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SP-EQUIVARIANT MODULES OVER POLYNOMIAL RINGS
IN INFINITELY MANY VARIABLES

STEVEN V SAM AND ANDREW SNOWDEN

ABSTRACT. We study the category of Sp-equivariant modules over the infinite variable
polynomial ring, where Sp denotes the infinite symplectic group. We establish a number of
results about this category: for instance, we show that every finitely generated module M fits
into an exact triangle T — M — F — where T is a finite length complex of torsion modules
and F' is a finite length complex of “free” modules; we determine the Grothendieck group;
and we (partially) determine the structure of injective modules. We apply these results to
show that the twisted commutative algebras Sym(C> & A*C*) and Sym(C™ @ Sym?> C>)
are noetherian, which are the strongest results to date of this kind. We also show that the
free 2-step nilpotent twisted Lie algebra and Lie superalgebra are noetherian.
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1. INTRODUCTION

In [SS6], we study the representation theory of several categories modeled on Brauer
algebras and their variants. We discover that this theory is deeply connected to several
other branches of representation theory, including supergroups, parabolic category O, and
twisted commutative algebras. While the first two have been studied extensively, twisted
commutative algebras have only recently begun to be studied because of their importance
in representation stability. Several of the examples relevant to [SS6] were considered in our
previous work [NSS1, NSS2]. However, one was not, and the starting point of this paper is to
analyze it. (Actually, it is the twisted Lie algebra g discussed below that is most relevant.)
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1.1. Results on tca’s. Let Rep®(GL) be the category of polynomial representations of
the infinite linear group GL (over the complex numbers), and let V be the standard repre-
sentation of GL. For the purposes of this paper, a twisted commutative algebra (tca)
is an algebra object in this category. A major open problem in tca theory is determining if
finitely generated tca’s are noetherian. This is shown to be the case for so-called bounded
tca’s in [Sn|, and for the tca’s Sym(A°V) and Sym(Sym? V) in [NSS1] (see also [NSS2] for
some related results). Before this paper, these were the only known cases. We add two more:

Theorem 1.1. The tca’s Sym(V & A\°V) and Sym(V & Sym? V) are noetherian,

We also establish some properties of these tca’s that are known in other cases, e.g., pro-
jective modules are injective, and the generic category is equivalent to the category of mod-
ules supported at 0. We suspect our methods would allow one to prove that the tca’s
Sym(V®* @ A*V) and Sym(V®"* @ Sym? V) are noetherian for any n, though we have not
pursued this.

Let g be the free 2-step nilpotent Lie algebra V @& /\2V in the category Rep”® (GL). The
following result is an easy consequence of Theorem 1.1 and was our original motivation:

Theorem 1.2. The category of g-modules in Rep?®(GL) is locally noetherian.

This theorem can be equivalently stated as: the module category for the upwards spin-
Brauer category (as defined in [SS4]) is locally noetherian. This will be used in [SS6].

1.2. Sp-equivariant modules. We showed in [NSS1] that GL-equivariant modules over
Frac(Sym(A*V)) (with a polynomiality condition) are equivalent to algebraic representations
of the infinite symplectic group Sp (see §2.4 for the definition of algebraic). Thus if M is a
module over the tca Sym(V @ A*V) then we can tensor it up to Frac(Sym(A*V)) and pass
through this equivalence to obtain an Sp-equivariant module over the algebra Sym (V). Due
to this, most of the work in proving Theorem 1.1 involves studying such modules. We now
outline our results in this direction.

Let Rep(Sp) denote the category of algebraic representations of Sp and let A = Sym(V),
regarded as an algebra object in Rep(Sp). Let Mod, be the category of A-modules in the
category Rep(Sp). An A-module is called torsion if every element has non-zero annihila-
tor. The category Mod's™ of torsion modules is a Serre subcategory of Mod,, and so we
can consider the quotient Mod%™, which we call the generic category. Our strategy for
understanding Mod 4 is to first understand Mod%™". This idea is motivated by our previous
work [SS1], where we study GL-equivariant modules over Sym(V).

Consider Sp,, acting on the polynomial ring in 2n variables. Equivariant modules cor-
respond to equivariant quasi-coherent sheaves on A?", and torsion modules correspond to
sheaves supported at 0. The Serre quotient category is therefore equivalent to the category
of Spy,-equivariant sheaves on A?"\ {0}. Since Sp,, acts transitively on this space, such
sheaves correspond to representations of any stabilizer group.

Taking this picture as our guide, we let £ € Spec(A) = V* be the functional on V defined
by &(e;) = &(f;) = 1 for i > 1 (where {e;, fi }:>1 is our standard symplectic basis of V), and
we let H C Sp be its stabilizer. We define a category Rep(H) of algebraic representations
of H, and prove:

Theorem 1.3. We have a natural equivalence of categories Mod%™ = Rep(H).
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While we have just explained why this theorem is, in a sense, intuitively obvious, it is
technically demanding to prove, and there is an important subtlety that the heuristic does
not capture: the theorem is false for certain other choices of £. See §3.5 for more.

In [SS3], we studied algebraic representations of infinite rank classical groups. Using the
methods of that paper, we analyze algebraic representations of H, and prove a number of
results:

e The representations S, (V) are injective in Rep(H ). Here S, denotes a Schur functor.

e The simple objects of Rep(H) can be obtained by a variant of Weyl’s construction.

e Every finite length object of Rep(H) has finite injective dimension.

e Rep(H) is equivalent to the category of modules over the twisted commutative algebra
Sym(V & A*V) supported at 0.

e While we do not actually carry out the details to prove this, our results imply that
Rep(H ) is the universal C-linear tensor category equipped with an object V admitting
a pairing A\*V — C and a functional V — C. (See [SS3, 4.4.2] for a similar result.)

Via Theorem 1.3, we can transfer all of these results back to Mod%™.

With these results about Mod%™ in hand, we turn our attention back to the main category
of interest, Mod 4. We prove a number of results, such as:

o If M is a finitely generated A-module then there is an exact triangle T' — M —
F —, where T is a finite length complex of finite length A-modules and F' is a
finite length complex of A-modules of the form V ® A, where V is a polynomial
representation of GL (restricted to Sp). This is somewhat analogous to the structure
theorem for modules over a PID, though only works at the derived level. It is a very
powerful structural result for A-modules: indeed, the analog in the GL-case (or for
FI-modules) has proven to be one of the most important tools in that theory.

e We determine the Grothendieck group of the category Mod 4: it is naturally a module
over the ring of symmetric functions, and, as such, free of rank two. The classes [A]
and [C] form a basis. (Here C is an A/A -module.)

e We show that every injective A-module I decomposes as I’ @ I”, where I’ is a torsion
injective module and " is a torsion-free injective A-module. We show that the torsion-
free injective A-modules are exactly the modules of the form V' ® A where V is a
polynomial representation of GL. Thus, in a sense, free A-modules are injective. We
have not been able to determine the structure of torsion injectives; however, we show
by example that the indecomposable ones need not be finite length. (We also show
that finite length A-modules need not have finite injective dimension.)

e We define a version of local cohomology for A-modules at the maximal ideal A,.
We show that if M is a finitely generated A-module then all of its local cohomology
groups have finite length, and only finitely many of them are non-zero.

These results are sufficient to allow us to prove Theorem 1.1, using a method similar to the
one employed in [NSS1] to prove noetherianity of Sym(A*V).

Remark 1.4. While our interest in Sp-equivariant Sym(V)-modules was to prove Theo-
rem 1.1, they may well turn out to be of interest. Indeed, they are closely related to GL-
equivariant modules over Sym(V), and these are equivalent to FI-modules [CEF], which
have seen numerous applications. 0

1.3. Open problems. Here are a few interesting problems that we have not addressed:
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e Compute the derived section functor on simple objects of Mod%™. The analogous
result in the GL-case appears in [SS1, §7.4].

e Describe the indecomposable injective objects in Mod'"™.

e Describe the structure of injective resolutions in Mod'y™.

e Compute the Ext groups between simple A-modules. In the one computation we have
done (Example 6.11), the result is 2-periodic. Does this happen more generally?

1.4. Outline. In §2, we review relevant background information and prove some simple
preliminary results. In §3, we study the representation category of the stabilizer group H.
In §4, we study the local structure of A-modules at the point & € Spec(A). In §5, we study
the generic category Mod%" and show that it is equivalent to Rep(H). In §6, we apply our
work on the generic category to deduce results about A-modules. In §7, we prove that the

tca Sym(V @ /\2V) is noetherian. Finally, in §8 we discuss some additional results.

1.5. Notation. We list some of the important notation:

A': the category of finite length objects in the abelian category A

A': the category of locally finite length objects in the abelian category A
V: the complex vector space with basis {e;, fi}i>1

GL: the group of automorphisms of V fixing all but finitely many basis vectors
S,: the Schur functor associated to the partition A

V,: the space S)(V), considered as a representation of GL or any subgroup

w: the symplectic form on V with w(e;, f;) =1

&: the linear functional on V defined by &(e;) = &(f;) =1 for all ¢

p: the subgroup of GL fixing w

H: the subgroup of Sp fixing &

A: the polynomial ring Sym(V), regarded with its Sp-action

B: the tca Sym(V @& A\*V)

2. BACKGROUND

2.1. Polynomial representations of GL. Let V be a complex vector space of countably
infinite dimension. We let {e;, f;}i>1 be a basis for V. We let GL be the group of auto-
morphisms of V that fix all but finitely many basis vectors. The space V is tautologically
a representation of GL. We say that a representation of GL is polynomial if it can be
realized as a subquotient of a (possibly infinite) direct sum of tensor powers of V. We let
RepP (GL) denote the category of polynomial representations of GL. It is a semi-simple
abelian category, and closed under tensor product. For a partition A\, we let V be the poly-
nomial representation Sy (V'), which is known to be irreducible. Every irreducible polynomial
representation is isomorphic to V), for a unique A. For additional information on polynomial
representations, see [SS2].

2.2. Twisted commutative algebras. A twisted commutative algebra (tca) is (for
us) an algebra object in the tensor category RepP(GL). Thus a tca is an ordinary com-
mutative C-algebra R equipped with an action of GL under which it forms a polynomial
representation. By a module over a tca R we mean a module object in RepP®(GL). Thus a
module is an ordinary R-module M equipped with a compatible action of GL under which
it forms a polynomial representation. When R is a tca, “R-module” will by default be taken
in the sense of tca’s; we use the notation “|R|-module” to refer to non-equivariant modules,
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in the few cases there is such a need. An R-module is finitely generated if it contains finitely
many elements whose GL-orbits generate it as an |R|-module. If V' is a polynomial repre-
sentation of GL then V ® R is a projective R-module, and every R-module is a quotient
of one of this form. An R-module is finitely generated if and only if it can be realized as a
quotient of V ® R for some finite length polynomial representation V. We say that a tca R
is noetherian if every submodule of a finitely generated module is again finitely generated.
For additional information on tca’s, see [SS2].

2.3. Comparison of projectives and injectives. The category Repp°1(GL) has an inter-
nal Hom, which we denote by Hom. It can be defined explicitly by the formula

Hom(V, W) = @ Hom(V ®@ V\, W) ®@ Vy,
where the sum is over all partitions A. There is a canonical isomorphism
Hom (U, Hom(V,W)) = Hom(U ® V, W).

Let R be a tca with Ry = C and let V be a polynomial representation. Put Igx(V) =
Hom(R,V). Then Ig(V) is naturally an R-module. Moreover, for any R-module M, we
have a natural isomorphism

HOHIR(M, [R(V)) = HOHIGL(M, V)

We thus see that Ir(V) is an injective R-module; in fact, it is easily seen to be the injective
envelope of V', regarded as an R-module with R, acting by 0. Let Pg(V) = R ® V, which
is a projective R-module and has a dual mapping property to Ir(V). We will require the
following relationship between Pr(V') and Ig(V):

Proposition 2.1. For polynomial representations V- and W, we have
dim HOIIlR(PR(V), PR(W)) = dim HOIIlR(IR(V), ]R(W))

Proof. Since RepP®(GL) is semi-simple, we have dim Homgy(V, W) = dim Homgg(W, V)
for any V, W € RepP(GL). We use this repeatedly in the following derivation:
dim Hompg(Ig(V), Ir(W)) = dim Homgr, (Ir(V), W)
= dim Homgy (W, Hom(R, V))
= dim Homgr(V, R®@ W)
= dim Hompg(Pgr(V), Pr(W)).
In the first step, we used the mapping property for Iz(W); in the second, the definition of

Ir(V); in the third, the adjunction for Hom; in the final step, the mapping property for
Pr(V). O

2.4. Algebraic representations of Sp. Let w: V X V — C be the alternating bilinear
form given by
wles, f;) =0ig,  wlee)) =0, w(fi, fi) =0,

fori,j > 1. We let Sp C GL be the subgroup preserving w. It is (one version of) the infinite
symplectic group.

Since Sp is a subgroup of GL, any representation of GL can be restricted to one of Sp. We
say that a representation of Sp is algebraic if it occurs as a subquotient of a restriction of a
polynomial representation. We let Rep(Sp) denote the category of algebraic representations.
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This category was studied in detail in [SS3] (see also [DPS, Ols, PSe, PSt]). We now recall
the salient features of this category:

(a)
(b)
(c)

(d)

Algebraic representations of Sp are not semi-simple in general: for example, the map
w: A*V = C is a non-split surjection.

Every object of Rep(Sp) is locally of finite length, i.e., the union of its finite length
subobjects. Moreover, V®" has finite length for all n.

If V is a polynomial representation of GL then its restriction to Sp is injective in
Rep(Sp), and every injective of Rep(Sp) is obtained in this manner [SS3, 4.2.9].
Moreover, every finite length object of Rep(Sp) has finite injective dimension [SS3,
4.3.5].

Every object of Rep(Sp) is a quotient of the restriction of some polynomial represen-
tation of GL. This result does not appear in [SS3], but follows easily from [NSSI,
Theorem 3.1], as we now explain. We momentarily let A denote the tca Sym(A*V) as
in loc. cit. The form w induces an Sp-equivariant algebra homomorphism ¢: A — C.
The cited theorem (or, more accurately, its A variant; see [NSS1, §3.5]) implies that
every algebraic representation of Sp has the form M ®,4 , C for some A-module M.
Writing M as a quotient of V ® A for some polynomial representation V', we find that
M ®4,, C is a quotient of V, as required.

The simple objects of Rep(Sp) are indexed by partitions, and obtained by Weyl’s
construction. We now recall what this means. Suppose that V is a vector space
equipped with an alternating form /\2V — C. For 1 <1 < j < n, we have a map
tij: VO — V@("=2) ghtained by applying the form to the ith and jth tensor factors.
We let V1" be the intersection of the kernels of the t;;'s; this is called the space of
traceless tensors. The symmetric group &, acts on V™. Letting M, denote the
Specht module associated to A, we define S»(V') to be the space Homg, (M, Vi,
which is a representation of Sp(V'). We can in particular apply this construction
to our space V with the form w. The resulting objects Sy (V) are simple, mutually
non-isomorphic, and exhaust the simple objects of Rep(Sp) [SS3, 4.1.4]. Furthermore,
every other simple object Sy,;(V) appearing in V satisfies |;| < |A| [SS3, Proposition
4.1.9].

For a partition A, let £(A) denote the number of rows in A. For a representation V'
of Sp, let £(V') denote the supremum of /() taken over partitions A for which S;,V
occurs as a constituent of V. Then ¢(V @ W) < ¢(V)+¢(W). This follows from [SS3,
7.5, Theorem 4.3.4].

The category Rep(Sp) is equivalent to the category of locally finite length modules
over the tca R = Sym(A°V) [SS3, 4.3.2]. Under this equivalence, the irreducible
representation Spy'V of Rep(Sp) corresponds to the simple R-module Vy (with R,
acting by 0), and the injective representation V), corresponds to the injective R-
module Ix(V ) defined in §2.3. Note that this implies that V, is the injective envelope
of S[)\]V.

Let V<, be the span of the vectors e; with |i| < n, and let V>, be defined analogously.
Let G, be the symplectic group on Vs,; we write Sp,, for the symplectic group on
V<,. Then Sp,, xG,, is naturally a subgroup of Sp. Given an algebraic representation
V of Sp, it follows that T',,(V) = V" is a representation of Sp,,, and this defines a
functor

I',: Rep(Sp) — Rep(Sp,,,)
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called the specialization functor. It is obviously left-exact. We show [SS3, §4.4]
that it is a strict tensor functor, i.e., the natural map I',(V) @I, (W) — I, (VW) is
an isomorphism. For any finite length representation V' of Sp, I',,(V) is finite length
[SS3, 4.4.4]. Furthermore, R'T,,(V) = 0 for n fixed and ¢ large, or for 7 > 0 and n
large (in fact, n > ¢(V') suffices); this follows from [SS3, 4.4.6] and the computations
in [SSW].

2.5. The infinite symmetric group. Let & = J, ., &,, be the infinite symmetric group.
Let W C V be the span of the ¢;’s with 4 > 1. Then W is naturally a representation of &
via oe; = e,(;). We say that a representation of & is algebraic if it occurs as a subquotient
of a direct sum of tensor powers of W. We let Rep(&) denote the category of algebraic
representations. This category was studied in detail in [SS3, §6]. We will need to use a few
properties of it:

(a) Every object of Rep(®) is locally finite length, and W®" has finite length for all n.

(b) Define a representation of & on V by o(e;) = €,(;) and o(f;) = fy@;). Then V = W2,
Since & preserves the symplectic form w on V| it follows that we get an embedding
S — Sp. We can therefore restrict representations of Sp to &. It is clear that
algebraic representations restrict to algebraic representations, so we have a functor
Rep(Sp) — Rep(&). Note that if V' is a finite length algebraic representation of Sp
then its restriction to & is also of finite length. Indeed, it suffices to verify this for
V = V& and the restriction of this is (W%?)®" which has finite length.

(c) Let &+, be the subgroup fixing each of 1,...,n. Note that &, x &, is naturally
a subgroup of &. If V is a finite length algebraic representation of & then V©>»
generates V®>m+1 as an &,,,;-module for n > 0. This follows from [SS3, 6.2.3], which
shows that the sequence VS>" can be given the structure of a finitely generated
FI-module where F1I is the category of finite sets and injective functions.

(d) Let R, = Sym(W®), regarded as an algebra object in Rep(&). Then R, is noether-
ian, that is, if M is a finitely generated R,-module in Rep(&) then any submodule
of M is also finitely generated. This was proved for ideals of R,, by Cohen [Co, Co2]
(see also [AH, HS]). The proof can easily be adapted to handle the module case;
alternatively, one can appeal to [NR, Theorem 4.6, Corollary 6.16].

2.6. The algebra A. Let A be the algebra object Sym(V) in the category Rep(Sp). We
identify A with the polynomial ring in variables {z;, y; }i>1, with z; corresponding to e; and
y; to fi. By an A-module, we will always mean a module object in Rep(Sp). We let Mod 4
denote the category of A-modules. As with tca’s, we use the term “|A|-module” to refer to
non-equivariant modules, when needed. We now establish some basic properties of A and
its modules.

Proposition 2.2. Let M be an A-module. Then M is a quotient of an A-module of the
form A® YV where V is a polynomial representation of GL. If M s finitely generated, we
can take V to be finite length.

Proof. Since M is an algebraic representation of Sp, we can find a surjection V- — M with V'
a polynomial representation of GL (see §2.4(d)). We thus obtain a surjection of A-modules
A®V — M. Now suppose M is finitely generated, and let W C M be a finite length
Sp-subrepresentation that generates it. Choose a surjection V' — W with V' a finite length
polynomial representation of GL. Then the resulting map A ® V' — M is surjective. U
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The category Mod 4 has no non-zero projective objects. In particular, the modules A ® V'
appearing in the above proposition are not projective. (This is a consequence of the fact
that V' is not a projective object of Rep(Sp), hence any non-split surjection W — V' cannot
be lifted. Concretely, if V = C, then /\2 V — C has no splitting.) However, these modules
are A-flat, and so the proposition implies that Mod 4 has enough flat objects. Thus there is
no problem defining the functor Tors(—, —) on Mod 4.

Proposition 2.3. The forgetful functor Mod 4 — Rep(Sp) takes injective objects to injective
objects.

Proof. 1t is right adjoint to the exact functor Rep(Sp) — Mody given by Vi—» A® V. O

Proposition 2.4. A is noetherian, that is, any submodule of a finitely generated module is
finitely generated.

Proof. Let ®: Rep(Sp) — Rep(&) be the restriction functor. Then ®(A) is isomorphic to
the algebra Ry of §2.5(d). If M is a finitely generated A-module then ® (M) is a finitely gener-
ated Rp-module: indeed, M is a quotient of A®V for some finite length Sp-representation V',
and thus ®(M) is a quotient of Ry ® ®(V'), and ®(V/) is finite length as an G-representation
by §2.5(b). Suppose now that Ny C Ny C --- is an ascending chain of A-submodules of M.
Then ®(Ny) C ®(Ny) C --- is an ascending chain of Ry-submodules of ®(M). Since ¢(M)
is finitely generated over R; and R, is noetherian, the chain stabilizes. Thus the original
chain stabilizes, as ® does not affect the underlying vector space. This shows that M is
noetherian as an A-module. U

We say that an A-module M is torsion if every element is annihilated by a non-zero
element of A. We now show that this notion is equivalent to two other reasonable notions
of torsion.

Proposition 2.5. Let M be a finitely generated A-module. Then the following conditions
are equivalent:

(a) M is torsion in the above sense.
(b) M has finite length.
(c) M is annihilated by a power of A, .

Proof. 1t is clear that (b) and (c) are equivalent, and that both imply (a). Suppose now
that M satisfies (a). Let € M be given and let a € A be a non-zero element such that
ar = 0. Let V be the Sp-subrepresentation of M generated by x. Suppose that E is an
element of the Lie algebra sp. We then have a(Ez) 4+ (Fa)z = 0. Multiplying by a, we find
that a?(Ex) = 0. Continuing in this manner, we see that if b is any element of U(sp) then
there is some k such that a*(bz) = 0. It follows that every element of V is annihilated by
some power of a.

Let n be such that G, fixes a, where G,, is as in §2.4(h). (We note that any element of
an algebraic representation of Sp is fixed by some G,.) One easily sees that V is finitely
generated as a G,-representation. Let yy, .. .,y, be generators, and let k be such that a*y; = 0
for all 1 <4 < r; this exists by the first paragraph. Since G,, fixes a, it follows that a*y = 0
for any element y € V. Since V is Sp-stable, it follows that (ga*)y = 0 for any y € V and
any g € Sp. Thus if I is the ideal of A generated by the Sp-orbit of a* then IV = 0. Since
each graded piece of A is irreducible as an Sp-representation (the symmetric power Sym* V
is equal to SV since the invariants of V@ are automatically traceless), the only Sp-stable
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ideals of A are powers of A, and the zero ideal. Since I is not zero, we see that A7V =0
for some n. Thus every element of M is annihilated by a power of A,. Since M is finitely
generated, it follows that M is annihilated by a power of A,. Thus (c) holds. O

Proposition 2.6. Let M be a finitely generated A-module. Then ((M) is finite and R'T,, (M) =
0 for alln > ¢(M) and i > 0.

Proof. Write M as a quotient of A ® V' for some finite length Sp-representation V. Then
(M) < U(A® V) by the definition and /(A ® V) < £(A) + £(V) by §2.4(f). Since ¢(A) =1
(since Sym* V = S;V) and (V) is finite, as V has finite length, it follows that £(M) is
finite. The vanishing statement now follows from §2.4(h). O

Corollary 2.7. Let M — N be a surjection of finitely generated A-modules. Then ', (M) —
[(N) is surjective for n > 0.

Proof. Let K be the kernel of M — N, which is finitely generated, and simply take n > ((K);
since R'T",(K) = 0, the result follows. O

3. REPRESENTATIONS OF H

Let £: V — C be the linear form defined by £(e;) = £(f;) = 1 for all i. Let H be the
subgroup of Sp that stabilizes £&. We say that a representation of H is algebraic if it occurs
as a subquotient of a direct sum of tensor powers of V. We let Rep(H) denote the category
of algebraic representations of H. In this section, we determine the structure of this category.

3.1. Weyl’s construction. Let W = ker{. Given a positive integer n, we let V,, denote
the subspace spanned by ey, fi,...,e,, f, and let W,, denote the kernel of £ restricted to V,.
Similarly, H, C Sp(V,) is the stabilizer of £&. The symplectic form w: A*V — C restricts to
an alternating form w: /\2W — C. Working with finitely many variables, the radical of w
on W, is precisely the span of >_"" (e; — f;), and we denote it by W, .

Proposition 3.1. Let d be a positive integer. Every nonzero H,-submodule of W®?¢ has a
nonzero intersection with the kernel of m,: W& — (W, /W)®e.

Proof. If n = 1, this is clear, so assume n > 2. Define a new symplectic basis of V,, by
1 n n .

U1 :%;(eri‘ﬁ), wq :;(fi_ei)a v = €1 — €, w; = fi— fi (i >2).
Then &(vy) = 1 while £ is 0 on all other basis vectors, so W,, is the span of v, ..., vy, w1, ..., wy,.
We will write all elements of W®4 in terms of the basis given by tensor products of the sym-
plectic basis we just specified. Then ker 7, consists of those vectors spanned by tensors which
have at least one instance of w;.

Let U be a nonzero H,,-submodule of W%, pick a nonzero vector u € U, and expand it in
the basis mentioned above. If u ¢ ker 7, then there is a basis element which has a nonzero
coefficient for uw such that either it

(a) contains v; as a tensor factor for some i and does not contain w; as a tensor factor,
or

(b) contains w; as a tensor factor for some ¢ > 2 and does not contain w; as a tensor
factor.
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In case (a), define g € H,, by g(v1) = v1 + w;, g(v;) = wy + v;, and g fixes all other basis
vectors. Then g(u) —u € U Nkerm,, so it suffices to prove that g(u) # u. The g we defined
is the upper-triangular unipotent element in a copy of GL3 acting on the span of w; and v;,
and so being fixed by g is the same as being a sum of highest weight vectors for this group.

However, since we have a basis vector in u that contains v; but not wy, it is a sum of weight

vectors where each weight is of the form (tol 1?) > t5 with > 0, which is not a dominant
2
weight. Hence we conclude that g(u) — u # 0.
Case (b) is similar, we instead define g € H,, by g(v1) = v1 — v;, g(w;) = wy + w; and g
fixes all other basis vectors. O

For each 1 <1 < 5 < d, we have a contraction map W& — W®(=2) which applies w to

the ith and jth tensor factors and we let W% denote the kernel over all choices of i < j.
For each partition \ of d, choose an embedding of the Schur functor Sy(W) C W% and set
Sy W = S\(W) N W, For each n, we can also define S;yW,, which is nonzero for n > 0.

Proposition 3.2. S\\W s an irreducible H-module.

Proof. Let U C S;\yW be a nonzero H-submodule. Let U, = U N SyyyW,. We have a
quotient map m,: SpyW, — S[,\}(Wn/Wj). By Proposition 3.1, U, N kerm, # 0 for n >
0. Pick a nonzero vector u in the intersection. Then u also belongs to U,,;. Using the
notation from the proof of Proposition 3.1, let vi("), wi(") be the basis defined for V,,. Then

wl™ = (" — ,(Z_f;l) +w™ V) /2, so in particular, u & ker m,41. To see this, we first embed
SyWhs C W . Since u € ker 7, it means that when written in the basis for V,,, all basis

vectors with nonzero coefficient have wl . When we expand in the basis for V1, the sum

of basis vectors which have wfl 1 ) but not w,ﬂl or v,(ﬁ:; ) is the result of replacing wl by

(n+1)
wn 1 / 2 in w, which is nonzero.

Next, Spy(Wha1/W,5,) is an irreducible representation of Sp(Wi1/W;5 1), and hence is
irreducible for H, 1, so that 71 (Ups1) = Spy(Waat /Wiy ) We claim that this implies
that Un_|_1 = S[)\}Wn—l—l-

Pick a vector x € W5 so that

(n+1) (n+1) (n+1) (n+1) (n+1)
Uy Wy U W Wy T

is a symplectic basis for the space W’ that it spans. This choice of basis determines a
Borel subgroup B’ C Sp(W’). Taking just the first 2n vectors gives a basis for W,, .1 /W, +1,
and hence determines a Borel subgroup B C Sp(W,,+1/W;5,). Choose a Sp(W,,+1/Wii,)-
equivariant splitting ¢ of m,4+1. Let a be a highest weight vector in Spy(W,41/W,5 ;) with
respect to B. Then ¢ («) is a highest weight vector in SpyW’ (this follows from the fact
that it is a weight vector of weight A; this weight space is 1-dimensional in S;W’), so by
irreducibility, we see that U N S;yW’ = S;yW’, and hence the claim is proven. Since this is
true for all n > 0, we conclude that U = S;yyW. U

Proposition 3.3. The irreducible constituents of W®? are SpyW where |A\| < d and d — ||
1S even.

Proof. The simple constituents of W are SW where |A| = d. Next, each contraction
map W — W2 ig surjective, so the rest follows by induction. O
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3.2. Diagrammatic description. Let C be the following C-linear category. The objects
are finite sets. The space Home(S,T) is spanned by pairs (f,I') where f: S — T is an
injection and I' is a partial directed matching on 7'\ f(S). If T' is obtained from I" by
flipping the orientation of a single edge then (f,I") is identified with —(f,I") in Home(S,T),
and these relations generate all relations. We let Mode denote the category of C-modules,
i.e., the category of C-linear functors € — Vec, and write Mod{ for the full subcategory
spanned by locally finite length objects.

We define a C-linear functor X: C°® — Rep(H) by X(S) = V®5. Given a morphism
(f,1): S — T, we define V®T — V&5 as follows. The injection f identifies S with a subset
of T and we map the corresponding tensor factors indexed by elements in T" to those they
correspond to in S. If two elements x,y € T" are connected by an edge of the partial matching
with orientation x — y, we apply w to those two factors with the vector in position x placed
in the first argument. For all other factors, we apply &.

For the definition of the tensor product ®°, see [SS3, 2.1.9].

Theorem 3.4. The functor Mod{ — Rep(H) given by M +— K @° M is an equivalence of
categories.

Proof. Since the functor in question is cocontinuous, and each category is locally noetherian
and artinian, it suffices to check that it induces an equivalence on the categories of finite
length objects. For this, we apply [SS3, Theorem 2.1.11] and its corollary. Criterion (a) is
Proposition 3.2.

Now we verify criterion (b). Proposition 3.3 shows that S;;yW has no nonzero maps to
We4dif d < |\|. So we have to show that the same is true if d > |\|. Consider the span W’ of
{e1—eq,e1—e€3,..., fi—fa, fi—f3,... } and let T C Sp(W’) be a maximal torus with respect
to this basis. This consists of maps e; —e; + a;(e; —e;) and fi— fi = a; '(f1 — fi). We define
the magnitude of a weight (aq,...) — [[, ;" to be Y. |n;|. The proof of Proposition 3.2
shows that every submodule of W®? has a weight vector whose weight has magnitude d,
which proves what we want. O

Corollary 3.5. The injective envelope of S\yW is V. The Vy account for all the inde-
composable injectives of Rep(H ).

Proof. Let BS,, be the category with one object * with Hom(x, x) = &,,, the symmetric group
on n letters. Let i: BS,, — €% be the functor taking % to the set [n] = {1,...,n}, and
acting in the obvious manner on morphisms. The pullback functor i*: Modee» — Rep(&,,)
has a left adjoint 74, called the left Kan extension. Let M, be the Specht module for &,,
associated to the partition A. Since M, is an projective object of Rep(&,,), it follows that
i4(M,) is a projective object of Modeer. One easily sees that it is indecomposable, and that
every indecomposable projective object of Modlefop has this form, for a unique A.

By [SS3, 2.1.10], we have a contravariant equivalence ®: Modg,, — Rep(H) given by
M +— Homeor (M, X), so that ®(iyg(M,)) is the injective envelope of S;\yW. We have

Hom@op(i#(M)\), :K) = HOmgn(M)\, iK([n])) = Homgn(M)\, V®n) = V)\,
which proves the corollary. U
Corollary 3.6. Every finitely generated object of Rep(H) has finite injective dimension.

Proof. This is clearly true in Mode: every indecomposable injective object V) has finite
length and is supported in degrees < |A|. O
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3.3. Description via tca’s. Let B be the tca Sym(V @ A*V). The following is an analog
of §2.4(g).

Theorem 3.7. We have a natural equivalence of categories ®: Rep(H) = Mody. This
equivalence satisfies ®(Vy) = Ig(Vy) and ®(SyW) =V (with B acting by 0).

Proof. The construction ®, and the fact that it is an equivalence, is exactly analogous to
[SS3, Theorem 4.3.1]. It is immediate from the construction that ® takes the simple S W
to the simple V. Since V) is the injective envelope of Spy in Rep(H) and Ip(V)) is the
injective envelope of V) in Modpg, it follows that ®(V,) = I5(V,). O

Corollary 3.8. We have
dim Ext, (SpyW, S;y W) = dim Homgr(A'(V @ A°V) @ V, V).
Proof. By Theorem 3.7, we have
Extly (SpyW, S|yW) = Ext3(V,, V,.).

This can be computed using the Koszul resolution, which yields the stated result. U

3.4. An equality of dimensions. We will require the following result in §5.
Proposition 3.9. For partitions A and i, we have
dim Homgp,(V, V. (V) ® Sym(V)) = dimHompy(V, V)

Proof. We have seen that Rep(H) is equivalent to Mod, where B is the tca Sym(V @& A*V),
and the injective V, in Rep(H) corresponds to the injective Ig(V,) in Modp. Write B =
B, ® By, where By = Sym(V) and B, = Sym(A*V). Then by §2.4(g), Repg,, is equivalent
to ModBQ, and the injective V in Rep(Sp) corresponds to the injective I5,(V)) in Modpg,.
We therefore have

dim Homgp(Vy, V, @ Sym(V)) = dim Homp, (I5,(Vy), I5,(V, © Sym(V)))
= dim Hompg, (Pg,(V,), Pg, (V ® Sym(V)))
= dim Hompg, (Pg,(V ), Ps(V,))
= dim Homp(P5(V)), Ps(V,))
= dimHomp(I5(V)), Iv(V,))
= dim Hompy (V,, V,,).

In the first step, we used the equivalence Rep(Sp) = Modgz; in the second Proposition 2.1;
in the third, the identification

Pp,(V, @ Sym(V)) = B @V, @ Sym(V) = Bo V,, = Pp(V,.);

in the fourth, that extension of scalars is left adjoint to restriction of scalars; in the fifth,
Proposition 2.1; and in the final step, the equivalence Rep(H) = Mod%. O
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3.5. The dependence on £. Suppose that £: V — C is another non-zero linear form, and
let H' C Sp be its stabilizer. It is natural to ask if Rep(H’) is equivalent to Rep(H).

In fact, this is not true in general. Indeed, take £ to be the linear functional given by
¢'(v) = (e1,v). Then H’ is just the stabilizer of e;. It follows that the map C — V
taking 1 to e; is a map of H’ representations; moreover, it lands in the kernel of £’. One
easily sees that Hompg/(V, C) is one-dimensional and spanned by ¢’. Thus the map C — V
has no section, and so C is not injective in Rep(H’). Since C is distinguished as the unit
object for the tensor structure, it follows that there is no equivalence of tensor categories
Rep(H) = Rep(H'). With more effort, one can show there is no equivalence at all.

Let ¢: V — V* be the map ¢(v) = (v, —). The reasoning of the previous paragraph applies
whenever ¢’ belongs to im(¢): for such functionals, Rep(H’) is not equivalent to Rep(H). We
believe that if £’ ¢ im(¢) then Rep(H’) is equivalent to Rep(H ), but we have not investigated
this carefully.

4. THE LOCAL STRUCTURE OF A-MODULES

4.1. Statement of results. Recall that A is the polynomial ring in variables {x;, y;}i>1.
Let m be the ideal of A generated by x; — 1 and y; — 1 for ¢ > 1. Note that m is the kernel
of the ring homomorphism A — C induced by the linear functional £&. The following is the
main result of this section:

Theorem 4.1. Let M be an A-module. Then there is a canonical and functorial isomorphism
My — M/mM ®@c A of |An|-modules. In particular, My, is a free | Ay|-module.

The proof of Theorem 4.1 will take the remainder of this section. The arguments are
similar to (but somewhat easier than) those used in [NSS1, §3.2] and [NSS2, §5] to analyze
analogous generic categories.

4.2. The group K. Let K; be the upper triangular Borel subgroup of Sp,, regarded as a
subgroup of Sp by acting on e; and f;. We represent elements of K; as matrices

ti (7
0 tz_l )

and identify the coordinate ring C[K;] of K; with C[t!, u;]. We let K be the product of the
K;’s. This is the affine group scheme with coordinate ring C[K] = C[t5, u]i>1.

Suppose that V' is an algebraic representation of Sp and x € V. Then for ¢ > 0 the
subgroup K; of Sp fixes . It follows that the group K naturally acts on V; in other words,
we can restrict algebraic representations of Sp to K, even though K is not quite a subgroup
of Sp. The K-subrepresentation of V' generated by x is easily seen to be finite dimensional. It
follows that V' is naturally a comodule over C[K], that is, we have a natural comultiplication
map

V =V ®CK].

Explicitly, this map takes v € V' to the function K — V given by k — kv.

The group K; is contained in Sp, and so its Lie algebra €; is contained in sp. We let
t=>".., ¢, which is a Lie subalgebra of sp. This is not quite the Lie algebra of K—Lie(K)
is the product of the €’s—but the difference is negligible for our purposes.

We let h,, be the Lie algebra of H, which we think of as a subalgebra of sp, and set

b: Zn bn
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Proposition 4.2. We have sp =t D .

Proof. We regard elements of sp as 0o x oo matrices by using the ordered basis ey, f1, s, fo, . ..
of V. For an oo x oo matrix m, we let m; be the 2 x oo matrix whose rows are given by
the 2 — 1 and 2¢ rows of m. Let X € sp be given. Note that X; has finitely many non-zero
entries and X; = 0 for ¢ > 0. There is a unique matrix Y (i) of the form

e 00t u 0 .-

e 000 =t 0 ---
where the ¢ is in column 27 — 1 such that each row of X; + Y'(7) sums to zero. For i > 0 we
have X; =0 and so Y (i) = 0. Let Y € £ be the matrix with Y; = Y (i) for all ¢. Then each

row of X +Y sums to 0, and so X +Y € h. Clearly, Y is the unique element of b with this

property: indeed, if Y’ were a second such element then for all i we would have X; +Y/ =0,
and thus Y/ =Y (i) = Y}, and thus Y’ =Y. The result thus follows. O

4.3. The map ¢. Let M be an A-module. We have the comultiplication map M — M ®
C[K] discussed above. Composing this with the quotient map M — M /mM, we obtain a
linear map

opm: M — M/mM @ C[K].
In fact, we can define @), for any K-equivariant |A|-module (where “K-equivariant” means

the action of K comes from a comodule structure). We now study this map. We begin with
the case M = A:

Proposition 4.3. We have the following:
(a) The map p4: A — C[K] is the C-algebra homomorphism given by
palzi) = ti, paly) =71+ wi.
(b) The extension n of m along ¢ is the mazimal ideal of C[K] generated by t; — 1 and

u; fori > 1.
(¢) The map v induces an isomorphism of localizations Ay — C[K],.

Proof. Since K acts on A by C-algebra homomorphisms, the map ¢4 is an algebra homo-
morphism. The group Kj; fixes x; and y; for ¢ # j. The action of K; is given by

t;  uy t;  wuy -1
0 ! xr; = tiw;, 0 +! Yi =t Y + uiT;.

We thus see that the comultiplication map A — A ® C[K] takes z; to x; ® t; and y; to
y; ®t; " +2; ®u;. Since the map A — A/m = C takes z; and y; to 1, we find ¢4 (z;) = t; and
©oa(y;) = t;1 + u;, which proves (a). Statement (b) now follows. We now prove (c). Define
Y: C[K] — A to be the algebra homomorphism given by ¢ (t;) = 2; and ¥(u;) = y; — ;"
The kernel of the composition C[K| — Ay, — An/mA, is the ideal n, from which it follows
that ¥ ~!(mAy,) = n. Thus ¢ extends to a ring homomorphism C[K], — A, which is clearly
the inverse to the localization of ¢ 4. 0

In what follows, we regard C[K] as an A-module via ¢ 4. We now study the map ¢, for
an arbitrary A-module M. Since K acts on M by A-semilinear automorphisms, it follows
that ¢j; is a morphism of A-modules. Our goal is to prove that ¢, induces an isomorphism
after localizing at m, which will establish the theorem. We require some lemmas first.
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Lemma 4.4. Let M be a K-equivariant |A|-module. Then ¢y induces an isomorphism
modulo m.

Proof. Consider the following diagram:

M A\ M ® C[K] ——=" M
h M/li@) C[K] —2" M/£1M

Here A is the comultiplication map and 7 is the natural map C|K] — C[K|/nC[K]| = C.
We note that n C C[K] corresponds to the identity element of K, and thus 7 is the counit
of the Hopf algebra structure. Thus the first line above composes to id,;. It follows that the
composition of @), with the morphism in the bottom row is the natural map M — M/mM,
which proves the result. 0

Lemma 4.5. Let M be an A-module. Then the localization of @y at m is surjective.

Proof. Let V' be a finite dimensional B-subrepresentation of M. Let N(V) be the |A|-
submodule of M generated by V. Since V is finite dimensional, N (V) is finitely generated
as a |A]-module; in particular, N(V')/mN (V) is finite dimensional. It follows by Nakayama’s
lemma that (¢ v))m is surjective, since it is surjective modulo m by Lemma 4.4.

Now, the following diagram commutes:

PN(V)

N(V) N(V)/mN(V)® CIK]

| |

M - M/mM @ C[K]

The vertical maps here are induced by the inclusion N(V) C M. Let x € M and let y €
C[K]w. Let V' be the K-subrepresentation of M generated by z, which is finite dimensional.
Then z ® y € N(V)/mN(V) ® C[B], maps to z ® y € M/mM ® C[K],, under the above
map. Since the former element belongs to the image of (¢n(v))m, the latter element belongs
to the image of (¢pr)m- The result follows. O

Remark 4.6. In the proof of [NSS2, Proposition 5.9], we said that (¢a)m Was surjective
simply because it was surjective modulo m and its target is locally free at m. This seems
inadequate. The reasoning in the above lemma applies to the situation in loc. cit., and thus
fixes this gap. U

Lemma 4.7. Let g be a Lie algebra and let € and b be subalgebras such that g = € + .
Suppose that R is a commutative ring on which g acts, and a is an ideal of R that is stable
by h. Let M be a g-equivariant R-module and let N be the maximal €-submodule of aM .
Then N is g-stable.

Proof. 1t is clear that N is €-stable, so we must show it is h-stable. Thus let X € h be given;
we show that XN C N. Note that N consists of all n € M such that Y;---Y,n € aM for
all Y1,...,Y, € &. We must therefore show that Y;---Y, Xm € aM for all Y,...,Y, € £ and
m € N. Write [V, X] = X'+ Y’ with X’ € h and Y’ € £. Then

YVi-- Y, Xm=Y---Y, ((XY,m+ X'm~+Y'm).
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Since N is ¢-stable, Y, m belongs to N, and so Y; - - - Y,_; X (Y, m) belongs to aM by induction
on r. Similarly, Y7 ---Y,_1X'm belongs to aM by induction on r. The term Y;---Y,_1Y'm
belongs to N since N is £-stable. Thus the result follows. 0

Lemma 4.8. Let M be an A-module. Then the kernel of ¢y is Sp-stable, and thus is an
A-submodule of M.

Proof. The kernel of ¢, consists of those elements m € M such that km € mM for all
k € K; thus ker(p,) is the maximal ¢-submodule of mM. By Proposition 4.2, we have
sp =t @ b, and m is stable under h. Hence the result follows from the previous lemma. [

By an “algebraically H-equivariant A -module,” we mean an A,-module N equipped
with a compatible action of H such that for every x € N there is a unit u € A, such
that ux generates an algebraic H-representation. The localization of any A-module at m
is an algebraically H-equivariant Ag-module. Any submodule or quotient module of an
algebraically H-equivariant Ag-module (in the category of equivariant modules) is again
algebraically equivariant.

Lemma 4.9. Suppose that
0—R—-M-—=>N=0

is an exact sequence of algebraically H -equivariant Ayn-modules such that M is equivariantly
finitely generated and N is free as an |Ayn|-module. Then R is also equivariantly finitely
generated.

Proof. The argument in [NSS2, Lemma 5.8] applies here. O
Lemma 4.10. Let M be a finitely generated A-module such that M = mM. Then My = 0.

Proof. Let G,, C Sp be as in §2.4(h), let & C Sp be the embedding of the infinite symmetric
group into Sp as in §2.5(b), and let S-, be as in §2.5(c). Note that 6., = & NG, and
S, = 6N Spy,.

Let V be a finite length Sp-subrepresentation of M that generates M as an A-module.
Pick m4,...,m, € V such that the m; generate V°>» as an &,-representation for all n > 0;
this is possible by §2.5(c). Note that the m’s then generate V' as an G-representation.
Also note that, for n large, the elements m,...,m, belong to V& C V®>» which is an
&,-subrepresentation, and so V& = V/&>n,

For1 < i <r, write m; = Zj a; jn; ; with a; ; € m and n,; ; € M. Let n > 0 be sufficiently
large so that the a; ; belong to A’ = A% and the n;; belong to M’ = M%. Let V' = V&»
and let m" = mnN A’. By Corollary 2.7, the map A’ ® V' — M’ is surjective (after possibly
enlarging n), and so V' generates M’ as an A’-module. We have m; € m’ M’ for all i, and so
gm € m' M’ for all g € &,, since m’ is &,,-stable. Thus V' € m’M’, and so M’ = w/M’. Thus,
by the standard version of Nakayama’s lemma, we have M’ localizes to 0 at m’. Therefore,
for each 1 < i < k, there is some s; € A"\ m’ such that s;m; = 0. For any g € &, we have
gs; € A\ m, and so (gs;)(gm;) = 0. It follows that gm; maps to 0 in A,. Since the gm; span
V', we find that M, = 0, as claimed. O

We now reach the main result:

Proposition 4.11. Let M be an A-module. Then @y induces an isomorphism after local-
1zing at m.
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Proof. The assignment M +— ¢,; commutes with filtered colimits, and so it suffices to treat
the case where M is finitely generated. Let R be the kernel of ¢j;, which is an A-submodule
of M by Lemma 4.8, and let N = M/mM ® C[K]. By Lemma 4.5, the localization of ¢y,
at m is a surjection. Since localization is exact, we have an exact sequence of algebraically
H-equivariant A,-modules
0— Ry — My — Ny — 0.

From Lemma 4.9, we conclude that Ry, is equivariantly finitely generated as an A,-module.
Let V' C R be a finite length algebraic Sp-representation generating Ry, as an |Ay|-module,
and let Ry be the A-submodule of R generated by V. Note that Ry is finitely generated as an
A-module and (Rp)n = Ry. Now, the mod m reduction of the above exact sequence is exact,
by the freeness of N, and the reduction of M, — N, is an isomorphism by Lemma 4.4.
We conclude that R/mR = Ry/mRy; = 0. Lemma 4.10 thus shows that (Ry), = 0 and so
R, = 0, and the proposition is proved. O

5. THE GENERIC CATEGORY

5.1. Statement of results. Let Mody"™® be the category of torsion A-modules. We define
the generic category Mod%™ to be the Serre quotient category Mod4 / Mod'y™. We write
T: Mods — Mod5™ for the localization functor and let S be its right adjoint (the section
functor). The goal of this section is to understand the structure of the generic category and
the behavior of T and S. We achieve this by relating the generic category to Rep(H).

Let M be an A-module. Define ®(M) = M/mM, where m is the maximal ideal of
|A| considered in the previous section. Since m is H-stable, it follows that ®(M) carries
a representation of H. It is easily seen to be algebraic: indeed, we can express M as a
quotient of A ® V', for some polynomial representation V', and then ®(M) is a quotient of
P(A® V)=V, and thus algebraic. We have thus defined a functor

®: Mods — Rep(H).
Since ® is cocontinuous, and the categories involved are Grothendieck, it has a right adjoint
V. In fact, it is not difficult to show that
W(V) = Homyy) (U(sp), V)™

where (—)28 denotes the maximal algebraic subrepresentation of an sp-module. Since we
will not need this fact, we do not discuss it further.
The following is the main theorem of this section:

Theorem 5.1. We have the following:

(a) The functor ® is ezact.

(b) The kernel of ® is Mod'{™.

(¢c) The counit ®¥ — id is an isomorphism.

(d) The functor ® induces an equivalence Mod%™" — Rep(H).

(e) The unit V@ A — U(®(V @ A)) is an isomorphism, for any V € RepP®(GL).

We can use the theorem to transfer our understanding of Rep(H) to Mod%™:

Corollary 5.2. We have the following:

(a) If M is a finitely generated A-module then T'(M) has finite length.
(b) Every finite length object of Mod%™ has finite injective dimension.
(¢) The injectives of Mod%™ are evactly the objects T(V @ A) with V € Rep”®(GL).
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(d) The unit Vo A — S(T(V ® A)) is an isomorphism, for any V € Rep® (GL).

Theorem 5.1 is analogous to [NSS1, Theorem 3.1] and [NSS2, Theorem 6.1]. Our proof
of Theorem 5.1 simplifies the proofs in those papers. We believe the method here could be
used in those papers as well, and would yield significant simplifications.

5.2. Proof of the theorem. We require several lemmas before proving the theorem. We
let F\ be the A-module V), ® A, and we let F be the class of A-modules that are (possibly
infinite) direct sums of F)’s.

Lemma 5.3. Let f: M — N be a morphism of A-modules such that ®(f) = 0. Then the
localized morphism fon: My — Ny vanishes.

Proof. By Theorem 4.1, we have a commutative diagram

My, (M) @ An
i l l‘b(f )®1
N O(N)® Ay
where the horizontal maps are isomorphisms. The result follows. [l

Lemma 5.4. For F' € F and any partition A\, the map
(5.5) ®: Homy(Fy, F') — Homyg (®(Fy), P(F))
s an isomorphism.

Proof. The functors ®, Hom4(F), —), and Hompy (®(F)), —) all commute with arbitrary di-
rect sums, so it suffices to treat the case where F' = [, for some pu. If f: F\ — F, is a
morphism such that ®(f) = 0 then f, = 0 by Lemma 5.3. Since F) and F), inject into their
localizations at m, it follows that f = 0. Thus the morphism (5.5) is injective. Since the
domain and target of (5.5) have the same dimension by Proposition 3.9, it is therefore an
isomorphism. 0

Lemma 5.6. Let f: M — N be a map of A-modules. Suppose that for all partitions A the
induced map

f«: Homu(F\, M) — Homu(Fy, N)

s an isomorphism. Then f is an isomorphism.

Proof. This simply follows from the fact that the F)\’s generate Mod 4. Here are some details.
Suppose that g: F\ — ker(f) is some map. Then fg = 0. Since f, is an isomorphism, it
follows that g = 0. Thus Hom (F), ker(f)) = 0 for all A. Since ker(f) is a quotient of a sum
of F\’s, we see that ker(f) = 0. Thus f is injective.

Now let g: F\ — N be some morphism. Since f, is an isomorphism, we can write g = f¢’
for some morphism ¢': F\ — M. Thus im(g) C im(f), and so the composition F\ - N —
coker(f) vanishes. Now, let ' — N be a surjection with F' a sum of F\’s. Then the induced
map F' — coker(f) is both zero and surjective. It follows that coker(f) = 0, and so f is
surjective. [

Lemma 5.7. For F € F, the unit np: F — V(P(F)) is an isomorphism.
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Proof. Let X\ be a partition. We have a commutative diagram

(nF )«

HOInA(F)\,F) HOl’IlA(F)\,\I]((I)<F)))

Hom(®(F), ©(F))

where ¢ is the adjunction isomorphism. Since ® is an isomorphism by Lemma 5.4, it follows
that (nr). is an isomorphism. Thus 7 is an isomorphism by Lemma 5.6. O

Lemma 5.8. Let I be an injective object of Rep(H). Then the counit e;: ®(V(I)) — I is
an 1somorphism.

Proof. By the classification of injectives in Rep(H ), we can write [ = ®(F') for some F € .
Consider the diagram

@(nr) €a(F)

®(F) O(F)
|

€1

O(V((F)))
(v (1))

By basic properties of adjunction, the composition in the first line is the identity. By
Lemma 5.7, the unit nF is an isomorphism. Thus ®(nr) is an isomorphism as well, and so
€a(F) 1s an isomorphism, and so €; is an isomorphism. O

Proof of Theorem 5.1. (a) Suppose that
0—>M—=M — M —0

is an exact sequence of A-modules. Since localization is exact, the sequence of | Ay|-modules
0— My — My — M, =0

is also exact. Since M) is free as an |Ay|-module by Theorem 4.1, the sequence remains
exact after applying — ®4,, An/m. We thus find that the sequence

0= (M) —= (M) — d(M")—=0
is exact, which proves the statement.
(b) Let M be an A-module such that ®(M) = M/mM is zero. By Theorem 4.1, we find
that M, = 0. Thus every element of M is annihilated by a non-zero element of A, and so
M is a torsion module.

(c) Let V' be an algebraic representation of H. Choose a co-presentation 0 — V' — [ — J
where I and J are injectives of Rep(H). Consider the diagram

0 V I J

b b b

0 ——@(W(V)) —= 2((])) — &(¥(J))

The bottom row is exact since the functor ® o U is left exact. The maps €; and €; are
isomorphisms by Lemma 5.8, so €y is as well.

(d) This is a consequence of (a)—(c) and [Gab, Prop. II1.5].

(e) This was proved in Lemma 5.7. O
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6. STRUCTURE OF A-MODULES

6.1. The Artin—Rees lemma and consequences. Let I = A, be the ideal of positive
degree elements of A and let R = @, ., I" be the corresponding Rees algebra (also called
the blow-up algebra). Then R is naturally an algebra object in Rep(Sp); in fact, it is a
graded algebra, with /™ having degree n.

Proposition 6.1. R is noetherian as an (ungraded) algebra in Rep(Sp).

Proof. We have a surjection A ® V — I of A-modules. We thus see that R is a quotient
of A® Sym(V) = Sym(V @ V) as an algebra. Now, Sym(V®?) is a noetherian algebra in
Rep(Sp), by the same reasoning used in the proof of Proposition 2.4; note that the restriction
of Sym(V®2) to G is the algebra R4 of §2.5(d). Since R is a quotient of the noetherian algebra
Sym(V®2), it too is noetherian. O

Proposition 6.2 (Artin—Rees lemma). Let M C N be A-modules, with N finitely generated.
Then there exists an integer k such that M N I"N = I""*(M N I*N) holds for all n > k.

Proof. Define N = @nzo I™N. This is naturally a graded R-module, and is finitely generated.
Let M = ,,., M N I"N; this a homogeneous R-submodule of N. Since R is noetherian, it

follows that M is finitely generated. There is therefore some k such that M, generates M,
for all n > k. This yields the result. OJ

Corollary 6.3. Let N be a finitely generated A-module. Then there exists an integer n such
that I" N is torsion-free.

Proof. Let T be the torsion submodule of N; this is finitely generated by noetherianity. By
Proposition 6.2, there is some k such that 7N I"N C I"*T for all n > k. Taking n such
that " *T = 0, we see that TN I"N = 0, and so I"N is torsion-free. O

Corollary 6.4. Let J be an injective object in the category Mod'y™. Then J is injective in
the category Mod 4.

Proof. Let N C M be finitely generated A-modules and let f: N — J be a morphism of
A-modules. Let K be the kernel of f; note that N/K injects into J, and is thus torsion.
Let n be such that I"(M/K) is torsion free. The torsion submodule of M /K thus injects
into M/(I"M + K); in particular, N/K injects into M/(I"M + K). Let f: N/K — J be

the morphism induced by f. Since .J is injective in Mod'{™, we can extend f to a morphism

g: M/(I"M + K) — J. Composing g with the quotient map M — M/(I"M + K) yields a
morphism ¢g: M — J extending f. It follows that J satisfies the necessary condition to be
injective with respect to morphisms of finitely generated A-modules. Since Mod, is locally
noetherian, it follows from a version of Baer’s criterion (see [GS, Proposition A.14]) that J
is injective. O

6.2. Saturation and local cohomology. We now develop a theory of saturation and local
cohomology for A-modules. We refer to [SS5, §4] for background. We note that the important
property (Inj) of loc. cit. holds by Corollary 6.4.

We have a left-exact functor I': Mod,4 — Mod'{™ where I'(M) is the torsion submodule
of M. Tts derived functors RI" are the local cohomology functors. We also have a left exact
functor ¥: Mods — Mod, given by ¥ = SoT and called saturation. The following is [SS5,
Proposition 4.2].
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Theorem 6.5. For any M € DT (Mod,), we have a canonical exact triangle
RI'NM) - M — RE(M) —

If M € Dy,(Modya) then RI(M) and RX(M) are also in Df,(Moda); in fact, RT'(M) is
quasi-isomorphic to a finite length complex of finite length modules and RX(M) is quasi-
isomorphic to a finite length complex of modules of the form V ® A with V a finite length
polynomial representation.

Proof. The existence of the triangle is [SS5, Proposition 4.6]. Suppose now that M €
D}, (Mody). Then T(M) € D} (Mod%™). By Corollary 5.2, we can therefore find a quasi-
isomorphism T'(M) — I® where I* is a bounded complex whose terms have the form T(V®A)
where V' is a finite length polynomial representation. Since I® is a complex of injectives,
we have RY(M) = RS(T(M)) = S(I*), which is a finite length complex whose terms have
the form V' ® A where V is a finite length polynomial representation. We thus see that
RY(M) € Df,(Modys). From the triangle in the statement of the theorem, it now follows
that RT'(M) belongs to Df,(Mody). Since its cohomology groups are torsion, one can show
that it is quasi-isomorphic to a finite length complex of finite length modules. O

Corollary 6.6. Let M be a finitely generated A-module. Then we have a 4-term exact
sequence

0—=I(M)—= M—%(M)— RT(M) =0

and isomorphisms R'S(M) = R™IT(M) for i > 1. The groups R'T(M) are finite length
A-modules for all i and vanish for i > 0.

Corollary 6.7. The category le’g(ModA) is generated (as a triangulated category) by the
modules V) @ A and the AJ/A-modules V.

6.3. Injective modules. We have the following structural result for injective A-modules.

Proposition 6.8. Let I be a an injective A-module. Then I decomposes as I' ® I" where I’
is a torsion injective module and 1" is a torsion-free injective module.

Proof. This follows formally from property (Inj), i.e., Corollary 6.4; see [SS5, Proposition 4.3]
for details. 0

The torsion-free injective modules are classified by the following result. We do not have a
good understanding of the torsion injectives; see Example 6.13 for one observation.

Proposition 6.9. For any V € Rep®(GL) the A-module V ® A is injective, and every
torsion-free injective A-module is of this form. In particular, the indecomposable torsion-free
injective A-modules are exactly the modules Vy ® A.

Proof. By Corollary 5.2(c), the object T(V®A) is injective in Mod%™. Since S takes injectives
to injectives, it follows that S(T'(V ® A)) is injective in Mod 4. But by Corollary 5.2(d), this
is V®A Thus V ® A is injective, and it is clearly torsion-free. If I is a torsion-free
injective then T'(I) is injective [SS5, Proposition 4.3], and thus of the form T(V ® A) by
Corollary 5.2(c). Since I = S(T'(I)) [SS5, Proposition 4.3], we see that I =V ® A. O
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6.4. The Grothendieck group. For a locally noetherian abelian category A, we let K(A)
be the Grothendieck group of the category of finitely generated objects in A. We put
K(A) = K(Mod4) and K(Sp) = K(Rep(Sp)). The tensor product on Rep(Sp) gives K(Sp)
the structure of a commutative ring. Similarly, the functor Rep(Sp) x Mod s — Mod 4 given
by (V,M) — V @ M gives K(A) the structure of a K(Sp)-module. Let A be the ring of
symmetric functions. Then we have a natural ring isomorphism A — K(Sp) taking sy to V
(that it is a ring homomorphism is clear since V) are Schur functors applied to V; that it is
an isomorphism follows from the fact that the change of basis between V, and simple objects
is upper unitriangular, for example by §2.4(e)). We can thus regard K(A) as a A-module.
The following result gives its structure:

Theorem 6.10. The Grothendieck group K(A) is a free module over A of rank two. The
classes [C]| and [A] form a A-basis, where C is regarded as an A-module via C = A/A,.

Proof. By general properties of Serre quotients, we have a canonical exact sequence
K(Mod'™) —> K(A) —= K(Mod&™) — 0.
We also have a map

7: K(A) = K(Mody™),  ~([M]) =) (-1)'[RT(M)),

1>0

which is well-defined by Theorem 6.5. If M is torsion then T'(M) = 0, and so RX(M) = 0,
and so RI'(M) = M by Theorem 6.5. Thus 04 = id, and so 7 is an injection. Since every
finitely generated torsion module has a finite filtration such that A, acts by zero on the
associated graded, it follows that K(Mod'™) = K(Sp) is a free A-module of rank 1, generated
by [C]. By our analysis of Mod%™ = Rep(H ), we know that the classes [T'(V, ® A)] form
a Z-basis of K(Mod%™"), and so K(Mod%™") is a free A-module of rank 1 with basis [T'(A)].
Since 7([A]) = [T'(A)], we thus see that [C] and [A] form a A-basis for K(A). O

6.5. Torsion A-modules. In [SS1], we saw that finite length GL-equivariant Sym(V)-
modules enjoy nice homological properties: every such module has finite injective dimension
and a finite length injective envelope. We now observe, by example, that these properties
fail for Sp-equivariant Sym(V)-modules.

Example 6.11. Let C = A/A,. We claim that Ext%(C,C) = C for all i > 0 and is 0 in
odd degrees. Consider the Koszul resolution K, of C = A/A, given by K; = A® \' V. The
terms of this complex are not projective. However, for any V' € Rep(Sp) and i > 0, we have

Ext’,(A®V,C) = Extg,(V,C) =0,

where the first identification comes from adjunction and the second from the fact that C is
injective in Rep(Sp) (§2.4(c)). It follows that the terms of the Koszul complex are acyclic
for the functor Ext%(—, C), and so the Koszul resolution can be used to compute these Ext
groups. We find

Ext’,(C, C) = Homg,(A'V, C).

This vanishes if ¢ is odd (this parity argument follows from §2.4(g)) and otherwise is 1-
dimensional (this can be deduced from the branching rule from GL to Sp in [SS3, 7.9]). O
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Example 6.12. We have just seen that Ext?(C, C) is one-dimensional. We now describe
an explicit Yoneda 2-extension representing the non-zero class. To begin, we have an exact
sequence

(6.12a) 0>V A/A2 - C—0
Tensoring this sequence with V, we obtain an exact sequence
0> V25 VA/AZ 5V =0

The symplectic form w gives a map V&2 — C. We can therefore push-out the above extension
along this map to obtain an extension

0-C—>FE—-V =0,

where F is a quotient of V ® A/A2. We can now splice this extension with (6.12a) to obtain
a 2-extension

0—-C—E— A/A7 - C—0.
This represents the non-zero element of Ext?(C, C). O

Example 6.13. Let v be an element of V. Then v defines a linear functional w(v, —) on V,
and thus a derivation 0, on A (essentially a partial derivative). For v,w € V the operators
0, and J,, commute. We can therefore use them to define a new A-module structure on A,
which we denote by A*. Explicitly, if x = v;---v, is a monomial in A and f € A*, the
product zf is defined to be 0y, - - - 0,, (f). The A/A, -module C is an A-submodule of A*,
as constants are killed by all partial derivatives. If f is any non-zero element of A* then we
can find vy, ...,v, € V such that 9,, ---0,, (f) is a non-zero constant. We thus see that any
non-zero A-submodule of A* must contain C. This shows that A* is an essential extension
of C. It follows that the injective envelope of C must contain A*, and therefore does not
have finite length. O

7. APPLICATIONS TO TCA’S

7.1. The noetherian property. Let B = Sym(V & A*V), regarded as a tca. The goal of
this section is to prove the following theorem:

Theorem 7.1. The tca B is noetherian.

Write B = By ® By where B; = Sym(V) and B, = Sym(A*V). We say that a B,-
module is torsion if every element has non-zero annihilator in By. We write Modt§2rS for the
category of torsion modules, and Mod%" for the Serre quotient category Modp, / Modg’gs.
The symplectic form w on V induces an Sp-equivariant ring homomorphism By — C. Let
®: Modp, — Rep(Sp) be the functor (M) = M ®p, C. We show in [NSS1, Theorem 3.1]
(see also [NSS1, §3.5]) that ® is exact with kernel Mod':®, and that the induced functor
Modf" — Rep(Sp) is an equivalence. Let W be the right adjoint of ®.

Lemma 7.2. We have the following:

(a) ® induces a functor ®: Modz — Mod,.

(b) U induces a functor ¥: Mod, — Modp.

(¢) The functors (B, V) form an adjoint pair.

(d) The derived functor of U coincides with that of U on the bounded below derived cate-
gory, i.e., the Bo-module underlying R\TI(M) is RU(M).
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Proof. Let K = Frac(Bs). By a K-module we mean a K-vector space V equipped with a
semilinear action of GL such that there exists a C-subspace W of V' that forms a polynomial
representation of GL and spans V' over K. Let Modg be the category of K-modules. There
is a natural functor ®': Modp, — Modg given by &' (M) = K ®p, M. There is also
a natural functor ¥': Modg — Modp, given by ¥/'(V) = VP the maximal polynomial
subrepresentation of V. In [NSS1, §2.4], we show that (&', ¥’) are an adjoint pair, and that
®’ induces an equivalence 1\/Ionge;1 — Modg. Thus Mody is equivalent to Rep(Sp), and under
this equivalence ®' and ¥’ correspond to ® and W. We can therefore prove the proposition
relative to ® and V. Note A € Rep(Sp) corresponds to the algebra object A’ = K®Sym(V)
of Modg. Thus Mod4 corresponds to the category of Mod 4 of A’-modules in Sym(K). We
note that B is naturally a GL-stable subalgebra of A’.

(a) If M is a B-module then A’®p M is an A-module. This construction defines a functor
@': Modp — Mod.y.

(b) Let M be a A-module in Mod . Then M is a | B|-module (by restricting scalars), and
we claim that MP°! is a | B|-submodule of M. Indeed, B® MP is a polynomial representation
of GL, and so its image under the GL-equivariant map B ® M — M must have polynomial
image, and therefore be contained in MP°'. Thus ¥/(M) = MP° is an object of Modp, and
so ¥’ induces a functor ¥': Mody — Modp.

(c) Let M be an A-module and let N be a B-module. To prove the statement, it suffices to
show that the unit N — W/(®'(N)) is a map of B-modules and the counit &' (V' (M)) — M
is a map of A-modules. This is clear from the definitions.

(d) We now switch back to Rep(Sp) and A-modules. Let M € D™ (Mod,). Let M — I be

a quasi-isomorphism with I a bounded below complex of injective A-modules. Then U(I)

computes R\TI(M ). Since every injective A-module is injective as an Sp-module by Propo-
sition 2.3, it follows that W(/) computes R¥(M). Since ¥([) is the By-module underlying

U(1), the result follows. O

In what follows, we just write ® and ¥ for the functors on Modg and Mod 4. We say that
a B-module M satisfies property (FT) if Tor? (M, C) is finite length for all 4.

Lemma 7.3. Suppose that
0> M —- My — M;—0
is an exact sequence of B-modules. If two of the modules satisfy (FT) then so does the third.

Proof. This follows immediately from the long exact sequence in Tor. O

Lemma 7.4. Suppose M is a finitely generated B-module that is Bo-torsion. Then:

(a) V & M is a noetherian B-module, for any finite length polynomial representation V;
(b) M satisfies (FT).

Proof. Let M’ be a finitely generated Bs-submodule of M that generates M as a B-module.
Since M’ is a finitely generated torsion Bs-module, it is annihilated by a non-zero GL-
stable ideal a of By (see [NSS1, Corollary 2.3]). Since M’ generates M, it follows that
M is also annihilated by a. We thus see that we can regard M as a module over the tca
C = B/aB = By ® (Bs/a). Since By and Bs/a are essentially bounded in the sense of
[NSS1, §2.3] (see [NSS1, Corollary 4.2]), so is C' by the Littlewood-Richardson rule. Thus
C' is noetherian by [NSS1, Proposition 2.4]. Since M is a finitely generated module over a
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noetherian tca, it is noetherian. Since V' ® M is also finitely generated and Bs-torsion, the
preceding reasoning shows that it too is noetherian. This proves (a).

Now, Tor?(M, C) is computed by the Koszul complex A*(V & A*V) @ M. By (a), the
terms of this complex are noetherian. Thus the homology groups are finitely generated B-
modules. Since they are also annihilated by B, , they have finite length, and (b) follows. O

Let 8 be the class of objects M in Mody4 such that (R*W)(M) satisfies (FT) for all 7 > 0.
Note in particular that if M € 8 then W(M) is finitely generated. Also note that, by general
properties of Serre quotients and section functors, (R'W)(M) is Bp-torsion for any M and
any ¢ > 0.

Lemma 7.5. Suppose that
0— M; = My — M;—0
1s an exact sequence in Mody. If two of the modules belong to § then so does the third.

Proof. Suppose that M; and M, belong to 8. Consider the exact sequence
0— ¥(M) — V(M) - ¥ (M3) - N—0

where N is the image of W(M3) in R'W(M;). Since R'W(M;) is By-torsion and finitely
generated (as M, € §8), it is noetherian by Lemma 7.4(a). Thus N is finitely generated. Since
N is also By-torsion, as it is a submodule of R'W (M), it satisfies (FT) by Lemma 7.4(b).
From the above exact sequence and Lemma 7.3, it follows that W(M;) satisfies (FT). Now
let © > 1, and consider the exact sequence

RIW(Msy) — RWU(Ms) — R (M),
The outside groups are finitely generated by assumption and Bs-torsion; thus they are noe-
therian by Lemma 7.4(a). It follows that R"W(Mj3) is finitely generated. Since it is also

Bs-torsion, it satisfies (FT) by Lemma 7.4(b). Thus Mj belongs to 8. The other cases are
similar, and left to the reader. O

Lemma 7.6. Let M be a B-module that is projective as a Bo-module. Then the natural map
M — U(®(M)) is an isomorphism of B-modules, and R™U(®(M)) =0 for i > 0.

Proof. The fact that M — W(P(M)) is an isomorphism follows from the fact that projective
By-modules are saturated [NSS1, Proposition 2.8]. The fact that R*"W(®(M)) = 0 for i > 0
follows from the fact that if M =V ® By is a projective By-module (with V' a polynomial
representation of GL) then ®(M) =V is injective in Rep(Sp) [SS3, 4.2.9]. O

Lemma 7.7. The A-modules Vy and V) ® A belong to S.

Proof. We have V), = ®(V, ® By); here B; is a B-module via By = B/(B1). Since V, ® By
is Bo-projective, we have ¥(V)) = V, ® By and R*¥(V) = 0 for 7 > 0 by Lemma 7.6. Now,
we have
Torf(B,, C) = Tor(C, C) = A*(V),

and so B, satisfies (FT) as a B-module; the same reasoning applies to V, ® By. We thus
see that W(V,) satisfies (FT), and so V, belongs to S.

We have V,® A = ®(V,®B). Since V,® B is By-projective, we have ¥(V,,® A) = V,,® B
and R'U(V,® A) = 0 for ¢ > 0 by Lemma 7.6. Since V, ® B is finitely generated and
projective, it satisfies (FT). Thus V, ® A € 8. O

Lemma 7.8. FEvery finitely generated A-module belongs to S.
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Proof. This follows from Lemmas 7.5 and 7.7 since the objects V, and V, ® A generate
D}, (Mody) (Corollary 6.7). A more detailed argument follows.

Suppose M is a finitely generated A-module with A, M = 0. Let M — I°® be a finite
length resolution in Rep(Sp) where each I* is a finite length injective. Regard each I* as an
A/A,-module. Since each I* belongs to § by Lemma 7.7, we conclude that M belongs to 8
by Lemma 7.5.

Now let M be an arbitrary finite length B-module. We show that M € § by induction
on the injective dimension of T'(M) € Mod%™. Assume M is non-zero. We can then find an

exact sequence
0—-TM)—I1I—-N=0

in Mod%™, where I is a finite length injective and N has smaller injective dimension than
T(M) (using the convention that the zero module has injective dimension —oc). Applying
S, we obtain an exact sequence

0— X(M)— S(I)— N —0,
where N’ is the image of S(I) in S(IV). Since T'(N') = N has smaller injective dimension
than T'(M), it follows that N’ belongs to 8 by the inductive hypothesis. Since S(I) is

a finitely generated torsion-free injective A-module, it belongs to 8§ by Lemma 7.7. Thus
¥ (M) belongs to 8 by Lemma 7.5. Now, we have an exact sequence

0—=I(M)—= M- %(M)— RT(M) — 0.

Since T'(M) and R'T'(M) are finite length A-modules, they belong to 8§ by the previous
paragraph and Lemma 7.5. Thus M belongs to 8 by Lemma 7.5. This completes the
proof. O

Proof of Theorem 7.1. It suffices to show that M = V, ® B is a noetherian B-module for all
A. Let N be a submodule. Then ®(N) is an A-submodule of ®(M) =V, ® A. Since ®(M)
is finitely generated, it follows that ®(N) is as well. Thus ®(NV) belongs to 8§ by Lemma 7.8,
and so W(P(N)) satisfies (FT). Since M is By-projective, it has no Bs-torsion, and so the
same is true for N. It follows that we have an exact sequence

0= N—=>Y(PN)—>T—0,

where T' is By-torsion. Since W(®(N)) is finitely generated, so is T', and so T' satisfies
(FT) by Lemma 7.4. Thus N satisfies (FT), and is therefore finitely generated. Thus M is
noetherian. O

7.2. Some additional results. We keep the notation B = Sym(V @ /\2V). Let ModY,
be the full subcategory of Modpg spanned by modules supported at 0 (i.e., every element is
annihilated by a power of B ), and let Mod%™ be the generic category for B (i.e., the Serre
quotient of Modp by the torsion subcategory).

Proposition 7.9. We have an equivalence Mod%™ = Mod%.

Proof. The category Mod%"™ can be obtained by first forming the quotient of Modg by the
subcategory of modules that are Bs-torsion, and then forming the quotient of the result by
the subcategory of torsion modules. The first quotient gives Mod 4 by the discussion in §7.1,
so this gives an equivalence Mod%" = Mod%™. We have seen that Mod%™ is equivalent to
Rep(H) (Theorem 5.1(d)), which is equivalent to Mod% (Theorem 3.7). O

Proposition 7.10. Fvery projective B-module is injective.



SP-EQUIVARIANT MODULES 27

Proof. Let V' be a polynomial representation. We must show that V' ® B is injective in
Modp (every projective B-module is of this form). We know that V ® A is injective in Mod 4
(Proposition 6.9), and so U(V ® A) is injective in Modp, since ¥ is right adjoint to the
exact functor ®. Since V® A = &(V ® B), we have UV(VR A) =¥ (d(VRB)) =V®B
(Lemma 7.6), and the result follows. O

Remark 7.11. Analogs of these propositions are known for Sym(A*V) and Sym(Sym? V)
[NSS1] and Sym(V#") [SS1, SS5]. O

8. FURTHER REMARKS

8.1. A twisted Lie algebra. Let g=V & /\QV. We give g the structure of a Lie algebra
as follows: (a) for v,w € V, we put [v,w] = v Aw € A*V; and (b) all elements of A*V are
central. Since the Lie bracket is GL-equivariant, it follows that g is a Lie algebra object in the
category Rep””(GL). We write Mod, for the category of g-modules internal to Rep”*(GL).

Theorem 8.1. The category Mody s locally noetherian.

Proof. Let F,U(g) be the image of the natural map € ;g% — U(g). This defines a
GL-stable filtration FyU(g) C FiU(g) C --- on U(g) for which the associated graded is
isomorphic to B. Now let M =V, ® U(g), and define F;M =V, ® F;U(g). Then gr(M) =
V,® B. Let N be a U(g)-submodule of M. Then N inherits a filtration via F;N =
N N F;M, and the natural map gr(/N) — gr(M) is an injection of B-modules. Since gr(M)
is a noetherian B-module (Theorem 1.1), it follows that gr(/V) is finitely generated as a
B-module. Let k be such that gr(N) is generated by gry(N),...,gr,(N). Then a standard
argument shows that N is generated as a U(g)-module by F;N, which is a finite length
polynomial representation. Thus N is finitely generated, and so M is noetherian as a U(g)-
module. Since every finitely generated g-module is a quotient of a finite direct sum of modules
of the form V, ® U(g), we see that any such module is noetherian. O

8.2. Complementary examples. In this paper, we have studied Sp-equivariant modules
over Sym(V). We can also consider the parallel situation of O-equivariant modules. To be
somewhat precise, let 8 be the symmetric bilinear form on V defined by S(e;, f;) = 0, ;, and
Bei,e;) = B(fi, f;) = 0, and let O C GL be the subgroup preserving 3. We then have a
category Rep(O) of algebraic representations of O, as studied in [SS3]. Let A" be the algebra
Sym(V) in the category Rep(O). We can then consider A’-modules in the category Rep(O).
Much of the above discussion extends to this setting. We define a linear form £: V — C by
&(e;) = &(f;) = 1 for all 7 and let H' be the stabilizer of £ in O. Then one can show that the
category of generic A’-modules is equivalent to the category of algebraic representations of
H' and use this to prove that the tca Sym(V @ Sym® V) is noetherian.

There is one difference between A and A’ to note. The graded pieces of A are irreducible
as Sp-representations, but the graded pieces of A" are not irreducible as O-representations.
However, one can show that any non-zero O-stable ideal of A’ contains a power of A’ , and
so this difference does not affect too much.

There are, in fact, two additional examples one can consider. In [SS3], we also study
algebraic representations of Sp and O on pro-finite vector spaces. Let V be the dual space
of V., which we can identify with an infinite product of C’s. The groups Sp and O act
on V, and we can consider representations appearing in tensor powers (using a completed

tensor product). We denote these categories by PTeT)(Sp) and ﬁe\p(O). In fact, PTeT)(Sp) is
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equivalent to the opposite category of Rep(Sp), and Pfe\p(O) is equivalent to the opposite
category of Rep(O). We have algebra objects Sym(V) in both ﬁe\p(Sp) and ﬁeY)(O), and
one can consider their module categories. We have not carefully considered these examples,
but expect that the methods of this paper could be used to study them. There is one
new phenomenon worth pointing out: the representation Symz(V) of O has an invariant
element, and this generates a principal ideal of Sym(V) that does not contain any power of
the maximal ideal.

One can also consider a variant of the Lie algebra from §8.1, as follows. Define the free 2-
step nilpotent twisted Lie superalgebra g’ = V @ Sym?(V) in the category RepP® (GL). This
is transpose dual to the twisted Lie algebra g, and hence we immediately deduce that Mody is
locally noetherian. (Recall that the transpose functor is the auto-equivalence of Rep?® (GL)
that takes V to V,t, where A" denotes the transposed partition. It is a non-symmetric
monoidal equivalence. See [SS2, §7.4]). Similarly, the twisted skew-commutative algebra
A(V) @ Sym(Sym® V) is transpose dual to the tca B and its category of modules is also
locally noetherian, while A(V)® Sym(A>V) is transpose dual to the tca Sym(V @ Sym? V)
so its category of modules is locally noetherian too.

8.3. Koszul duality. In [SS1], we studied Koszul duality for the algebra object Sym(V) in
RepP® (GL). The standard Koszul duality between Sym and /\ induces a derived equivalence
between Sym(V)-modules in RepP”(GL) and A(V)-comodules in Rep”(GL). Composing
this with the duality functor on RepP”(GL) and the transpose functor converts A(V)-
comodules back to Sym(V)-modules. In this way, one gets a contravariant derived auto-
equivalence of the category of Sym(V)-modules. We showed that this functor preserves the
bounded finitely generated derived category.

One can carry out an analogous process in the present setting. Consider the algebra
Sym(V) in Rep(Sp). Koszul duality gives a derived equivalence between graded Sym(V)-
modules in Rep(Sp) and graded A(V)-comodules in Rep(Sp). Duality converts A(V)-

comodules in Rep(Sp) to A(V)-modules in @(Sp). Transpose now converts A (V)-modules
in Rep(Sp) to Sym(V)-modules in Rep(O). We thus obtain a derived equivalence:

{graded Sym(V)-modules in Rep(Sp)} «+ {graded Sym(V)-modules in I/{e\p(O)}
Similarly, we obtain a derived equivalence
{graded Sym(V)-modules in Rep(0)} + {graded Sym(V)-modules in P/{e\p(Sp)}.

(We note that objects of Rep”®(GL) are canonically graded, which is why we did not need
to include a grading in that setting.)
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