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Abstract

Compton polarimeters have played an important role in the study of nuclear structure physics, but have often been
limited in their applications because of relatively low ~-ray detection efficiency. With the advent of ~-ray tracking
detector arrays, which feature nearly 47w solid angle coverage and the ability to identify the location of Compton-
scattering events to within a few millimeters, this limitation can be overcome. Here we present a characterization of the
performance of the Gamma Ray Energy Tracking In-beam Nuclear Array (GRETINA) as a Compton polarimeter using
the 24Mg(p, p’) reaction at 2.45 MeV proton energy. We also discuss a new capability added to the simulation package
UCGretina to simulate the emission of polarized photons, and compare it to the measured data. Finally, we use these

simulations to predict the performance of the Gamma Ray Energy Tracking Array (GRETA).

Keywords: Polarization, tracking detectors

1. Introduction 21

22
Characterization of the spins and parities of nuclear ,

states is fundamental to nuclear structure physics. These ,,
important quantum numbers can often be inferred in a
number of ways; examples include the selectivity of the
nuclear reaction used, decay selection rules, systematics, ,,
and/or comparison with theoretical calculations. How-
ever, a direct measurement is clearly preferable. The an-
gular distribution of 7-rays emitted from excited states
can be used for spin assignment, but as electric and mag- .,
netic transitions of the same multipolarity have the same ,
angular dependence, such distributions cannot provide in-
sight into parity. In contrast, when v rays undergo Comp- _,
ton scattering, they will preferentially scatter in directions
perpendicular to the electric field vector of the incoming .
photon. This sensitivity provides a means to differentiate ,,
between electric and magnetic transitions, and forms the
basic operating principle for Compton polarimeters.

The first Compton polarimeter was described in 1950,
and used a pair of scintillator detectors to achieve polar-
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ization sensitivity [1]. Since that time, Compton polarime-
ters have evolved to use many different configurations and
technologies [2-10]. The newest generation of v-ray spec-
trometers [11], including the Gamma-Ray Energy Tracking
In-beam Nuclear Array (GRETINA) [12], its successor the
Gamma-Ray Energy Tracking Array (GRETA) [13], and
the Advanced GAmma Tracking Array (AGATA) [14], are
inherently powerful Compton polarimeters. Generally, a
Compton polarimeter provides a measurement of the az-
imuthal and polar scattering angle between the first and
the second locations where a photon interacts with a de-
tector. Historically, this has been accomplished with dedi-
cated experimental setups using multiple detectors in spe-
cific geometries which offered high sensitivity, but very
limited efficiency. In contrast, y-ray tracking arrays can
determine the Compton scattering angles throughout their
active volumes. These arrays benefit from their fine effec-
tive granularity, which arises from the inherent electronic
segmentation and the ability to locate v-ray interaction
points with sub-segment resolution through pulse-shape
analysis, or signal decomposition. With full knowledge of
the energies and angles between each interaction, tracking
detectors are uniquely suited as Compton polarimeters,
combining high sensitivity with high efficiency for ~-ray
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Figure 1: An illustration of the relevant angles involved in an exper-
iment measuring linear polarization. The coordinates {6, ¢} are the
polar and azimuthal angles of the vector 71, along which a photon
is emitted from an excited nucleus at the origin. The primed coor-
dinate system is determined by the emission direction of the photon
('), with 2’ lying in the reaction plane and y’ defined by the right
hand rule. The angles {1, £} are the polar and azimuthal angles of
the vector 72, along which the photon Compton scatters, expressed
in the primed coordinate system. See text for details.

detection, as has been already demonstrated [15-17].

In this work, we characterize GRETINA as a Compton
polarimeter. The next section presents background infor-
mation relevant to GRETINA and the concepts of Comp-
ton scattering and linear polarization of y-rays. This is fol-
lowed by discussion of a dedicated experiment performed
to evaluate the sensitivity of GRETINA as a Compton po-
larimeter, including details of the measurement and anal-
ysis of the data. Finally, the GRETINA performance is
benchmarked against Monte Carlo simulations, and ex-
trapolated to predict the performance of the complete 47
GRETA spectrometer.

2. Background

2.1. Definitions and terminology

A nuclear state may be characterized by an angular mo-
mentum I (colloquially called “spin”) and its projection M
along a quantization axis (where —I < M < I). When an
excited state I; is created, the magnetic substates M; will
be populated with probability P(M;). If the population
of the magnetic substates is uneven (i.e. P(M;) # ﬂ—lﬂ
for all M;), the state is said to be oriented. There are
two types of orientation: if P(M;) = P(—M;) for all M,,
then the state is said to be aligned; otherwise, the state
is said to be polarized. The (p,p’) reaction used in this e
work can only create aligned nuclear states, as the proton a
beam establishes an axis of symmetry but not a preferred
direction [18]. 9

Characterization of a detector as a polarimeter involves o
discussion of several distributions. Figure 1 illustrates the os

2

relevant angles discussed in this study. A proton beam
excites target nuclei at the origin, with the bold arrow in-
dicating the beam direction. The excited nucleus emits a
photon that undergoes Compton scattering at the point
r1, and interacts again at the point r5. The proton beam
defines the z-axis of the laboratory frame, while the coor-
dinates {6, ¢} represent the emission angle of the photon
in this frame. The beam axis and the vector r; define
the reaction plane, shaded green in Fig. 1 (for references
to color, see the online version of this manuscript). The
direction of the scattered photon can be expressed by the
angles {1, ¢} in the coordinate system {z’,y’,2'}, where
7' is in the direction of the photon emission, 2’ lies in the
reaction plane, and y’ is defined by the right-hand rule.
The vectors 71 and 75 define the scattering plane, shaded
blue in Fig. 1.

The polar angular distribution of v rays emitted by an
excited state is characteristic of the multipolarity of the
photon. Because of the selection rules for electromag-
netic decay, this distribution conveys information about
the initial and final-state spins as well as the initial mag-
netic substate population. The distribution for an aligned
initial state has been described extensively in the litera-
ture [6, 7, 18-20]. In practice, the functional form of the
angular distribution that is fit to experimental data is de-
scribed by a Legendre polynomial series:

21;
W(0) = > arPi(cosb), (1)
k=0

even

where the coefficients ay, carry the information on the pop-
ulation of the magnetic substates P(M;) (ap = 1). The
requirement that k be even is specific to the case of an
aligned initial state. The degree to which the emitted ~
rays are polarized can be calculated from the aj coeffi-
cients. For the case of a pure dipole or quadrupole transi-
tion [6],

PO) =11 %aQPQ(Q) (cosf) — 1—12a4P4(2)(cos 0)
1+ ayPs(cos ) + agPy(cosb)

(2)

where P (cos ) are associated Legendre polynomials, IT is
the parity of the photon, and the polarization is restricted
to the range —1 < P < 1. The degree of polarization is
often quoted at § = 90°, since Py (cos 90°) and P} (cos 90°)
can be expressed as rational numbers:

3 5
2 _|_ 2
P(0 = 90°) = 1222 5% (3)

1 3 .
1—§a2—|—§a4

The parity II in Eqgs. 2 and 3 cannot be determined from
the as and a4 coefficients alone. A Compton polarimeter
can resolve this ambiguity by exploiting the dependence of
the Compton-scattering cross section on the linear polar-
ization of the photon. This sensitivity is expressed through
the Klein-Nishina formula, which for a linearly polarized
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Figure 2: The analyzing power ¥(v), plotted for several differentiis
y-ray energies. 116
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~ ray takes the form [21]

do 1 £ 2 E E 119
=W, x) =572 <7> [V+7—281n21/10032x ,
dQ) 2 °\E, E, E

(4)

9
where r. is the classical electron radius, @ is the Comp-
ton scattering angle in Fig. 1, x is the angle between the
electric field vector of the incident photon and the Comp-
ton scattering plane, and E, and E. are the incident and
scattered photon energy, respectively. The cos? x depen-
dence in the Compton-scattering cross section indicates
that scattering perpendicular to the electric field vector
is preferred. However, it is more convenient to transform
Eqg. 4 into an angular distribution in terms of the angle &
in Fig. 1. This transformation is detailed in Ref. [16], with
the result 121

-
N}
S

122

(5)123

124

Wel0,16,€) = W(0) 5 () |1~ 25(0)P(6) cos 26

where Y(v)) is known as the analyzing power, and the lack™”
of £ dependence in g—g(d)) denotes the cross section for126
unpolarized photons. The sign of the cos2¢ distribution127
determines the parity II in Eq. 2. The analyzing power X

is given by

128

129

-2
S11 30
S() = g (©),
2+ o —sin? ¢ o
By B 132

and represents the theoretical limit for the sensitivity of a'*

Compton polarimeter. Fig. 2 depicts the analyzing power'™
as a function of v for several different v-ray energies. e

When performing a linear polarization measurement,"
practically one chooses range of # and 1) over which to"’
measure and then inspects the distribution of azimuthal®

Compton-scattering angles £. Thus, Eq. 5 becomes 1
140

(7)141

142
where Ap is the asymmetry in the £ distribution whichuss
serves as the key observable in Compton polarimetry.is
Comparing Eq. 7 with Eq. 5, clearly Ay depends on theus
average value of the polarization and the analyzing poweriss

W.(€) = b(1 — Ag cos 2¢),

3

for the data under consideration. However, for a given po-
larization, a real polarimeter may measure an asymmetry
smaller than that expected from Eq. 6. Therefore, the po-
larization sensitivity ) can be defined, which serves as an
effective analyzing power for a given polarimeter such that

Ay = LqP,

: 3)
where P is the average value of the polarization over the
chosen range of 6. This definition agrees with the one
adopted for AGATA in Ref. [16]. Often the relationship
between the analyzing power and the polarization sensi-
tivity is expressed simply as an energy-dependent scaling
between () and X for an idealized polarimeter composed
of point-like detectors (e.g. Refs. [22, 23]). Characterizing
Q@ for a polarimeter thus allows an experimenter to pre-
dict what asymmetry may be measured for a given ~y-ray
energy and polarization.

Maximizing ) is an important design element for a
Compton polarimeter. However, it is also important to
consider the detection efficiency of the system. For exam-
ple, one might choose to place detectors only where the
analyzing power is expected to be largest, but doing so
may require a longer measurement to reach a given pre-
cision. In order to gauge whether a loss of statistics is
justified by a corresponding gain in @, a figure of merit
was proposed which takes the form [24]

F=Q%, (9)
where € is the efficiency of the polarimeter to register an
event. For a tracking detector, the relevant quantity is the
efficiency to detect a Compton-scattering event, since it
is impossible to define a scattering plane without at least
two interaction points.

2.2. GRETINA Signal Decomposition and Position Reso-
lution

GRETINA is built of 36-fold segmented, hexagonally
shaped and tapered high-purity Germanium (HPGe) de-
tector crystals [12]. Two slightly different irregular asym-
metric crystal shapes are used and housed together in
Quad modules of four individually encapsulated detectors,
including two of each shape. The final design of GRETINA
is composed of 12 such Quad modules; at the time of
the experiment described in this manuscript, the array in-
cluded only six Quad modules.

Each individually encapsulated detector crystal operates
independently to record data. When a y ray interacts with
a crystal volume, triggering a full-volume signal above
threshold, the core contact and all 36 segment-electrode
signals are digitized simultaneously. To locate interaction
points in the crystal, the experimental signals are fitted
against linear combinations of signals derived from a de-
tector simulation. As a result of this fit, multiple interac-
tions within the crystal volume can be located and their
relative energies determined. This process is referred to



147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

as signal decomposition, and results in a set of interaction
point coordinates which can then be interpreted as Comp-
ton scattering or photoelectric absorption of + rays in the
crystal volumes.

The precision with which the decomposition process de-
termines interaction-point positions has been the subject
of previous investigations. A collimated !37Cs source was
used to determine the position resolution of GRETINA
at 662 keV [12]. The results of this study showed that
the interaction-point positions could be determined with
a precision ¢ = 2 mm. In addition, a radioactive beam ex-
periment examined the position resolution that could be
achieved under more typical operating conditions [25]. A
position resolution of ¢ = 1.2 mm at 1779 keV was in-
ferred from this analysis. Similar investigations have been
carried out for AGATA [26], finding that the energy de-
pendence of the position resolution could be described by
the function

oe) = a+b/Ve,

where e is the energy deposited at a given interaction
point. Compton polarimetry is critically dependent on
the determination of the scattering plane defined by the
coordinates of the first two interaction-point positions for
a scattered v ray, so these prior investigations are an im-
portant guide for the present work.

(10)

3. Experiment
186
In order to characterize the performance of GRETINA
as a Compton polarimeter, the 2Mg(p,p’) reaction atis
2.45 MeV proton energy was chosen as a source of lin-jg
early polarized v rays. This reaction has been studiedi
many times in the past (e.g. [3, 4, 7, 23, 27]), and has,
been shown to produce photons which are nearly 100%s,
polarized at 6 = 90°. The high degree of polarization,e
can be understood by considering the maximum angular,,
momentum L = 7 x p which can be transferred to the nu-q
cleus. This quantity can be estimated based on the contact g
distance r = 1.2(1411,/3 + A;ff/[g) fm, which for the statedis
beam energy gives a maximum angular momentum trans-is
fer of L &~ 1.6h. Thus, the population of the M = 4210
magnetic substates is strongly suppressed in this reaction,o
resulting in a highly aligned excited state. In addition, thesn
only excited state that can be populated at this beam en-.
ergy is the 2% state at 1368.7 keV [28]. The next excitedaos
state in 2*Mg is a 47 state at 4122.9 keV [28], which isxs
clearly not accessible at the present beam energy. There-s
fore, any decays from the 2% state must be the result ofxes
direct population and not feeding from above. 207
The experiment was performed at Argonne Nationals
Laboratory. A proton beam was accelerated to 2.45 MeVaow
by the Argonne Tandem Linear Accelerator System (AT-2w0
LAS) and delivered to the experimental area. The beamon
was impinged on a 3.3-mg/cm? natural magnesium tar-zi
get, and photons emitted from the deexcitation of magne-213
sium nuclei were detected with GRETINA. For this exper-a
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Figure 3: A photograph of the experimental setup, showing the
arrangement of the six GRETINA Quad modules used in this work.
The target is also visible in the center of the figure; from this per-
spective, the beam would impinge on the target from the right-hand
side of the figure.

iment, the six modules were arranged in one hemisphere
in order to maximize the detection efficiency for Compton-
scattered photons, as shown in Fig. 3. Three detector mod-
ules were placed at polar angles of 90°, where the degree
of linear polarization is expected to be largest. Two of the
remaining Quads were placed at backward angles and one
at forward angles. In total, the array covered polar angles
spanning from 40-140°.

Data were taken for the (p,p’) reaction for approxi-
mately ten hours at a typical beam current of 10 nA.
Data were also taken with a %0Co source placed at the
target position of GRETINA to provide a source of un-
polarized ~ rays. The y-ray tracking algorithm developed
for GRETINA data [29] was applied to both the source
and the in-beam data, in order to reconstruct those events
for which full-energy deposition occurred through multi-
ple interactions between the photons and the array. The
clustering angle used in the tracking algorithm was set to
20°, in agreement with the recommendation in Ref. [29)].
Increasing the clustering angle beyond 20° did not yield
significantly greater statistics. The resulting v-ray spectra
are shown in Fig. 4, with panel (a) showing the X Mg(p, p’)
data and panel (b) showing the ®*Co data. The tracking
algorithm assigns a figure of merit to tracked ~-rays (dis-
tinct from the figure of merit discussed in Sect. 2.1), with
lower values corresponding to better agreement with the
characteristics expected for a Compton-scattering event.
At this stage of the analysis, no restriction was placed on
the tracking figure of merit. The effect of selecting only
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Figure 4: Tracked v-ray spectra from GRETINA for (a) 2.45 MeV
protons incident on a natural magnesium target, labeled according
to transition and isotope, and (b) a 69Co source.

events with a figure of merit below some threshold is dis-
cussed at the end of this section. 246

The distribution of events detected at a given polar an-2+7
gle for the in-beam and source data were generated by2s
selecting those events which fell within an energy range2s
corresponding to the 2] — 07 transitions in 2*Mg andzso
5ONi (the B-decay daughter of ®°Co), located respectivelyz:
at 1368 keV and 1332 keV, and plotting the angle at which2s2
the first interaction point was detected relative to thezss
beam direction. Background events were taken into ac-2s4
count by subtracting angular distributions generated fromz2ss
regions on both the high-energy and low-energy sides ofzss
the peaks with half the width of the regions of interest.2?
The resulting angular distributions are shown in Fig. 5(a).2ss
Since the source data is uncorrelated with the beam direc-2s9
tion, the features of the dashed line arise solely from theaso
geometry of the GRETINA array. The ratio of the in-beamzs
to the source distribution, shown in Fig. 5(b) with errorzz
bars corresponding to the statistical uncertainties, removes2s3
these geometrical effects (the small difference in detectionzss
efficiency between E, = 1332 keV and E, = 1368 keV iss
neglected). 266

The angular distribution exhibits several deviations®’

from the expected shape, particularly at the most forwardass
and backward angles. In addition, there is a small deficitaso
in counts at 87°. One possible explanation for these fea-2n0
tures is a small offset of the source and/or beamspot froman
the center of the GRETINA array, or that the beam direc-2r
tion is rotated slightly relative to the z-axis of GRETINA .21
An attempt was made to determine whether there was anyz
such offset /rotation by including these in the fitting pro-zs
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Figure 5: S»a) Polar angular distribution of the v rays detected for
the 21" — 07 transition populated in 24Mg(p, p') (solid line) and B~
decay of 89Co (dashed line). (b) The ratio of the 24Mg distribution
and %0Co distribution shown in (a).

cedure, but meaningful improvement could not be found.
Another explanation for the irregularities could be prob-
lems with the signal decomposition process. Decompo-
sition errors are known to occur which cause interaction
points to cluster around the central contact and at the
segment boundaries at the edges of the crystals, and typ-
ically occur more frequently for lower-energy interactions.
Several central contacts happen to coincide at about 87°,
so this effect seems likely to be the source of the feature
at this angle. Similarly, the decomposition errors located
at the crystal boundaries may result in the decrease in the
angular distribution at backward angles, where there is rel-
atively less germanium material present to wash out such
artifacts. This effect is likely masked at forward angles by
a separate issue which was discovered during the analysis.
The sole crystal which was located at the most forward
angles failed to assign interactions points properly to a sig-
nificant fraction of the segments, which is likely why the
angular distribution fluctuates in this region. Regardless,
these issues do not compromise the overall performance of
GRETINA as a polarimeter, as the angular distribution is
still clearly that of a quadrupole transition.

The solid line in Fig. 5(b) is the result of a fit with Eq. 1,
with a scaling factor to account for the different number
of counts in the in-beam data and source data. The ver-
tical dashed lines denote the range over which the data
was fit with this function, which was chosen to maximize
the angular range included in the fit while excluding the
extremes which obviously do not follow a Legendre poly-
nomial distribution. The gap in the solid line denotes bins
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Figure 6: (a) Azimuthal angular distribution of Compton scattered

photons for the 21*' — 0'1" transition populated in 24Mg(p,p’) (solid
line) and %°Co B~ decay (dashed line). The polar angle of the first
interaction point is restricted to 80° < # < 100°. (b) The ratio of
the 24Mg distribution and 59Co distribution shown in (a).

which were not included in the fit, corresponding to the®®
region where several central contacts are located. The ex-*7
pansion coefficients resulting from the fit to the angulars®
distribution are as = 0.545(5) and a4 = —0.351(5). Us-*®
ing these values in Eq. 3 gives a polarization for photons®®
emitted at 90° of P(6 =90°) = 1.00(2). 3u

The distribution of azimuthal Compton scattering an-*?
gles was constructed using tracked events which have at®®
least two interaction points. The same energy ranges were®*
used to construct both the polar angular distribution and®*®
the azimuthal distribution. Since the degree of linear po-*¢
larization is expected to be highest near § = 90°, the po-*"'
lar angle of the first interaction point was restricted to®®
lie in the range 80° < # < 100°. The resulting distri-***
butions are shown in Fig. 6(a), with the 2Mg(p,p’) data®
shown by the solid line and the 5°Co B-decay data by thes
dashed line. The features in the source distribution, whichsz
should in principle be flat, arise from the geometry of thess
GRETINA array and can also be seen in the in-beam dis-s4
tribution. The ratio of these two distributions is shown inss
Fig. 6(b), with statistical error bars included, and clearlysss
exhibits the expected sinusoidal behavior based on Eq. 7.5
The solid line is a fit to the data with Eq. 7, resulting inss
an asymmetry Ay = 0.1024(9). 39

While the asymmetry demonstrated in Fig. 6 is clearss
evidence that GRETINA can act as a Compton polarime-sx
ter, we now calculate @) and the figure of merit defined ins»
Sect. 2.1 in order to compare the performance of the arrayss
with other polarimeters. Equation 8 can be inverted tos:
find that Q = 24y/P, where Ay is the measured asym-ss
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Figure 7: (a) Polarization as a function of 6 as given by Eq. 2, with
a2 = 0.545 and ay = —0.351. (b) Q calculated for events in 10°
slices of 0. There is significant scatter in the data points, but aside
from the edges of the array the values are roughly constant.

metry in the ¢ distribution. Fig. 7(a) shows the function
P(0) determined from Eq. 2, with as and a4 coefficients
taken from the fit in Fig. 5(b). The average polarization,
weighted according to the solid angle covered by the array,
is P = 0.824(8) and results in @ = 0.196(2). Since the po-
larization sensitivity should be not be a function of 6, @
was also determined in 10°-wide bins over the range within
the vertical lines in the figure, with the results plotted in
Fig. 7(b). While there is considerable scatter among the
data points, they remain reasonably constant at a value of
about 0.2 for most of the angular range considered. The
notable exceptions are at the far forward and backward an-
gles, and may be related to the deviations at the extremes
of the polar angular distribution which were discussed ear-
lier.

Determining the figure of merit defined by Eq. 9 requires
that the detection efficiency be known. The absolute sin-
gles efficiency of GRETINA was reported in Ref. [25], al-
beit in a configuration with eight Quad modules instead
of six. Therefore, the reported efficiency was scaled by a
factor of 0.75 in order to account for the different num-
ber of GRETINA modules, and in order to be conser-
vative the reported uncertainties were doubled. This re-
sulted in an untracked efficiency for this experiment of
(1368 keV) = 3.71(7)%. Multiplying by the ratio of the
counts in the tracked and untracked photopeaks gives the
tracked efficiency (excluding events with only one interac-
tion point). The resulting efficiency is 5.3(1)% for the ge-
ometry used in the present experiment, which gives a figure
of merit F' = 2.04(6) x 1073. Table 1 lists the performance
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Table 1: A comparison of the performance of GRETINA as a
Compton polarimeter with several other polarimeters which have
been characterized in the literature. GRETINA is competitive on
the basis of its polarization sensitivity @, although there are clearly
more sensitive detectors. However, its figure of merit is orders of
magnitude better than the other entries in the table due to its much
higher detection efficiency, which demonstrates the power of the ar-
ray as a polarimeter. A prediction of the performance of GRETA is
given in Sect. 4.4.

Detector Q Figure
or author (1368 keV)  of merit
GRETINA 0.196 2.0 x 1073

DAGATA [16] 0.192? - 365
POLALI [22] 0.30 1.8 x 1076 366
MINIPOLA [22] 0.05 3.0 x 1078 o7
GAMMASPHERE [27] 0.043 1.7 x 1076 -
Schlitt[7] 0.15 1.0 x107° o
Butler[4] 0.274 - an
Litherland|[3] 0.066" - a2
Litherland[3] 0.072P - a3
Jones[23] 0.121 - o
375
a Measured at 1332 keV with 9Co source 376
b Corrected by factor of 2 to use a consistent definitions,,
of Q 378

379

380
of GRETINA in the configuration used for this experimentss:
as well as several other detectors which have been charac-s»
terized as polarimeters. The value of () for GRETINA issss
competitive with other detectors, but in terms of its figuresss
of merit it is superior by several orders of magnitude. Thissss
is due to the greatly increased efficiency. As an example,
one can contrast the figure of merit for GRETINA with
that of the polarimeter described by Schlitt et al. [7]. The™
two systems differ in ) by about 40%, while the figures of,,,
merit differ by a factor of 2000. This is understood almost
entirely as a result of the efficiency, where the detectors,,,
of Ref. [7] are individually approximately a factor of 3 less,,,
efficient than a single GRETINA crystal, due largely to,,
the distance from the target. This gives rise to an order,,,
of magnitude when one realizes the requirement of a co-,,
incidence measurement, which is compounded by another,,,
order of magnitude as there were 24 crystals used in the,,
GRETINA measurement. Given the importance of the ef-,,
ficiency in the definition of the figure of merit discussed,,
here, one realizes that the performance of GRETA should,,
be much better even than GRETINA, as will be discussed.,,,
in Sect. 4.4. It is also worth noting that the analyzing,,
power (i.e. Q) of AGATA has been measured at other en-,,
ergies, reaching values of nearly 0.5 for E, ~ 500 keV [15].
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The analysis above has treated the entire data set col-s:s
lected with GRETINA. It is possible to be more selectivess
in the analysis in order to enhance the polarization sensi-s
tivity, but at the price of lower efficiency. Table 2 exploresaos
the effect that a few such cuts have on both @ and the

7

Table 2: The effect that placing various cuts on the data has on the
polarization sensitivity @ and the figure of merit F'. In general, any
gain in @ from a given cut is at best offset by the loss in efficiency
when calculating the figure of merit. Note that F; indicates the figure
of merit associated with the tracking algorithm, not Eq. 9.

Cut Q(1368 keV)  F(1368 keV)
None 0.196(2) 2.04(6) x 1073

F, <06 0.210(2) 2.00(6) x 1073
F;<0.1 0.314(5) 5.1(2) x 1074
60° < 1) < 80° 0.267(3) 8.0(3) x 10~*

figure of merit F'. Restricting the tracking figure of merit
(denoted F} in the table) to values of 0.6 or less, consis-
tent with the recommendation in Ref. [29], should exclude
events which do not agree very well with the character-
istics expected for Compton scattering. In fact, there is
a small increase in the polarization sensitivity when this
cut is applied, but there is also a small decrease in the
polarization figure of merit due to lost efficiency. Plac-
ing a more stringent requirement that the tracking figure
of merit be no greater than 0.1 results in a signficant in-
crease in ), but reduces the polarimeter figure of merit
by a factor of four. Restricting the Compton-scattering
angle ¢ to a range where the analyzing power is greatest
also results in a significant increase in @), but reduces the
figure of merit by more than a factor of two. Since the
figure of merit depends on both @ and ¢, these results in-
dicate that the gain in polarization sensitivity from these
cuts is not sufficient to overcome the loss in efficiency. In
an experiment where statistics are the main limiting fac-
tor, using the entire data set makes the best use of the
available information.

4. Simulations

Simulations can be an invaluable tool when planning an
experiment. They can provide a realistic prediction of the
quality of the data that one may expect from an exper-
iment, and also serve as a guide to the quantity of data
needed to achieve a given statistical uncertainty. In this
section, we describe simulation software which can be used
to predict the performance of GRETINA as a Compton
polarimeter under experimental conditions.

The simulation program UCGretina [30], which is based
on the Monte Carlo toolkit Geant4 [31], was used in the
present work. The core Geant4 libraries already include
the ability to describe the polarization state of an atomic
nucleus based on the formalism described by Alder and
Winther[19], which will automatically generate the cor-
rect angular distribution W (#). However, a description of
the polarization state of photons emitted from an oriented
nucleus had not been implemented within the framework
as of the time of this writing. Two updates to UCGretina
were therefore necessary: (1) a mechanism to provide the
magnetic substate population as an input to the simula-
tions in order to leverage the existing polarization code,
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and (2) derive the polarization state of the emitted pho-
tons in order to generate the asymmetry in the azimuthal
Compton-scattering distribution.

4.1. Updates to UCGretina

Of the two updates to UCGretina which were necessary
for this study, deriving the polarization state of the emit-
ted photons is by far the more involved. The existing ma-
chinery to describe oriented nuclear states within Geant4
is based upon the concept of the density matrix [19], or
alternatively the statistical tensor. However, the polariza-
tion state of a photon within Geant4 is described by the
Stokes parameters, and so it is necessary to derive them
from the statistical tensor. This derivation and the re-
sulting implementation in Geant4 will be the subject of a
separate publication.

Providing the magnetic substate populations to Geant4
is relatively simple. The orientation of the initial nuclear
state is described by the statistical tensor py,(I;). Because
of the axial symmetry about the beam axis, pg«(l;) = 0
for k # 0 [32] and we have [33]:

V2L +1
Z

(I; M; I;— M; | kO ;
o k0) P(M,)

(11)
where the term in brackets is a Clebsch-Gordan coefficient.
The extra factor of v/2k + 1 compared to Ref. [33] is in-
serted in order to agree with the notation of Ref. [19], on
which the implementation of nuclear alignment is based in#*
Geant4.

pro(L;) =

455
456
4.2. Comparison with data a57

The modified code was benchmarked against the ex-4s
perimental data described in Sect. 3. Simulations weres
performed for both the 3 decay of 5°Co and for theso
2AMg(p,p’) reaction. Both the in-beam and source sim-s:
ulations were run for 40 sets of 10,000,000 events each.?
The magnetic substate populations P(M = 0) = 0.52,43
P(M = +1) = 0.24, and P(M = £2) = 0 were derived#*
from the as and a4 coefficients measured in the experiment#s
and used as an input to the in-beam simulations. No parti-s
cle detectors were used during the experiment, and so the?
properties of the beam could not be monitored. For thesss
purposes of the simulations, it was assumed that the beamaso
was well-collimated (no angular divergence) and that theso
beam spot was focused to a circle of 1 mm diameter.

UCGretina does not attempt to reproduce the finite en-42
ergy resolution or position resolution for the y-ray interac-+s3
tion points in GRETINA. The simulations were thereforess
post-processed by a program which takes the simulatedss
interaction-point energies and positions and treats themss
as the mean of a Gaussian distribution with configurables”
width. In order to demonstrate that the simulation is per-s
forming correctly, in this section the position resolution isss
fixed at 0 mm, which would correspond to perfect knowl-sso
edge of the interaction points in the data. The impact ofi
varying the position resolution is explored in Sect. 4.3.

471

482

8

X
=
(=]
T
)

(3]
N

()

. 24’\/|g

_ BOCO

Counts / deg
; [
L=

T

0.5F

|

0.8F |
i |

|

0’\\\‘\\\‘\l\\‘\\\‘\\\‘\\\‘\\\l‘\\\‘\\\z
0 20 40 60 80 100 120 140 160

0 (deg)

e

&)
T
|

Figure 8: (a) Polar angular distribution of simulated v rays for
the 21*' — Of' transition in 24Mg (solid line) and the 8 decay of
60Co (dashed line). (b) The ratio of the 24Mg distribution and 6°Co
distribution shown in (a). The solid line is the result of a Legendre
polynomial fit within the vertical dashed lines, with as = 0.540(5)
and aq = —0.354(5).

The polar angular distribution generated by the simu-
lations is shown in Fig. 8. As with the experimental data,
panel (a) shows the distribution of the emission angles
for the in-beam and source simulations (solid and dashed
lines, respectively), while panel (b) is the ratio between the
two distributions. The solid line in panel (b) is the Leg-
endre series fit, which uses the same range and excludes
the same bins as the experimental data in order to pro-
vide a direct comparison. The coefficients from the fit are
az = 0.540(5) and a4 = —0.354(5), in agreement with the
fit to the experimental data. The degree of polarization de-
rived from these parameters is P(0 = 90°) = 0.99(2). The
agreement with the data demonstrates that the statisti-
cal tensor is being calculated correctly from the magnetic
substate populations.

The azimuthal scattering-angle distribution for the sim-
ulated data (with 80° < # < 100°) is shown in Fig. 9.
As with the experimental data, panel (a) shows the simu-
lated in-beam data and simulated source data (solid and
dashed lines, respectively), while panel (b) shows their ra-
tio. The ratio is fit with Eq. 7, resulting in an asymmetry
Ao = 0.196(1). This is roughly double the asymmetry
measured for the experimental data, a point which is dis-
cussed in Sect. 4.3.

Since the asymmetry is so much larger in the simulation
than in the data, it can be anticipated that the polariza-
tion sensitivity and figure of merit will be similarly en-
hanced. Figure 10(b) shows Q(6) for the simulated data,
with the polarization derived from the as and a4 coefli-
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Figure 9: (a) Azimuthal angular distribution of simulated Compton-
scattered photons for the 21’ — Of' transition in 24Mg (solid line)
and B~ decay of 9Co (dashed line). As with the data, the first
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The ratio of the 24Mg distribution and 6°Co distribution shown in
(a). The solid line is a fit to the data with Eq. 7, with an asymmetry
Ag = 0.196(2).
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processing program applied to the output from UCGretina. The
horizontal gray bars indicate the range of P(f = 90°) and Ag values
which fall within 1o of the experimental values. (a) The apparent
linear polarization of the photon at 90° as a function of the position
smearing. (b) The measured asymmetry in the ¢ distribution as a
function of the position smearing.

cients in Fig. 10(a). As expected, it scales with the asym-
metry and has a value of roughly 0.4, independent of the
emission angle. Taken over the entire angular range cov-
ered in this GRETINA configuration, @ = 0.392(4) for
the simulations. The simulated efficiency can be directly
computed based on the number of simulated events and
the number of observed Compton-scattering events after
tracking has been performed, which comes out to 4.48(2)%
and can be compared to 5.3(1)% determined for the exper-
imental data. The resulting figure of merit is 6.9(1) x 1073,
clearly much larger than the corresponding value from the
experiment.

4.8. Impact of position resolution

The enhancement of the asymmetry in the simulations
relative to the data is likely due to the perfect position
information available from UCGretina, which clearly does
not reflect the experimental reality. To address this issue,
the aforementioned post-processing program was used to
add a random offset to the recorded interaction positions.
The offset was sampled from a three-dimensional Gaussian
distribution of a set width. This width was determined
according to the relation o = a + b//e as discussed in
Ref [26], where a and b are parameters and e is the energy
deposited at the interaction point. One parameter was
fixed by using the 1.2 mm position resolution inferred at
1779 keV in Ref. [25], while the other was fixed by varying
the position resolution at 100 keV. The resulting files were
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analyzed under the same conditions used in Sect. 4.2, and
the resulting polarization at 90° and Compton-scattering
asymmetry are shown Fig. 11. The horizontal axis in-
dicates the resolution used at 100 keV. The horizontal
bars show the 1o uncertainty in the photon polarization
and asymmetry derived from the experimental data. The
results suggest that the asymmetry in the £ distribution
matches the data with a position resolution of about 7 mm
at 100 keV, which corresponds to approximately the size
of a segment. However, the deduced polarization at 90°
drops to about 0.85. This should not be interpreted as ev-
idence that GRETINA has a 7 mm position resolution at
100 keV; rather, this is a choice of simulation parameters
which gives a reasonable approximation to experimental
data.

It is surprising that the photon polarization deduced at
90° drops so rapidly with increasing simulated position res-
olution, which is at variance with the results derived from
the experimental data. However, we have observed that
different behavior is obtained if the untracked simulations
are analyzed. In this case, the first interaction point within
a crystal is assumed to have the highest energy, while the
second is assumed to have the next-highest energy. Under
these conditions, P(f = 90°) becomes almost independent
of the simulated position resolution, as expected, while
the asymmetry dependence changes only slightly. The re-
sults obtained for the experimental data are similar for
the tracked and untracked data. A possible explanation
for this behavior is that simply smearing the interaction-
point positions, as is done in the post-processing code, is
not a very good approximation to the signal decomposi-
tion process applied to experimental data. As a result, the
tracking algorithm misidentifies the first interaction point™
for the simulated data. We are continuing to investig:cmte567
ways to ameliorate this issue. o8

Using the energy-dependent position resolution with™
o = 7 mm at 100 keV, the simulated @) and ﬁgure—of—570
merit values can be revisited. Repeating the previous571
analysis with the appropriate post-processed simulation,
results in @ = 0.207(2), very close to what was measured,,
in the experiment. The efficiency is unchanged by the,_,
post-processing program, and so the figure of merit can be,,
directly calculated as F' = 1.9(5) x 10~2, which is consis-_

tent with the experimental result. o7

578

4.4. Prediction for GRETA S
With the polarization sensitivity of GRETINA char-_
acterized, it is possible to predict the performance of,
GRETA. To make this prediction, simulations were per-,_,
formed using the same input parameters as were used,,
for the simulations of GRETINA, including the same
24Mg(p,p’) reaction with the magnetic substate popu-
lations measured in the experiment, but using the full
GRETA geometry. The energy-dependent position reso-
lution was used in the post-processing, with o = 7 mm at
100 keV. The simulations were performed assuming the ex-
istence of vy rays at intervals of 500 keV from 500-2000 keV.
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Figure 12: (a) The predicted polarization sensitivity @ for GRETA,

based on simulations performed at the energies displayed. (b) The
figure of merit F' extracted from the simulations for GRETA. The
circular points are the simulations of GRETA, while the squares in-
dicate the experimental values measured for GRETINA for compar-
ison. The value of Q deduced for GRETINA at 1368 keV from the
experimental data agrees well with the values predicted for GRETA,
while the figure of merit is enhanced significantly due to the increased
efficiency.

A second set of simulations were run with unpolarized ex-
cited states at the same set of energies in order to gener-
ate isotropic distributions for normalization. Clearly this
does not represent a physical scenario, but it is a conve-
nient means for demonstrating the simulated performance
of GRETA.

The results of the GRETA simulations are shown in
Fig. 12. The simulated performance of GRETA is given
by the circular points, while the squares indicate the val-
ues obtained from the experimental data in Sect. 3. Error
bars are included in the figure, but in most cases they are
smaller than the size of the data points. Panel (a) shows
the polarization sensitivity @) as a function of vy-ray energy.
It can be seen that the predicted value of @ for GRETA
is consistent with the measured value for GRETINA at
1368 keV. This is expected, since the value of @ does not
depend on the polar angle. Thus, the additional detectors
present in GRETA should not change Q.

The performance of Compton polarimeters is sometimes
compared to the characteristics expected of a polarimeter
composed of point-like detectors arranged to detect scat-
tering at ¢ = 90°, which would be the ideal geometry for
0 keV photons if efficiency was not a concern. The po-
larization sensitivity for such a detector as a function of
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1
Qp(Ey) = (E7/511 +511/(E, + 511)> ’

where E, is in keV. Real polarimeters can be compared to®*

this ideal behavior by applying a scaling factor to Eq. 12,
such that [23] 034

Q(Ey) = (Po + PLE,)Qp(E,).

(13)636
637
The solid line in Fig. 12(a) is a fit to the simulated polariza-,,
tion sensitivity of GRETA with Eq. 13, with Py = 0.131(6),,,
and P; = 3.25(7) x 10~*. In principle, GRETA should be,,,
a reasonable approximation to a point-like detector, given,,,
its ability to localize individual interaction points. The re-,,
duction in () compared to the point-like geometry is likely
due to the fact that GRETA is not restricted to detecting
scattering at ¢ = 90°.

The predicted figure of merit for GRETA, shown as a
function of energy in Fig. 12(b), is increased drastically
compared to the value measured for GRETINA. This can
be attributed to the increased efficiency of GRETA rel-
ative to GRETINA, as there is five-fold increase in the
number of Quad modules (30 compared to six) and the
figure of merit scales directly with efficiency. Compared
to the polarimeters in Table 1, Fig. 12 suggests that the
performance GRETA will be as much as four orders of
magnitude better in terms of the figure of merit. The solid
line in the figure is the function F' = Q%¢, where Q is the
same as the fit in panel (a) of the figure. In Ref. [25], the
singles efficiency of GRETINA with eight Quads is fit and
reported as € = 4.532(E, +100) %621, Using this function
for the efficiency, with a free parameter acting as an overall
scaling factor, the fit to the simulated data suggests that
the efficiency is equivalent to 35 individual Quad modules.
Since the efficiency in Ref. [25] is the singles efficiency, the
~ 15% gain can reasonably be attributed to events which
are recovered through tracking.

5. Conclusion

In this work, we have performed an experiment using the
24Mg(p, p') reaction at 2.45 MeV proton energy in order
to characterize the polarization sensitivity of GRETINA
in a six-Quad configuration. We have demonstrated that
GRETINA can serve as a good polarimeter in terms of
the polarization sensitivity @, and that its performance
greatly surpasses previous polarimeters in terms of its fig-
ure of merit due to its superior detection efficiency. We
have also added the capability to simulate the emission of
polarized photons to the UCGretina simulation package,
in order to provide a tool for experimenters to judge the
quality of the data they can expect from experiments. Fi-
nally, we have used UCGretina to predict the performance
of GRETA as a polarimeter, and find that its figure of
merit should surpass that of GRETINA by a significant
margin.
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