
MSAK

δ

)
)2

.

where the first inequality is because L is monotonically increasing, and n̄k
p(s, a) ≤ K; the second

inequality is from the observation that ρk(s, a) ∈ [0, 1], n̄k(s, a) ≥ 2, and u /→ 1
u is monotonically

decreasing; the last two inequalities are by algebra.

The second factor is again bounded by (53). Therefore, the second part of the sum is at most

∑

(s,a)/∈Iε

M
∑

p=1

K
∑

k=τp(s,a)

ρkp(s, a)






H ∧

√
√
√
√

(

1 + varPp(·|s,a)[V
πk

p ]
)

L(nk
p(s, a))

nk
p(s, a)







≤
(

M
√

KH2
∣
∣IC

ε

∣
∣ +MHSA

)

ln

(
MSAK

δ

)

.

Combining the bounds for the first and the second parts, we have:

∑

(s,a)/∈Iε

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

!

(

M
√

KH2
∣
∣IC

ε

∣
∣+MHSA

)

ln

(
MSAK

δ

)

.

Now, combining the bounds for cases 1 and 2, we have that

(A) ≤
(
√

MKH2|Iε|+M
√

KH2
∣
∣IC

ε

∣
∣+MHSA

)

· ln
(
MSAK

δ

)

. (54)
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In conclusion, by the regret decomposition Equation (51), and Equations (54) and (52), we have:

Reg(K) ≤

(

√

MH2|Iε|K +M
√

H2
∣
∣IC

ε

∣
∣K +MH4S2A ln

(
MSAK

δ

))

ln

(
MSAK

δ

)

.

C.4.2 Proof of Theorem 6

Proof of Theorem 6. From Lemma 20, we have that when E happens,

Reg(K) =
M
∑

p=1

Reg(K, p)

≤
∑

s,a

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

︸ ︷︷ ︸

(A)

+H
∑

s,a

∑

k,p

ρkp(s, a) clip

(

Bk,fut(s, a),
gapp,min

8SAH2

)

︸ ︷︷ ︸

(B)

,

We focus on each term separately. We directly use Lemma 22 to bound term (B) as:

H
∑

s,a

∑

k,p

ρkp(s, a) clip

(

Bk,fut(s, a),
gapp,min

8SAH2

)

! MH4S2A ln

(
MSAK

δ

)

· ln
MSA

gapmin
. (55)

For the (s, a)-th term in term (A), we will consider the cases of (s, a) ∈ Iε and (s, a) /∈ Iε separately.

Case 1: (s, a) ∈ Iε. In this case, we have that for all p, ˇgapp(s, a) =
gapp(s,a)

4H ≥ 24ε. We
simplify the corresponding term as follows:

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

≤
K
∑

k=1

M
∑

p=1

ρkp(s, a) clip






H ∧




5ε+O





√

(1 + varPp(·|s,a)[V
πk

p ])L(nk(s, a))

nk(s, a)








 ,

minp gapp(s, a)

4H







≤
K∑

k=1

ρk(s, a) clip






H ∧




5ε+O





√

H2L(nk(s, a))

nk(s, a)








 ,

minp gapp(s, a)

4H







≤
k
∑

k=1

ρk(s, a)






H ∧ clip




5ε+O





√

H2L(nk(s, a))

nk(s, a)



 ,
minp gapp(s, a)

4H












!
K
∑

k=1

ρk(s, a)




H ∧ clip





√

H2L(nk(s, a))

nk(s, a)
,
minp gapp(s, a)

16H










where the first inequality is by the definition of Bk,lead; the second inequality is from that

varPp(·|s,a)[V
πk

p ] ≤ H2; the third inequality is from that clip(A ∧ B,C) ≤ A ∧ clip(B,C); the

third inequality uses Lemma 28 with a1 = 5ε, a2 =
√

H2L(nk(s,a))
nk(s,a) , and ∆ =

minp gapp(s,a)

4H , along

with the observation that clip(5ε,
minp gapp(s,a)

16H ) = 0, since for all (s, a) ∈ Iε and all p ∈ [M ],
gapp(s, a) ≥ 96εH .
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We now decompose the inner sum over k,
∑K

k=1, to
∑τ(s,a)−1

k=1 and
∑K

k=τ(s,a). The first part’s

contribution is at most N1 ·H ! MH ln
(

SAK
δ

)

. For the second part, its contribution is at most:

K
∑

k=τ(s,a)

ρk(s, a)




H ∧ clip





√

H2L(nk(s, a))

nk(s, a)
,
minp gapp(s, a)

16H










!MH +

∫ n̄K(s,a)

1



H ∧ clip

(√

H2L(u)

u
,
minp gapp(s, a)

16H

)

 du

!MH +
H3

minp gapp(s, a)
ln

(
MSAK

δ

)

where the second inequality is from Lemma 29 with fmax = H , C = H2, ∆ =
minp gapp(s,a)

16H ,

N = MSA, ξ = δ, Γ = 1, n = n̄K(s, a) ≤ K . In summary, for all (s, a) ∈ Iε,

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

≤

(

MH +
H3

minp gapp(s, a)

)

ln

(
MSAK

δ

)

.

Case 2: (s, a) /∈ Iε. In this case, for each p ∈ [M ], we simplify the corresponding term as follows:

∑

k

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

!
K
∑

k=1

ρkp(s, a)




H ∧ clip





√

H2L(nk
p(s, a))

nk
p(s, a)

,
ˇgapp(s, a)

16H










We now decompose the inner sum over k,
∑K

k=1, to
∑τp(s,a)−1

k=1 and
∑K

k=τp(s,a)
. The first part’s

contribution is at most N2 ·H ! H ln
(

MSAK
δ

)

.

For the second part, its contribution is at most:

K
∑

k=τp(s,a)

ρkp(s, a)




H ∧ clip





√

H2L(nk(s, a))

nk(s, a)
,

ˇgapp(s, a)

16H










!H +

∫ n̄K
p (s,a)

1



H ∧ clip

(√

H2L(u)

u
,

ˇgapp(s, a)

16H

)


 du

!H +
H3

ˇgapp(s, a)
ln

(
MSAK

δ

)

where the second inequality is from Lemma 29 with fmax = H , C = H2, ∆ =
ˇgapp(s,a)

16H , N =
MSA, ξ = δ, Γ = 1, n = n̄K

p (s, a) ≤ K . In summary, for any (s, a) ∈ IC
ε and p ∈ [M ],

∑

k

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

! (H +
H3

ˇgapp(s, a)
) ln

(
MSAK

δ

)

,

summing over p, we get:

∑

k,p

ρkp(s, a) clip
(

Bk,lead(s, a), ˇgapp(s, a)
)

!



MH +
M
∑

p=1

H3

ˇgapp(s, a)



 ln

(
MSAK

δ

)

,
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In summary, combining the regret bounds of cases 1 and 2 for term (A), along with Equation (55) for
term (B), and observe that ˇgapp(s, a) = gapp,min if (s, a) ∈ Zp,opt, and ˇgapp(s, a) = gapp(s, a)
otherwise, we have that on event E, MULTI-TASK-EULER satisfies:

Reg(K) ! ln

(
MSAK

δ

)







∑

p∈[M ]






∑

(s,a)∈Zp,opt

H3

gapp,min
+

∑

(s,a)∈(Iε∪Zp,opt)C

H3

gapp(s, a)




+

∑

(s,a)∈Iε

H3

minp gapp(s, a)







+ ln

(
MSAK

δ

)

·MS2AH4 ln
MSA

gapmin
.

Lemma 22 (Bounding the lower order terms). If E happens, then

∑

s,a

∑

k,p

ρkp(s, a) clip

(

Bk,fut(s, a),
gapp,min

8SAH2

)

! MH3S2A ln

(
MSAK

δ

)
(

ln

(
MSAK

δ

)

∧ ln

(
MSA

gapmin

)
)

.

Proof. We expand the left hand side using the definition of Bk,fut, and the fact that gapp,min ≥
gapmin:

K
∑

k=1

ρkp(s, a) clip

(

Bk,fut(s, a),
gapp,min

8SAH2

)

(56)

!
K
∑

k=1

ρkp(s, a)



H3 ∧ clip

(

H3SL(nk
p(s, a))

nk
p(s, a)

,
gapmin

8SAH2

)


 (57)

We now decompose the sum
∑K

k=1 to
∑τp(s,a)−1

k=1 and
∑K

k=τp(s,a)
. The first part can be bounded by

τp(s,a)−1
∑

k=1

ρkp(s, a)



H3 ∧ clip

(

H3SL(nk
p(s, a))

nk
p(s, a)

,
gapmin

8SAH2

)


 ≤
τp(s,a)−1
∑

k=1

H3ρkp(s, a) ≤ H3N2,

which is at most O

(

H3 · ln
(

MSAK
δ

)
)

. For the second part, it can be bounded by:

K
∑

k=τp(s,a)

ρkp(s, a)



H3 ∧ clip

(

H3SL(nk
p(s, a))

nk
p(s, a)

,
gapmin

8SAH2

)



≤H3 · 1 +
∫ n̄K

p (s,a)

1



H3 ∧ clip

(

H3SL(u)

u
,
gapmin

8SAH2

)


 du

!H3 +H3 ln

(
MSA

δ

)

+H3S ln

(
MSAK

δ

)
(

ln

(
MSAK

δ

)

∧ ln

(
MHSA

gapmin

)
)

,

where the second inequality is from Lemma 29 with fmax = H3, C = H3S, ∆ = gapmin
8SAH2 , N =

MSA, ξ = δ, Γ = 1, n = n̄K
p (s, a) ≤ K . In addition, observe that H ≤ S by our layered MDP

assumption, we have

∑

k

ρkp(s, a) clip

(

Bk,lead(s, a),
gapmin

8SAH2

)

! H3S ln

(
MSAK

δ

)
(

ln

(
MSAK

δ

)

∧ ln

(
MSA

gapmin

)
)

Summing over s ∈ S, a ∈ A, and p ∈ [M ], we get

∑

s,a

∑

k,p

ρkp(s, a) clip

(

Bk,lead(s, a),
gapmin

8SAH2

)

! MH3S2A ln

(
MSAK

δ

)
(

ln

(
MSAK

δ

)

∧ ln

(
MSA

gapmin

)
)

.
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C.5 Miscellaneous lemmas

This subsection collects a few miscellaneous lemmas used throughout the upper bound proofs.

Lemma 23 (Bias-variance decomposition). For any random variable X with E[X ] = µ ∈ R, and

any m ∈ R, E
[

(X −m)2
]

= E
[

(X − µ)2
]

+ (µ−m)2.

Lemma 24 ([36], Lemma F.5). For random variables X and Y ,
∣
∣
∣

√

var[X ]−
√

var[Y ]
∣
∣
∣ ≤

√

E
[

(X − Y )2
]

.

Lemma 25. Suppose distributions P and Q are supported over [0, B], and ‖P − Q‖1 ≤ ε ≤ 2.
Then: ∣

∣EX∼P [X ]− EX∼Q[X ]
∣
∣ ≤ Bε,

∣
∣varX∼P [X ]− varX∼Q[X ]

∣
∣ ≤ 3B2ε.

Proof. First,

∣
∣EX∼P [X ]− EX∼Q[X ]

∣
∣ =

∣
∣
∣
∣
∣

∫ B

0
x(pX(x) − qX(x))dx

∣
∣
∣
∣
∣
≤
∫ B

0
|x|
∣
∣pX(x) − qX(x)

∣
∣ dx ≤ B‖P−Q‖1 ≤ Bε.

Second, observe that ∣
∣
∣EX∼P [X

2]− EX∼Q[X
2]
∣
∣
∣ ≤ B2ε.

Meanwhile,
∣
∣
∣(EX∼P [X ])2 − (EX∼Q[X ])2

∣
∣
∣ ≤
∣
∣EX∼P [X ]− EX∼Q[X ]

∣
∣·
∣
∣EX∼P [X ] + EX∼Q[X ]

∣
∣ ≤ 2B·Bε = 2B2ε.

Combining the above, we have
∣
∣varX∼P [X ]− varX∼Q[X ]

∣
∣ ≤ 3B2ε.

Lemma 26. For A,B,C,D,E, F ≥ 0:

1. If A ≤ B + C
√
A, then

√
A ≤

√
B + C.

2. If |D − E| ≤
√
EF + F , then we have

∣
∣
∣

√
D −

√
E
∣
∣
∣ ≤ 2

√
F .

Proof. 1. The roots of x2 − Cx − B = 0 are C±
√
C2+4B
2 , and therefore A must satisfy√

A ≤ C+
√
C2+4B
2 ≤ C+C+2

√
B

2 = C +
√
B.

2. First, D − E ≤ |D − E| ≤
√
EF + F ; this implies that D ≤ E + 2

√
EF + F , and

therefore
√
D ≤

√
E +

√
F .

On the other hand,E ≤ D+F+
√
EF ; therefore, applying item 1 with A = E, B = D+F ,

and F =
√
E, we have

√
E ≤

√
D + F +

√
F ≤

√
D + 2

√
F .

Lemma 27. For a ≥ 0, 1 ∧ (a+
√
a) ≤ 1 ∧ 2

√
a.

Proof. We consider the cases of a ≥ 1 and a < 1 respectively. If a ≥ 1, LHS = 1 = RHS.
Otherwise, a ≤ 1; in this case, LHS = 1 ∧ (a+

√
a) ≤ 1 ∧ (

√
a+

√
a) = RHS.

Lemma 28 (Special case of [36], Lemma B.5). For a1, a2,∆ ≥ 0, clip(a1 + a2,∆) ≤
2 clip(a1,∆/4) + 2 clip(a2,∆/4).

Lemma 29 (Integral calculation, extracted from [36], Lemma B.9). Let f(u) ≤
min(fmax, clip(g(u),∆)), where ∆ ∈ [0,Γ] and Γ ≥ 1, and g(u) is nonincreasing. Let N ≥ 1
and ξ ∈ (0, 1

2 ). Then:
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1. If g(u) !

√
C log Nu

ξ

u for some C > 0 such that lnC ! lnN , then

∫ n

Γ
f(u/4)du !

√

Cn ln
Nn

ξ
∧

C

∆
ln

(
Nn

ξ

)

.

2. If g(u) !
C ln Nu

ξ

u for some C > 0 such that lnC ! lnN , then

∫ n

Γ
f(u/4)du ! fmax ln

N

ξ
+ C ln

Nn

ξ
·
(

ln
Nn

ξ
∧ ln

NΓ

∆

)

.

D Proof of the Lower Bounds

D.1 Auxiliary Lemmas

Lemma 30 (Regret decomposition, [36], Section H.2). For any MPERL problem instance and any
algorithm, we have

E
[

Reg(K)
]

≥
M
∑

p=1

∑

(s,a)∈S1×A

E
[

nK+1
p (s, a)

]

gapp(s, a), (58)

where we recall that S1 is the subset of state space where the initial state distribution p0 is supported
on, nK+1

p (s, a) is the number of visits of (s, a) by player p at the beginning of the (K+1)-th episode

(after the first K episodes). Furthermore, for any (s, a) ∈ S1 ×A, we have

M
∑

p=1

E
[

nK+1
p (s, a)

]

gapp(s, a) ≥ E
[

nK+1(s, a)
]
(

min
p∈[M ]

gapp(s, a)

)

, (59)

where we recall that nK+1(s, a) =
∑M

p=1 n
K+1
p (s, a).

Proof. Eq. (59) follows straightforwardly from the fact that for every (s, a, p) ∈ S1 × A × [M ],
minp′∈[M ] gapp′(s, a) ≤ gapp(s, a).

We now prove Eq. (58). Let πk
p denote πk(p). We have

E
[

Reg(K)
]

= E





M
∑

p=1

K
∑

k=1

∑

s∈S1

p0(s
k
1,p = s)

(

V "
p (s)− V

πk
p

p (s)

)




≥ E





M
∑

p=1

K
∑

k=1

∑

s∈S1

p0(s
k
1,p = s)

(

V "
p (s)−Q"

p(s,π
k
p (s))

)





= E





M
∑

p=1

K
∑

k=1

∑

s∈S1

p0(s)gapp(s,π
k
p (s))





= E





M
∑

p=1

K
∑

k=1

∑

s∈S1

1

(

sk1,p = s
)

gapp(s,π
k
p (s))





= E





M∑

p=1

K∑

k=1

∑

(s,a)∈S1×A

1

(

sk1,p,π
k
p (s) = (s, a)

)

gapp(s, a)





=
M
∑

p=1

∑

(s,a)∈S1×A

E
[

nK
p (s, a)

]

gapp(s, a)

(60)
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where the first equality is from the definition of collective regret; the first inequality is from the
simple fact that V π

p (s) = Qπ
p (s,π(s)) ≤ Q"

p(s,π(s)) for any policy π; the second equality is
from the definition of suboptimality gaps; and the third equality is from the basic observation that
sk1,p ∼ p0.

Lemma 31 (Divergence decomposition [23, 44]). For two MPERL problem instances, M and M′,
which only differ in the transition probabilities

{

Pp(· | s, a)
}

p∈[M ],(s,a)∈S×A, and for a fixed algo-

rithm, let PM and PM′ be the probability measures on the outcomes of running the algorithm on M

and M′, respectively. Then,

KL(PM,PM′) =
M
∑

p=1

∑

(s,a)∈S×A

EM

[

nK+1
p (s, a)

]

KL
(

PM
p (· | s, a),PM

′

p (· | s, a)
)

,

where PM
p (· | s, a) and PM

′

p (· | s, a) are the transition probabilities of the problem instance M and

M′, respectively.

Lemma 32 (Bretagnolle-Huber inequality, [23], Theorem 14.2). Let P and Q be two distributions
on the same measurable space, and A be an event. Then,

P(A) +Q(AC) ≥
1

2
exp

(

−KL(P,Q)
)

.

Lemma 33 (see, e.g., [43], Lemma 25). For any x, y ∈ [ 14 ,
3
4 ], KL

(

Ber(x),Ber(y)
)

≤ 3(x− y)2.

Lemma 34. Let X be a Binomial random variable and X ∼ Bin(n, p), where n ≥ 1
p . Then,

E
[

X
3
2

]

≤ 2(np)
3
2 .

Proof. Let Y = X2, and f(y) = y
3
4 . We have E [Y ] = E

[

X2
]

= var [X ] + E [X ]2 = (np)2 +
np(1−p) ≤ (np)2+np ≤ 2(np)2, where the last inequality follows from the assumption that n ≥ 1

p .

By Jensen’s inequality, we have E
[

X
3
2

]

= E
[

f(Y )
]

≤ f
(

E [Y ]
)

≤
(

2n2p2
) 3

4 ≤ 2(np)
3
2 .

D.2 Gap independent lower bounds

Theorem 35 (Restatement of Theorem 7). For any A ≥ 2, H ≥ 2, S ≥ 4H , K ≥ SA, M ∈ N,
and l, lC ∈ N such that l + lC = SA and l ≤ SA− 4(S +HA), there exists some ε such that for
any algorithm Alg, there exists an ε-MPERL problem instance with S states, A actions, M players

and an episode length of H such that
∣
∣
∣I ε

192H

∣
∣
∣ ≥ l, and

E
[

RegAlg(K)
]

≥ Ω
(

M
√
H2lCK +

√
MH2lK

)

.

Proof. The construction and techniques in this proof are inspired by [43, Section E.1] and [36].

Fix any algorithm Alg; we consider two cases:

1. l > MlC ;

2. MlC ≥ l.

Case 1: l > MlC . Let S1 = S − 2(H − 1), and b = 6 l
S1
7 ≥ 1. Let ∆ =

√

l+1
384MK , and let

ε = 1
2H∆. We note that under the assumption that K ≥ SA, and the observation that l ≤ SA,

we have ∆ ≤ 1
4 . We define (b + 1)S1 ε-MPERL problem instances, each indexed by an element

in [b + 1]S1 . It suffices to show that, on at least one of these problem instances, E
[

RegAlg(K)
]

≥

Ω
(√

MH2lK
)

.
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Construction. For a = (a1, . . . , aS1) ∈ [b + 1]S1 , we define the following ε-MPERL problem

instance, M(a) =
{

Mp

}M

p=1
, with S states, A actions, and an episode length of H , such that for

each p ∈ [M ], Mp is constructed as follows:

• S1 = [S1], and p0 is a uniform distribution over the states in S1.

• For h ∈ [2, H ], Sh = {S1 + 2h− 3, S1 + 2h− 2}.

• A = [A].

• For each (s, a) ∈ S × A, the reward distribution rp(s, a) is a Bernoulli distribution,
Ber(Rp(s, a)), and we will specify Rp(s, a) subsequently.

• For each state s ∈ [S1],

Pp(S1 + 1 | s, a) =









1
2 +∆, if a = as;
1
2 , if a ∈ [b+ 1] \ {as} ;
0, if a /∈ [b+ 1];

and for each a ∈ A, Pp(S1 + 2 | s, a) = 1− Pp(S1 + 1 | s, a), and Rp(s, a) = 0.

• For h ∈ [2, H ], and a ∈ A, let

– Pp

(

S1 + 2h− 1 | S1 + 2h− 3, a
)

= 1, Pp

(

S1 + 2h | S1 + 2h− 3, a
)

= 0, and
Rp(S1 + 2h− 3, a) = 1.

– Pp

(

S1 + 2h | S1 + 2h− 2, a
)

= 0, Pp

(

S1 + 2h− 1 | S1 + 2h− 2, a
)

= 1, and
Rp(S1 + 2h− 2, a) = 0.

It can be easily verified that M(a) =
{

Mp

}M

p=1
is a 0-MPERL problem instance, and hence an

ε-MPERL problem instance—the reward distributions and the transition probabilities are the same
for all players, i.e., for every p, q ∈ [M ], and every (s, a) ∈ S ×A,

∣
∣Rp(s, a)−Rq(s, a)

∣
∣ = 0 ≤ ε,

∣
∣Pp(· | s, a)− Pq(· | s, a)

∣
∣ = 0 ≤

ε

H
.

Suboptimality gaps. We now calculate the suboptimality gaps of the state-action pairs in the
above MDPs. For each p ∈ [M ] and each (s, a) ∈ S ×A,

gapp(s, a) = V "
p (s)−Q"

p(s, a) = max
a′

Q"
p(s, a

′)−Q"
p(s, a).

In M(a), it can be easily observed that for every p ∈ [M ], and every (s, a) ∈
(

S \ S1

)

× A,
gapp(s, a) = 0. Now, for every p ∈ [M ], (s, a) ∈ S1 ×A, we have

gapp(s, a) = max
a′

Q"
p(s, a

′)−Q"
p(s, a) = (H−1)

(

max
a′

Pp(S1 + 1 | s, a′)− Pp(S1 + 1 | s, a)
)

.

It follows that, for every p ∈ [M ] and every state s ∈ [S1],

gapp(s, a) =









0, if a = as;
(H − 1)∆, if a ∈ [b+ 1] \ as;
(H − 1)

(
1
2 +∆

)

, if a /∈ [b+ 1].

Subpar state-action pairs. It can be verified that in M(a),
∣
∣
∣I ε

192H

∣
∣
∣ ≥ l. Indeed, since

(H − 1)∆ = (H − 1)2εH ≥ ε ≥ ε
2 = 96H ε

192H , we have that I ε
192H

is a superset of
{

(s, a) : s ∈ [S1], a ∈ [b+ 1] \ {as}
}

, whose size is at least S1b = S16 l
S1
7 ≥ l.

It suffices to prove that

E
a∼Unif([b+1]S1)EM(a)

[

RegAlg(K)
]

≥
1

640

√
MH2lK,
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where we recall that a = (a1, . . . , aS1); furthermore, it suffices to show that, for any s′ ∈ [S1],

E
a∼Unif([b+1]S1)EM(a)

[

NK+1(s′)− nK+1(s′, as′)
]

≥
MK

4S1
, (61)

where NK+1(s′) =
∑

a∈A nK+1(s′, a); this is because it follows from Eq. (61) that

E
a∼Unif([b+1]S1)EM(a)

[

RegAlg(K)
]

≥
∑

s′∈S1

(H − 1)
∆

4
· E

a∼Unif([b+1]S1)EM(a)

[

NK+1(s′)− nK+1(s′, as′)
]

≥
∑

s′∈S1

H

2
·
∆

4
·
MK

4S1

≥
1

640

√
MH2lK,

where the first inequality uses Lemma 30 (the regret decomposition lemma).

Without loss of generality, we prove Eq. (61) with s′ = 1; the inequality for other s′ values are
shown symmetrically. To this end, we use a standard technique and define a set of helper problem
instances. Specifically, for any (a2, a3, . . . , aS1) ∈ [b + 1]S1−1, we define a problem instance
M(0, a2, . . . , as1) such that it agrees with M(a1, a2, . . . , as1) on everything but Pp(· | 1, a1)’s, i.e.,
in M(0, a2, . . . , as1), for every p ∈ [M ],

Pp(S1 + 1 | 1, a1) =
1

2
.

Now, for each (j, a2, . . . , as1) ∈
(

[0] ∪ [b+ 1]
)

× [b+1]S1−1, let Pj,a2,...,aS1
denote the probability

measure on the outcomes of running Alg on the problem instance M(j, a2, . . . , as1). Further, for
each j ∈ {0} ∪ [b+ 1], we define

Pj =
1

(b+ 1)S1−1

∑

a2,...,aS1∈[b+1]S1−1

Pj,a2,...,aS1
;

and we use Ej to denote the expectation with respect to Pj .

In subsequent calculations, for any index m ∈
(

[0] ∪ [b+ 1]
)

× [b + 1]S1−1, we also denote by

Pm

(

· | NK+1(1)
)

and Em

[

· | NK+1(1)
]

the probability and expectation, respectively, conditional

on a realization of NK+1(1) under Pm. Observe that, for any j ∈ {0} ∪ [b+ 1],

Pj(· | NK+1(1)) =
Pj(·, NK+1(1))

Pj(NK+1(1))

=

1
(b+1)S1−1

∑

a2,...,aS1∈[b+1]S1−1 Pj,a2,...,aS1
(·, NK+1(1))

Pj(NK+1(1))

=
1

(b+ 1)S1−1

∑

a2,...,aS1∈[b+1]S1−1

Pj,a2,...,aS1
(·, NK+1(1))

Pj,a2,...,aS1
(NK+1(1))

=
1

(b+ 1)S1−1

∑

a2,...,aS1∈[b+1]S1−1

Pj,a2,...,aS1
(· | NK+1(1)), (62)

where the first equality is from the definition of conditional probability; the second equality is from
the definition of Pj; the third equality uses the fact that Pj(NK+1(1)) = Pj,a2,...,aS1

(NK+1(1))

for any a2, . . . , aS1 , which is true because NK+1(1) is independent of a2, . . . , aS1 conditional on j;
and the last equality, again, is from the definition of conditional probability.
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We have, for each j ∈ [b+ 1],

Ej

[

nK+1(1, j) | NK+1(1)
]

− E0

[

nK+1(1, j) | NK+1(1)
]

≤NK+1(1)

∥
∥
∥
∥
Pj

(

· | NK+1(1)
)

− P0

(

· | NK+1(1)
)
∥
∥
∥
∥
1

≤NK+1(1) ·
1

(b + 1)S1−1

∑

a2,...,aS1∈[b+1]S1−1

∥
∥
∥
∥
Pj,a2,...,aS1

(

· | NK+1(1)
)

− P0,a2,...,aS1

(

· | NK+1(1)
)
∥
∥
∥
∥
1

≤NK+1(1) ·
1

(b + 1)S1−1

∑

a2,...,aS1∈[b+1]S1−1

√

2KL

(

Ber(
1

2
+∆),Ber(

1

2
)

)

E0,a2,...,aS1

[

nK+1(1, j) | NK+1(1)
]

≤NK+1(1) ·
1

(b + 1)S1−1

∑

a2,...,aS1∈[b+1]S1−1

√

6∆2E0,a2,...,aS1

[

nK+1(1, j) | NK+1(1)
]

≤NK+1(1)

√

6
l+ 1

384MK
· E0

[

nK+1(1, j) | NK+1(1)
]

=
1

8
NK+1(1)

√

l + 1

MK
· E0

[

nK+1(1, j) | NK+1(1)
]

. (63)

where the first inequality is based on Lemma 25 and the fact that, conditional on NK+1(1),
nK+1(1, j) has distribution supported on [0, NK+1(1)]; the second inequality follows from Equa-
tion (62) and the triangle inequality; the third inequality uses Pinsker’s inequality and Lemma 31 (the
divergence decomposition lemma); the fourth inequality uses Lemma 33 and the fact that ∆ ≤ 1

4 ;
and the last inequality follows from Jensen’s inequality.

Since NK+1(1) has the same distribution under both P0 and any Pj (which is Bin(K, 1
S1
)), taking

expectation with respect to NK+1(1), we have that, for any j ∈ [b+ 1],

Ej

[

nK+1(1, j)
]

− E0

[

nK+1(1, j)
]

≤E0

[

1

8
NK+1(1)

√

l + 1

MK
· E0

[

nK+1(1, j) | NK+1(1)
]

]

.

In subsequent derivations, we can now avoid bounding the conditional expectation. Specifically, we
have

1

b+ 1

∑

j∈[b+1]

Ej

[

nK+1(1, j)
]

≤
1

b+ 1

∑

j∈[b+1]

E0

[

nK+1(1, j)
]

+
1

b+ 1

∑

j∈[b+1]

E0

[

1

8
NK+1(1)

√

l + 1

MK
· E0

[

nK+1(1, j) | NK+1(1)
]

]

≤
1

b+ 1
E0





∑

j∈[b+1]

nK+1(1, j)



+ E0






1

8
NK+1(1)

√
√
√
√

l+ 1

MK
·

1

b+ 1

∑

j∈[b+1]

E0

[

nK+1(1, j) | NK+1(1)
]






≤
1

b+ 1
E0

[

NK+1(1)
]

+ E0

[

1

8

√

l+ 1

MK
·

1

b+ 1

(

NK+1(1)
) 3

2

]

≤
1

b+ 1
E0

[

NK+1(1)
]

+
1

8

√

S1

MK
· E0

[
(

NK+1(1)
) 3

2

]

, (64)

where the first inequality follows from Eq. (63) and algebra; the second inequality uses linearity of
expectation and Jensen’s inequality; the third inequality uses the facts that

∑

j∈[b+1] n
K+1(1, j) ≤

NK+1(1) and, for every z ∈ [0] ∪ [b+ 1],
∑

j∈[b+1]

Ez

[

nK+1(1, j) | NK+1(1)
]

≤
∑

j∈A

Ez

[

nK+1(1, j) | NK+1(1)
]

= NK+1(1);
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and the last inequality uses the linearity of expectation and the construction that b = 6 l
S1
7, which

implies that l ≤ bS1 and therefore l + 1 ≤ bS1 + 1 ≤ bS1 + S1 = (b+ 1)S1.

It follows from Equation (64) that

1

b+ 1

∑

j∈[b+1]

Ej

[

nK+1(1, j)
]

≤
1

b+ 1
·
MK

S1
+

1

8

√

S1

MK
· E0

[
(

NK+1(1)
) 3

2

]

≤
MK

2S1
+

1

4

√

S1

MK

(
MK

S1

)3

≤
3MK

4S1
,

where the second inequality uses the fact that 1
b+1 ≤ 1

2 and Lemma 34 under the assumption that
K ≥ S1.

It then follows that

1

b+ 1

∑

j∈[b+1]

Ej

[

NK+1(1)− nK+1(1, j)
]

≥
1

b+ 1

∑

j∈[b+1]

Ej

[

NK+1(1)
]

−
3MK

4S1
=

MK

4S1
,

and we have

E
a∼Unif([b+1]S1)EM(a)

[

NK+1(1)− nK+1(1, a1)
]

≥
MK

4S1
.

Case 2: MlC ≥ l. Again, let S1 = S − 2(H − 1). Let u = 6 l
S1
7 and v = A − u = A − 6 l

S1
7.

Furthermore, let ∆ =
√

vS1
384K , and ε = 2H∆. We note that under the assumption that K ≥ SA

and the fact that vS1 ≤ SA, we have ∆ ≤ 1
4 . We will define vS1×M ε-MPERL problem instances,

each indexed by an element in [v]S1×M . It suffices to show that, on at least one of the instances,

E
[

RegAlg(K)
]

≥ Ω
(

M
√
H2lCK

)

.

Facts about v. There are two helpful facts about v that can be easily verified:

• vS1 ≥ 1
2 l

C . This is true because, by definition, vS1 ≥ S1A − l − S1 = S1A − (SA −
lC) − S1 = lC − (SA − S1A) − S1 = lC −

(

2(H − 1)A+ S1

)

; since, by assumption,

l ≤ SA− 4(S+HA), we have lC ≥ 4(HA+ S) ≥ 2
(

2(H − 1)A+ S1

)

; it then follows

that vS1 ≥ lC −
(

2(H − 1)A+ S1

)

≥ 1
2 l

C .

• v ≥ 2. This is true because, as shown above, vS1 ≥ 1
2 l

C and lC ≥ 4(HA + S), which

imply that v ≥ 2(HA+S)
S1

≥ 2S1
S1

= 2.

Construction. For a = (a1,1, . . . , a1,M , a2,1, . . . , aS1,M ) ∈ [v]S1×M , we define the following

ε-MPERL problem instance, M(a) =
{

Mp

}M

p=1
, with S states, A actions, and an episode length of

H , such that for each p ∈ [M ], Mp is constructed in the same way as it is for case 1, except for the
transition probabilities of (s, a) ∈ S1 ×A:

• For each state s ∈ [S1],

Pp(S1 + 1 | s, a) =









1
2 +∆, if a = as,p;
1
2 , if a ∈ [v] \

{

as,p
}

;
0, if a /∈ [v];

and for each a ∈ A, Pp(S1 + 2 | s, a) = 1− Pp(S1 + 1 | s, a), and Rp(s, a) = 0.
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We now verify that M(a) is an ε-MPMAB problem instance. It can be easily observed that the
reward distributions are the same for all players, i.e., for every p, q ∈ [M ] and every (s, a) ∈ S ×A,

∣
∣Rp(s, a)−Rq(s, a)

∣
∣ = 0 ≤ ε.

Regarding the transition probabilities, for every (s, a) ∈
(

(S1 ×
(

A \ [v]
)

)
)

∪
(
(

S \ S1

)

×A
)

,

we observe that the transition probabilities are the same for all players. Furthermore, for every
p, q ∈ [M ] and every (s, a) ∈ S1 × [v],

∥
∥
∥Pp

(

· | s, a
)

− Pq

(

· | s, a
)
∥
∥
∥
1
≤ 2∆ =

ε

H
.

Therefore, M(a) is an ε-MPMAB problem instance.

Suboptimality gaps. Similar to the arguments in Case 1, it can be shown that for every p ∈ [M ],
and every (s, a) ∈

(

S \ S1

)

×A, gapp(s, a) = 0. And, for every p ∈ [M ], and every s ∈ S1,

gapp(s, a) =









0, if a = as,p;
(H − 1)∆, if a ∈ [v] \ as,p;
(H − 1)

(
1
2 +∆

)

, if a /∈ [v].

Subpar state-action pairs. Based on the above construction, for every (s, a) ∈ S1×
(

A \ [v]
)

and

every p ∈ [M ], gapp(s, a) = (H − 1)
(
1
2 +∆

)

≥ 3(H − 1)∆ = 3(H−1)
2H ε ≥ 3

4ε ≥ 96H
(

ε
192H

)

,

where the first inequality uses the fact that ∆ ≤ 1
4 . Therefore, I ε

192H
is a superset of [S1]×([A]\[v]),

whose cardinality is at least (A− v)S1 = uS1 ≥ l, i.e.,
∣
∣
∣I ε

192H

∣
∣
∣ ≥ l.

Now, it suffices to prove that

E
a∼Unif([v]S1×M)EM(a)

[

RegAlg(K)
]

≥
1

240
M

√
H2lCK,

where we recall that a = (a1,1, . . . , a1,M , a2,1, . . . , aS1,M ). It suffices to show, for any s′ ∈ [S1]
and any p′ ∈ [M ],

E
a∼Unif([v]S1×M)EM(a)

[

NK+1
p′ (s′)− nK+1

p′ (s′, as′)
]

≥
K

4S1
, (65)

where NK+1
p′ (s′) =

∑

a∈A nK+1
p′ (s′, a). To see this, by Lemma 30, we have

E
a∼Unif([v]S1×M)EM(a)

[

RegAlg(K)
]

≥
M
∑

p=1

∑

s′∈S1

(H − 1)∆ · E
a∼Unif([v]S1×M)EM(a)

[

NK+1
p (s′)− nK+1

p (s′, as′)
]

≥
H − 1

4
MK

√

vS1

384K

≥
1

160
M
√

H2(vS1)K

≥
1

240
M

√
H2lCK,

where the last inequality uses the fact that vS1 ≥ 1
2 l

C .

Without loss of generality, it suffices to prove Eq. (65) for s′ = 1 and p′ = 1; the other settings of
(s′, p′) can be handled symmetrically. Similar to case 1, we define a set of helper problem instances:
for any (a1,2, . . . , aS1,M ) ∈ [v]S1×M−1, we define a problem instance M(0, a1,2, . . . , aS1,M )
such that it agrees with M(a1,1, a1,2, . . . , aS1,M ) on everything but P1(· | 1, a1), namely, in

M(0, a1,2, . . . , aS1,M ), P1(S1 + 1 | 1, a1) = 1
2 .

For each (j, a1,2, . . . , aS1,M ) ∈
(

[0] ∪ [v]
)

× [v]S1×M−1, let Pj,a1,2,...,aS1,M denote the probability

measure on the outcomes of running Alg on the problem instance M(j, a1,2, . . . , aS1,M ). Further,
for each j ∈ {0} ∪ [v], we define

Pj =
1

vS1×M−1

∑

a1,2,...,aS1,M∈[v]S1×M−1

Pj,a1,2,...,aS1,M ;
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and we use Ej to denote the expectation with respect to Pj . In subsequent calculations, for any

m ∈
(

[0] ∪ [v]
)

× [v]S1×M−1, we also denote by Pm

(

· | NK+1
1 (1)

)

and Em

[

· | NK+1
1 (1)

]

the

probability and expectation conditional on a realization of NK+1
1 (1) under Pm. Similar to case 1, it

can be shown that, for any j ∈ {0} ∪ [v],

Pj(· | NK+1(1)) =
1

vS1×M−1

∑

a1,2,...,aS1,M∈[v]S1×M−1

Pj,a1,2,...,aS1,M

(

· | NK+1(1)
)

. (66)

Now, for each j ∈ [v], we have

Ej

[

nK+1
1 (1, j) | NK+1

1 (1)
]

− E0

[

nK+1
1 (1, j) | NK+1

1 (1)
]

≤NK+1
1 (1)

∥
∥
∥
∥
Pj

(

· | NK+1
1 (1)

)

− P0

(

· | NK+1
1 (1)

)
∥
∥
∥
∥
1

≤NK+1
1 (1) ·

1

vS1×M−1

∑

a1,2,...,aS1,M∈[v]S1×M−1

∥
∥
∥
∥
Pj,a1,2,...,aS1,M

(

· | NK+1
1 (1)

)

− P0,a1,2,...,aS1,M

(

· | NK+1
1 (1)

)
∥
∥
∥
∥
1

≤NK+1
1 (1) ·

1

vS1×M−1

∑

a1,2,...,aS1,M∈[v]S1×M−1

√

2KL

(

Ber(
1

2
+∆),Ber(

1

2
)

)

E0,a2,...,aS1

[

nK+1
1 (1, j) | NK+1

1 (1)
]

≤NK+1
1 (1) ·

1

vS1×M−1

∑

a1,2,...,aS1,M∈[v]S1×M−1

√

6∆2E0,a2,...,aS1

[

nK+1
1 (1, j) | NK+1

1 (1)
]

≤NK+1
1 (1) ·

√

6vS1

384K
· E0

[

nK+1
1 (1, j) | NK+1

1 (1)
]

=
1

8
NK+1

1 (1)

√

vS1

K
· E0

[

nK+1
1 (1, j) | NK+1

1 (1)
]

. (67)

where the first inequality is based on Lemma 25 and the fact that, conditional on NK+1
1 (1),

nK+1
1 (1, j) has distribution supported on [0, NK+1

1 (1)]; the second inequality follows from Equa-
tion (66) and the triangle inequality; the third inequality uses Pinsker’s inequality and Lemma 31 (the
divergence decomposition lemma); the fourth inequality uses Lemma 33 and the fact that ∆ ≤ 1

4 ;
and the last inequality follows from Jensen’s inequality.

Using arguments similar to the ones shown for case 1, we have that
1

v

∑

j∈[v]

Ej

[

nK+1
1 (1, j)

]

≤
1

v
E0

[

nK+1
1 (1, j)

]

+ E0






1

8
NK+1

1 (1)

√
√
√
√

vS1

K
·
1

v

∑

j∈[v]

E0

[

nK+1
1 (1, j) | NK+1

1 (1)
]






≤
1

v
E0

[

NK+1(1)
]

+
1

8

√

S1

K
· E0

[
(

NK+1
1 (1)

) 3
2

]

≤
1

v
·
K

S1
+

1

4

√

S1

K

(
K

S1

)3

≤
3K

4S1
,

where the second to last inequality is from Lemma 34 under the assumption that K ≥ S1, and the
last inequality uses the fact that v ≥ 2.

It then follows that
1

v

∑

j∈[v]

Ej

[

NK+1
1 (1)− nK+1

1 (1, j)
]

≥
1

v

∑

j∈[v]

Ej

[

NK+1
1 (1)

]

−
3K

4S1
=

K

4S1
,
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and we thereby have shown that

E
a∼Unif([v]S1×M)EM(a)

[

NK+1
1 (1)− nK+1

1 (1, a1)
]

≥
K

4S1
.

D.3 Gap dependent lower bound

Theorem 36 (Restatement of Theorem 8). Fix ε ≥ 0. For any S ∈ N, A ≥ 2, H ≥ 2, M ∈ N,
such that S ≥ 2(H − 1), let S1 = S− 2(H − 1); and let

{

∆s,a,p

}

(s,a,p)∈[S1]×[A]×[M ]
be any set of

values such that

• for every (s, a, p) ∈ [S1]× [A]× [M ], ∆s,a,p ∈ [0, H
48

√
M
];

• for every (s, p) ∈ [S1]× [M ], there exists at least one action a ∈ [A] such that ∆s,a,p = 0;

• and, for every (s, a) ∈ [S1]× [A] and p, q ∈ [M ],
∣
∣∆s,a,p −∆s,a,q

∣
∣ ≤ ε/4.

There exists an ε-MPERL problem instance with S states, A actions, M players and an episode
length of H , such that S1 = [S1], |Sh| = 2 for all h ≥ 2, and

gapp(s, a) = ∆s,a,p, ∀(s, a, p) ∈ [S1]× [A]× [M ].

For this problem instance, any sublinear regret algorithm Alg for the ε-MPERL problem must have
regret at least

E
[

RegAlg(K)
]

≥ Ω











lnK










∑

p∈[M ]

∑

(s,a)∈IC
(ε/768H)

:

gapp(s,a)>0

H2

gapp(s, a)
+

∑

(s,a)∈I(ε/768H)

H2

minp gapp(s, a)




















.

Proof. The construction and techniques in this proof are inspired by [36] and [43].

Proof outline. We will construct an ε-MPERL problem instance, M, and show that, for any sub-
linear regret algorithm and sufficiently large K , the following two claims are true:

1. for any (s, a) ∈ S ×A such that for all p, gapp(s, a) > 0,

EM

[

nK(s, a)
]

≥ Ω







H2

(

minp gapp(s, a)
)2 lnK







; (68)

2. for any (s, a) ∈ IC
ε

768H
and any p ∈ [M ] such that gapp(s, a) > 0,

EM

[

nK
p (s, a)

]

≥ Ω







H2

(

gapp(s, a)
)2 lnK







. (69)

The rest then follows from Lemma 30 (the regret decomposition lemma).

Construction of M. Given any set of values
{

∆s,a,p

}

(s,a,p)∈[S1]×[A]×[M ]
that satisfies the as-

sumptions in the theorem statement, we can construct a collection of MDPs
{

Mp

}M

p=1
, such that

for each p ∈ [M ], Mp is as follows, and M =
{

Mp

}M

p=1
is an ε-MPERL problem instance:

• S1 = [S1], and p0 is a uniform distribution over the states in S1.
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• For h ∈ [2, H ], Sh = {S1 + 2h− 3, S1 + 2h− 2}.

• A = [A].

• For all (s, a) ∈ S × A, the reward distribution rp(s, a) is a Bernoulli distribution,
Ber(Rp(s, a)), and we specify Rp(s, a) subsequently.

• For every (s, a) ∈ S1 × [A], set ∆̄p
s,a = ∆s,a,p

H−1 . Then, let

Pp

(

S1 + 1 | s, a
)

=
1

2
− ∆̄p

s,a, Pp

(

S1 + 2 | s, a
)

=
1

2
+ ∆̄p

s,a,

and Rp(s, a) = 0. Since ∆s,a,p ∈ [0, H/48], ∆̄p
s,a ≤ H

48(H−1) ≤ 1
24 , where the last

inequality follows from the assumption that H ≥ 2. Therefore, Pp

(

S1 + 1 | s, a
)

∈ [0, 1],
and Pp

(

S1 + 2 | s, a
)

∈ [0, 1].

• For h ∈ [2, H ], and a ∈ [A], let

– Pp

(

S1 + 2h− 1 | S1 + 2h− 3, a
)

= 1, Pp

(

S1 + 2h | S1 + 2h− 3, a
)

= 0, and
Rp(S1 + 2h− 3, a) = 1.

– Pp

(

S1 + 2h | S1 + 2h− 2, a
)

= 0, Pp

(

S1 + 2h− 1 | S1 + 2h− 2, a
)

= 1, and
Rp(S1 + 2h− 2, a) = 0.

By the assumption that for every (s, p) ∈ [S1] × [M ], there exists at least one action a ∈ [A] such
that ∆s,a,p = 0, we have that there is at least one action a such that ∆̄p

s,a = 0. We verify that for

every (s, a, p) ∈ [S1]× [A]× [M ],

gapp(s, a) = V "
p (s)−Q"

p(s, a)

= max
a′

Q"
p(s, a

′)−Q"
p(s, a)

= (H − 1)∆̄p
s,a

= ∆s,a,p.

We now verify that the above MPERL problem instance M =
{

Mp

}M

p=1
is an ε-MPERL problem

instance:

1. The reward distributions are the same for all players, namely, for all p, q,
∣
∣Rp(s, a)−Rq(s, a)

∣
∣ = 0 ≤ ε, ∀(s, a) ∈ S ×A.

2. Further, by the assumption that for every (s, a) ∈ [S1] × [A] and p, q ∈ [M ],
∣
∣∆s,a,p −∆s,a,q

∣
∣ ≤ ε/4, we have that

∣
∣
∣∆̄p

s,a − ∆̄q
s,a

∣
∣
∣ =

∣
∣∆s,a,p −∆s,a,q

∣
∣

H − 1
≤

ε

4(H − 1)
≤

ε

2H
.

It then follows that

‖Pp

(

· | s, a
)

− Pq

(

· | s, a
)

‖1 = 2
∣
∣
∣∆̄p

s,a − ∆̄q
s,a

∣
∣
∣ ≤

ε

H
.

Meanwhile, for every (s, a) ∈
(

S \ S1

)

×A

‖Pp

(

· | s, a
)

− Pq

(

· | s, a
)

‖1 = 0 ≤
ε

H
.

In summary, for every (s, a) ∈ S ×A,

‖Pp

(

· | s, a
)

− Pq

(

· | s, a
)

‖1 ≤
ε

H
.

We are now ready to prove the two claims:
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1. Proving claim 1 (Equation (68)):

Fix any (s0, a0) ∈ [S1] × [A] such that ∆̄min
s0,a0

= minp ∆̄p
s0,a0

> 0. It can be easily

observed that gapp(s0, a0) > 0 for all p. Define p0 = argminp ∆̄
p
s0,a0

. We can construct a

new problem instance, M′, which agrees with M, except that

∀p ∈ [M ],Pp

(

S1 + 1 | s0, a0
)

=
1

2
−∆̄p

s0,a0
+2∆̄min

s0,a0
,Pp

(

S1 + 2 | s0, a0
)

=
1

2
+∆̄p

s0,a0
−2∆̄min

s0,a0
.

M′ is an ε-MPERL problem instance. To see this, we note that the only change is in
Pp

(

· | s0, a0
)

for all p ∈ [M ]. In this new instance, it is still true that for every p, q ∈ [M ],

‖Pp

(

· | s0, a0
)

− Pq

(

· | s0, a0
)

‖1 = 2
∣
∣
∣∆̄p

s0,a0
− ∆̄q

s0,a0

∣
∣
∣ ≤

ε

H
.

Fix any sublinear regret algorithm Alg for the ε-MPERL problem. By Lemma 31 (the
divergence decomposition lemma), we have

KL(PM,PM′) =
M∑

p=1

EM

[

nK
p (s0, a0)

]

KL
(

PM
p (· | s0, a0),PM

′

p (· | s0, a0)
)

,

where PM and PM′ are the probability measures on the outcomes of running Alg on M and

M′, respectively; PM
p (· | s0, a0), PM

′

p (· | s0, a0) are the transition probabilities for (s0, a0)
and player p in M and M′, respectively.

We observe that, for any p ∈ [M ],

KL
(

PM
p (· | s0, a0),PM

′

p (· | s0, a0)
)

=KL

(

Ber

(
1

2
− ∆̄p

s0,a0

)

,Ber

(
1

2
− ∆̄p

s0,a0
+ 2∆̄min

s0,a0

)
)

≤12(∆̄min
s0,a0

)2,

where the last inequality follows from Lemma 33 and the assumption that ∆s,a,p ≤ H
48 .

In addition,
∑M

p=1 EM

[

nK
p (s0, a0)

]

= EM

[

nK(s0, a0)
]

. It then follows that

KL(PM,PM′) ≤12EM

[

nK(s0, a0)
]

(∆̄min
s0,a0

)2. (70)

Now, in the original ε-MPERL problem instance, M, by Equation (58) and Markov’s In-
equality, we have

EM

[

RegAlg(K)
]

≥
K

4S1

(

(H − 1)∆̄min
s0,a0

)

PM

(

nK
p0
(s0, a0) ≥

K

4S1

)

;

where we note that ∆̄p0
s0,a0

= ∆̄min
s0,a0

. In M′, the new ε-MPERL problem instance, we have

EM′

[

RegAlg(K)
]

≥
(

(H − 1)∆̄min
s0,a0

)

EM′




∑

a )=a0

np0(s0, a)





=
(

(H − 1)∆̄min
s0,a0

)

EM′

[

NK
p0
(s0)− np0(s0, a0)

]

≥
K

4S1

(

(H − 1)∆̄min
s0,a0

)

PM′

(

NK
p0
(s0)− np0(s0, a0) ≥

K

4S1

)

≥
K

4S1

(

(H − 1)∆̄min
s0,a0

)

PM′

(

NK
p0
(s0) ≥

K

2S1
, np0(s0, a0) ≤

K

4S1

)

≥
K

4S1

(

(H − 1)∆̄min
s0,a0

)
(

PM′

(

np0(s0, a0) ≤
K

4S1

)

− exp(−
K

8S1
)

)

,
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where the first inequality is by Equation (58); the second inequality is by Markov’s Inequal-
ity; the third inequality is by simple algebra; and the last inequality is by Chernoff bound

that PM′

(

NK
p0
(s0) <

K
2S1

)

≤ exp(− K
8S1

), and P(A ∩ B) ≥ P(B) − P(AC) for events

A,B.

It then follows that

EM

[

RegAlg(K)
]

+ EM′

[

RegAlg(K)
]

=
K

2

(

(H − 1)∆̄min
s0,a0

)
(

PM

(

nK
p0
(s0, a0) ≥

K

4S1

)

+ PM′

(

nK
p0
(s0, a0) <

K

4S1

)

− exp(−
K

8S1
)

)

≥
K

2

(

(H − 1)∆̄min
s0,a0

)
(
1

2
exp

(

−KL(PM,PM′)
)

− exp(−
K

8S1
)

)

≥
K

2

(

(H − 1)∆̄min
s0,a0

)
(

1

2
exp

(

−12EM

[

nK(s0, a0)
]

(∆̄min
s0,a0

)2
)

− exp(−
K

8S1
)

)

,

where the first inequality follows from Lemma 32 (the Bretagnolle-Huber inequality), and
the second inequality follows from Eq. (70). Observe that EM

[

nK(s0, a0)
]

≤ MK
S1

; in ad-

dition, by our assumption that ∆s,a,p ≤ H
48

√
M

for every (s, a, p), we have ∆̄min
s0,a0

≤ 1
24

√
M

.

These together implies that 1
4 exp

(

−12EM

[

nK(s0, a0)
]

(∆̄min
s0,a0

)2
)

≥ 1
4 exp(−

K
48S1

) ≥
exp(− K

8S1
), as long as K ≥ 20S1. Therefore, we have

EM

[

RegAlg(K)
]

+EM′

[

RegAlg(K)
]

≥
K

2

(

(H − 1)∆̄min
s0,a0

)

·
1

4
exp

(

−12EM

[

nK(s0, a0)
]

(∆̄min
s0,a0

)2
)

.

Now, under the assumption that Alg is a sublinear regret algorithm, we have

K

8

(

(H − 1)∆̄min
s0,a0

)

exp

(

−12EM

[

nK(s0, a0)
]

(∆̄min
s0,a0

)2
)

≤ 2CKα.

It follows that

EM

[

nK(s0, a0)
]

≥
1

12
(

∆̄min
s0,a0

)2 ln

(

(H − 1)∆̄min
s0,a0

K1−α

16C

)

=
(H − 1)2

12
(

minp gapp(s0, a0)
)2 ln

(

minp gapp(s0, a0)K
1−α

16C

)

≥
H2

48
(

minp gapp(s0, a0)
)2 ln

(

minp gapp(s0, a0)K
1−α

16C

)

.

We then have

EM

[

nK(s0, a0)
]

≥ Ω







H2

(

minp gapp(s0, a0)
)2 lnK







.

2. Proving Claim 2 (Equation (69)):

Fix any (s0, a0) ∈ IC
ε

768H
and p0 ∈ [M ] such that ∆̄p0

(s0,a0)
> 0, which means that

gapp0
(s0, a0) > 0. We have that for all p ∈ [M ],

∆̄p
s0,a0

=
∆p

s0,a0

H − 1
=

gapp(s0, a0)

H − 1
≤

96H(ε/(768H))

(H − 1)
≤

ε

8(H − 1)
≤

ε

4H
. (71)
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We construct a new problem instance, M′, which agrees with M except that

Pp0

(

S1 + 1 | s0, a0
)

=
1

2
− ∆̄p0

s0,a0
+ 2∆̄p0

s0,a0
=

1

2
+ ∆̄p0

s0,a0
,

Pp0

(

S1 + 2 | s0, a0
)

=
1

2
+ ∆̄p0

s0,a0
− 2∆̄p0

s0,a0
=

1

2
− ∆̄p0

s0,a0
.

M′ is an ε-MPERL problem instance. To see this, we note that the only change is in
Pp0

(

· | s0, a0
)

. In this new instance, it is still true that for any q := p0,

‖Pp0(· | s0, a0)− Pq(· | s0, a0)‖1 ≤ 2
∣
∣
∣∆̄p0

s0,a0
+ ∆̄q

s0,a0

∣
∣
∣ ≤

ε

H
.

where the last inequality uses Equation (71) that ∆̄p
s0,a0

≤ ε
4H for every p ∈ [M ].

Fix any sublinear regret algorithm Alg. By Lemma 31 (the divergence decomposition
lemma), we have

KL(PM,PM′) = EM

[

nK
p0
(s0, a0)

]

KL
(

PM
p0
(· | s0, a0),PM

′

p0
(· | s0, a0)

)

.

Using a similar reasoning as before, and recall that ∆̄p
s0,a0

≤ 1
24 , we can show that

KL(PM,PM′) ≤12EM

[

nK
p0
(s0, a0)

]

(∆̄p0
s0,a0

)2 ≤
K

48S1
, (72)

and consequently, as long as K ≥ 20S1,

1

4
exp

(

−12EM

[

nK(s0, a0)
]

(∆̄min
s0,a0

)2
)

≥
1

4
exp(−

K

48S1
) ≥ exp(−

K

8S1
).

Similar to the proof of Claim 1, we have the following argu-
ment. In the original ε-MPERL problem instance, M, we have

EM

[

RegAlg(K)
]

≥ K
4S1

(

(H − 1)∆̄p0
s0,a0

)

PM

(

nK
p0
(s0, a0) ≥ K

4S1

)

; and in

M′, the new ε-MPERL problem instance, we have EM′

[

RegAlg(K)
]

≥

K
4S1

(

(H − 1)∆̄p0
s0,a0

)
(

PM′

(

nK
p0
(s0, a0) < K

4S1

)

− exp(− K
8S1

)

)

.

It then follows that

EM

[

RegAlg(K)
]

+ EM′

[

RegAlg(K)
]

≥
K

2

(

(H − 1)∆̄p0
s0,a0

)
(
1

2
exp

(

−KL(PM,PM′)
)

− exp(−
K

8S1
)

)

≥
K

8

(

(H − 1)∆̄p0
s0,a0

)

exp

(

−12EM

[

nK
p0
(s0, a0)

]

(∆̄p0
s0,a0

)2
)

.

Now, under the assumption that Alg is a sublinear regret algorithm, we have

K

8

(

(H − 1)∆̄p0
s0,a0

)

exp

(

−12EM

[

nK
p0
(s0, a0)

]

(∆̄p0
s0,a0

)2
)

≤ 2CKα.

It follows that

EM

[

nK
p0
(s0, a0)

]

≥
1

12
(

∆̄p0
s0,a0

)2 ln

(

(H − 1)∆̄p0
s0,a0

K1−α

16C

)

≥
H2

24
(

gapp0
(s0, a0)

)2 ln

(

gapp0
(s0, a0)K1−α

16C

)

.

We then have that

EM

[

nK
p0
(s0, a0)

]

≥ Ω







H2

(

gapp0
(s0, a0)

)2 lnK







.
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Combing the two claims: We note that in M, for any (s, a, p) ∈
(

S \ S1

)

× A × [M ],
gapp(s, a) = 0. It then follows from Lemma 30 (the regret decomposition lemma) and the

fact that for any (s, a, p) ∈ Iε/768H × [M ], gapp(s, a) > 0, that

E
[

RegAlg(K)
]

≥
M
∑

p=1

∑

(s,a)∈S1×A

E
[

nK
p (s, a)

]

gapp(s, a)

≥Ω










lnK









∑

p∈[M ]

∑

(s,a)∈IC
ε/768H :

gapp(s,a)>0

H2

gapp(s, a)
+

∑

(s,a)∈Iε/768H

H2

minp gapp(s, a)


















.

56


	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Performance guarantees
	4.1 Upper bounds
	4.2 Lower bounds

	5 Related Work
	6 Conclusion and Future Directions
	7 Acknowledgements
	A Proofs of Lemmas 2 and 4
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 4

	B Additional Definitions Used in the Proofs
	C Proof of the Upper Bounds
	C.1 A clean event
	C.2 Validity of value function bounds
	C.2.1 Proof of Lemma 13

	C.3 Simplifying the surplus bounds
	C.3.1 Distribution-dependent bound on the surplus terms

	C.4 Concluding the regret bounds
	C.4.1 Proof of Theorem 5
	C.4.2 Proof of Theorem 6

	C.5 Miscellaneous lemmas

	D Proof of the Lower Bounds
	D.1 Auxiliary Lemmas
	D.2 Gap independent lower bounds
	D.3 Gap dependent lower bound


