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Abstract

The CATRiNA deuterated neutron detector array at Florida State University consists of 16 2”/x 2" and 16
4”"x 2" EJ-315 detectors with characteristic light output and pulse-shape discrimination capabilities. The
unique properties of the detectors, in part due to the anisotropic nature of (d,n) scattering, are used to extract
the energy of neutrons via pulse-height spectrum unfolding. The unfolding method uses the light output and
response matrix of the detectors to extract neutron energies, independent of the traditional time-of-flight
(ToF) technique. Detailed response matrices of the CATRiNA detectors were measured at the Edwards
Accelerator Laboratory at Ohio University via the °Be(d,n) and 2’ Al(d,n) reactions. Full characterization

of the detectors using digital electronics, as well as a description of the unfolding method are reported.

1. Introduction

The efficient and accurate detection of neutrons is essential in basic nuclear science as well as nuclear
nonproliferation and safeguards applications [1]. However, the neutral-charge nature of the neutron makes
its detection challenging. Since neutrons carry no charge, they are indirectly studied through their interac-
tions with other nuclei. Some neutron detectors are based on thermal reactions, where neutrons interacting
with certain nuclei can cause a nuclear reaction. The products of these reactions, including gamma-rays,
protons, alpha-particles, and fission fragments, initiate the detection process. These types of detectors are
usually surrounded by a moderating material to maximize detection efficiency [2]. Other detectors rely on

the neutron scattering with a nucleus and transferring some of its kinetic energy to the recoiling nucleus.
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If enough energy is transferred, the recoiling nucleus ionizes the material surrounding the point of interac-
tion. This mechanism is only efficient for neutrons interacting with light nuclei, therefore, neutron detectors
based on this principle often use hydrogen-based scintillating materials [2]. In such cases, the neutron’s
energy is typically determined via its time-of-flight (ToF), where a long flight path is needed to obtain good
energy resolution. Consequently, the detectors must be placed a considerable distance from the reaction
target, effectively decreasing the solid angle coverage of the detector array. An alternative method of ex-
tracting neutron energies without fully relying on ToF has been sought in order to efficiently optimize the
solid angle coverage and size of the detector array.

The use of neutron detectors with deuterated scintillating material, rather than hydrogen-based scintil-
lating material, has recently increased [3—-6] due to unique features produced in the light output spectrum.
Neutrons scattered with the deuterium in the scintillator will produce a characteristic forward recoil peak
and low valley in the light output spectrum [7]. This feature, due to the asymmetry of the cross section for
n-d scattering which peaks at backwards angles, extends across a large range of neutron energies. The char-
acteristic light output spectra of deuterated scintillators can be used for the extraction of neutron energies
using spectrum unfolding methods. The light output spectrum is analyzed using a statistical approach that
extracts the most probable neutron energy spectra using the detector’s response matrix which is obtained
via the characterization of the detectors’ response to a broad range of neutron energies.

The Compound Array for Transfer Reactions in Nuclear Astrophysics (CATRiNA) neutron detector ar-
ray has been developed at Florida State University (FSU) [8]. This work discusses detector characterization,
the measurement of response matrices, and the spectrum unfolding method used to obtain neutron energies

with CATRiNA.

2. Detectors

The CATRiNA neutron detector array is composed of 32 deuterated-benzene (CgDg) liquid scintillators
[9]. The CATRiNA detectors are currently of two sizes: 16 ‘small’ detectors and 16 ‘large’ detectors. The
small detectors encapsulate the scintillating material in a 2”” diameter X 2”” deep cylindrical aluminum cell
and are coupled to Hamamatsu R7724 Photo-Multiplier Tubes (PMTs) [10]. The large detectors encapsulate
the scintillating material in a 4" diameter X 2" deep cylindrical aluminum cell which are coupled to ET
Enterprise 9821B Photo-Multiplier Tubes (PMTs) [11]. Although the large detectors have been previously
characterized [8], full characterization of the small detectors and further detailed characterization of the

large detectors was needed in order to obtain detailed response matrices of both detector sizes under the
2
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Figure 1: Schematic of the small neutron detector [9] with the scintillating material in a 2”x 2” Al cell in Figure 1a. Schematic of
the large neutron detector [9] with the scintillating material in a 4”x 2" Al cell in Figure 1b.

Detector Long | Short | Pre-Gate
4” by 27 EJ-315 | 196ns | 36 ns | 100 ns
2” by 2”7 EJ-315 | 196 ns | 24 ns 92 ns

Table 1: Optimized PSD timing gates applied to the small and large CATRiINA detectors.

same experimental conditions. Schematics of the small and large detectors are shown in Figures 1a and 1b.

The CATRINA detectors allow for the separation of neutron (n) and gamma-ray (y) interactions using
their pulse shape discrimination (PSD) capabilities. By applying different integration timing gates to the
pulses collected from the detectors in the data acquisition system (DAQ), suitable n/y separation can be
achieved. In the present work three different timing gates were applied: Short, Long, and Pre-gate. These
gates were optimized for the different detectors, and the integration times are shown in Table 1. The Short
gate provides an integration for the rise time of the pulse and the Long gate provides an integration of the
entire pulse. The Pre-gate sets the starting position of the Long and Short gates. A typical PSD plot is seen
in Figure 2 where the PSD is plotted against the Long gate, or Pulse-Height. Here PSD is defined as the
difference between the Long gate and Short gate divided by the Long gate. From Fig. 2, it is observed that

neutron (inside the red contour) and gamma-ray events are well separated in two distinctive groups.
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Figure 2: Typical Pulse-shape discrimination (PSD) plot obtained with one of the small 2”x 2” EJ-315 detector. The y-axis is
defined as: PSD = (Long gate - Short gate)/ Long gate. The red contour encloses neutron events.
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3. Measurement of the *Be(d,n) and 2’ Al(d,n) reactions

A measurement of the “Be(d,n) and 2’ Al(d,n) reactions using the CATRiNA detectors was performed
at the Edwards Accelerator Laboratory at Ohio University [12]. The unique facility employees a beam
swinger and neutron ToF tunnel for neutron measurements. For both reactions, a 4.5 MV tandem Van de
Graff accelerator provided a pulsed deuterium beam with 1600 ns between beam pulses. Thick targets of
9Be and 2’ Al were used as “white” neutron sources, producing a continuum of neutron energies dependent
upon the energy of the deuterium beam [13-15].

The CATRiNA detectors (2 large and 2 small detectors) were placed at a flight path of 8.5 m inside the
neutron ToF tunnel. The Be(d,n) reaction occurred at E; = 7.00 MeV with the beam swinger at 0°, while
the 27 Al(d,n) reaction occurred at E; = 7.44 MeV with the beam swinger at 120° [6, 13—15]. A background
spectrum was obtained by using polyethylene bricks stacked at the entrance to the neutron ToF tunnel to
block the face of the neutron detectors.

Calibration of the neutron detectors was determined using standard '3’Cs, %°Co, and ?*Na gamma-ray
sources. A Compton edge is produced when maximum energy is transferred [7]. Since the location of the
Compton edge is broadened due to the resolution of each of the detectors, it was placed at approximately
80% of the total peak height following the procedure outlined by Ref. [16]. The calibrated neutron detectors
adopt keVee (keV electron equivalent) units, defined as the particle energy required to generate 1 keVee of
light, which is 1 keV for an electron [2]. A set of two CAEN digitizers were used as data acquisition system
to acquire the neutron and timing signals, using CAEN’s CoOMPASS software. A CAEN V1730 14-bit 500
MS/s digitizer [17] acted as the “master” board while a CAEN V1725 14-bit 250 MS/s digitizer [18] was
the “slave” board. The signals from the anode of the PMT of the neutron detectors were sent to the V1725
digitizer.

A delayed beam pick-off timing pulse, modified using external NIM modules and the ‘OR’ output of
the V1725 digitizer, was sent to the V1730 digitizer to make a ToF signal for each detector. Events were

built offline using the timestamps of the signals.

4. Analysis and Characterization

Neutron events can be separated from gamma-ray events in the detectors using different integration
times via the PSD method. Figure 3 shows ToF spectra for the *Be(d,n) reaction. The red spectra displays

the ToF of all events. The blue spectra displays only neutron events, which is accomplished by gating around
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Figure 3: ToF spectra from *Be(d,n) reaction for 2”"x 2" EJ-315 neutron detector. All events are shown in red and neutron events
gated from the PSD are shown in blue. The large peak close to 0 ns corresponds to the gamma flash associated with gamma-rays
from the interaction of the beam with the target. This peak is strongly suppressed after applying the neutron gate.

the neutron events as shown in Figure 2. An important characteristic of neutron detectors is to determine
how low the n/y threshold can be placed such that the neutron gate is clean from y-ray events. For the small
detectors a 55 keVee threshold was applied, while for the large detectors the threshold was placed at 85
keVee.
Neutron energies are typically found using the non-relativistic ToF method:
2

E = %m(%l) (1)
where m is the mass of the neutron, d is the length of the flight path, and ¢ is the neutron’s time of flight
[2]. In the present experiment quasi-monoenergetic neutron groups from the *Be(d,n) and the >’ Al(d,n)
reactions where selected by applying tight cuts to their respective ToF spectra. The light output spectra of
the neutrons associated with those ToF are extracted from the PSD plot. As an example, the light output

spectra associated with neutron energies from E,, = 1 - 6 MeV in 1 MeV intervals from the °Be(d,n) reaction
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Figure 4: Light output spectra for several neutron energies extracted from *Be(d,n) reaction for a 2”’x 2 EJ-315 neutron detector
using PSD and ToF information.

are shown in Figure 4, where each color represents a different neutron energy. It can be observed that the
characteristic recoil peak, or the shoulder at the end of the spectra, shifts farther to the right with increasing
neutron energy as a consequence of the anisotropic d-n scattering.

The light output of the detector can then be parameterized as a function of the energy deposited by the

neutron as described by equation:

L = aEgep — b(1 — e™Eaer) (2)

where the maximum deposited energy E,,), is taken at 8/9 of the neutron energy [5] and the light output L
is taken at 80% of the recoil peak height to account for detector resolution [16]. The parameters a, b, and
¢ in Eq. 2 for the small and large detectors are shown in Table 2. These values were obtained by fitting the
data points in Figure 5, where the fit for the light output of the small detectors is shown in blue and the fit
for the light output of the large detectors is shown in red. It is observed that the light output curves of the
small and large detectors follow a similar trend.

A first order estimation of the resolution AL (FWHM) of the recoil peak can also be extracted from the

7
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Figure 5: Measured light output for small and large detectors fit with Equation 2.

Edep

3

(MeV)

Detector a b c
2% 2” EJ-315 | 0.6193 | 2.036 | 0.2592
4”%x 2" EJ-315 | 0.6109 | 1.946 | 0.2625

Table 2: Light output parameters a, b, and ¢ for small and large detectors.
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Detector a B 0%
2% 2" EJ-315 | 0.0680 | 0.0615 | 0.0005
4”"x 2" EJ-315 | 0.0956 | 0.0690 | 0.0005

Table 3: Resolution parameters «, 3, and y for small and large detectors.

quasi-monoenergetic light output spectra via Equation 3 [4].

L - L
ALJL ~ (L125 — Lgy5) 3)
Lsg

In Equation 3 the parameters L, are the light output values taken at the x”* percentage of the maximum
recoil peak height. From these estimated resolution values, a more accurate function of the resolution can
be extracted and described as a function of the light output taken at 80% of the recoil peak height. This
function is defined in Equation 4 [16, 19].

2 2
ALJL = Ja2 + B+ 2L @)
L

In Equation 4 the parameter « is the locus dependent light transmission from the scintillating material to the
photocathode, the parameter 8 describes the statistical behavior of the light production in the detector, and
the parameter y encompasses all noise contributions from the experimental setup [16].

The parameters a, 5, and y for the small and large CATRiNA detectors are shown in Table 3 and
displayed in Figure 6 where the fit of the resolution for the small detectors is shown in blue and the fit for
the large detectors is shown in red. It can be seen that at small light output (and neutron energy) values
the resolution of the large and small detectors converge. However, for increasing light output the resolution
values of the smaller detectors decreases by approximately 3% as compared to the larger detectors. This
implies that the smaller detectors have improved resolution at larger neutron energies relative to their large
counterparts.

The intrinsic efficiency of the CATRiNA neutron detectors was obtained using the 9Be(d,n) and 2’ Al(d,n)
reactions. Previous experiments [13—15] report neutron yields as a function of neutron energy and incident
deuterium beam energy for these reactions. Using this data, the intrinsic efficiency of the large and small de-
tectors were extracted for a variety of neutron energies. Figure 7 displays the intrinsic efficiency curves. The
small detectors have a higher intrinsic efficiency than the large detectors due to the threshold dependency of

the efficiency. For a lower threshold, the intrinsic efficiency increases.
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For Figures 5 and 7 the error in the energy value is found by:

2 2
AEJE = \/(%’) +(27Af) 5)

where Ad is largely from the width of the detector, d is the distance to the detector from the reaction target,

At is the timing resolution, and ¢ is the time it takes the neutron to travel distance d [2]. Energy resolution
improves by increasing the distance, and therefore time ¢, between the reaction target and the detector.
However, when placing detectors far away from the reaction target, the geometric efficiency decreases and
there is a physical limit to how far away the detectors can be placed within a laboratory. To circumvent this,
a method to extract neutron energies without relying on ToF known as spectrum unfolding was developed
and it is discussed in the following section.

The response matrices of the CATRiNA detectors were created using neutrons from the *Be(d,n) and
27 Al(d,n) reactions with an energy range of approximately 0.5 MeV to 9.54 MeV, binned in 40 keV incre-
ments. This range was chosen to ensure a sufficient amount of statistics in the response matrix. Higher
neutron energies were present, however the intrinsic efficiency of the detectors steadily decreases for neu-
trons of larger energies. A consequence of this effect was observed in the response matrix for the 2”"x
2" neutron detector, which also has low solid angle coverage. In Figure 8 at approximately 7.0 MeV the

statistics for the higher energies decreases to a point where the recoil peak is no longer identifiable.

5. Spectrum Unfolding

Extraction of neutron energies from the light output spectra of liquid organic scintillators is a particularly
challenging ill-posed problem that has been recently addressed using statistical unfolding algorithms [5, 6].
These unfolding algorithms aim to recover the energy spectrum that is most likely to have produced the
measured response. A Bayesian method [20, 21] is used here to extract the neutron energies from the light
output spectrum of the CATRiINA detectors.

The light output spectrum ¢(L) extracted from a CATRiINA detector is described by a convolution of the

detector’s response function, denoted R(L, E) and the incident neutron energy spectrum y(E):

J
i= > Ry, i=1,2..1 ©6)
=1

where ¢; is the recorded count in the i-th light output bin, ¢ is the neutron energy spectra, and R;; is the
response matrix [2]. Using Bayesian statistics[20, 21], the neutron energy spectrum ¢(E) is then defined as

a function of the response matrix and the light output spectrum according to the expression:
12
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where k is the number of estimates, or iterations. An unfolding algorithm that uses a statistical approach to
solve Equation 7 has been developed. Up to a limit, each iteration will provide a new, better estimate of the

neutron energy spectrum.

5.1. ANUBIS

A Novel Unfolding algorithm Using Bayesian Iterative Statistics (ANUBIS) is an unfolding algorithm
developed for extracting neutron energies from the light output spectrum of the CATRiNA detectors. ANU-
BIS requires a detailed knowledge on the response matrix R;; of the detector, calibration information, and
the light output spectra ¢(L) that is to be unfolded as inputs. The light output spectra ¢(L) must match
the binning of the response matrix. A threshold corresponding to the threshold of ¢(L) is applied to the
matrix before unfolding the input spectra. The response matrix R;; must be normalized. Normalization is
accomplished by summing the counts for each light output within each energy and setting them to unity. At

each iteration, the program estimates an updated neutron energy spectra. Ideally, as the number of iterations

13
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Figure 9: Measured response matrix of a 4”x 2" EJ-315 neutron detector.

grow, the unfolding algorithm should provide a new, improved estimate of the neutron energy spectra, i.e.
as iterations increase the resolution of the energy peak improves.

As a self-consistency check, the light output spectra of quasi-monoenergetic neutron groups from the
9Be(d,n) reaction were unfolded with ANUBIS. The light output spectra of these neutron energies can be
seen in Figure 4. The unfolded neutron energy spectra is shown in Figure 10 for the 2”/x 2" detector. Each
energy peak corresponds to the light output curve of the same color. A similar check was performed for the
4% 2" detector with similar results.

A stopping criteria using a chi-squared per degree of freedom (y?/DOF) has been implemented to find
the “optimal” number of iterations. The chi-squared per degree of freedom is found by comparing the
original light output spectra ¢(L) and a refolded light output spectra ¢’(L), and is defined as:

1 @i - ¢)?

2 . —_—
Y*/DOF = IZI " (8)

In Equation 8 the variable / is number of degrees of freedom, found such that it matches the binning of

light output spectra. The refolded spectra ¢! is made using the response matrix and the last estimate of the

14
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Figure 10: Unfolded neutron energy spectra from the *Be(d,n) reaction for the 2”"x 2" detector. The corresponding light output
spectra for each energy can be found in Figure 4.
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neutron energy spectra following Equation 6. Ideally, the value obtained in Equation 8 should converge
to unity, but this does not always occur in practice due to fluctuating solutions [21]. To circumvent this a
percent difference is found between the previous iteration’s y> and the current iteration’s y>. The program
will continue to run until the percent difference is under a user defined value. As a fail safe to prevent the
program running indefinitely, a maximum number of iterations is also set.

It was found that ANUBIS works best with a few hundred iterations at neutron energies where there
are high statistics in both the response matrix and the light output spectra that is being unfolded. From our
analysis, it is observed that if the number of iterations in the unfolding algorithm are too high (typically
more than a thousand iterations), the refolded light output spectra develops small oscillations around the
original light output spectra ¢;, but the unfolded energy spectra looses most definition and the peaks no
longer approximate a Gaussian. This is an indication that ANUBIS is no longer realistically estimating the
neutron energy spectra. The fluctuations are due to the fact that each bin of the light output spectra, or each
discrete ¢;, acts as an independent degree of freedom and after a large amount of iterations the statistical
fluctuations are amplified [21]. On the other end, it was also observed that if the program iterations are too
few (typically less than 100 iterations), the original light output spectra ¢; is not accurately reproduced with
the refolded light output spectra and the peak (or peaks) in the unfolded energy spectra has poor resolution.

Figure 11 shows how the percent difference for the unfolded neutron energy spectra of Figure 10 changes
as a function of the amount of iterations performed. As the iterations increase, the percent difference
between the previous iteration’s y> and the current iteration’s y> decreases until a point is reached where
the value plateaus indicating the refolded light output spectra is now oscillating around the original light
output spectra. To avoid too many iterations the percent difference was set to be less than 0.01%.

To prevent any ambiguity in stopping criteria as the y>/ DOF approaches unity, the cases when y?/DOF <
1 and when y?/DOF < 0.01% were compared. Figure 12 displays the unfolded neutron energy spectra for a
4 MeV neutron from the *Be(d,n) reaction using both stopping criteria. The red line is the estimation using
a percent difference less than 0.01% which was achieved at 91 iterations and the blue line is the estimation
when x?/DOF converges to unity which was achieved at 33 iterations. As shown in the figure, the esti-
mation using the percent difference less than 0.01% stopping criteria has an improved resolution over the
estimation from the convergent y>/DOF stopping criteria. These results were consistent along the several
neutron energies analyzed in this work. By these results, it was determined that the stopping criteria that

best models the data was the percent difference less than 0.01%.
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Figure 11: Percent difference versus iteration number for unfolded neutron energy spectra from the °Be(d,n) reaction shown in Fig.
10. It was found that ANUBIS works best with a few hundred iterations at neutron energies where there are high statistics in both
the response matrix and the light output spectra that is being unfolded.
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°Be(d,n) at E, =7.00 MeV
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Figure 12: Unfolded neutron energy spectra for 4 MeV neutrons from the °Be(d,n) reaction. The “optimal” iteration (91 iterations)
for the red peak is found by letting the percent difference from the y?/DOF be less than 0.01%. The “optimal” iteration (33
iterations) for the blue peak is found by letting the y?/DOF be less than unity.
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6. Summary and Outlook

The CATRINA neutron detector array now consists of 16 2”/x 2" and 16 4”/x 2" deuterated EJ-315
neutron detectors. Characterization of the array was preformed at the Edwards Accelerator Laboratory at
Ohio University via the “Be(d,n) and >’ Al(d,n) reactions which provided a large range of neutron energies.
Analysis of the data provided valuable information on the characterization of the CATRiNA detectors, such
as the light output as a function of energy deposited, the resolution of the light output spectra as a function
of light output, as well as the intrinsic efficiency of the detectors.Detailed response matrices were also
extracted using results from the 9Be(d,n) and 2’ Al(d,n) reactions. The ANUBIS code was developed to
perform spectrum unfolding of the light output spectra based on Bayesian statistics. ANUBIS uses the
experimentally obtained response matrices of the CATRiNA detectors to extract neutron energies. Analysis
of the unfolded and refolded spectra was performed to determine stopping criteria for the program. These
developments will be used in further experimental work to analyze neutron energies from various reactions

without fully relying on ToF information.
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