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BI-GRADED KOSZUL MODULES, K3 CARPETS,

AND GREEN’S CONJECTURE

CLAUDIU RAICU AND STEVEN V SAM

Abstract. We extend the theory of Koszul modules to the bi-graded case, and prove a
vanishing theorem that allows us to show that the Canonical Ribbon Conjecture of Bayer
and Eisenbud holds over a field of characteristic zero or at least equal to the Clifford index.
Our results confirm a conjecture of Eisenbud and Schreyer regarding the characteristics
where the generic statement of Green’s conjecture holds. They also recover and extend
to positive characteristics the results of Voisin asserting that Green’s Conjecture holds for
generic curves of each gonality.

1. Introduction

One of the most influential open problems in the study of syzygies over the past 35
years, which remains open to this date, is Green’s Conjecture on canonical curves [Gre84,
Conjecture 5.1]. It asserts that for a smooth curve C of genus g in characteristic zero, the
(non-)vanishing behavior of the Koszul cohomology groups Kp,1(C, ωC), where ωC is the
canonical bundle, detects the Clifford index of C:

Ki,1(C, ωC) 6= 0 ⇐⇒ i ≤ g − 1− Cliff(C).

The implication “⇐=” was proved by Green and Lazarsfeld in [Gre84, Appendix], and the
converse amounts by duality to showing that

Ki,2(C, ωC) = 0 for i < Cliff(C). (1.1)

It was soon realized that due to the semi-continuity property of syzygies, one can try to prove
generic versions of Green’s Conjecture by constructing examples of curves that exhibit the
vanishing (1.1). Moreover, singular examples of such curves are good enough as long as they
are smoothable. Despite some appealing candidates being proposed over the years (such as
rational cuspidal curves, nodal curves, ribbons), the vanishing (1.1) for generic curves (where
Cliff(C) = ⌊(g − 1)/2⌋) remained open until the tour de force by Voisin [Voi02,Voi05] that
used cohomology calculations on Hilbert schemes and the geometry of K3 surfaces. The
work of Voisin shows (1.1) for a generic curve of any gonality d (where Cliff(C) = d − 2),
extending earlier results that were established in large genus: g > (d− 1) · (d− 2) in [Sch89],
or g ≥ 3d+ 2 in [TIB02]. Building on [HR98,Voi05], Aprodu describes, inside each d-gonal
stratum, explicit loci where Green’s conjecture holds [Apr05].

More recently, a more elementary and algebraic approach using the theory of Koszul
modules has been used in [AFP+19] to prove (1.1) for rational cuspidal curves, fulfilling one
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of the early proposals [Eis92, Section 3.I] and recovering Green’s conjecture for generic curves.
The main goal of our paper is to extend the theory of Koszul modules to the bi-graded setting,
and verify (1.1) for rational ribbons, proving the Canonical Ribbon Conjecture [BE95] and
recovering Green’s conjecture for generic curves in each gonality. We note that a proof of
the Canonical Ribbon Conjecture that builds on the work of Voisin was obtained recently
by Deopurkar [Deo18].

An important advantage of the approach through Koszul modules is that the methods
carry over to positive characteristic. As stated, Green’s Conjecture was known to fail in
small characteristics even for generic curves, by work of Schreyer [Sch86], for instance in
genus 7 and characteristic 2. It is then natural to try to identify the appropriate characteristic
assumptions to insure that Green’s Conjecture remains valid (we note that Bopp and Schreyer
have proposed a modification of the conjecture that is characteristic free [BS19], but we
won’t pursue it here). Eisenbud and Schreyer investigated further this problem in [ES19]
and conjectured that (1.1) should hold for generic curves in characteristic ≥ ⌊(g − 1)/2⌋.
Our results confirm this conjecture, and improve on the lower bound ≥ (g + 2)/2 from
[AFP+19]. We also note that the restrictions on the characteristic have a clean explanation
in our approach, coming from the fact that symmetric and divided powers are not isomorphic
as functors in small characteristics.

We now formulate our results more precisely. Throughout this article we work over an
algebraically closed field k. We fix positive integers a, b, and let S(a, b) ⊂ P

a+b+1 denote
the rational normal scroll of type (a, b). By [GP97, Theorem 1.3] there is a unique double
structure on S(a, b) that is numerically a K3 surface; it is denoted X (a, b) and called a
K3 carpet. Our interest in the study of K3 carpets lies in the fact that their hyperplane
sections are canonical ribbons of genus g = a + b + 1 and Clifford index min(a, b), and
as such they are degenerations of smooth canonical curves with the same invariants (see
[BE95,Fon93,EG95,ES19] and Section 6). We will prove:

Theorem 1.2. Let R = k[Pg] and A = k[X (a, b)] denote the homogeneous coordinate rings

of Pg and X (a, b) respectively. If p = char(k) satisfies p = 0 or p ≥ min(a, b) then

TorRi (A,k)i+2 = 0 for all i < min(a, b).

By passing to a hyperplane section (and assuming a ≤ b in the theorem above) we obtain:

Theorem 1.3 (The Canonical Ribbon Conjecture). Let C be a rational ribbon of genus g
and Clifford index a. If p = char(k) satisfies p = 0 or p ≥ a then

Ki,2(C, ωC) = 0 for all i < a.

Corollary 1.4. Over a field k of characteristic p = 0 or p ≥ a, Green’s conjecture is true

for a non-empty Zariski open subset inside the locus of genus g curves with Clifford index a.

Specializing to the case when the Clifford index is generic, a = ⌊(g − 1)/2⌋, we confirm
the following conjecture of Eisenbud and Schreyer [ES19, Conjecture 0.1].

Theorem 1.5. Green’s Conjecture is true for a general curve of genus g over a field k of

characteristic p = 0 or p ≥ ⌊(g − 1)/2⌋.

The main new idea in our paper is the introduction and use of bi-graded Koszul mod-
ules, which we explain next. In the singly-graded case, Koszul modules were introduced by
Papadima and Suciu in [PS15], and they have been used in [AFP+19] to prove the Generic



BI-GRADED KOSZUL MODULES, K3 CARPETS, AND GREEN’S CONJECTURE 3

Green’s Conjecture via degeneration to cuspidal curves. It is this latter paper that consti-
tutes the inspiration for our work. The motivation of Papadima and Suciu for defining Koszul
modules comes from geometric group theory, where various incarnations of these modules
have been used to great effect by Sullivan, Dimca, Papadima, Suciu, Hain and many others.
In this setting, a more familiar name for Koszul modules is that of infinitesimal Alexander

invariants [PS04, Section 1.8]. For new applications in this context and a more extensive
survey of the relevant literature, the reader can consult [AFP+21]. Although we do not pur-
sue this line of thought here, it is reasonable to expect, and worthwhile to pursue, analogous
applications in geometric group theory for the algebraic results on bi-graded Koszul modules
that we develop here.

To recall the definition of the singly-graded Koszul modules, we consider a vector space
V and form the polynomial ring S = Sym(V ), endowed with the natural grading where the
elements of V have degree one. For a subspace K ⊂

∧2 V , we form the 3-term complex

K ⊗ S −→ V ⊗ S −→ S, (1.6)

obtained by replacing
∧2 V ⊗ S in the Koszul complex with the submodule K ⊗ S. The

Koszul module W (V,K) is the middle homology of (1.6). It was shown in [PS15] that

W (V,K) is a finite length module if and only if the orthogonal complement K⊥ ⊂ (
∧2 V )∨

does not contain any non-zero decomposable tensors a ∧ b, with a, b ∈ V ∨ (equivalently,
the projectivization of K⊥ does not intersect the Grassmannian Gr(2, V ∨)). Thinking of

(
∧2 V )∨ as the subspace of skew-symmetric tensors in V ∨ ⊗ V ∨, the decomposable elements
a ∧ b precisely correspond to rank two tensors.

For the bi-graded setting, we assume that V comes with a decomposition V = V1⊕V2, and
endow the polynomial ring S = Sym(V ) with the bi-grading where S1,0 = V1 and S0,1 = V2.

We regard V1 ⊗ V2 as the subspace of bi-degree (1, 1) elements in
∧2 V , and hence we can

regard any subspace K ⊂ V1 ⊗ V2 as a subset of
∧2 V and form the complex (1.6). The

resulting homology group W (V,K) is then naturally bi-graded, and we call it a bi-graded

Koszul module.
We are interested in the case when dim(Vi) ≥ 2, where the aforementioned results of [PS15]

imply that W (V,K) is never of finite length: indeed, if K ⊂ V1 ⊗ V2 then
∧2 V ∨

i ⊂ K⊥,
hence K⊥ contains decomposable elements. To generalize the results of [PS15], it is then
more convenient to reinterpret the condition that a singly-graded Koszul module W (V,K)
has finite length as saying that the associated coherent sheaf on projective space PV is 0. For
a bi-graded Koszul module, it is then appropriate to instead consider when the corresponding
coherent sheaf on the product of projective spaces PV1 × PV2 is 0. Algebraically, this means
that

Wd,e(V,K) = 0 for d, e ≫ 0. (1.7)

Pleasantly, this condition is equivalent to asking that the orthogonal complement K⊥ ⊂
(V1 ⊗ V2)

∨ contains no nonzero tensors of rank ≤ 2 (see Proposition 3.5). By picking bases,
elements of (V1 ⊗ V2)

∨ can be interpreted as matrices, and the rank of an element coincides
with the usual rank of a matrix. Geometrically, the projectivization of the rank ≤ 2 locus is
the secant variety of the Segre embedding of PV1×PV2, i.e., the Zariski closure of the union
of all secant lines through any 2 points of the Segre embedding. Remarkably, in analogy
with [AFP+19, Theorem 1.3] we can make the vanishing (1.7) effective:
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Theorem 1.8. Let p = char(k), ni = dim(Vi) ≥ 2, and suppose that p = 0 or p ≥ n1+n2−3.
We have that

Wd,e(V,K) = 0 for d, e ≫ 0 ⇐⇒ Wn2−2,n1−2(V,K) = 0.

The condition that K⊥ ⊂ (V1⊗V2)
∨ contains no nonzero tensors of rank ≤ 2 can only hold

when dim(K) ≥ 2(n1 + n2 − 2), which is one more than the dimension of the secant variety
of the Segre product PV1 × PV2. In analogy with [AFP+19, Theorem 1.4], in the borderline
case when dim(K) = 2(n1 + n2 − 2), we can determine an exact formula for the Hilbert
function in low bi-degrees for a module W (V,K) satisfying the conditions in Theorem 1.8
(see Theorem 3.3).

We now give a high level overview of the strategy of proof of Theorem 1.2. If we let B
denote the homogeneous coordinate ring of the scroll S(a, b), then we have a short exact
sequence

0 → ωB → A → B → 0

where ωB is the canonical module of B. The minimal free resolution of B is an Eagon–
Northcott complex, while the minimal free resolution of ωB is obtained by duality. In par-
ticular, we have Tori(B,k)i+2 = 0, so to prove the desired vanishing of the Tor groups of A,
we need to show, for i < min(a, b), the surjectivity of the connecting homomorphisms

Tori+1(B,k)i+2 → Tori(ωB,k)i+2.

To write everything invariantly, we pick a 2-dimensional vector space U and write P(U) for
the corresponding projective line. To keep everything correct in general, we will be careful to
distinguish between divided powers D and symmetric powers Sym; if k has characteristic 0,
then these are isomorphic to one another, so the reader may replace all instances of divided
powers D with symmetric powers Sym if that is their main scenario of interest. The map
above takes the form

Di U ⊗
i+2
∧

(Syma−1 U ⊕ Symb−1 U) → Syma+b−2−i U ⊗
i
∧

(Syma−1 U ⊕ Symb−1 U) (1.9)

where D is the divided power, Sym is the symmetric power, and
∧

is the exterior power.
While it is possible to give explicit formulas for this map, proving surjectivity from such
a formula is a difficult task (especially since it depends on the characteristic of the field).
Instead, we take a roundabout method that begins with Hermite reciprocity, which is an
SL(U)-equivariant isomorphism

Symd(Di U) =
i
∧

(Symd+i−1 U),

described in [AFP+19, Section 3.4]. If we decompose both sides of (1.9) using the identity

d
∧

(E ⊕ F ) =
⊕

u+v=d

u
∧

E ⊗
v
∧

F, (1.10)
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then via Hermite reciprocity, the connecting homomorphism takes the form

⊕

u+v=i
u,v≥−1

Di U ⊗ Syma−u−1(Du+1 U)⊗ Symb−v−1(Dv+1 U)

��
⊕

u+v=i
u,v≥0

Syma+b−2−i U ⊗ Syma−u(Du U)⊗ Symb−v(Dv U).

If we focus on a particular bi-degree (u, v) and sum over all a ≥ u and b ≥ v, then the domain
becomes Di U ⊗ Sym(Du+1 U ⊕Dv+1 U), a free module over the bi-graded polynomial ring

S = Sym(Du+1 U ⊕Dv+1 U), where S1,0 = Du+1 U and S0,1 = Dv+1 U.

Miraculously, the target can be given the structure of a finitely generated S-module, so that
this map is a module homomorphism, namely it is the middle homology of a complex

Du+v+2 U ⊗ S −→ (Du+1 U ⊕Dv+1 U)⊗ S −→ S.

This identification is subtle and occupies a great deal of the paper! Since i = u + v, this
leads to a three-term complex of free S-modules

K ⊗ S −→ (Du+1 U ⊕Dv+1 U)⊗ S −→ S,

where K is some extension of Du+v U by Du+v+2 U (which is split if the characteristic of
k is zero or large). We denote the middle homology by W (u+1,v+1) and call it a bi-graded

Weyman module (see Section 4, and [AFP+19, Section 5.1] for the singly-graded case). In
fact, this is an instance of a bi-graded Koszul module with V1 = Du+1 U and V2 = Dv+1 U .
Specializing Theorem 1.8 to this situation gives the following theorem, which itself implies
Theorem 1.2:

Theorem 1.11. If p = char(k) satisfies p = 0 or p > u+ v then

W
(u,v)
d,e = 0 for d ≥ v, e ≥ u.

Finally, we note that in this situation, we have dim(K) = 2(dim(V1) + dim(V2)− 2); from
the previous discussion, we have a formula for the Hilbert function of W (u,v). Based on this,
the reader can deduce formulas for certain bi-graded components of the Tor-modules of A.

Organization. In Section 2 we recall basic constructions in multilinear algebra, and discuss
Hermite reciprocity. Section 3 is concerned with the basic theory of bi-graded Koszul mod-
ules, and contains the proof of the vanishing Theorem 1.8. In Section 4 we discuss Weyman
modules, showing that they satisfy the hypothesis of the vanishing theorem and deriving
Theorem 1.11. The relationship between the syzygies of K3 carpets and Weyman modules
is presented in Section 5, while the geometric applications are summarized in Section 6.

2. Preliminaries

In this section we collect some basic facts and notation regarding multilinear algebra, and
recall some useful aspects of Hermite reciprocity following [AFP+19].
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2.1. Multilinear algebra. Let E be a vector space. The tensor power E⊗d has an action
of the symmetric group Sd via permuting tensor factors. The divided power DdE is the
invariant subspace and the symmetric power SymdE is the space of coinvariants. In formulas:

DdE = {x ∈ E⊗d | σ(x) = x for all σ ∈ Sd}

SymdE = E⊗d/{x− σ(x) | σ ∈ Sd, x ∈ U⊗d}.

There is a natural isomorphism

(DdE)∨ = Symd(E∨).

If d! is nonzero in k, and in particular if char(k) = 0, then the composition DdE → E⊗d →
SymdE is an isomorphism with inverse Symd E ∼= DdE given by x 7→ 1

d!

∑

σ∈Sd
σ(x).

The exterior powers
∧dE are the skew-invariants of E⊗d, i.e.,

d
∧

E = {x ∈ E⊗d | σ(x) = sgn(σ)x for all σ ∈ Sd}.

For e1, . . . , ed ∈ E, we use the notation

e1 ∧ · · · ∧ ed =
∑

σ∈Sd

sgn(σ)eσ(1) ⊗ · · · ⊗ eσ(d) ∈
d
∧

E

and e1 · · · ed to denote the image of e1 ⊗ · · · ⊗ ed in SymdE.

For DdE, and d1 + · · ·+ dr = d, we use e
(d1)
1 · · · e

(dr)
r to denote the sum over the orbit of

e⊗d1
1 ⊗ · · · ⊗ e⊗dr

r in E⊗d. For u, v ≥ 0, we define comultiplication maps

∆u,v : Du+v E → Du E ⊗ Dv E

which are the linear duals of the multiplication maps

Symu(E∨)⊗ Symv(E∨) → Symu+v(E∨).

Since multiplication is associative, comultiplication is coassociative, i.e., we have (1⊗∆v,w)◦
∆u,v+w = (∆u,v ⊗ 1) ◦∆u+v,w as maps Du+v+w E → Du E ⊗ Dv E ⊗ Dw E.

Similarly, we also define comultiplication maps

∆u,v :

u+v
∧

E →
u
∧

E ⊗
v
∧

E

as the linear duals of the multiplication maps

u
∧

(E∨)⊗
v
∧

(E∨) →
u+v
∧

(E∨).

Again, this comultiplication is coassociative.

2.2. Hermite reciprocity. We let U be a 2-dimensional k-vector space, and use SL(U) to
denote the group of linear operators on U with determinant 1. We fix a basis {1, x} for U
which gives an identification

∧2 U ≃ k via 1 ∧ x 7→ 1, and we use this to identify U ≃ U∨.
Hermite reciprocity is an SL(U)-equivariant isomorphism

Symd(Di U) =
i
∧

(Symd+i−1 U).
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We won’t make use of the explicit form of this isomorphism, but the reader can see [AFP+19,
§3.4] for details. Under Hermite reciprocity, the multiplication map

Dd U ⊗ Syme−d+1(Dd U) → Syme−d+2(Dd U)

takes the form

ν : Dd U ⊗
d
∧

(Syme U) →
d
∧

(Syme+1U).

See [AFP+19, Eqn. (43) and Proof of Lemma 3.3] for a formula for ν.

Proposition 2.1. The following square commutes:

Dd U ⊗
∧d(Syme U)

ν //

��

∧d(Syme+1U)

��

Dd−1 U ⊗
∧d−1(Syme U)⊗ Syme+1 U

ν⊗1 //
∧d−1(Syme+1 U)⊗ Syme+1 U

where the left map is comultiplication on both factors followed by multiplication, and the right

map is exterior comultiplication.

Proof. See [AFP+19, Proposition 5.9]. �

3. Bi-graded Koszul modules

In this section we generalize the notion of Koszul modules to the bi-graded setting, and
study the natural analogue of finite length modules (see [PS15, AFP+21]). We show that
these modules satisfy a strong vanishing theorem, and we give a sharp upper bound for their
bi-graded Hilbert function (our results parallel [AFP+19, Theorems 1.3, 1.4]). We let V1, V2

denote finite dimensional k-vector spaces, and let V = V1 ⊕ V2. We write ni = dim(Vi),
assume that ni ≥ 2, and let n = n1 + n2. We consider a subspace K ⊆ V1 ⊗ V2 and let
m = dim(K). We have a decomposition

2
∧

V =
2
∧

V1 ⊕ (V1 ⊗ V2)⊕
2
∧

V2,

which allows us to think of K as a subspace of
∧2 V . We consider the symmetric algebra

S = Sym(V ) and define the Koszul module W (V,K) to be the middle homology of the
3-term complex

K ⊗ S
δ2|K⊗S // V ⊗ S

δ1 // S, (3.1)

where δ1, δ2 are Koszul differentials.
We consider S as a bi-graded polynomial ring where the elements of V1 have degree (1, 0),

and those of V2 have degree (0, 1). The bi-degree (d, e) component is

Sd,e = Symd(V1)⊗ Syme(V2).

The Koszul module W (V,K) inherits a natural bi-grading, where the bi-degree (d, e) com-
ponent is the homology of

K ⊗ Sd,e −→ V1 ⊗ Sd,e+1 ⊕ V2 ⊗ Sd+1,e −→ Sd+1,e+1.

We are interested in understanding the vanishing behavior of Wd,e(V,K). We note that
W (V,K) is generated in bi-degree (0, 0), so if Wd0,e0(V,K) = 0 for some (d0, e0) then
Wd,e(V,K) = 0 for all (d, e) with d ≥ d0, e ≥ e0.
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Theorem 3.2. Let p = char(k) and suppose that p = 0 or p ≥ n− 3. We have that

Wd,e(V,K) = 0 for d, e ≫ 0 ⇐⇒ Wn2−2,n1−2(V,K) = 0.

As explained in Remark 3.6 below, the equivalent conditions in Theorem 3.2 can only
be true when m ≥ 2n − 4. If we further assume that m = 2n − 4 then we get an exact
formula for the Hilbert function of W (V,K) in low bi-degrees, as follows (compare with
[AFP+19, Theorem 1.4]).

Theorem 3.3. With the assumptions in Theorem 3.2, suppose that Wn2−2,n1−2(V,K) = 0.
If we let ∆1 = n1−2−e and ∆2 = n2−2−d, then we have for all d ≤ n2−2 and e ≤ n1−2
that

dim(Wd,e(V,K)) ≤ 2·

(

d+ n1 − 1

d

)

·

(

e + n2 − 1

e

)

·

(

n1−1
2

)

·∆2 +
(

n2−1
2

)

·∆1 − (n− 3) ·∆1 ·∆2

(d+ 1) · (e+ 1)
.

Moreover, equality holds when m = 2n− 4.

To understand geometrically the asymptotic vanishing property of the bi-graded compo-
nents of W (V,K), we consider the associated Koszul sheaf on P = PV1 × PV2, denoted
W(V,K), and defined as the middle homology of

K ⊗OP

α
−→ V1 ⊗OP(0, 1)⊕ V2 ⊗OP(1, 0)

β
−→ OP(1, 1). (3.4a)

In what follows, we let G = ker(β), so it fits into the short exact sequence

0 −→ G −→ V1 ⊗OP(0, 1)⊕ V2 ⊗OP(1, 0) −→ OP(1, 1) −→ 0. (3.4b)

Note that G is locally free since β is surjective.
We have that Wd,e(V,K) = H0(P,W(V,K)⊗OP(d, e)) for d, e ≫ 0, and in particular the

vanishing holds asymptotically if and only if W(V,K) is the zero sheaf. To characterize this
condition, we define the orthogonal complement of K to be

K⊥ = {φ ∈ V ∨
1 ⊗ V ∨

2 : φ|K = 0}

and prove the following.

Proposition 3.5. We have that W(V,K) = 0 if and only if K⊥ contains no non-zero tensors

of rank at most two.

Proof. The condition W(V,K) = 0 is equivalent to the exactness of (3.4a) in the middle,
which in turn is equivalent to the surjectivity of the induced map α : K ⊗ OP −→ G. This
can be checked fiber by fiber, and since G is locally free, the middle exactness of (3.4a) can
also be checked fiber by fiber. Fix a k-point p = ([f1], [f2]) ∈ P, with fi ∈ V ∨

i , and restrict
(3.4a). We get a complex of vector spaces

K
αp

−→ V1 ⊕ V2
f1⊕f2
−→ k,

which is exact if and only if the dual complex

k
(f1,f2)
−→ V ∨

1 ⊕ V ∨
2

α∨
p

−→ K∨

is exact. Writing V ∨ = V ∨
1 ⊕ V ∨

2 and f = (f1, f2), we observe that the map α∨
p is obtained

as the composition

V ∨ ∧f
−→

2
∧

V ∨
։ K∨, (3.5a)
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where the second map is the dual projection to the inclusion K ⊂
∧2 V , and therefore

has kernel equal to
∧2 V ∨

1 ⊕ K⊥ ⊕
∧2 V ∨

2 . It follows that (3.5a) fails to be exact if and
only if one can find g = (g1, g2) ∈ V ∨ which is not a multiple of f and such that f ∧ g ∈
∧2 V ∨

1 ⊕K⊥ ⊕
∧2 V ∨

2 . Since

f ∧ g = (f1 ∧ g1, f1 ⊗ g2 − g1 ⊗ f2, f2 ∧ g2),

we get that (3.5a) fails to be exact if and only ifK⊥ contains a non-zero tensor f1⊗g2−g1⊗f2
of rank at most two. �

Remark 3.6. Note that K⊥ defines a linear space H of codimension m in P(V1 ⊗ V2), which
in turn is the ambient space of the Segre embedding X of PV1 × PV2. The condition in
Proposition 3.5 is then equivalent to the fact that H is disjoint from Sec(X), the variety
of secant lines to X . Since dim(Sec(X)) = 2n − 5, this is only possible when m ≥ 2n − 4.
Moreover, if H is generic of codimension m = 2n− 4 then H ∩ Sec(X) = ∅. �

Lemma 3.7. For r = 0, . . . , n − 4 we have that Symr(G∨) ⊗ OP(−1,−1) has no non-zero

cohomology groups.

Proof. Dualizing (3.4b) and taking symmetric powers, we get a short exact sequence

0 −→ Symr−1(V)⊗OP(−2,−2) −→ Symr(V)⊗OP(−1,−1) −→ Symr(G∨)⊗OP(−1,−1) −→ 0,

where
V = V ∨

1 ⊗OP(0,−1)⊕ V ∨
2 ⊗OP(−1, 0).

It is then enough to check that the sheaves Symr(V) ⊗ OP(−1,−1) and Symr−1(V) ⊗
OP(−2,−2) have no non-zero cohomology groups.

First note that Symr(V)⊗OP(−1,−1) decomposes as a direct sum of OP(i, j) with i, j < 0
and i+ j = −r − 2 ≥ −n + 2, while Symr−1(V)⊗ OP(−2,−2) decomposes as a direct sum
of OP(i, j) with i, j < 0 and i+ j = (−r + 1)− 4 ≥ −n + 1.

Next, the condition i+ j ≥ −n + 1 implies that either i ≥ −n1 + 1 or j ≥ −n2 + 1, so at
least one of OPV1

(i) or OPV2
(j) has no non-zero cohomology groups and so OP(i, j) has no

non-zero cohomology groups by Künneth’s formula. �

In the next proof we will need the Buchsbaum–Rim complex, for which we recall the
important details now. Let X be a scheme and α : E → F be a morphism of locally free
sheaves on X with rank(E) = e and rank(F ) = f (and e ≥ f). The Buchsbaum–Rim
complex B(α)• of α has terms

B(α)0 = F,

B(α)1 = E,

B(α)r =

r+f−1
∧

E ⊗ det(F∨)⊗ Dr−2(F∨) for r = 2, . . . , e− f + 1,

and the differential B(α)1 → B(α)0 is α (this is the complex C1 in [Eis95, §A2.6] where it
is treated in the local setting – the terms det(F∨), which are omitted there are necessary to
globalize this construction). This is exact in positive degrees if the ideal sheaf of maximal
minors of α has depth ≥ e− f +1, with the convention that the unit ideal has infinite depth
(exactness can be checked locally, in which case it follows from [Eis95, Theorem A2.10]).
In our application below, X = P and α is surjective, and hence the ideal sheaf of maximal
minors is the unit ideal.
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Proof of Theorem 3.2. The implication “⇐” follows from the fact that W (V,K) is generated
in bi-degree (0, 0). To prove “⇒”, we first reduce to the case m = 2n − 4. As remarked
earlier, the vanishing Wd,e(V,K) = 0 for d, e ≫ 0 is equivalent to W(V,K) = 0, which is
further equivalent to the fact that the linear space H ⊆ P(V1 ⊗ V2) corresponding to K⊥ is
disjoint from Sec(X). Assuming that this condition is satisfied, a generic choice of a linear
space H ′ ⊇ H of codimension 2n − 4 will still have the property that H ′ ∩ Sec(X) = ∅, so
it gives a bi-graded Koszul module W (V,K ′) with K ′ ⊆ K and dim(K ′) = 2n − 4. The
inclusion K ′ ⊆ K induces a natural surjection W (V,K ′) ։ W (V,K), so a vanishing for
W (V,K ′) will imply the corresponding vanishing for W (V,K).

We assume that m = 2n− 4 and let G = ker(β) as in the proof of Proposition 3.5. Since
W(V,K) = 0, we have that the map α : K ⊗ OP −→ G is surjective, so it gives an exact
Buchsbaum–Rim complex B• with

B0 = G,

B1 = K ⊗OP,

Br =
n+r−2
∧

K ⊗ det (G∨)⊗Dr−2 (G∨) for r = 2, . . . , n− 2

The condition Wn2−2,n1−2(V,K) = 0 is equivalent to the fact that after twisting by OP(n2 −
2, n1 − 2), the induced map on global sections

H0(P,B1(n2 − 2, n1 − 2)) −→ H0(P,B0(n2 − 2, n1 − 2)) (3.8)

is surjective. Since B•(n2 − 2, n1 − 2) is an exact complex, its hypercohomology groups are
all zero. Using the hypercohomology spectral sequence, in order to prove the surjectivity of
(3.8) it suffices to check that the sheaves Br(n2 − 2, n1 − 2) have no cohomology (in fact, it
is enough that Hr−1(P,Br(n2 − 2, n1 − 2)) = 0) for r = 2, · · · , n− 2.

Since 0 ≤ r − 2 ≤ n − 4, it follows from our hypothesis that p = 0 or p > r − 2, thus
Dr−2(G∨) = Symr−2(G∨). Moreover, we have that det(G∨) = OP(−n2 + 1,−n1 + 1), so

Br(n2 − 2, n1 − 2) =

n+r−2
∧

K ⊗OP(−1,−1)⊗ Symr−2 (G∨) , for r = 2, . . . , n− 2.

The desired vanishing now follows from Lemma 3.7. �

Proof of Theorem 3.3. Using the projection argument from the proof of Theorem 3.2 it suf-
fices to consider the case when m = 2n − 4 and show that we get an exact formula for
dim(Wd,e(V,K)) in the given range. Restricting (3.1) to bi-degree (d, e), we get a complex

K ⊗ Sd,e

αd,e

−→ V1 ⊗ Sd,e+1 ⊕ V2 ⊗ Sd+1,e

βd,e

−→ Sd+1,e+1

whose middle homology is Wd,e(V,K). We get that dim(Wd,e(V,K)) ≥ χd,e, where

χd,e = dim (V1 ⊗ Sd,e+1 ⊕ V2 ⊗ Sd+1,e)− dim(Sd+1,e+1)− dim(K ⊗ Sd,e)

is the Euler characteristic of the above complex. Moreover, since βd,e is surjective, we have
that dim(Wd,e(V,K)) = χd,e if and only if αd,e is injective. A direct calculation shows that

χd,e = 2 ·

(

d+ n1 − 1

d

)

·

(

e+ n2 − 1

e

)

·

(

n1−1
2

)

·∆2 +
(

n2−1
2

)

·∆1 − (n− 3) ·∆1 ·∆2

(d+ 1) · (e+ 1)
,

so to prove Theorem 3.3 it suffices to show that αd,e is injective for d ≤ n2 − 2, e ≤ n1 − 2.
Since αd,e is a homogeneous component of a map of free modules, we have that if αd0,e0 is
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injective then αd,e is also injective for all d ≤ d0 and e ≤ e0. It is then enough to prove that
αn2−2,n1−2 is injective. Notice that for d = n2 − 2 and e = n1 − 2, we have ∆1 = ∆2 = 0, so
χn2−2,n1−2 = 0. Moreover, we know by Theorem 3.2 that Wn2−2,n1−2(V,K) = 0, αn2−2,n1−2 is
injective. �

4. Bi-graded Weyman modules

The fundamental connection described in [AFP+19] between (standard graded) Koszul
modules and syzygies goes through Weyman modules. We define their analogues in the
bi-graded setting, and show that they satisfy (in most characteristics) the hypothesis of
Theorem 3.2.

For i, j ≥ 0 we consider the surjective multiplication map

µu,v : Symu U ⊗ Symv U −→ Symu+v U.

The kernel of µu,v is naturally identified with Symu−1 U ⊗ Symv−1 U via the inclusion

ιu,v : Symu−1 U ⊗ Symv−1 U → Symu U ⊗ Symv U,

f ⊗ g 7→ f ⊗ xg − xf ⊗ g.

More generally, for t ≤ u, v the composition ιtu,v = ιu,v ◦ ιu−1,v−1 ◦ · · · ◦ ιu−t+1,v−t+1 is given by

f ⊗ g 7→
t

∑

i=0

(−1)i
(

t

i

)

· xif ⊗ xt−ig.

We let

Qu,v = Coker(ιu,v ◦ ιu−1,v−1),

which gives a short exact sequence

0 −→ Symu−2 U ⊗ Symv−2 U −→ Symu U ⊗ Symv U
Ψu,v

−→ Qu,v −→ 0.

In characteristic zero (or sufficiently large characteristic), one has an SL(U)-equivariant
decomposition Qu,v ≃ Symu+v U ⊕ Symu+v−2 U , but in general we only have an extension

0 −→ Symu+v−2 U −→ Qu,v −→ Symu+v U −→ 0. (4.1)

Remark 4.2. If char(k) = p > 0 then
(

p

i

)

= 0 in k for 0 < i < p, and thus for u, v ≥ p we
have

ιpu,v(f ⊗ g) = f ⊗ xpg − xpf ⊗ g.

Since Im(ιpu,v) ⊂ Im(ι2u,v) = ker(Ψu,v), this shows that ker(Ψu,v) contains rank two tensors.
We will show that this is no longer the case when p > min(u, v). �

We let Vi = (Symni−1 U)∨ = Dni−1 U , and let K = Q∨
n1−1,n2−1, considered as a subspace of

V1 ⊗ V2 via the inclusion Ψ∨
n1−1,n2−1. We note that

dim(Vi) = ni and dim(K) = 2n− 4.

We define the bi-graded Weyman module W (n1−1,n2−1) := W (V,K).

Proposition 4.3. Let p = char(k) and suppose that p = 0 or that p > min(u, v). Then

ker(Ψu,v) contains no non-zero tensors of rank at most two.
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Proof. We assume without loss of generality that u ≤ v, identify as usual Symd U with
polynomials of degree ≤ d in x, and consider the derivation ∂ = ∂

∂x
: k(x) −→ k(x). We note

that ker(Ψu,v) = Im(ι2u,v) is generated by elements of the form

ι2u,v(x
a ⊗ xb) = xa ⊗ xb+2 − 2xa+1 ⊗ xb+1 + xa+2 ⊗ xb,

which are both in ker(µu,v) and in the kernel of the composition

Symu U ⊗ Symv U
∂⊗id //

Φ

33
Symu−1 U ⊗ Symv U

µu−1,v // Symu+v−1 U

Suppose now that T ∈ ker(Ψu,v) is a non-zero tensor of rank at most 2. If T = f ⊗ g, then
0 = µu,v(T ) = fg, which forces either f = 0 or g = 0, contradicting the fact that T 6= 0. We
may therefore assume that

T = f1 ⊗ g1 + f2 ⊗ g2, f1, f2 ∈ Symu U are not proportional, and T ∈ ker(µu,v) ∩ ker(Φ).

Using the fact that 0 = µu,v(T ) = f1g1 + f2g2 we get

∂

(

f1
f2

)

=
(∂f1)f2 − (∂f2)f1

f 2
2

= [(∂f1)g1 + (∂f2)g2]
1

f2g1
=

Φ(T )

f2g1
= 0.

Since ker(∂) = k(xp), we conclude that f1
f2

∈ k(xp). By our hypothesis, we have that

p = 0 or p > u, which in turn forces f1
f2

∈ k, contradicting the fact that f1, f2 were not

proportional. �

It follows from Proposition 4.3 that if p = 0 or p ≥ min(n1, n2) then Proposition 3.5 applies
to the bi-graded Weyman module W (n1−1,n2−1). We get using Theorem 3.2 the following.

Corollary 4.4. If n1, n2 ≥ 2 and p = char(k) satisfies p = 0 or p ≥ n1 + n2 − 3 then

W
(n1−1,n2−1)
d,e = 0 for d ≥ n2 − 2, e ≥ n1 − 2.

5. Syzygies of K3 carpets

Fix positive integers a, b. In this section we study the syzygies of the K3 carpet X (a, b),
obtained as a double structure on a rational normal scroll of type (a, b). We show that
via Hermite reciprocity, these syzygies can be built from components of bi-graded Weyman
modules. Using Corollary 4.4, this yields a vanishing result for syzygies of K3 carpets that
was conjectured by Eisenbud and Schreyer in [ES19].

5.1. Rational normal scrolls. Let

S(a, b) ⊆ P(Syma U ⊕ Symb U) ≃ Pa+b+1

denote the rational normal scroll of type (a, b). It is abstractly isomorphic to the projective
bundle PPU(E), where E = E1⊕E2, E1 = OPU(a), E2 = OPU(b). Let B denote the homogeneous
coordinate ring of the scroll, which is naturally bi-graded with

Bd,e = H0(PU, Symd(E1)⊗ Syme(E2)) = Symda+eb U.

We let

R = Sym(Syma U ⊕ Symb U)



BI-GRADED KOSZUL MODULES, K3 CARPETS, AND GREEN’S CONJECTURE 13

denote the homogeneous coordinate ring of the ambient projective space, with its natural
bi-grading. We have that B = R/I, where I is the ideal of the scroll, generated by

2
∧

U ⊗
2
∧

(Syma−1 U ⊕ Symb−1 U) ⊂ R1,1.

More explicitly, the multiplication map

U ⊗ (Syma−1 U ⊕ Symb−1 U) → Syma U ⊕ Symb U

can be represented as a 2 × (a + b) matrix whose entries are the linear forms in R, and I
is generated by the 2 × 2 minors of this matrix. In particular, it is resolved by an Eagon–
Northcott complex and so

Tori(B,k)i+1 = Di−1 U ⊗
i+1
∧

(Syma−1 U ⊕ Symb−1 U) 1 ≤ i ≤ a + b− 1. (5.1)

The canonical module ωB of B is identified with H0(PU, ωPU ⊗ det(E) ⊗ Sym(E)), with
bi-grading

(ωB)d,e = H0(PU, ωPU ⊗ det(E)⊗ Symd−1(E1)⊗ Syme−1(E2)),

and in particular it is generated in bi-degree (1, 1) by (ωB)1,1 = Syma+b−2 U . Dualizing (5.1)
and taking into account the bi-grading gives (with u+ v = i)

TorRi (ωB,k)u+1,v+1 = Syma+b−2−u−v U ⊗
u
∧

(Syma−1 U)⊗
v
∧

(Symb−1 U). (5.2)

We have a surjective map φ : I −→ ωB, which at the level of generators is given by a map

I2,0 ⊕ I1,1 ⊕ I0,2
∧2(Syma−1 U)⊕ (Syma−1 U ⊗ Symb−1 U)⊕

∧2(Symb−1 U)

φ1,1

��

(ωB)1,1 Syma+b−2 U

where φ1,1 sends
∧2(Syma−1 U) and

∧2(Symb−1 U) to zero, and it is described on Syma−1 U⊗
Symb−1 U by the natural multiplication map. We let A denote the coordinate ring of the
associated K3 carpet X (a, b), which is obtained as an R-module extension

0 −→ ωB −→ A −→ B −→ 0 (5.3)

induced by φ ∈ HomR(I, ωB) = Ext1R(B, ωB).
For the next result, we collapse the bi-grading onA to a single grading byAn =

⊕

i+j=nAi,j.

Proposition 5.4. The Hilbert series of A is

∑

n≥0

(dimAn)t
n =

1 + (a + b− 1)t+ (a+ b− 1)t2 + t3

(1− t)3
.

Proof. The Hilbert series of A is a sum of the Hilbert series of B and ωB, so we calculate
each separately. We have Bi,j = Symia+jbU , so dimBi,j = ia + jb+ 1, and hence

dimBn =

n
∑

i=0

(ia+ (n− i)b+ 1) =
n(n + 1)

2
(a + b) + n + 1.
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Next, we have (ωB)i,j = Symia+jb−2 U for i, j ≥ 1 and 0 otherwise, and in particular,

dim(ωB)n =
n−1
∑

i=1

(ia + (n− i)b− 1) =
n(n− 1)

2
(a+ b)− n+ 1 (n ≥ 1).

So

dimA0 = 1, dimAn = n2(a+ b) + 2 (n ≥ 1),

and
∑

n≥0

(dimAn)t
n =

(a+ b)t(t + 1)

(1− t)3
+

2

1− t
− 1 =

1 + (a + b− 1)t+ (a+ b− 1)t2 + t3

(1− t)3
. �

5.2. The main result. One has that A is Gorenstein with Castelnuovo–Mumford regularity
3, and it is conjectured in [ES19] that

TorRi (A,k)i+2 = 0 for i < min(a, b),

provided that p = char(k) satisfies p = 0 or p ≥ min(a, b). We prove this conjecture as a
consequence of our basic results on bi-graded Koszul modules. More precisely, we show the
following.

Theorem 5.5. Consider non-negative integers u, v ≥ 0 with u+ v = i. We have that

TorRi (A,k)u+1,v+1 ≃ W
(u+1,v+1)
a−1−u,b−1−v.

In particular, if p = char(k) satisfies p = 0 or p ≥ min(a, b) and if i < min(a, b) then

TorRi (A,k)i+2 = 0.

To prove the first part of the theorem, we note that (5.3) induces an exact sequence

· · · −→ TorRi+1(B,k)i+2 −→ TorRi (ωB,k)i+2 −→ TorRi (A,k)i+2 −→ TorRi (B,k)i+2 −→ · · ·

Since TorRi (B,k)i+2 = 0 for all i, and TorRi+1(B,k)i+2 = TorRi (I,k)i+2, it follows that

TorRi (A,k)i+2 = Coker
(

TorRi (I,k)i+2 −→ TorRi (ωB,k)i+2

)

,

where the maps are induced by the surjection I ։ ωB described earlier.

Proposition 5.6. We have

TorRi (I,k)u+1,v+1 = Du+v U ⊗ Syma−1−u(Du+1U)⊗ Symb−1−v(Dv+1 U).

Proof. Using (5.1), we have

TorRi (I,k)u+1,v+1 = Du+v U ⊗
u+1
∧

(Syma−1 U)⊗
v+1
∧

(Symb−1 U)

so the identification follows abstractly from Hermite reciprocity. �

Define

S (u, v) = Sym(Du+1U ⊕ Dv+1 U)

M (u, v) =
⊕

d+e≥2

Symd+e−2 U ⊗ Symd(Du U)⊗ Syme(Dv U).
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For simplicity, we will also write S for S (u, v). Both have bi-gradings via:

Sd,e = Symd(Du+1 U)⊗ Syme(Dv+1 U)

M (u, v)d,e = Symd+e−2 U ⊗ Symd(Du U)⊗ Syme(Dv U).

We will see in the proof of the next result that M (u, v) can be given the structure of a
finitely generated S-module.

Proposition 5.7. TorRi (ωB,k)u+1,v+1 = Wa−1−u,b−1−v(V,K), where V = Du+1 U ⊕ Dv+1 U ,

and K = Du+v+2 U .

Proof. Apply Hermite reciprocity to (5.2) to get

TorRi (ωB,k)u+1,v+1 = Syma+b−2−u−v U ⊗ Syma−u(Du U)⊗ Symb−v(Dv U).

We have a short exact sequence of vector bundles over P(U):

0 → O(−u− 1)⊕O(−v − 1) → Du+1U ⊕ Dv+1 U → (Du U)(1)⊕ (Dv U)(1) → 0

Using [Wey03, §5], we have a minimal complex F• with terms

Fi =
⊕

j≥0

Hj(PU,

i+j
∧

(O(−u− 1)⊕O(−v − 1))⊗O(−2))⊗ S(−i− j)

whose homology is

H0(F•) = H0(P(U); Sym((Du U)(1)⊕ (Dv U)(1))⊗O(−2)) = M (u, v)

H−1(F•) = H1(P(U); Sym((Du U)(1)⊕ (Dv U)(1))⊗O(−2)) = k.

Here we treat the terms as singly-graded modules, though it can be made bi-graded by
setting deg(Du+1 U) = (1, 0) and deg(Dv+1 U) = (0, 1). Explicitly, the terms are

F−1 = S

F0 = (Du+1U ⊗ S(−1, 0))⊕ (Dv+1 U ⊗ S(0,−1))

F1 = Du+v+2 U ⊗ S(−1,−1).

Hence M (u, v) is realized as a bi-graded Koszul module with K = Du+v+2 U , V1 = Du+1 U ,
and V2 = Dv+1 U and so

TorRi (ωB,k)u+1,v+1 = M (u, v)a−u,b−v = Wa−1−u,b−1−v(V,K). �

Using the dual of (4.1), one can form the Weyman module W (u+1,v+1) = W (V,Q∨
u+1,v+1) in

two steps: we first use the subspace K = Du+v+2 U ⊂ Q∨
u+1,v+1 and form the Koszul module

W (V,K) in part (2). Then there is a natural map

Du+v U ⊗ S(−1,−1) −→ W (V,K) (5.8)

induced by the identification Du+v U ≃ Q∨
u+1,v+1/K, and the cokernel of this map is by

definition W (V,Q∨
u+1,v+1) = W (u+1,v+1).
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5.3. Some complexes. Make the following definitions:

A (u, v) = Du+v+2 U ⊗ S(−1,−1) (u, v ≥ −1)

B(u, v) = Du+1 U ⊗ Dv+1 U ⊗ S(−1,−1) (u, v ≥ −1)

C
′(u, v) = Du U ⊗Dv U ⊗ S(−1,−1) (u, v ≥ 0)

C (u, v) = Du−1 U ⊗ Dv−1 U ⊗ S(−1,−1) (u, v ≥ 1)

D1(u, v) = Du+1 U ⊗ S(−1, 0) (u ≥ −1)

D2(u, v) = Dv+1 U ⊗ S(0,−1) (v ≥ −1)

D(u, v) = D1(u, v)⊕ D2(u, v) (u, v ≥ −1)

N (u, v) = Du+v U ⊗ S(−1,−1) (u, v ≥ 0).

The map (5.8) is the middle homology of the following map between 3-term complexes:

C (u, v)
0 // S (u, v)

B(u, v) //

(ιu,v◦ιu+1,v+1)∗

OO

D(u, v)

OO

A (u, v)
id //

µ∗
u+1,v+1

OO

A (u, v)

OO

(5.9)

The right-hand side is just the complex computing W (V,K) and the middle horizontal map
comes from the inclusion

Du+1 U ⊗Dv+1 U →
2
∧

(Du+1 U ⊕ Dv+1 U) → (Du+1 U ⊕ Dv+1 U)⊗2.

Let Z be one of the symbols A ,B,C ′,C ,D ,S . We construct a double complex1 Φ(Z)
of free R-modules with terms

Φ(Z)u,v = Z(u, v)a−u,b−v ⊗R.

We will now describe the differentials, which on generators take the form

Z(u, v)a−u,b−v → Z(u− 1, v)a−u+1,b−v ⊗ Syma U

Z(u, v)a−u,b−v → Z(u, v − 1)a−u,b−v+1 ⊗ Symb U.

We call the first map the “u-component” and the second map the “v-component”.
For the cases Z ∈ {A ,B,C ′,C }, we can write Z(u, v) as GZ(u, v)⊗ S(−1,−1). In each

of these cases, we have two maps

GZ(u, v) → GZ(u− 1, v)⊗ U

GZ(u, v) → GZ(u, v − 1)⊗ U

via comultiplication. We will describe the differentials in terms of these maps for these cases.

1Our differentials will only be correct up to a sign. Choosing a sign convention is a purely formal matter
which we will ignore in favor of readability.
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The u-component takes the form

GZ(u, v)⊗ Syma−u−1(Du+1 U)⊗ Symb−v−1(Dv+1 U)

��

GZ(u− 1, v)⊗ Syma−u(Du U)⊗ Symb−v−1(Dv+1 U)⊗ Syma U

Applying Hermite reciprocity, this becomes

GZ(u, v)⊗
u+1
∧

(Syma−1 U)⊗
v+1
∧

(Symb−1 U)

��

GZ(u− 1, v)⊗
u
∧

(Syma−1 U)⊗
v+1
∧

(Symb−1 U)⊗ Syma U

To define this map, we use the comultiplication maps

GZ(u, v) → GZ(u− 1, v)⊗ U

u+1
∧

(Syma−1 U) →
u
∧

(Syma−1 U)⊗ Syma−1 U

and then apply multiplication on the last two factors to get the factor Syma U . The v-
component is defined in a completely analogous way.

Now consider Z = D1. The u-component takes the form

Du+1 U ⊗ Syma−u−1(Du+1 U)⊗ Symb−v(Dv+1 U)

��

Du U ⊗ Syma−u(Du U)⊗ Symb−v(Dv+1 U)⊗ Syma U

Applying Hermite reciprocity, this maps takes the form

Du+1 U ⊗
u+1
∧

(Syma−1 U)⊗
v+1
∧

(Symb U)

��

Du U ⊗
u
∧

(Syma−1 U)⊗
v+1
∧

(Symb U)⊗ Syma U

This is defined as before: we use the comultiplication maps

Du+1 U → Du U ⊗ U

u+1
∧

(Syma−1 U) →
u
∧

(Syma−1 U)⊗ Syma−1 U
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and multiply the last factors together. Under Hermite reciprocity, the v-component takes
the form

Du+1 U ⊗
u+1
∧

(Syma−1 U)⊗
v+1
∧

(Symb U)

��

Du+1 U ⊗
u+1
∧

(Syma−1 U)⊗
v
∧

(Symb U)⊗ Symb U

This is obtained by simply using the comultiplication map on the last exterior power factor.
The definitions for D2 are completely analogous so we will omit the details.

Now consider Z = S . The u-component takes the form (the horizontal equalities are
Hermite reciprocity)

Syma−u(Du+1U)⊗ Symb−v(Dv+1 U)

��

∧u+1(Syma U)⊗
∧v+1(Symb U)

��

Syma−u+1(Du U)⊗ Symb−v(Dv+1 U)⊗ Syma U
∧u(Syma U)⊗

∧v+1(Symb U)⊗ Syma U

The right vertical map is defined using exterior comultiplication.

5.4. Maps between the complexes. Applying Φ to (5.9), we get a diagram

Φ(C )
0 // Φ(S )

Φ(B) //

Φ(ι)

OO

Φ(D)

OO

Φ(A )
id //

Φ(µ)

OO

Φ(A )

OO

Proposition 5.10. All of the maps above are morphisms of double complexes.

Proof. For the map Φ(A ) → Φ(B), compatibility in the u-direction amounts to the com-
mutativity of the following diagram, which follows from coassociativity of the divided power
comultiplication:

Du+v+2 U //

��

Du+1 U ⊗ Dv+1 U

��

Du+v+1 U ⊗ U // Du U ⊗ U ⊗Dv+1 U

Compatibility in the v-direction is analogous. The map Φ(A ) → Φ(D) is analogous.
Now consider Φ(B) → Φ(C ). We can factor it into two pieces: Φ(B) → Φ(C ′) → Φ(C ).

First, we have the formula

ι∗u+1,v+1 : Du+1U ⊗ Dv+1 U → Du U ⊗Dv U

x(i) ⊗ x(j) 7→ x(i−1) ⊗ x(j) − x(i) ⊗ x(j−1).
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It follows from this explicit formula that the following diagram commutes, where the vertical
maps are comultiplication:

Du+1 U ⊗Dv+1 U
ι∗u+1,v+1 //

��

Du U ⊗ Dv U

��

Du U ⊗ U ⊗Dv+1 U
ι∗u,v // Du−1 U ⊗ U ⊗ Dv U

This implies compatibility of Φ(B) → Φ(C ′) in the u-direction, and the v-direction is similar.
Also similarly, this can be used to prove compatibility of the map Φ(C ′) → Φ(C ).

Compatibility of Φ(D) → Φ(S ) reduces to Proposition 2.1.
Finally, we prove compatibility of Φ(B) → Φ(D). This map is a sum of two components,

and the check is similar for both of them, so we will just explain the map Φ(B) → Φ(D1).
Compatibility in the u-direction is formal: the differential acts on different factors from the
map Φ(B) → Φ(D). Compatibility in the v-direction follows from Proposition 2.1. �

5.5. Homology of these complexes. Consider the following data:

Z E F

A (Syma−1 U)(−1)⊕ (Symb−1 U)(−1) O(a)⊕O(b)

D1 (Syma−1 U)(−1)⊕ Symb U O(a)

D2 Syma U ⊕ (Symb−1 U)(−1) O(b)

In each case, we have a short exact sequence 0 → E → Syma U⊕Symb U → F → 0 of vector
bundles over the projective variety PU such that

tot(Φ(Z))i−1 =
⊕

j≥0

Hj(PU,O(−2)⊗

i+j
∧

E)⊗R.

Following [Wey03, §5], the terms on the right hand side have the structure of a minimal
complex over R by taking the derived pushforward of the Koszul complex on E. This
describes the differentials that we have defined on the terms on the left hand side, so we
conclude that the homology is

Hi−1(tot(Φ(Z))) =
⊕

d≥0

Hi(PU,O(−2)⊗ Symd F ).

Explicitly, we get

H−2(Φ(A )) = k

H−1(Φ(A )) =
⊕

d,e≥0

Symda+eb−2 U

H−2(Φ(D1)) = k

H−1(Φ(D1)) =
⊕

d≥0

Symda−2 U

H−2(Φ(D2)) = k

H−1(Φ(D2)) =
⊕

e≥0

Symeb−2 U.
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Next, Φ(N ) and Φ(M ) are respectively the homology of Φ(A ) → Φ(B) → Φ(C ) and
Φ(A ) → Φ(D) → Φ(S ), and hence they inherit the structure of double complex. We now
identify the corresponding total complexes.

Proposition 5.11. Φ(N ) is the quotient complex of the minimal free resolution of the

ideal I of the rational normal scroll by the terms Di U ⊗
∧i+2(Syma−1 U) ⊗ R and Di U ⊗

∧i+2(Symb−1 U)⊗ R.

Proof. First, we have a short exact sequence of double complexes

0 → Φ(A ) → Φ(B) → Φ(C ′) → 0

as shown in the proof of Proposition 5.10. Next, we have a short exact sequence

0 → Φ(N ) → Φ(C ′) → Φ(C ) → 0

where the last map is a morphism of double complexes, and hence Φ(N ) inherits a double
complex structure from being the kernel of this map.

By coassociativity of comultiplication, the following diagram commutes

Du+v U
µ∗
u,v //

��

Du U ⊗ Dv U

��

Du+v−1 U ⊗ U
µ∗
u−1,v// Du−1 U ⊗ U ⊗Dv U

where in the bottom map, the U factor is not being used in µ∗
u−1,v.

This implies that for the u-component of Φ(N ), we use the comultiplication maps

Du+v U → Du+v−1 U ⊗ U

u+1
∧

(Syma−1 U) →
u
∧

(Syma−1 U)⊗ Syma−1 U

together with the multiplication U ⊗ Syma−1 U → Syma U . The v-component is defined
similarly. This agrees with the quotient complex of the minimal free resolution of the ideal
I of the rational normal scroll. �

Proposition 5.12. Φ(M ) is the first linear strand of the minimal free resolution of ωB.

Proof. First, the total complex of Φ(S ) is a Koszul complex on Syma U ⊕ Symb U shifted
by 2, so H−2(Φ(S )) = k and all other homology vanishes.

From the proof of Proposition 5.7, we have a complex

0 → Φ(A ) → Φ(D)
f
−→ Φ(S ) → R[−a,−b] → 0

whose middle homology is Φ(M ). From the exact sequence

0 → ker f → Φ(D) → Φ(S ) → R[−a,−b] → 0

and the calculations earlier, we conclude that

Ha+b−2(ker f) = R, H−2(ker f) = k, H−1(ker f) = H−1(Φ(D)).

Next, from the short exact sequence 0 → Φ(A ) → ker f → Φ(M ) → 0, we get an exact
sequence

0 → H0(Φ(M )) → H−1(Φ(A )) → H−1(ker f) → H−1(Φ(M )) → 0
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and Ha+b−2(Φ(M )) = R. Since Φ(M ) is concentrated in non-negative homological degrees,
we conclude that

H0(Φ(M )) =
⊕

d,e≥1

Symda+eb−2 U.

Next, Φ(M )0 = Syma+b−2 U ⊗ R, so H0(Φ(M )) is generated by its lowest degree term. We
conclude that Φ(M ) is the first linear strand of the minimal free resolution of ωB. �

Proof of Theorem 5.5. Proposition 5.10 implies that we get a map of complexes

F : Φ(N ) → Φ(M ).

On degree 0 components, this takes the form

Syma−1 U ⊗ Symb−1 U ⊗ R → Syma+b−2 U ⊗ R.

This is the standard multiplication map, which follows from the explicit description of the
map Φ(B) → Φ(D). In particular, F lifts the surjection I → ωB, so that we can identify its
maps with the induced maps on Tor.

To prove the last vanishing statement, we fix a bi-degree (u+1, v+1), with u+ v = i. We
use Corollary 4.4, with n1 = u+ 2 and n2 = v + 2. We have that n1 + n2 − 3 = u+ v + 1 =
i + 1 ≤ min(a, b), so the assumptions on the characteristic in the corollary are satisfied.
We have moreover that a − 1 − u ≥ i − u = n2 − 2, and b − 1 − v ≥ i − v = n1 − 2, so

W
(u+1,v+1)
a−1−u,b−1−v = 0. �

6. Green’s conjecture

A canonical ribbon is a scheme which is a double structure on a rational normal curve.
A hyperplane section of X (a, g − 1 − a) corresponds to a choice of polynomials (f1, f2) ∈
Syma U ⊕ Symg−1−a U and is a canonical ribbon if and only if f1, f2 is a regular sequence
[BE95, §2]. These ribbons have Clifford index a in the sense of [BE95, §2]. Since the
homogeneous coordinate ring of X (a, g− 1− a) is Cohen–Macaulay, it has the same graded
Betti numbers as any canonical ribbon of Clifford index a in Pg−1. Theorem 5.5 then implies
that the graded Betti numbers βi,i+2 of canonical ribbons of Clifford index a are 0 for i < a.

Proposition 6.1. Assume that the characteristic is not 2. The canonical ribbons realized

above can be smoothed out to a curve of gonality a+ 2 and Clifford index a.

Proof. In characteristic zero, this follows from the proof of [Fon93, Theorem 2]. The two key
inputs for the proof are:

• [Fon93, Theorem 1], which identifies ribbon structures with lines in the normal space
to the hyperelliptic locus in the versal deformation space at some fixed hyperelliptic
curve, and

• [EG95, Theorem 2.1], which states that if a family of smooth curves of Clifford index
e degenerates to a ribbon, then the resulting Clifford index is ≤ e.

The proof of the first result goes through verbatim if we assume that 2 is invertible in k.
To replace the latter result, it suffices to prove the following: if C is the generic fiber of a
flat family of smooth curves degenerating to one of the canonical ribbons above, then the
Clifford index of C is ≥ a. To see this, we note first that the Hilbert series for a canonical
ribbon is the same as the Hilbert series of a canonical curve of genus a+ b+ 1, namely

1 + (a + b− 1)t+ (a+ b− 1)t2 + t3

(1− t)2
,
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which follows by passing to a hyperplane section in Proposition 5.4 (and using that A is
Cohen–Macaulay). Using [BG85, Proposition 2.15], it follows that the Betti numbers in our
family are upper semicontinuous. From the discussion above, we know that for the canonical
ribbon βi,i+2 = 0 for i < a, so we must also have that βi,i+2(C) = 0 for i < a. Using
[Eis05, Corollary 9.7], this implies that the Clifford index of C is ≥ a. �

We are now ready to deduce the generic Green’s conjecture in each gonality, as follows.

Theorem 6.2. Pick integers a ≥ 1 and g ≥ 2a + 1. If the characteristic of k is either

0 or p ≥ a, then there is a non-empty Zariski open subset of curves of gonality a + 2 and

Clifford index a which satisfy Green’s conjecture, i.e., βi,i+2 = 0 for i < a under the canonical

embedding.

Proof. If p = 2, then a is 1 or 2. If a ≥ 1, then β0,2 = 0 for non-hyperelliptic curves by
Noether’s theorem. If a = 2, then β1,3 = 0 for non-trigonal curves by Petri’s theorem. So
for the remainder of the proof, we may assume that the characteristic is different from 2.

The condition βi,i+2 = 0 for i < a is open in the locus of curves of gonality a + 2 in the
moduli of curves of genus g. The condition that a curve of gonality a+ 2 has Clifford index
a is also open. Their intersection is non-empty by Proposition 6.1. �

As a consequence, we solve [ES19, Conjecture 0.1]:

Corollary 6.3. Let k be a field of characteristic p where either p = 0 or p ≥ ⌊g−1
2
⌋. Then

a general curve of genus g satisfies Green’s conjecture, i.e., βi,i+2 = 0 for i < ⌊(g − 1)/2⌋.

Proof. A curve of genus g has Clifford index ≤ ⌊g−1
2
⌋ and for a general curve, this is the value

of the Clifford index [Eis05, Theorem 8.16]. Hence the result follows from Theorem 6.2. �
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