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ON SOME MODULES SUPPORTED IN THE CHOW VARIETY

CLAUDIU RAICU, STEVEN V SAM, AND JERZY WEYMAN

Dedicated to Bernd Sturmfels on the occasion of his 60th birthday.

Abstract. The study of Chow varieties of decomposable forms lies at the confluence of
algebraic geometry, commutative algebra, representation theory and combinatorics. There
are many open questions about homological properties of Chow varieties and interesting
classes of modules supported on them. The goal of this note is to survey some fundamental
constructions and properties of these objects, and to propose some new directions of re-
search. Our main focus will be on the study of certain maximal Cohen–Macaulay modules
of covariants supported on Chow varieties, and on defining equations and syzygies. We also
explain how to assemble Tor groups over Veronese subalgebras into modules over a Chow
variety, leading to a result on the polynomial growth of these groups.

1. Introduction

In this article we collect several results on graded modules supported in the Chow vari-
ety Yd,n, defined as the set of homogeneous polynomials of degree d in n+ 1 variables which
decompose into a product of linear factors. Our interest is in the study of certain Cohen–
Macaulay modules of covariants from a homological and representation theoretic perspective,
analyzing the shape of their minimal resolution and their equivariant structure. We also in-
clude a discussion of Brill equations, rank varieties, and the study of Yd,n for small values
of the parameters, as well as a general polynomiality statement for Tor groups of Veronese
subalgebras. Our hope is to give a flavor of the questions and results surrounding Chow
varieties, that will spark future research in this area.

Let k be an algebraically closed field, and let U ≃ kn+1 be an (n+ 1)-dimensional vector
space. Thinking of U∗ as the set of linear forms in n + 1 variables, we can identify the
space Symd(U∗) with the affine variety Xd,n of homogeneous polynomials of degree d in n+1
variables. We consider the subvariety of completely decomposable forms in Xd,n, defined
as

(1.1) Yd,n = {F ∈ Xd,n : F = ℓ1 · · · ℓd, with ℓi ∈ U∗}.

An equivalent description of Yd,n is as the affine cone over the Chow variety of 0-dimensional
cycles of length d in Pn. The standard parametrization of Yd,n (using the tuples (ℓ1, . . . , ℓd))
realizes the coordinate ring k[Yd,n] as a subalgebra of Ad,n, the homogeneous coordinate

ring of the Segre product (Pn)×d. There is a natural action of the symmetric group Sd on

Ad,n, and the invariant subring Bd,n = ASd

d,n gives the normalization of k[Yd,n]. Moreover,
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the normalization map has an interesting connection to Foulkes’ Conjecture about plethysm
coefficients in algebraic combinatorics (see Section 2).

More generally, for every partition λ of d we can construct the module of covariants

Mλ = HomSd
(Vλ, Ad,n),

where Vλ is the corresponding irreducible Sd-representation.
In characteristic zero, each Mλ can be thought of as a maximal Cohen–Macaulay module

supported on Yd,n. In Section 3 we discuss the action of the duality functor on these modules,
as well as some consequences regarding the shape of their minimal resolution (over the
coordinate ring ofXd,n). We analyze the case d = 2, which corresponds to modules supported
on rank ≤ 2 matrices, as well as the case n = 1. Notice that Yd,1 is an affine space, so the
modules Mλ are free in this case, but the description of their generators involves interesting
combinatorics related to the well-studied statistics of descents and major indices, and
to Kostka–Foulkes polynomials. One way to interpret the formulas in the case n = 1 is
as generalizations of Hermite Reciprocity, which states that, for all a, b ≥ 0, we have an
isomorphism Syma(Symb U) ∼= Symb(Syma U) as GL(U)-representations when dim(U) = 2.
For general parameters d, n, we take the first step in the study of the syzygies of Mλ by
establishing a bound on their Castelnuovo–Mumford regularity.

In Section 4 we analyze the Brill equations and recall computational results about their
relation to defining ideals of Yd,n. In particular, we recall why the ideals generated by Brill
equations are not radical for n ≥ d ≥ 3. This is due to certain “rank equations” of the same
degree but different representation type that also vanish on Xd,n for d ≥ n ≥ 3. We also
treat in detail the normalization of the Chow variety X3,2 and point out some connections
to classical results on ternary cubics going back to Aronhold.

Finally, in Section 5 we prove a result about the finite generation of the Tor modules
in the spirit of stability in representation theory, and describe an algebraic version of a
polynomiality result for Tor groups by Yang.

2. The variety of decomposable forms

In this section we assume that k is an algebraically closed field of arbitrary characteristic.
We recall some of the basic properties of Yd,n, discussing its normalization map, along with
some connections to Foulkes’ conjecture. We begin with a natural parametrization of Yd,n,
obtained by considering the variety

(2.1a) Zd,n = {(ℓ1, ℓ2, . . . , ℓd) | ℓ1, . . . , ℓd ∈ U∗}

of d-tuples of linear forms, along with the multiplication map

(2.1b) µd,n : Zd,n −→ Yd,n ⊆ Xd,n, (ℓ1, . . . , ℓd) 7→ ℓ1 · · · ℓd.

If we consider the associated pull-back map

(2.1c) µ♯
d,n : k[Xd,n] −→ k[Zd,n],

then the coordinate ring of Yd,n can be identified as

k[Yd,n] = Im
(
µ♯
d,n

)
.

If we let Jd,n denote the defining ideal of Yd,n then we have

(2.1d) Jd,n = ker
(
µ♯
d,n

)
.
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The group GL(U) of invertible transformations of U acts on all the varieties described so
far, making their coordinate rings into representations of GL(U). We have for instance that

k[Xd,n] = Sym(DdU) =
⊕

m≥0

Symm(DdU),

where DdU = Symd(U∗)∗ is the d-th divided power of U , and

k[Zd,n] = Sym(U ⊕ · · · ⊕ U) = Sym(U)⊗d =
⊕

a1,...,ad≥0

Syma1 U ⊗ · · · ⊗ Symad U.

Notice that the identification above provides k[Zd,n] with a natural Zd-grading, which can
be seen as coming from the action of the torus (k∗)×d by scaling on each tensor factor. There
is also an action of the symmetric group Sd on Sym(U)⊗d by permutations of the tensor

factors, and the morphism µ♯
d,n is induced by the natural inclusion

(2.2) Dd(U) →֒ k[Zd,n](1,...,1) = U⊗d

as the subspace of symmetric tensors. From now on we write

Rd,n = k[Xd,n], and Ad,n =
⊕

m≥0

k[Zd,n](m,...,m) =
⊕

m≥0

Symm U ⊗ · · · ⊗ Symm U,

noting that Ad,n = RT
d,n is a ring of invariants for the action of the torus

T = {(t1, . . . , td) ∈ (k∗)×d : t1 · · · td = 1},

and in particular that Ad,n is normal. Since the image of µ♯
d,n is generated by Sd-invariant

elements, it follows that

k[Yd,n] ⊆ ASd

d,n =
⊕

m≥0

Dd (Symm U) =: Bd,n,

where Bd,n is also normal. We will prove the following (see also [Bri93,Nee91,Nag55]).

Theorem 2.3. The algebra Bd,n is the normalization of k[Yd,n].

Before explaining the proof of Theorem 2.3, we proceed with a more concrete description
of the constructions above. We choose a basis x0, . . . , xn for U∗, which in turn induces a
monomial basis

{xα = xα0

0 · · ·xαn

n : α0 + · · ·+ αn = d}

for Symd(U∗). If we let {zα}α denote the dual basis of Dd(U), then we can think of its
elements as the coefficients of the generic d-form

∑

|α|=d

zα · xα,

and make the identification Rd,n = k[zα]. For 1 ≤ i ≤ d, we write u
(i)
j , j = 0, . . . , n, for the

coordinate functions on the affine space U parametrizing the forms ℓi in (2.1a). We get an
identification

k[Zd,n] = k[u
(i)
j ],
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and the morphism µ♯
d,n sends zα to the coefficient of xα in the expansion of

(2.4)

d∏

i=1

(
n∑

j=0

u
(i)
j · xj

)
.

Example 2.5. Suppose that d = 2 and n = 2, so (2.4) becomes
(
u
(1)
0 · x0 + u

(1)
1 · x1 + u

(1)
2 · x2

)
·
(
u
(2)
0 · x0 + u

(2)
1 · x1 + u

(2)
2 · x2

)
.

The morphism µ♯
2,2 sends

z(2,0,0) 7→ u
(1)
0 · u

(2)
0 , z(0,2,0) 7→ u

(1)
1 · u

(2)
1 , z(0,0,2) 7→ u

(1)
2 · u

(2)
2 ,

z(1,1,0) 7→ u
(1)
0 ·u

(2)
1 +u

(1)
1 ·u

(2)
0 , z(1,0,1) 7→ u

(1)
0 ·u

(2)
2 +u

(1)
2 ·u

(2)
0 , z(0,1,1) 7→ u

(1)
1 ·u

(2)
2 +u

(1)
2 ·u

(2)
1 .

If char(k) 6= 2 then Y2,2 parametrizes quadrics of rank ≤ 2. With the usual identifica-
tion between quadratic forms and symmetric matrices, we get that J2,2 is a principal ideal,
generated by the determinant of

Z =



2z(2,0,0) z(1,1,0) z(1,0,1)
z(1,1,0) 2z(0,2,0) z(0,1,1)
z(1,0,1) z(0,1,1) 2z(0,0,2)


 .

If char(k) = 2 then J2,2 is still principal, generated by

z(2,0,0)z
2
(0,1,1) + z(0,2,0)z

2
(1,0,1) + z(0,0,2)z

2
(1,1,0) + z(0,1,1)z(1,0,1)z(1,1,0).

In both cases, Y2,2 is a hypersurface of degree 3 in X2,2 ≃ A6. The singular locus Y sing
2,2 has

codimension two in Y2,2 (given by the quadrics of rank ≤ 1 if char(k) 6= 2, and by the 3-plane
z(0,1,1) = z(1,0,1) = z(1,1,0) = 0 if char(k) = 2), hence Y2,2 is normal and B2,2 = k[Y2,2]. �

It will be useful to denote

ub =

d∏

i=1

u
(i)
bi
, for b = (b1, · · · , bd) ∈ {0, . . . , n}×d,

so the expansion of (2.4) is given by

n∑

b1,··· ,bd=0

u(b1,...,bd)xb1 · · ·xbd .

We consider the Sd-action on the cartesian product {0, . . . , n}×d, write Ob for the orbit of b,
and write a ∼ b if a ∈ Ob. Note that every orbit Ob has a unique representative a ∼ b with
n ≥ a1 ≥ · · · ≥ ad ≥ 0. If we let

(2.6) Ua =
∑

b∼a

ub

then we get that k[Yd,n] is the k-algebra generated by the forms Ua.

Proposition 2.7. The algebras Ad,n and Bd,n are finitely generated k[Yd,n]-modules.
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Proof. Since Bd,n ⊆ Ad,n, it is enough to prove the result for Ad,n. Using the graded
Nakayama lemma, it suffices to prove that the forms Ua generate an ideal of finite colength
in Ad,n. Since Ad,n is the coordinate ring of a d-fold Segre product Seg = (Pn)×d, this is
further equivalent to checking that (after passing to an algebraic closure of k) the forms in
(2.6) have no common zeros on Seg. This follows from [ES09, Proposition 5.2], where it is
shown that in fact the forms

∑

|a|=ℓ

Ua, with 0 ≤ ℓ ≤ dn,

have no common zeroes on Seg. �

Proof of Theorem 2.3. Since Bd,n is normal and finite over k[Yd,n] by Proposition 2.7, it
suffices to show that the inclusion is birational, that is, the function field F = k(Yd,n) is
equal to the fraction field Frac(Bd,n). We let K = Frac(Ad,n) and observe that Sd acts
faithfully on K, hence Frac(Bd,n) = KSd satisfies

[K : Frac(Bd,n)] = d!.

Since F ⊆ Frac(Bd,n), in order to prove equality it suffices to check that [K : F ] ≤ d!, which
we do next. If we let

t =
d∏

i=1

u
(i)
0 , and v

(i)
j =

u
(i)
j

u
(i)
0

for 1 ≤ i ≤ d, 1 ≤ j ≤ n,

then K = k(t, v
(i)
j ) is a field of rational functions in dn + 1 independent variables. We note

that t = u0 = U0 ∈ k[Yd,n], and let Va = Ua/U0, so that F = k(t, Va). After dividing (2.4)
by t, we get that Va are the coefficients in the expansion

(2.8)
d∏

i=1

(
x0 +

n∑

j=1

v
(i)
j · xj

)
.

Observe that

V(1k ,0d−k) = ek(v
(1)
1 , . . . , v

(d)
1 ), 0 ≤ k ≤ d,

are the elementary symmetric polynomials in v
(1)
1 , . . . , v

(d)
1 , so for n = 1 we have F = KSd

by the fundamental theorem of symmetric polynomials. If n ≥ 2 then we consider the
intermediate extension F ⊆ E ⊆ K defined by

E = F
(
v
(1)
1 , . . . , v

(d)
1

)
,

and note that since F contains all ek(v
(1)
1 , . . . , v

(d)
1 ), we must have [E : F ] ≤ d!. To finish

the proof, we will show that E = K, or equivalently, that each v
(i)
j ∈ E when j ≥ 2. We

consider the elements of E defined by

e
(i)
k = ek(v

(1)
1 , . . . , v̂

(i)
1 , . . . , v

(d)
1 ) for 1 ≤ i ≤ d, 0 ≤ k ≤ d− 1,

where ek denotes an elementary symmetric polynomial, and •̂ denotes a missing term. We

consider the matrix M whose entry in row k + 1 and column i is e
(i)
k . If we fix j ≥ 2 and
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consider the coefficients of xjx
d−1
0 , xjx

d−2
0 x1, . . . , xjx

d−1
1 in (2.8), then we obtain an identity

M ·




v
(1)
j

v
(2)
j
...

v
(d)
j


 =




V(j,0d−1)

V(j,1,0d−2)
...

V(j,1d−1)


 ∈ F d ⊆ Ed.

Since M has entries in E, in order to prove that v
(i)
j ∈ E it suffices to show that det(M) 6= 0.

This follows from the fact that det(M) is a homogeneous polynomial in v
(i)
j of degree

(
d

2

)
,

and the coefficient of the term
(
v
(1)
1

)d−1 (
v
(2)
1

)d−2

· · ·
(
v
(d−1)
1

)

is equal to one (this term arises in a unique way from expanding the product of the entries
on the main diagonal of M). �

Remark 2.9. The polynomials Va in the proof of Theorem 2.3 are the elementary multi-

symmetric polynomials in the d sets of variables v
(i)
• , i = 1, . . . , d. In characteristic zero,

they generate the algebra of multi-symmetric polynomials k[v
(i)
j ]Sd (see [Sch52], [Noe15],

[Mac60, Section II, Chapter I], [Wey39, Chapter II, Section A.3]), but this is no longer the
case in positive characteristic [Nag55, Nee91, Dal99, Bri04, Ryd07]. This was used to show
that the projective Chow variety Proj(k[Yd,n]) is normal in characteristic zero, and that it
usually fails to be normal in positive characteristic [Bri93,Nee91]. �

We can now write down an exact sequence

0 −→ Jd,n −→ Rd,n

ϕd,n

−−→ Bd,n −→ Cd,n → 0,

where Cd,n = Bd,n/k[Yd,n], and ϕd,n is the map µ♯
d,n from (2.1c). Remark 2.9 implies that

Cd,n has finite length in characteristic zero, but in general not in positive characteristic, and
it would be interesting to investigate the module Cd,n further. The degree m component of
the map ϕd,n is

ϕd,n,m : Symm(DdU) → Dd(Symm U),

and is usually referred to as the Foulkes–Howe map, or the Hermite–Hadamard–Howe

map (see also [How87] and the survey [Lan15]). The condition that Cd,n has finite length is
equivalent to the surjectivity of ϕd,n,m for m≫ 0. It remains an open problem to determine
m0(d, n), the smallest value for which ϕd,n,m is surjective when m ≥ m0(d, n), although an
effective bound in characteristic zero was found by Brion [Bri97]. Another question that we
don’t know the answer to is whether Bd,n is Cohen–Macaulay in positive characteristic (in
characteristic zero, Bd,n is a ring of invariants for the reductive group Sd ⋉ T , hence it has
in fact rational singularities by a theorem of Boutot [Bou87]). We will return to discussing
more characteristic zero examples regarding the defining equations of Yd,n in Section 4.

One important motivation for the study of the maps ϕd,n,m comes from the following.

Conjecture 2.10 ([Fou50]). If char(k) = 0 then for any d ≥ m the GL(U)-representation
Symm(Symd U) is isomorphic to a subrepresentation of Symd(Symm U).

Indeed, in [How87, Section 2] suggests that one could try to prove Conjecture 2.10 by
showing that ϕd,n,m is injective when d ≥ m, and surjective when d ≤ m. Equivalently, this
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would mean that m0(d, n) = d. When n = 1 this statement is true, and it is a manifes-
tation of Hermite reciprocity. The approach fails however for a general n, as Müller and
Neunhöffer [MN05] compute that the map ϕ5,5,5 is not an isomorphism. Despite the setback,
Conjecture 2.10 remains open in general, and there is strong evidence to support it:

• as explained in [CIM17], the conjecture is true when m ≤ 5;
• [MN05] verifies computationally the cases m ≤ 4, d ≤ 14, and m+ d ≤ 17, d ≤ 12;
• [Bri93] proves that the conjecture is true asymptotically (for d≫ m).

3. Cohen–Macaulay modules supported on Yd,n

Throughout this section we assume that k is algebraically closed with char(k) = 0, and
our goal is to study modules of covariants for the Sd-action on Ad,n. In this setting, divided
powers are isomorphic to symmetric powers, so we will ignore the distinction. We write
A = Ad,n, B = Bd,n, and recall that B = ASd .

We also recall from [FH91, Section 4.2] that the irreducible Sd-representations are indexed
by partitions λ of size |λ| = d. We write Vλ for the irreducible corresponding to λ, with the
convention that V(d) is the trivial representation, while V(1d) is the sign representation. We
write Sλ for the Schur functor associated to λ (see [Wey03, §2] for basics on Schur functors,
noting that Sλ is denoted there by Lλ† , where † denotes the transpose partition), and we

have S(d)U = Symd U , S(1d) =
∧d U . By Schur-Weyl duality [FH91, Exercise 6.30] we have

a decomposition

(3.1a) A =
⊕

|λ|=d

Mλ ⊗ Vλ,

where

(3.1b) Mλ = HomSd
(Vλ, A) =

⊕

m≥0

Sλ(Sym
m U)

is the module of λ-covariants for the Sd-action on A. Note that B =M(d), and since A is
Cohen–Macaulay, finite and torsion-free over B, each of the direct summands Mλ of A is a
maximal Cohen–Macaulay (MCM) B-module.

We write R = Rd,n, and using the natural maps R ։ k[Yd,n] ⊆ Bd,n, we can think of each
Mλ as a Cohen–Macaulay R-module supported on Yd,n. The projective dimension of each
Mλ (as an R-module) is then given by the codimension of Yd,n in Xd,n:

(3.2) pdimR(Mλ) =

(
d+ n

n

)
− dn− 1.

We propose the following problem.

Problem 3.3. Describe the minimal free resolution of Mλ as an R-module.

Observe that since Sd acts trivially on R, Problem 3.3 is equivalent to understanding the
Sd-equivariant resolution F• of A as an R-module. We then get that HomSd

(Vλ, F•) is the
minimal resolution of Mλ, and in particular

TorRi (Mλ,k) = HomSd

(
Vλ,Tor

R
i (A,k)

)
for all i.

The algebra A is not only Cohen–Macaulay, but also Gorenstein: using the identification of
A with the homogeneous coordinate ring of the Segre variety Seg = (Pn)×d (wherePn denotes
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Proj(Sym•(U))) with embedding line bundle L = O(1, . . . , 1), then we have a canonical
identification of the dualizing module of A as

ωA =
⊕

r∈Z

H0 (Seg, ωSeg ⊗ Lr)

= H0
(
Seg, ωSeg ⊗Ln+1

)
⊗ A

= Hdn
(
Seg,L−n−1

)∗
⊗A

=
(
Hn (P,OP(−n− 1))⊗d

)∗
⊗ A,

where the last equality comes from the Künneth formula. Since the cup product in coho-
mology is graded commutative (that is, y ∪ x = (−1)|x|·|y|x∪ y), it follows that for the above

identification, Sd acts trivially on Hn (P,OP(−n− 1))⊗d when n is even, and it acts via

the sign representation when n is odd. If we write det(W ) =
∧N W for the determinant

of an N -dimensional representation W , then we have Hn (P,OP(−n− 1)) = det(U∗). We
therefore get an Sd ×GL(U)-equivariant identification

(3.4) ωA =

{
det(U)⊗d ⊗ A for n even,

det(U)⊗d ⊗ V(1d) ⊗A for n odd.

The dualizing module for R is canonically identified as

ωR = det(Symd U)⊗ R,

and since R is a regular ring, we have

(3.5) ωA = ExtcR(A, ωR), where c = dim(R)− dim(A) =

(
d+ n

n

)
− dn− 1.

More generally, we have that ExtcR(−, ωR) defines an auto-equivalence (duality) on the cat-
egory of Cohen–Macaulay R-modules of codimension c, and we write

M∨ = ExtcR(M,ωR).

We get the following description of duality for the modules of covariants.

Proposition 3.6. If n is even then M∨
λ ≃ Mλ as R-modules (we say that Mλ is self-dual).

If n is odd then M∨
λ ≃Mλ†, where λ† denotes the transpose partition to λ.

Proof. If we apply the duality functor to (3.1a) (keeping track of the Sd-action) we get

(3.6a)
⊕

|λ|=d

M∨
λ ⊗ Vλ = ωA.

When n is even, we have ωA ≃ A as Sd-equivariant R-modules, hence M∨
λ ≃ Mλ for

all λ by comparing (3.1a) with (3.6a). When n is odd, we have ωA ≃ V(1d) ⊗ A as Sd-
equivariant R-modules, hence M∨

λ ≃ Mλ† follows from (3.1a), (3.6a), and the isomorphisms
Vλ ≃ Vλ† ⊗ V(1d). �

By specializing the result above to the case λ = (d) we get the following.

Corollary 3.7. If n is even then B is a Gorenstein algebra.
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As a partial answer to Problem 3.3 we consider the shape of the minimal free resolution of
Mλ: we noted the formula for the projective dimension in (3.2), and our next goal is to give a
bound on the Castelnuovo–Mumford regularity of Mλ. Recall that for a graded R-module
M we have

reg(M) = max{r : TorRi (M,k)i+r 6= 0 for some i}

= max{r : ExtjR(M,k)−j−r 6= 0 for some j}

When M is Cohen–Macaulay of codimension c, it suffices to consider i = j = c in the above
formula. In particular, we have that reg(M) = r if and only if

(3.8) ExtcR(M,k)−c−r 6= 0 and ExtcR(M,k)j = 0 for j < −c− r.

We show the following.

Theorem 3.9. We have that

reg(A) = (d− 1)n,

and therefore reg(Mλ) ≤ (d − 1)n for all λ. If n is even then reg(B) = reg(A), while for n
odd we have reg(B) < reg(A).

Proof. Let N =
(
n+d

d

)
. Using the earlier descriptions of ωR, ωA, we get that as graded

modules

ωR ≃ R (−N) and ωA ≃ A(−n− 1).

Using the notation (3.5) we get

ExtcR(A,R) = ExtcR(A, ωR) (N) = ωA (N) = A (N − n− 1) .

It follows from (3.8) that r = reg(A) satisfies

−c− r = −N + n+ 1,

which simplifies to c = (d−1)n, as desired. The last statement follows from the isomorphism

ExtcR(B,R) = ExtcR(A,R)
Sd,

and (3.4), which shows that Sd acts trivially on the generator of minimal degree of ωA when
n is even, and it acts via the sign representation when n is odd. It follows that ExtcR(B,R)
and ExtcR(A,R) coincide in lowest degree precisely when n is even, concluding the proof. �

3.1. The case d = 2. When d = 2, we have as in Example 2.5 an identification between
Y2,n and the variety of (n + 1) × (n + 1) symmetric matrices of rank ≤ 2. It follows from
[Wey03, Theorem 6.3.1] that Y2,n is normal, hence B = k[Y2,n] = R/J2,n, and moreover we
know the minimal resolution of B as an R-module. In particular, [Wey03, Corollary 6.3.7]
shows that B is Gorenstein if and only if n is even, so the conclusion of Corollary 3.7 is
optimal in this case.

For the remaining module of covariants M(1,1) we have a decomposition

M(1,1) =
⊕

m≥0

2∧
(Symm U) =

⊕

a≥b≥0

S(2a+1,2b+1)U,

which is the module denoted Ms(12) in [Wey03, Example 6.6.11]. Note that by Proposi-
tion 3.6, M(1,1) = ωB is the canonical module of B when n is odd, while for n even M(1,1) is
self-dual (see also [Wey03, Corollary 5.1.5]).
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3.2. The case n = 1. We next assume that dimU = 2 = n + 1, in which case Yd,1 = Xd,1,
since every binary form decomposes as a product of linear factors. This shows that R = B,
and if we apply (3.2) then it follows that each Mλ is a free B-module. Our next goal is to
give an explicit equivariant decomposition of each of the modules Mλ, or equivalently, for
the space of minimal generators of Mλ as a B-module. To do so, we first introduce some
combinatorial notation.

Every polynomial representation L of GL(U) of degree k decomposes as a direct sum of
eigenspaces relative to the action of the maximal torus (k∗)2:

L =
⊕

i+j=k

Li,j, where t · ℓ = ti1t
j
2ℓ for t = (t1, t2) ∈ (k∗)2 and ℓ ∈ Li,j .

We define the character of L to be

ch(L) =
k∑

i=0

dim(Li,k−i) · q
i ∈ Z[q]

and note that the degree of L together with its character completely determines L as a
GL(U)-representation. We have for instance

ch(Symm U) = 1 + q + · · ·+ qm =: [m+ 1]q,

which is called a q-number. For a finitely generated gradedGL(U)-equivariant R-moduleM ,
we define its equivariant Hilbert series to be

HM(t) =
∑

m∈Z

ch(Mm) · t
m.

For instance, the equivariant Hilbert series of A and B are

(3.10) HA(t) =
∑

m≥0

([m+ 1]q)
d · tm, HB(t) =

∑

m≥0

hd(1, q, . . . , q
m) · tm,

where hd(x0, . . . , xm) is the d-th complete symmetric polynomial (the sum of all degree d

monomials in the xi). We define q-factorials [m]q! and q-binomial coefficients

[
m
k

]

q

by

[m]q! = [m]q[m− 1]q · · · [1]q

[
m
k

]

q

=
[m]q!

[k]q![m− k]q!
.

It follows from [Mac15, Section I.3, Example 1] that

hd(1, q, . . . , q
m) =

[
m+ d
d

]

q

,

which combined with [Mac15, Section I.2, Example 3] and (3.10) shows that

HB(t) =
1

(1− t)(1− qt) · · · (1− qdt)
.

To describe HA(t) as a rational function, we need more notation: given a permutation
σ ∈ Sd, σ has a descent at i if σ(i) > σ(i + 1). We let des(σ) denote the number of
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descents, and we let maj(σ) (the major index) be the sum of the descents. It follows from
[Car75, Theorem 1] that

(3.11) HA(t) =

∑
σ∈Sd

tdes(σ)qmaj(σ)

(1− t)(1− qt) · · · (1− qdt)
.

Since A is free over B, the quotient

HA(t)

HB(t)
=
∑

σ∈Sd

tdes(σ)qmaj(σ)

is the Hilbert series for the minimal generators for A as a B-module. Notice that the
maximal number of descents for a permutation σ ∈ Sd is (d− 1), which is compatible with
the conclusion of Theorem 3.9.

Example 3.12. For d = 3, the invariants des(σ),maj(σ) for σ ∈ S3 are as follows:

σ 123 213 312 132 231 321
des(σ) 0 1 1 1 1 2
maj(σ) 0 1 1 2 2 3

We get that
HA(t)

HB(t)
= 1 + t(2q + 2q2) + t2q3.

Since the generators of A in degree i are polynomial GL(U)-representations of degree 3i, we
deduce:

TorB0 (A,k)0 ≃ k, TorB0 (A,k)1 ≃ (S(2,1)U)
⊕2, TorB0 (A,k)2 ≃ S(3,3)U,

and in fact the groups above are the generators of M(3), M
⊕2
(2,1) and M(1,1,1) respectively. �

To describe the generators of each Mλ we need a refinement of (3.11). It will be useful
to picture each partition λ by its Young diagram, consisting of left justified rows of boxes,
with λi boxes in row i. For instance, λ = (5, 2, 1) has Young diagram

For |λ| = d, a standard Young tableau T of shape λ is a filling of the Young diagram of λ
with the numbers 1, . . . , d (each appearing once), which is increasing along both rows and
columns. An example for d = 8 and λ = (5, 2, 1) is the tableau

(3.13)
1 3 5 7 8
2 6
4

We let SYT(λ) denote the set of standard Young tableaux of shape λ, and recall that they
can be used to index a basis of irreducible Sd-representation Vλ. We set

fλ := |SYT(λ)| = dim(Vλ),

and note that (3.1a) implies

A =
⊕

|λ|=d

M⊕fλ
λ .
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Given a standard Young tableau T , we say T has a descent at i if i+1 appears in a lower
row than i. We define des(T ) to be the number of descents of T and maj(T ) to be the sum
of descents of T . For T as in (3.13), we have descents at 1, 3, 5, hence

des(T ) = 3 and maj(T ) = 9.

The RSK algorithm [Sta99, §7.11] gives a bijection σ 7→ (P (σ), Q(σ)) between Sd and pairs
of standard Young tableaux of the same shape (and of size d), with the property that σ and
Q(σ) have the same set of descents [Sta99, Lemma 7.23.1]. In particular, this implies that

∑

σ∈Sd

tdes(σ)qmaj(σ) =
∑

|λ|=d

fλ
∑

T∈SYT(λ)

tdes(T )qmaj(T ).

We will show that the decomposition above is compatible with (3.1a), reflecting the distri-
bution of the generators of A among the generators of the summands Mλ. In the next result,
we let sλ(x1, . . . , xk) denote the Schur polynomial indexed by λ [Sta99, §7.10], which is the
character of the Schur functor Sλ(C

k).

Proposition 3.14. Let λ be a partition of d. We have

HMλ
(t) =

∑

m≥0

sλ(1, q, . . . , q
m)tm =

∑
T∈SYT(λ) t

des(T )qmaj(T )

(1− t)(1− qt) · · · (1− qdt)
.

Proof. The first equality follows from (3.1b), so we only need to verify the second one. By
[Sta99, Proposition 7.19.12], we have

sλ(1, q, . . . , q
m) =

∑

T∈SYT(λ)

[
m− des(T ) + d

d

]

q

qmaj(T ).

If we sum over all m ≥ 0 then we get
∑

m≥0

sλ(1, q, . . . , q
m)tm =

∑

T∈SYT(λ)

qmaj(T )
∑

m≥0

[
m− des(T ) + d

d

]

q

tm

=
∑

T∈SYT(λ)

qmaj(T )
∑

m≥0

[
m+ d
d

]

q

tm+des(T )

=
∑

T∈SYT(λ)

qmaj(T ) tdes(T )

(1− t)(1− qt) · · · (1− qdt)
,

which proves the result. �

As a consequence, we get the following description of the minimal generators of Mλ.

Corollary 3.15. As a B-module, Mλ has one generator for every standard Young tableau
T of shape λ, and the generator corresponding to T lies in degree des(T ). Furthermore,

ch
(
TorB0 (Mλ,k)i

)
=

∑

T∈SYT(λ)
des(T )=i

qmaj(T ).

Expressions such as the one in Corollary 3.15 have been widely studied in combinatorics
(see for instance [KR86,GOS92,CEKS13,Kei19,GZ20]), but this is the first time we encoun-
tered them in an invariant theoretic setting.
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4. Equations of Chow variety in characteristic zero

In this section we continue to assume that k is algebraically closed of characteristic zero.
We will briefly discuss some generalities regarding equations for Chow varieties, and then
proceed with a number of examples.

4.1. Brill’s equations. Brill’s equations were introduced originally in [Bri93, Bri98] (see
also the exposition by Gordan [Gor94]) and then described in [GKZ08, §4.2]. These are
equations of degree d+1 which define Yd,n set-theoretically and span a subrepresentation of

Symd U ⊗ Symd U ⊗ Symd(d−1) U . In fact, one has a more precise result of Guan [Gua18].

Proposition 4.1 (Guan). Suppose dimU ≥ 3 and d ≥ 2. The GL(U)-module given by the
span of Brill’s equations has the following decomposition into irreducible representations:

(a) S(7,3,2)U for d = 3.

(b)
⊕d

j=2 S(d2−j,d,j)U for d 6= 3.

Let Ld,n denote the ideal generated by Brill’s equations. It is an interesting question to
compare the ideals Ld,n and Jd,n. For a general pair (d, n) these ideals are not equal. To
see this, let Dd,n,r denote the subvariety of symmetric tensors of degree d in n+ 1 variables,
which have subspace rank ≤ r, that is, after a change of basis in U , they can be rewritten
using at most r variables. There is a natural set of equations vanishing on Dd,n,r consisting
of (r + 1)× (r + 1) minors of a matrix of the form

ψ : U ⊗ Rd,n(−1) → Symd−1 U∗ ⊗Rd,n.

We let Id,n,r+1 denote the ideal generated by the (r+1)× (r+1) minors of ψ. This ideal is
non-zero for 1 ≤ r ≤ n: see [Wey03, §7.2], particularly Corollary 7.2.3, for more information
on such ideals. The varieties Dd,n,r and their defining equations were analyzed in [Por96]. It
is clear that Yd,n ⊂ Dd,n,d, since the expression f = ℓ1ℓ2 · · · ℓd shows that f can be written
using at most d variables up to a change of basis.

Proposition 4.2. For n ≥ d ≥ 3, the ideals Ld,n and Jd,n are different.

Proof. Since Yd,n ⊂ Dd,n,d, we have Id,n,d+1 ⊆ Jd,n. By [Wey03, §7.2], the minors generating

Id,n,d+1 span a subrepresentation of
∧d+1 U ⊗

∧d+1(Symd−1 U), which is non-zero since n ≥
d. By Pieri’s formula [Wey03, Corollary 2.3.5], if SλU appears in Symd U ⊗ Symd U ⊗

Symd(d−1) U , then ℓ(λ) ≤ 3. However, if SλU appears in
∧d+1 U ⊗

∧d+1(Symd−1 U), then
ℓ(λ) ≥ d+ 1 > 3, hence Id,n,d+1 6⊆ Ld,n (since both ideals are generated in degree d+ 1). �

As noted in Section 3.1, when d = 2 we have that Y2,n is the space of rank ≤ 2 symmetric
matrices, hence the ideal J2,n is generated by the 3×3 minors of the symmetric matrix. The
first interesting case is therefore d = 3, which we consider next.

4.2. The case d = 3.

Proposition 4.3. If d = 3 then L3,n + I3,n,3 = J3,n.

Proof. It suffices to check that L3,n and J3,n are equal modulo I3,n,3. To do that, we use
the fact (see [Wey03, Corollary 7.2.3]) that I3,n,3 consists of all subrepresentations of R3,n

that are isomorphic to SλU with ℓ(λ) ≥ 4. Hence every Schur functor SλU that appears in
R3,n/I3,n,3 has ℓ(λ) ≤ 3, so that equality can be checked when dimU = 3. This case follows
from Corollary 4.6 below. �
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Remark 4.4. For general d, the argument in the previous proof tells us that to understand
Jd,n, we can work modulo Id,n,d, and then it suffices to consider the case n = d. �

4.2.1. Case of d = 3, n = 2. We now deal with the case d = 3, n = 2. We denote
R := R3,2 = Sym(Sym3 U), with dimU = 3. We write the generic cubic form as

f(x, y, z) =
∑

α,β,γ

aαβγx
αyβzγ .

We can compute the minimal free resolution of the R-module B3,2.

Example 4.5. The equivariant minimal free resolution of the algebra B3,2 considered as an
R-module has the form

0 →
S5,5,5U ⊗ R(−5)

⊕
S7,7,7U ⊗ R(−7)

d3−→ S5,5,2U ⊗ R(−4)
d2−→ S5,2,2U ⊗ R(−3)

d1−→
R
⊕

S2,2,2U ⊗ R(−2)
.

The map d2 is defined uniquely up to a non-zero scalar by the equivariance condition. The
map d1 has the linear component that is just a vector of coefficients aαβγ and the cubic
component which consists of coefficients of the Hessian covariant

H(f(x, y, z)) = det




∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂z
∂2f

∂x∂y

∂2f

∂y2
∂2f

∂y∂z
∂2f

∂x∂z

∂2f

∂y∂z

∂2f

∂z2


 .

There are two non-zero scalars involved, but they both need to be non-zero, so up to a
change of basis in S2,2,2U ⊗ R(−2)⊕ R the choice is unique.

The easiest way to deal with this is to exhibit the matrix of d2 explicitly. We identify
S5,2,2U with (detU)⊗2⊗Sym3 U and S5,5,2U with (detU)⊗5⊗Sym3 U∗. we get the following
skew-symmetric matrix for d2:



0 0 0 a003 0 0 −3a012 0 3a021 −a030
0 0 −3a003 0 0 6a012 3a102 −3a021 −6a111 3a120
0 3a003 0 0 −3a012 −6a102 0 6a111 3a201 −3a210

−a003 0 0 0 3a102 0 0 −3a201 0 a300
0 0 3a012 −3a102 0 −6a021 6a111 3a030 −3a120 0
0 −6a012 6a102 0 6a021 0 −6a201 −6a120 6a210 0

3a012 −3a102 0 0 −6a111 6a201 0 3a210 −3a300 0
0 3a021 −6a111 3a201 −3a030 6a120 −3a210 0 0 0

−3a021 6a111 −3a201 0 3a120 −6a210 3a300 0 0 0
a030 −3a120 3a210 −a300 0 0 0 0 0 0




.

We also know the form of d1 and the kernel of the transpose which is d3 is its transpose since
the matrix of d2 is skew-symmetric.

To see this resolution resolves the algebra B3,3 note that the square of the extra generator
S2,2,2U is in the image of the R-submodule generated by the unit generator S0,0,0U , so it
can be viewed as the square root of the Aronhold invariant S4,4,4U ⊂ Sym4(Sym3 U). See
[Ott09] for the explicit description of an Aronhold invariant. Note that in order to prove it
is non-zero, he evaluates it on the polynomial xyz, which shows that this invariant is not in
the ideal J3,3.
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Finally, one can prove acyclicity by hand using the Buchsbaum–Eisenbud acyclicity crite-
rion. More precisely, the rank conditions are obvious. The 2 × 2 minors of d1 generate the
ideal of depth 3 as set-theoretically they give the Chow variety. Indeed, one needs to check
that the form f(x, y, z) is proportional to its Hessian H(f(x, y, z)) precisely when f(x, y, z)
is in the Chow variety. This fact is attributed to Aronhold [Aro50]. One way to see it
geometrically is to observe that the common zeros of f(x, y, z) and its Hessian are inflection
points of the curve C given by f(x, y, z) so if f(x, y, z) and H(f(x, y, z)) are proportional,
then every point of C is its inflection point, so C is a union of lines.

It remains to check that maximal nonvanishing minors of d2 generate an ideal of depth 2.
But they also give set-theoretically the Chow variety. This can also be checked directly on
orbit representatives, as orbits of ternary cubics are known. �

We continue with drawing consequences from Theorem 4.5.

Corollary 4.6. (a) The module C3,2 is isomorphic to (detU)⊗2(−2).
(b) The ideal J3,2 is generated by the Brill equations, i.e., the representation S(7,3,2)U in

degree 4.

Proof. The first statement follows from the fact that the third graded component of ϕ3,2 is
an isomorphism. This can be done by calculating the value of ϕ3,2 on highest weight vectors.
Indeed, it is well known that (or by using software such as LiE [LiE])

Sym3(Sym3 U) = S9U ⊕ S7,2U ⊕ S6,3U ⊕ S5,2,2U ⊕ S4,4,1U.

Since for dim(U) = 2 the analogous map ϕ3,1 is an isomorphism, we just need to show that
ϕ3,2 applied to the highest weight vectors of S5,2,2U and of S4,4,1U are not zero. We already
mentioned that S5,2,2U is a Hessian covariant. The highest weight vector of S4,4,1U is the
determinant

det



6a300 2a210 2a120
2a210 2a120 6a030
2a201 a111 2a021


 .

Using these formulas we can prove the result. To prove the second statement we notice that
the resolution of C3,2 is the Koszul complex tensored with (detU)⊗2. The mapping cone
of the map of complexes lifting the map B3,2 → C3,2 is a non-minimal free resolution of
the R-module R/J3,2. This proves that J3,2 is generated in degrees ≤ 4, more precisely by
a subrepresentation of S(5,5,2)U ⊕ S(7,3,2)U . Then it is enough to see that S(5,5,2)U (which

occurs with multiplicity 1 in Sym3(Sym3 U)) does not vanish on Y3,2. This is clear as when
evaluating Hessian on the product xyz we get a non-zero polynomial 2xyz. �

4.2.2. The case d = n = 3. Now we consider the case dim(U) = 4. We prove the following
result, even stronger than Proposition 4.2.

Corollary 4.7. In the case d = n = 3 the ideals J3,3 and L3,3 do not define the same
subscheme of Proj(R3,3), i.e., the saturations of J3,3 and L3,3 are not the same.

Proof. As discussed above, the ideal I3,3,3 is generated in degree 4 and the linear span of

its generators equals
∧4 U ⊗

∧4(Sym2 U) ⊂ Sym4(Sym3 U). Since
∧4(Sym2 U) contains

S(5,1,1,1)U , we can find a representation S(6,2,2,2)U in degree 4 in I3,3,3, and hence in J3,3. We
claim that this representation does not belong to the saturation of L3,4. By Proposition 4.1,
the ideal L3,4 is generated by S(7,3,2)U .



16 CLAUDIU RAICU, STEVEN V SAM, AND JERZY WEYMAN

Let v be a highest weight vector in S(6,2,2,2)U and let w be a highest weight vector in

Sym3 U . If S(6,2,2,2)U is in the saturation of L3,4, then vw
m ∈ L3,4 for m ≫ 0. But this is a

highest weight vector for S(6+3m,2,2,2)U . Since (6 + 3m, 2, 2, 2) does not contain the partition
(7, 3, 2), it cannot appear in any tensor product of the form S(7,3,2)U ⊗SλU as a consequence
of the Littlewood–Richardson rule [Wey03, Theorem 2.3.4], which proves the claim. �

4.3. The case d = 4, n = 2. Finally we collect together some known results about the
smallest case of degree d = 4. Let dimU = 3.

Proposition 4.8. (a) The 4th graded component of the map ϕ4,2

ϕ4,2,4 : Sym4(Sym4 U) → Sym4(Sym4 U)

is an isomorphism.
(b) The module C4,2 has only two graded components:

(C4,2)2 = S(4,2,2)U, (C4,2)3 = S(7,3,2)U.

(c) The Brill ideal L4,2 is generated by the representations

S(14,4,2)U ⊕ S(13,4,3)U ⊕ S(12,4,4)U.

(d) The Brill ideal L4,2 is not radical.

Proof. The first part follows from the computational verification from [MN05]. The second
part involves only calculations in degrees 2 and 3. In degree 2 the calculation is clear
since all partitions in Sym2(Sym4 U) have at most two parts so they already appear in the
dim(U) = 2 case. The calculation in degree 3 proceeds as follows. We calculate both domain
and codomain using the computer program LiE [LiE]. We see that the only questionable
representations are S(8,2,2)U , S(7,4,1)U and S(6,4,2)U . We will describe the highest weight
vectors corresponding to these representations. Let us denote our form as

f(x, y, z) =
∑

α+β+γ=4

aαβγx
αyβzγ

Let us construct the highest weight vectors in our three representations.
The covariant S(8,2,2)U is the Hessian covariant H(f(x, y, z)) of the form f(x, y, z), so the

highest weight vector is just the coefficient of x6 of the Hessian. The highest weight vector
from S(7,4,1)U can be constructed as follows. The embedding of S(7,4,1)U into Sym3(Sym4 U)

is a composition of the embedding of S(6,3,0)U into
∧3(Sym3 U) tensored with

∧3 U composed
with the map

3∧
U ⊗

3∧
(Sym3 U) → Sym3(Sym4 U)

embedding by 3× 3 minors into Sym3(U ⊗ Sym3 U) and then multiplying U ⊗ Sym3 U into
Sym4 U . The highest weight vector S(6,3,0)U in

∧3(Sym3 U) is just e31∧e
2
1e2∧e1e

2
2. Combining

this information we get our highest weight vector. The highest weight vector of S(6,4,2)U is

constructed similarly, by tensoring the highest weight vector of S(4,2,0)U in Sym3(Sym2 U)

with
∧3 U twice.

Now it is not difficult to see that the map ϕ4,2,4 takes all three highest weight vectors to
nonzero elements.

The third part is a special case of Proposition 4.1. For the last statement, see the numerics
in [Bd1, §3]. �



ON SOME MODULES SUPPORTED IN THE CHOW VARIETY 17

4.4. The case d = 4, n = 3. Let us analyze this case. We have the following calculations
that can be done via computer programs.

Proposition 4.9. Let dimU = 4.

(1) The 4-th graded component of the map

ϕ4,3,4 : Sym4(Sym4 U) → Sym4(Sym4 U)

is surjective.
(2) The module C4,3 has only two graded components:

(C4,3)2 = S(4,2,2)U ⊕ S(2,2,2,2)U,

(C4,3)3 = S(7,3,2)U ⊕ S(5,4,2,1)U ⊕ S(6,2,2,2)U.

(3) The Brill ideal L4,3 is generated by the representations

S(14,4,2)U ⊕ S(13,4,3)U ⊕ S(12,4,4)U.

(4) The ideal L4,3 + I4,3,4 is not radical.

Proof. The first part follows from the computational verification from [MN05]. The second
part involves only calculations in degrees 2 and 3. In degree 2 the calculation is clear since
all partitions appearing in Sym2(Sym4 U) already appear for dim(U) = 2. In degree 3 we
calculate both domain and codomain by the computer program LiE [LiE]. We see that in
Sym4(Sym3 U) we get only either partitions with 3 parts, or the partitions that do not occur
in Sym3(Sym4 U). So the calculation follows from the d = 4, n = 2 case. The third is a
special case is part of Proposition 4.1. The last statement is part of Proposition 4.3. �

5. Hermite action

We return to the general situation of a vector space U of arbitrary dimension n + 1 over
an arbitrary algebraically closed field k. Consider the action of Sd on Ad,n, which recall is a
finitely generated module over Bd,n =

⊕
m≥0D

d(Symm U) (which itself is a finitely generated

module over Sym(DdU)). We have submodules

M(U)i,d−i =
⊕

m≥0

i∧
(Symm U)⊗ (Symm U)⊗d−i

of Ad,n which are again finitely generated Bd,n-modules. Multiplication by DdU is the com-
position of the following maps (where ∆ is comultiplication for divided powers)

DdU ⊗

i∧
(Symn U)⊗ (Symn U)⊗d−i ∆⊗1⊗1

−−−−→ DiU ⊗ U⊗d−i ⊗

i∧
(Symn U)⊗ (Symn U)⊗d−i

→
i∧
(U ⊗ Symn U)⊗ (Symn+1 U)⊗d−i

→

i∧
(Symn+1U)⊗ (Symn+1U)⊗d−i.

In particular, if R is a graded quotient ring of Sym(U), we get a finitely generated quotient
module

M(U,R)i,d−i =
⊕

n≥0

i∧
(Rn)⊗ R(d−i)n.
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Proposition 5.1. The following diagram commutes, where the top and bottom left hori-
zontal maps are the comultiplication map on the i-th exterior power, the middle left map is
the tensor product of the comultiplication map on the i-th divided power tensored with the
comultiplication map on the i-th exterior power, the right horizontal maps are multiplication
in R, the top vertical maps are divided power comultiplication, and the bottom vertical maps
are the components of the map described above:

DdU ⊗
∧i(Rn)⊗ R(d−i)n

//

��

DdU ⊗
∧i−1(Rn)

⊗Rn ⊗ R(d−i)n

//

��

DdU ⊗
∧i−1(Rn)⊗ R(d−i+1)n

��

DiU ⊗ U⊗d−i⊗∧i(Rn)⊗ R(d−i)n

//

��

Di−1U ⊗ U ⊗ U⊗d−i⊗∧i−1(Rn)⊗ Rn ⊗ R(d−i)n

//

��

Di−1U ⊗ U ⊗ U⊗d−i⊗∧i−1(Rn)⊗ R(d−i+1)n

��∧i(Rn+1)⊗R(d−i)(n+1)
//

∧i−1(Rn+1)⊗Rn+1

⊗R(d−i)(n+1)

//
∧i−1(Rn+1)⊗ R(d−i+1)(n+1)

Proof. The top left square commutes by coassociativity of comultiplication for divided pow-
ers. The top right square commutes since the compositions are tensor products of maps that
do not interact. The bottom two squares commute by definition of the action. �

Corollary 5.2. Let R be a graded quotient of Sym(U). Let R[n] be the nth Veronese subring
of R. Then for each i, d ∈ Z, ⊕

n≥0

Tor
Sym(Rn)
i (R[n],k)d

is a finitely generated Sym(DdU)-module which is supported on the Chow variety. In particu-
lar, the dimension of the Tor group is eventually a polynomial in n of degree ≤ (dimU−1)d.

The polynomiality statement generalizes [Yan14, Theorem 4], which was proved for coor-
dinate rings of smooth projective varieties in characteristic zero.

Proof. This is the homology of a Koszul complex, and the previous result shows that this
Koszul complex is compatible with the Sym(DdU)-module structure. �

Remark 5.3. There are a number of different ways that this result can be generalized
without much extra effort.

(1) Let M be a finitely generated graded R-module. We can replace R[n] by M [n].
Furthermore, if m is a fixed integer, we can replace M [n] by the shifted module⊕

r≥0Mrn+m.
(2) We can replace k by some other module whose resolution is linear and given by Schur

functors in some fixed way. For example, for fixed e, we can replace it by the quotient
of Sym(Rn) by the eth power of the maximal ideal. Then the exterior powers are
replaced by hook shapes (we might need characteristic 0 for this to work).

(3) We can work with multigraded rings. �

Remark 5.4. Let k be a field of characteristic 0 and take R = Sym(U). Then the module
above is a twisted commutative algebra over Sym(Dd) (see [SS12]). In fact, it’s automatically
finitely generated: every Schur functor Sλ that appears satisfies ℓ(λ) ≤ d, so all of the
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information can be detected with a vector space of dimension d, i.e., this twisted commutative
algebra is bounded [SS12, Proposition 9.1.6]. �

References

[Aro50] S. Aronhold, Zur Theorie der homogenen Functionen dritten Grades von drei Variabeln, J. Reine
Angew. Math. 39 (1850), 140–159 (German).

[Bou87] Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent.
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mutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr., vol. 2, Soc. Math.
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