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Abstract
The level of operational effectiveness (LOE) is a color-coded performance metric that is monitored by the cybersecurity
operations center (CSOC). It is determined using the average time to analyze alerts (AvgTTA) in every hour of shift operation,
where the time to analyze an alert (TTA) is the sum of waiting time in the queue and investigation time by the analysts. Ideally,
the CSOCmanagers would set a predetermined baseline target for AvgTTA to be maintained for every hour of shift operation.
However, due to adverse events, an imbalance may exist if the alert arrival rate far exceeds the service rate, resulting in high
AvgTTA or low LOE. Upon exhausting all the analyst resources, the only option available to a CSOC manager is to discard
alerts for restoring the LOE of the CSOC. The paper proposes two strategies: the value-based strategy is developed using a
static optimization model while the reinforcement learning-based strategy is developed using a dynamic optimization model.
The paper compares various strategies for discarding alerts and measures the following desiderata for comparing them: (1)
minimize the number of alerts discarded, (2) ensure highest utilization of analysts, (3) determine the optimal time at which the
alerts must be discarded in a shift, and (4) maintain the best possible LOE closest to the baseline target LOE. Results indicate
that, overall, the RL strategy is the best performer among all strategies that guarantees the AvgTTA below the threshold value
in every hour of shift operation while discarding the fewest number of alerts under adverse events.

Keywords Reinforcement learning · Discarding alerts · Level of operational effectiveness · Alert analysis · Cybersecurity
operations center

1 Introduction

In recent years, the alert analysis process at a cyber security
operations center (CSOC) has been thoroughly investigated
by the authors of this paper. For example, the scheduling of
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analysts at the CSOC is presented inGanesan et al. [10], [11].
Optimal clustering of sensors and their allocation to analysts
is studied in [23]. The fair allocation of CSOC resources
to clients is presented in [19]. In [20], an adaptive realloca-
tion model to balance workload among analysts is presented.
Understanding tradeoffs between throughput, quality, and
cost of alert analysis in a CSOC is published in [24]. More
recently, our research focused on the metric to measure the
level of operational effectiveness (LOE) of the CSOC, which
is presented in [22]. We have used this metric to make deci-
sions such as when and how many on-call analysts must be
added to regular analyst staff in order to maintain the LOE
of a CSOC [21]. One research case study that has not been
investigated in [21] is aboutmaintaining theLOE statuswhen
the CSOC is overwhelmed by a large number of alerts that
far exceeds the alert analysis capacity, and every possible
analyst resource and CSOC manager’s actions has already
been exhausted (even all on-call analysts are used). In this
situation, the LOE becomes extremely low and is said to
be in the red zone as explained below. No alternative exists
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in such conditions for the CSOC manager except to discard
alerts and return the CSOC to its normal operating condi-
tion. This paper is focused on developing a reinforcement
learning-based intelligent strategy to assist the CSOC man-
ager in discarding alerts, and comparing it with three other
discarding strategies. In what follows, a detailed background
and motivation for the research is presented.

Under normal operating conditions, a CSOC’s analyst
staffing level (defines the service rate) is designed for a cer-
tain level of alert arrival rate. However, alerts may arrive at
a much higher rate than the service rate at the CSOC due to
several adverse events. Such adverse events include an exter-
nal attack, lack of sufficient staffing due to absenteeism, or
other network events such as a temporary breakdown in com-
munication link between intrusion detection systems (IDSs)
and the CSOC. The consequence of high alert generation
rate above the service rate leads to a buildup in alert backlog,
which in turn reduces the LOE of the CSOC. The LOE of a
CSOC is a color-coded representation of status of the CSOC
as shown in Fig. 1 [22]. The LOE status is derived using
the average time to analyze alerts in an hour of operation
(AvgTTA), which has both a baseline value and a threshold
value as shown in the figure.

There are a few action options that a CSOC manager can
deploy when LOE deteriorates. Typically, analysts spend a
portion of the time investigating alerts, and the remainder
on activities such as report writing, training, and updating
signatures for the IDSs [2,7,9,21]. In one of the options, a
CSOCmanager can divert some of the above remainder time
toward alert investigation. Another more expensive option is
to employ on-call analystswho can support the regularCSOC
analyst staff in alert investigation. However, on-call analysts
are a limited resource. Shah et al. [21] provide a methodol-
ogy to deploy the above on-call analysts over a 14-day work
cycle (schedule) under the uncertainties of adverse events.
The paper describes when and how many on-call analysts to
call depending on current backlog of alerts, time left in the
14-day work cycle, and the amount of on-call resources that
are still available in the 14-day work cycle. The method has
been proven to be effective when compared to other greedy
and rule-based options in maintaining LOE status if and only
if the number of additional alerts generated due to adverse
events is bounded and sufficient on-call analysts are avail-
able. However, none of the above prior work can deal with
alert backlog due to adverse events as soon as the CSOC runs
out of the limited additional resources and all of CSOCman-
ager’s action options have been exhausted. The consequence
is that the LOEwill deteriorate and reach into the red zone as
shown in Fig. 1. Once in the red zone, the LOE will continue
to remain in the zone and further deteriorate until the start of
the next 14-day work cycle, when additional resources may
be made available. The above cascading effect of transfer-
ring alert backlogs from one shift to another, and between

14-day work cycles can severely impact the overall perfor-
mance of the CSOC in the long run because the LOE could
have reached the red zone several times and stayed in there
for several hours of CSOC operation. This would mean that
the alerts would have waited for a long duration in the inves-
tigation queue, and potential malicious activities would have
continued to persist in an organization’s network, thereby
affecting its security posture.

The current option that is exercised by CSOC managers
to maintain LOE status and prevent being in the red zone is
to discard alerts periodically.1 With respect to which alerts
to discard, they use different strategies: They select alerts
that have waited the longest for investigation. If the alerts
are prioritized based on their criticality level, they can select
alerts that are not only oldest but have the lowest criticality
level also. Unfortunately, this is done in a reactive and ad
hoc manner. We assert that it is non-trivial to decide when,
how many, and which alerts to discard because there exists a
trade-off between the timing and number of alerts discarded
and the LOE obtained. Discarding too many alerts would
result in idling of analysts and the lack of analysis of those
discarded alerts. Similarly, discarding too few would result
in high alert backlogs that in time causes LOE deterioration.
This paper considers 12-hour shifts over a 14-daywork cycle;
the decision to discard alerts is made in every hour of shift
operation. The number of alerts we discard depends on LOE;
our goal is to keep LOE as close to the baseline value as
possible even under the uncertainty of future adverse events.

The above motivates the need for an intelligent strat-
egy for discarding alerts when additional resources have
been exhausted in the shift. The paper assumes that at the
beginning of each shift the backlog is observable; the work
schedule of regular analysts is static and is known prior to
the beginning of the 14-day work cycle. As explained ear-
lier, when analyst resources are exhausted in the shift, the
high alert backlog due to adverse events will likely cause
the LOE to reach and remain in the red zone. At this point,
intelligently discarding alerts is invoked, and it becomes an
important option for CSOC managers that is worthy of fur-
ther research. It should be noted that discarding alerts is an
action option that is independent of the amount of analyst
resources available in a shift. Instead, it is driven by the base-
line and threshold values of AvgTTA fromwhich LOE status
is ascertained.

The paper has the following desiderata. 1) minimize the
number of alerts discarded, 2) ensure highest utilization of
analysts, 3) determine the optimal time at which the alerts
must be discarded in a shift, and 4) maintain the best possi-
ble LOE closest to the baseline target LOE. The objective
of the paper is to compare four strategies for discarding

1 This observation is based on our numerous conversations with cyber-
security analysts and the CSOC managers.

123



Maintaining the level of operational... 639

alerts, including the design and evaluation of an intelli-
gent strategy. These strategies include 1) threshold-based
2) analyst resource utilization-based, 3) value-based (static
optimization), and4) reinforcement learning-based (dynamic
optimization) strategies. The first two strategies (threshold-
based and analyst resource utilization-based) are currently
being used by CSOCmanagers to bring the CSOC to normal
operating conditions. The threshold-based strategy discards
alerts when a certain threshold value is reached for the
AvgTTA. The utilization-based strategy ensures that ana-
lysts are fully utilized but does not consider maintaining the
AvgTTA below the threshold. In this work, we propose two
strategies (value-based and reinforcement learning-based)
using optimization techniques. While the former strategy is
developed using a static optimization model, the latter strat-
egy is developed using a dynamic optimization model. The
value-based strategy is myopic and this static strategy does
not consider future uncertainties while making decisions to
discard alerts. Attaining all of the aforementioned desiderata
requires sequential decision-making that takes into consid-
eration future uncertainties (adverse events) that may occur
at a CSOC. This uncertainty changes the state of the CSOC
environment, where the future dynamics of the system state
depend on the current state. The randomly evolving system
state and alert discarding decision-making can be formu-
lated as a Markov decision process (MDP). Reinforcement
learning (RL) is a solution method for this MDP. In an RL
approach, an autonomous agent prescribes (near-) optimal
actions by learning through experience over time. A reward
signal guides the agent in attaining its objective over the long
run. Results indicate that the RL strategy discards the lowest
number of alerts and determines the right timing to discard
alerts among all strategies when simulated with any number
of uncertain events during the 14-day work cycle.

The contributions of this research are as follows. It
presents two optimization models (value-based and RL-
based) to solve the problemof discarding alerts and compares
them with the ad hoc rule-based strategies utilized by the
CSOCs. The reward function in the RL-based strategy takes
into account multiple conflicting objectives of maintaining a
low AvgTTA value and a long alert queue length. Moreover,
this reward function is individualized to allowanorganization
to assign preferences among the objectives. This decision-
making framework has the capability to incorporate future
uncertainties into its decision-making, therefore, resulting in
the minimum number of alerts discarded. It also maintains
the LOE below the threshold set by the CSOC for every
shift operation. Other contributions include several meta-
principles that provide insights into alert backlog formation
and its impact on LOE, and decision-making to discard alerts
such that the desiderata given above are maintained.

The rest of the paper is organized as follows. Section 2
describes literature related to this work. In Sect. 3, the four

strategies investigated in this research are presented along
with their algorithms. Section 4 describes the experimental
setup comparing the above strategies. In Sect. 5, the results
and analysis of experiments are presented along with com-
putational complexity of the reinforcement learning-based
strategy. Meta-principles derived from the study are pre-
sented in the same section. Finally, in Sect. 6, conclusions of
the research are presented.

2 Related literature

Organizations rely on a unique combination of security per-
sonnel and technology to protect against cyber threats. Such
an entitywith defined goals, responsibilities, and processes is
identified by various names: a cybersecurity operations cen-
ter (CSOC or SOC), a computer security incident response
team (CSIRT), network operations center (NOC), network
and security operations center (NSOC), or a managed secu-
rity service provider (MSSP).Optimalmanagement ofCSOC
resources have been an active topic of interest by many
researchers ([13], [10], [6], [26]), and more recently by [22].
D’Amico and Whitley [6] studied the analytical process that
transforms data into security situation awareness by con-
ducting a cognitive task analysis to baseline the state of
the practice in the Department of Defense CSOCs. Sundara-
murthy et al. [27] studied the burnout of analysts using an
anthropological approach and proposed methods to improve
the CSOCs.

Alert analysis process at a CSOC is shown in Fig. 2 [10].
Sensors are clustered together based on types, or to uni-
formly balance the expected alert workload among them and
are then assigned to the analysts [23]. The sensor data are
processed through automated filters such as the intrusion
detection systems (IDSs) [18] or Secure Information and
Event Management (SIEM) systems [3], which use tech-
niques such as pattern recognition ( [5], [2]) or anomaly
detection [17] to identify suspicious activities. These sus-
picious activities, in the form of alerts, are then picked up
by the analysts for further investigation. The initial or first
level of investigation is a fast decision-making process [6],
where the analysts distinguish among the innocuous and sig-
nificant alerts. The number of alerts generated by the IDSs
is far more than the number of alerts that could be investi-
gated by the available analysts at a CSOC. Recently, Ganesan
et al. [10] have investigated optimal scheduling of analysts
to maximize alert investigations using genetic programming.
Furthermore, Ganesan et al. [11] proposed a dynamic model
using an agent to schedule on-call analysts to assist with
additional alert investigations during adverse events. The sig-
nificant alerts identified by the analysts during the initial
analysis are further investigated as a part of the secondary
level of investigation, which takes hours to days to complete
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Fig. 1 Color-coded level of
operational effectiveness status
[22]

Fig. 2 Alert analysis process [10]

investigation. Reports are written for the significant alerts,
which are identified as incidents [4].

Delays in initial alert investigation is a major security con-
cern for an organization as a malicious activity will remain
in the network for longer, while waiting for an analyst to
identify and mitigate it. Shah et al. [22] quantified the delays
in alert investigations and modeled the alert analysis process
at a CSOC as a M/D/c/FCFS queueing model. A queueing
metric that measures the average time an alert spends in the
CSOC system (AvgTTA) is used to indicate the performance
(LOE) of the CSOC. Furthermore, Shah et al. [21] proposed
a method to optimize this queueing metric (AvgTTA) by

allocating additional resources at a CSOC. However, with
a limited number of additional analyst resource available at
a CSOC during any given time period, a strategy that relies
only on the analyst resource will not be able to optimize the
performance of the CSOC in the event where the number
of alert investigations required is far more than the number
of alert investigations that could be performed. Integer pro-
gramming formulations are used to model CSOC processes
to take optimal actions in [9] and [24], whereas a stochastic
dynamic programming framework is used to model sequen-
tial decision-making processes under uncertainty in [11] and
[21].
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Reinforcement learning is a method for solving Markov
decision processes. It is a computational approach to learning
optimal actions from interactions with an environment [28].
A reinforcement learning agent is guided by the reward sig-
nal generated by the environment in response to the agent’s
action in a given state. The objective of the reinforcement
learning agent is to maximize the total reward over the
long run. Reinforcement learning approaches have produced
(near-) optimal policies for stochastic lot scheduling [15] and
job-shop scheduling [1] problems and have attained human-
level control in computer games [14].

To the best of the authors’ knowledge, there exists no
literature on taking corrective actions byoptimally discarding
alerts to improve the effectiveness of alert management at a
CSOC using a reinforcement learning approach.

3 Strategies for discarding alerts

The paper investigates four strategies for discarding alerts.
We describe them next.

3.1 Threshold-based strategy

In the threshold-based strategy, a corrective action of dis-
carding alerts is taken only when the AvgTTA crosses the
threshold value, which is pre-determined by the CSOC.Once
theAvgTTAcrosses into the red (unacceptable) zone, enough
number of alerts are discarded to bring the AvgTTA below
the threshold. It is to be noted that this is a myopic decision,
which is reactive and does not take into consideration any
variance in the AvgTTA value due to the underlying stochas-
tic queueing process and future adverse events.

3.2 Utilization-based strategy

The (analyst resource) utilization-based strategy takes into
account the utilization of the analyst resource for the entire
duration of the work-shift, i.e., during a work-shift, alerts
are accumulated until the capacity for alert investigation is
reached. This strategy does not take into consideration the
AvgTTA value during the work-shift and rather focuses on
maintaining the queue length as long as possible such that the
resources are fully utilized for the duration of the work-shift.
It is to be noted that at any given time t during a work-
shift, the number of alerts that could be investigated can be
calculated in a deterministic manner. Any additional alert on
top of this number at time t , which is added to this waiting-
for-investigation queue will result in removing the longest
waiting alert from this queue.This strategy ensuresmaximum
analyst utilization for the work-shift.

3.3 Value-based strategy: static optimizationmodel

Avalue-based static optimizationmodel observes theAvgTTA
and the alert queue length waiting for investigation at a
CSOC at any given time t and selects an optimal number
of alerts to discard. The corresponding backlog numbers for
the baseline and the threshold AvgTTA values, which are set
by the CSOC, are determined using simulation. There are
two functions, fa and fq , which are used to obtain the nor-
malized values of the AvgTTA and the alert queue length,
respectively. These functions are explained as follows. The
parameter at is given a value of 0, if the backlog number
corresponding to the AvgTTA is at or above the threshold
backlog number, and a value of 1, if the backlog number cor-
responding to theAvgTTA is at or below the baseline backlog
number. All other numerical values for the backlog number
are linearly normalized between 0 ≤ at ≤ 1. This normaliza-
tion function is called fa . The parameter qt is given a value
of 1, if the alert queue length at time t is greater than or equal
to the total number of alerts that could be investigated by the
total number of analysts between time t and t+1, and a value
of 0 if the alert queue length is 0. All other numerical values
for the queue length number are exponentially normalized
between 0 ≤ qt ≤ 1. This normalization function is called
fq . The goal is to keep the analyst utilization to themaximum
for the time between t and t + 1.

The objective of the value-based static optimizationmodel
is tomaximize the cumulative score of the above two normal-
izedvalues by selecting anoptimal number of alerts to discard
at each time-stamp. It is to be noted that this optimization
model is myopic and does not take future uncertainties into
consideration while making the decision to discard alerts.
The model parameters and mathematical formulation are
described next.

3.3.1 Index

– t is the time index, 1 ≤ t ≤ T .

3.3.2 Inputs

– bt is the number of alerts backlogged at time t .
– fa is the function that returns the normalized value of the

AvgTTA.
– fq is the function that returns the normalized value of the

alert queue length.

3.3.3 Decision variable

– xt is an integer variable indicating the number of alerts
to discard at time t .
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3.3.4 Mathematical model

The objective of the static model is to maximize the cumula-
tive score of the normalized values for the AvgTTA and the
alert queue length, ∀ t .

z = Max (at + qt ) (1)

Subject to the following constraints:

at = fa(bt − xt ), and (2)

qt = fq(bt − xt ) (3)

It is to be noted thatat andqt are calculated using functions
fa and fq , respectively.

3.3.5 Algorithm for the value-based static optimization
model

The algorithm for the value-based static optimization model
is presented in Algorithm 1.

Algorithm 1: Value-Based Static Optimization Algo-
rithm
Input: Number of alerts backlogged bt , function that returns the

normalized value of the AvgTTA fa , and function that
returns the normalized value of the alert queue length fq

Output: Total number of alerts to discard xt .
Step 1: Initiate the solution search for the objective of
maximizing the cumulative score of normalized values for the
AvgTTA and the alert queue length in the solver Max (at + qt )
Step 2a: Verify the following constraint within the solver
for each value of xt , do

check the constraints (Equations 2 and 3);
end
Step 2b: Perform optimality check within solver
if an optimal solution is found;
then

stop the solution search in the solver;
end
return Total number of alerts to discard xt .

Next, the dynamic optimization model is explained.

3.4 Reinforcement learning-based strategy:
dynamic optimizationmodel

The autonomous decision support tool for taking corrective
actions under adverse conditions to maintain the LOE of a
CSOC is built using the principles of stochastic dynamic
programming (SDP) and solved using reinforcement learn-
ing (RL). Figure 3 shows the dynamic optimization model
framework. We first present the simulation model, and then
explain the key elements of the SDP formulation and the RL
algorithm.

3.4.1 Simulation model

As shown in Fig. 3, the simulation model consists of four
components: (i) the CSOC system inputs, which include
system parameters and alert generation by the IDS, (ii) the
adverse events that affect the CSOC, (iii) the alert analy-
sis process, in which the work shift is simulated, and (iv)
the performance metric (AvgTTA) that gets monitored every
hour of shift operation. The alert analysis process and the
adverse events are simulated using the algorithm in [22].
The number of sensors, alert arrival rate, and alert service
rate are input parameters for the simulator. The arrivals of
the adverse events are modeled using a Poisson probabil-
ity distribution [8,25]. Analysts are considered as resources,
and they investigate the IDS alerts in a first-come, first-served
(FCFS) manner. The time taken to investigate an alert by an
analyst is the average time taken based on historical statis-
tics observed in the CSOC. This time could be maintained
constant unless a new alert pattern causes it to change or
drawn from a probabilistic distribution for each alert in the
simulated environment.

In a system implementation, the adverse events compo-
nent will be replaced by the historical real-world data with
uncertain events observed in theCSOC, alongwith the timing
of their occurrences and their respective intensities. The RL
agent will then interact with the environment without know-
ing the underlying probability distribution to learn actions
that produce the best results. However, if there is raw data
available to obtain the distribution of the arrival process,
then the CSOC can use this information within the simu-
lator to continue training the RL agent offline and improve
its decision-making in real time.

3.4.2 Stochastic dynamic programming formulation

In the context of the research problem, the elements of the
SDP formulation are explained below.

– System State: st ∈ S is a tuple s = 〈at , qt , t〉, where at
is the normalized value of the AvgTTA and qt is the nor-
malized value of the alert queue length at the beginning
of time t . The normalized values of the aforementioned
state variables are calculated as described in the prior
section.

– Action (Decision): The corrective action is to discard xt
number of alerts at the beginning of time t .

– Uncertainty: The uncertain events (see examples in
Table 2), which affect the alert analysis process are cap-
tured as exogenous information Wt+1. The impact of
these adverse events is an increase in the alert genera-
tion rate or a decrease in the alert service rate, which
further increases the alert queue length between time t
and t + 1.
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Fig. 3 Dynamic optimization model framework

– State Transition Function: st+1 = h(st , xt ,Wt+1): This
function defines how the next system state at time t+1 is
evolved. The state transition probabilities are unknown
for this research problem. The concept of a post-decision
state variable [16] is used in this approach, which is
explained next.

– Post-decision State (PDS) variable represents the state of
the system after a decision is made and is represented
by sxt . It is to be noted that the PDS variable represents
the state of the system before the exogenous information,
Wt+1 arrives.

– Contribution Function: C(st , xt ) = wa ∗ at + wq ∗ qt .
The immediate reward has two terms. The first term gives
a high reward if the AvgTTA is at or below the base-
line number and the second term gives a high reward
for maximizing the analyst utilization by keeping the
alert queue length long enough. The values for at and
qt are obtained using the functions fa and fq , respec-
tively. wa and wq are the weights assigned to the first
and the second term, respectively, by the stakeholders at
the CSOC. These weights denote the preference for each
of the objectives. It is to be noted that wa + wq = 1.

– Objective Function: The objective of the dynamic opti-
mizationmodel is tomaximize the rewards over the entire
time horizon of the problem. It is to be noted that the
dynamic optimization model differs from the static opti-
mization model by learning the long-run total discounted
values of the states V (S) and making decisions such
that the system moves from one good state to another.
The recursive Bellman’s optimality equation is used to
achieve this objective, which is given as follows:

V j (sxt−1) = (1 − α j−1)V j−1(sxt−1) + α j−1η j (4)

η j = max
xt∈Xt

{C(st , xt ) + βV j−1(sxt )} (5)

where α j is the learning parameter that is decayed grad-
ually over several iterations, j is the iteration index, Xt

is the set of all feasible actions fromwhich the SDP algo-
rithm will choose a decision at every iteration, and β is
the fixed discount factor that allows the state values to
converge in the long run. It should be noted that for a
decision xt taken at the beginning of hour t from state st ,
the update of the value of post-decision state sxt−1 from
the last hour at t − 1 that had put the system into state
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st is executed after reaching state sxt as per Equation (4)
[16].

3.4.3 Phases of RL-based dynamic optimization algorithm

The RL-based optimization consists of three phases as fol-
lows:

1. Exploration Phase: In this phase, the SDP algorithm
would explore several suboptimal actions, and acquire
the value of system states that are visited. Equation (4)
is executed, but without the max operator in Equation
(5), by taking random actions 0 ≤ xt ≤ Xt on the num-
ber of alerts that can be discarded between time t and
t +1. Since the algorithm begins with all V 0(s) = 0 ∀s at
j = 0, exploration helps to populate the values of some of
the states that are visited. Exploitation (next phase) starts
after a certain number of iterations, which depends on the
size of the state-space, and number of iterations planned
for the entire learning phase (exploration and exploita-
tion).

2. Exploitation Phase: In this phase, the SDP algorithm
would take (near-) optimal decisions at time t , which is
obtained by executing the right side of Equation (5) with
the max operator after attaining better estimates of the
value of the states visited during exploration. Using η j

from Equation (5), the value of the previous post decision
state is updated at time t as per Equation (4). Learning
is stopped when convergence of the value of the states is
achieved, as measured in terms of the mean-squared error
(MSE) of the stochastic gradient as described below:

MSE j =
∑ j

a=1(V
a(sxt−1) − ηa)2

j
j �= 0 (6)

3. Implementation Phase: In the implementation phase of
the SDP algorithm, the value of the states at the time
when learning was terminated are used as inputs to make
near-optimal decisions at each time t . This is obtained
from Equation (5) with the max operator by evaluating all
the feasible actions and choosing an action that takes the
system to the post-decision state with the highest value of
η j in Equation (5).

The algorithm for the RL-based dynamic optimization
model is presented in Algorithm 2.

4 Experimental setup

The following section presents the experimental setup that
is used in this work. The inputs used in the experiments,

Algorithm 2: RL-based Dynamic Optimization Algo-
rithm
Input: Number of iterations for learning J , % of iterations for

exploration phase m, discount parameter β, initial
learning parameter α0, and time at the end of horizon T .

Output: Long-run state values V (s),∀s
Initialize V 0(s) = 0,∀s
M = m ∗ J /* number of iterations in the exploration phase */
for j = 1, 2, . . . , J do

for t = 1, 2, . . . , T do
if ( j ≤ M) /* Exploration Phase */, then

Pick an arbitrary action xt
Compute C(st , xt )
η j = C(st , xt ) + βV j−1(sxt )

else if ( j > M) /* Exploitation Phase */, then
η j = maxxt∈Xt {C(st , xt ) + βV j−1(sxt )}

end
end
V j (sxt−1) = (1 − α j−1)V j−1(sxt−1) + α j−1η j /* PDS
value */
Generate Wt+1 /* uncertainty through simulation or
real-world */
st+1 = hW (st , xt ,Wt+1) /* state transition function */

end

MSE j =
∑ j

a=1(V
a (sxt−1)−ηa )2

j /* MSE */

Decay the learning parameter, α j = α j−1

1+e , where

e = j2

6·1015+ j
/* alpha decay scheme [12] */

V j (s) = V j−1(s),∀s
end
return V (s),∀s

Table 1 Inputs for experiments

Number of clusters of sensors 10

Average time between alert generation (s) Expo(18.8)

Number of available analysts 10

Average time taken to investigate an alert (s) 15

Baseline AvgTTA 1

Threshold AvgTTA 4

as shown in Table 1, are taken from [21]. A baseline per-
formance is established for the CSOC using the simulation
algorithm in [22] with an exponential distribution governing
the time between alert generation and a deterministic alert
service rate for the available analysts (see Table 1 for the
input values). Clusters of sensors are formed to uniformly
balance the expected number of alerts (based on historical
data) between them. The alerts are investigated by the avail-
able analysts in a first-come, first-served (FCFS) manner.
An analyst spends 80% of time analyzing alerts while the
remainder of 20% is spent on tasks such as updating signa-
tures for the IDS and report writing. It is to be noted that the
analysts are staffed such that the service rate of alerts (μ) is
kept higher than the arrival rate of alerts (λ), i.e., traffic inten-
sity, ρ = (λ/μ) < 1. The alert analysis process is modeled

123



Maintaining the level of operational... 645

Table 2 Uncertain events for
experiments Event 1 30% increase in alert generation for 8 hours

Event 2 40% increase in alert generation for 8 hours

Event 3 1 Analyst absent in a shift (12 hours)

Event 4 2 Analysts absent in a shift (12 hours)

Event 5 New vulnerability that increases alert investigation time by 5 times for 8 hours

Event 6 New vulnerability that increases alert investigation time by 10 times for 12 hours

Event 7 Communication breakdown between sensors/IDS and CSOC for 12 hours

as aM/D/c/FCFS queueingmodel, as given in [22]. The LOE
of the CSOC is deemed to be ideal at the respective baseline
AvgTTA value. The CSOC is deemed to be operating with an
unacceptable LOE for any value for AvgTTA which is equal
to or higher than the threshold value set by the CSOC. The
average alert queue length for the baseline AvgTTA value (1
hour) is established at 1175 alerts upon reaching the steady
state conditions in the simulation. Similarly, the average alert
queue length for the threshold AvgTTA value (4 hours) is
established at 4350 alerts. The number of alerts that could be
investigated per hour by 10 analysts with 80% of time spent
in alert analysis work in a CSOC is 1920 (10 analysts*80%
of effort towards alert analysis*3600/15 alerts per hour).

As described earlier, the RL-based (dynamic optimiza-
tion)model is executed in three phases: exploration, exploita-
tion, and implementation. It is to be noted that there are
weights assigned to the reward terms in the contribution func-
tion. There are three cases considered for the experiments:
Case I considers equal weights assigned to both the reward
terms, i.e., wa = wq = 0.5. In case II, wq is set higher than
wa , indicating a preference for maintaining a longer alert
queue length. In case III, wa is set higher than wq , indicat-
ing a preference for maintaining a lower AvgTTA value. The
values of discount parameter β and initial learning param-
eter α0 are typically chosen close to (but less than) 1. We
used the following values for the parameters in Algorithm 2:
β = 0.9, α0 = 0.8, andm = 10%. The SDP learning (explo-
ration and exploitation) phase achieves convergence for the
values of the states over 1000 iterations of the 14-day work
cycles (i.e., with J = 1000 ∗ 336 in Algorithm 2). Once
good estimates of the values of the states are achieved, the
RL-based strategy is executed in the implementation phase
for the experiments (sample realizations).

The proposed optimization models, value-based and RL-
based, are evaluated against the commonly employed meth-
ods at a CSOC, namely the threshold-based and the (analyst
resource) utilization-based strategies for maintaining the
LOE under adverse conditions.

Fig. 4 Temporal patterns in a sample realization of adverse events

5 Experiments and analysis of results

This section presents the experiments conducted using the
simulated framework presented in [22]. Several adverse
events (see Table 2) are generated in a 14-day work cycle
and various corrective strategies are evaluated, namely, the
threshold-based, the utilization-based, the value-based (static
optimization), and the RL-based (dynamic optimization).
The algorithms for the value-based and the RL-based (all
three cases) optimization models are tested on 50 simulation
runs of the 14-day work cycle, where several types of dis-
ruptive events (from Table 2) are simulated for each run. The
threshold-based and the utilization-based strategies are also
tested on the same set of adverse events as experienced by
the CSOC using the value-based and the RL-based strategies
(by using the same random seed in the simulator for gener-
ating adverse events). The weights considered for the three
cases in the RL-based strategy are: wa = wq = 0.5 for case
I, wa = 0.2 and wq = 0.8 for case II, and wa = 0.8 and
wq = 0.2 for case III. The dynamic behavior of AvgTTA
throughout the 14-day work cycle is captured and reported
from each of these strategies in the results described below.
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Fig. 5 Dynamic behavior of AvgTTA

Figure 4 shows a sample realization for the temporal pat-
terns observed in the adverse events during a 14-day work
cycle. The same random seed for the generation of these
adverse events is used for the evaluation of all the strate-
gies. First, a comparison between the performances of the
threshold-based, the utilization-based, and the value-based
optimization strategies is presented.

Figure 5 shows the AvgTTA observed per hour using each
of the aforementioned strategies plotted against the back-
ground of the color-coded LOE representation. The temporal
patterns in the decision-making of the corrective actions for
each of these strategies are shown in Fig. 6a–c. It is to be
noted that the AvgTTA values are captured after the cor-
rective actions are taken at each time stamp (hourly). It
can be seen from Fig. 5 that the AvgTTA is maintained in
the orange zone, just under the threshold value, using the
threshold-based strategy. With the utilization-based strategy,
the AvgTTA is observed to cross the threshold value many
times during the 14-day work cycle. The utilization-based
strategy keeps on accumulating additional alerts until the
investigation capacity for the work-shift is reached. Only
upon reaching the full capacity, this strategy deploys the cor-
rective action of discarding alerts. Hence, the AvgTTA is
seen to climb high into the red zone with the occurrence of
the fourth event (E7 in Fig. 4), while the alerts are being
accumulated. And once this capacity is reached and new
alerts are still being generated, this strategy starts discard-
ing the longest waiting alerts, as shown with a spike in the
number of alerts discarded in Fig. 6b. The value-based opti-
mization strategy is observed tomaintain theAvgTTAclosest
to the baseline value throughout the 14-day work cycle. As
described earlier, the value-based strategy is optimized to
attain the highest score possible from a cumulative normal-
ized score for AvgTTA and the alert queue length at any

Fig. 6 Timing and amount of alerts discarded in a threshold-based
strategy, b utilization-based strategy and c value-based strategy

given time. Hence, in order to attain this maximum score,
the value-based optimization strategy takes more number
of minor corrective actions (less number of alerts discarded
at each action), as shown in Fig. 6c. However, in order to
maintain the AvgTTA close to the baseline, the value-based
optimization strategy is observed to have discarded the most
number of alerts when compared to the threshold-based and
the utilization-based strategies (see Fig. 7).

The above results show that while a value-based strategy
succeeds in keeping the AvgTTA as close to the baseline
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Fig. 7 Total number of alerts discarded during the 14-day work cycle

value as possible, it also discards the maximum number of
alerts in the process. As described earlier, this is due to the
fact that this optimization strategy does not take into account
the future uncertainties arising from the adverse events at a
CSOC. The RL-based strategy takes into consideration the
values of the future states that could be reached by simulating
uncertainty and learning (near-) optimal actions to take at all
times (hourly, in this work). Next, the performance of the
value-based strategy is compared with the three cases of the
RL-based strategy.

Figure 8a–d shows the AvgTTA per hour for the optimiza-
tion strategies (static and dynamic). It is to be noted that the
plot shown in Fig. 8a is the same as shown for the value-
based strategy in Fig. 5 (represented by the brown line.) The
largest AvgTTA values are observed for case I (Fig. 8b) and
case II (Fig. 8c) of the RL-based strategy, where a lower (or
an equal) weight was assigned to the first reward term of the
contribution function representing the need for maintaining a
lower AvgTTA value compared to that assigned to the second
reward term representing the need for maintaining a longer
alert queue length. Hence, the LOE of the CSOC reaches into
the orange zone, while discarding the lowest total number of
alerts in these two cases among the static and dynamic opti-
mization strategies (Fig. 10). The amount of time the LOE
of the CSOC stays in the yellow zone is similar among the
value-based and the RL-based case III strategies (Fig. 8a and
d). However, the alert queue length is maintained relatively
higher in the RL-based case III strategy than in the value-
based strategy, and hence, it can be observed that the number
of times the action to discard alerts and the number of alerts
discarded are lower using the RL-based strategy than that
found using the value-based strategy (Fig. 9a and d).

Figure 10 shows the total number of alerts discarded for
the given sample realization in the 14-day work cycle. The
RL-based strategy (cases I, II, and III) discards less num-
ber of alerts compared to the value-based strategy. It is also

noted that the RL-based strategy discards the fewest num-
ber of alerts compared to the currently employed strategies
(threshold-based and utilization-based) by the CSOC. Sim-
ilar observations were made in other simulation runs (50)
where the RL-based strategy outperformed, on an average,
the other 3 strategies in terms of maintaining the AvgTTA
in the acceptable zones and the alert queue length as long as
possible.

5.1 Computational complexity and scalability

The system state vector, as described in Sect. 3, is 3-
dimensional in the stochastic dynamic programming formu-
lation for the research problem. The normalized values for
the first two variables in the system state, representing the
AvgTTA and the alert queue length, respectively, can go up
to two decimal places between 0 and 1, i.e., each variable
yields 100 values. The third variable represents the current
time (hour) in the 14-day work cycle and yields 336 different
values. Hence, the system space consists of under three and
a half million (100× 100× 336) states. By defining the state
of the systemwith normalized values between 0 and 1 for the
first two terms, we are able to avoid the curse of state space
dimensionality, which makes the algorithm scalable for any
range of alert backlog numbers at a CSOC. This representa-
tion is able to guide the RL agent in taking (near-) optimal
actions in any CSOC environment.

5.2 Meta-principles derived from the study

A summary of results is given in Table 3. It is evident from
Table 3 that while other strategies may achieve at par per-
formance with the RL case III strategy in only one among
the four performance metrics, the RL case III strategy per-
forms the best in all four performance metrics. It should be
noted that the performance metrics of RL case I and case
II strategies excelled in only a few of the four performance
metrics and, therefore, are not included in Table 3. The meta-
principles derived from the preceding study are as follows.

– The RL-based strategy presented in case III is able to
keep the LOE of the CSOC in the best zones possible
throughout the 14-day work cycle, while discarding the
fewest number of alerts compared to the threshold-based,
utilization-based, and value-based strategies.

– The threshold-based strategy, by design, is able to keep
the AvgTTA under the threshold value in all of the sim-
ulation runs. However, it is found to discard the alerts
too soon in the cases where adverse events occur early
on in the 14-day work cycle, and thereby reducing the
analyst utilization (i.e., analysts are idling) later in the
work cycle.
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Fig. 8 Dynamic behavior of AvgTTA using a value-based Strategy, b RL-based strategy: case I, c RL-based strategy: case II, and d RL-based
strategy: case III

– The (analyst resource) utilization-based strategy is unable
to keep the AvgTTA under the threshold value across the
14-day work cycle, though it attains the maximum ana-
lyst utilization among all of the strategies.

– The value-based strategy discarded more alerts than the
other strategies in order to maintain the AvgTTA close
to the baseline. This strategy runs the risk of discarding
too many alerts, when the desiderata are to discard the
minimum.

– The RL agent with the unique representation for the sys-
tem state variable increases the practical aspect of the
proposed research work and makes the model deploy-
able in any real-world CSOC environment. In practice, a
CSOC must set the weights in the contribution function

such that a higher preference is given to maintaining a
lower AvgTTA value compared to a longer alert queue
length (i.e., case III with wa > wq ) to be able to meet all
the desiderata of this paper.

6 Conclusions and future work

The paper presented four strategies for discarding alerts in
order to maintain the LOE of a CSOC under adverse condi-
tions. One of the strategies is an intelligent strategy that uses
reinforcement learning to make decisions on when and how
many alerts to discard during the shift operation. It discarded
the lowest number of alerts over several experimental
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Fig. 9 Timing and amount of alerts discarded in a value-based strategy, b RL-based strategy: case I, c RL-based strategy: case II, and d RL-based
strategy: case III

simulation runs, determined the right timing to discard the
alerts, andmaintained theAvgTTAbelow the threshold set by
theCSOC.Under adverse conditions andwith limited analyst
resource, a CSOC manager can use the RL-based strategy
as a decision-support system that guarantees the AvgTTA
below the threshold value in every hour of shift operation.
Such a guarantee with minimum number of alerts discarded
is a paradigm shift in how CSOCs with limited resources
(both regular and on-call analysts combined) can efficiently
operate in the face of uncertainties that affect the length of
the alert backlog for investigation.

Fig. 10 Total number of alerts discarded during the 14-day work cycle
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Table 3 Summary of
experiments:

√
: best

performance, blank:
intermediate performance, and
X: worst performance

Desiderata Threshold Utilization Value RL (Case III)

Minimizing number of alerts discarded X
√

Ensuring highest utilization of analysts X
√ √

Determining optimal time to discard alerts X
√

Maintaining LOE closest to the baseline X
√ √
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