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Abstract

2 Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously
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difficult but critical for disease control. We present a nested approach for quantifying the importance of
host and vectors that integrates species’ physiological competence with their ecological traits. We apply
this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We
find that vertebrate hosts with high physiological competence are not the most important for community

transmission; interactions between hosts and vectors largely underpin the importance of host species. For

s vectors, physiological competence is highly important. Our results identify primary and secondary vectors

9

of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and
an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical
model in estimates of species’ contributions to transmission and has has direct application to other zoonotic

pathogens.
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Introduction

More than 60% of existing infectious diseases of humans are multi-host pathogens (i.e., moving between
non-human and human populations) and approximately 75% of emerging and re-emerging infectious dis-
eases affecting humans have a non-human origin (Taylor et al., 2001, van Doorn, 2014). It it therefore critical
to identify the role that different vertebrate host and vector species play in maintaining transmission and

facilitating spillover into humans. However, identifying which species enable pathogen persistence and

19 quantifying the relative contribution that each species makes to transmission is notoriously difficult, partic-

2 ularly because definitions for vectors and hosts vary greatly within the literature (Appendix 1-Table 1). The
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dynamics of multi-host pathogen systems can range in complexity from spillover between a single source
population to a single target population (e.g., from bats to humans as has been postulated for SARS-CoV-1
and SARS-CoV-2: Boni et al. 2020) to large interconnected networks of species that maintaina pathogen
in a given environment and facilitate spillover into a target population (e.g., zoonotic arboviruses, such as
West Nile and Rift Valley Fever viruses: Viana et al. 2014).

Developing appropriate mitigation strategies for zoonotic pathogens hinges on quantifying which pro-
cesses have the largest influence over each species” importance in transmission cycles. Studies characteris-
ing zoonotic arbovirus transmission often focus on pairwise transmission between non-human hosts and

vectors, or vectors and humans (for example work in West Nile virus: Kilpatrick et al. 2006, Ross River

Virus: Koolhof and Carver 2017, Stephenson et al. 2018, leishmaniasis: Stephens et al. 2016, Chagas disease:

Girtler and Cardinal 2015, Jansen et al. 2018). However, these and other proposed approaches (Appendix
1-Table 1) that capture only a portion of a pathogen’s transmission cycle cannot completely quantify a
species’ contribution to transmission within a community. =~ Understanding the ecological importance of
host and vector species for transmission requires modeling the complete transmission cycle (host-vector-
host or vector-host-vector transmission), “closing the loop” by estimating the number of new infections in
the next generation. ~ This is needed to quantify each species’ contribution to Ro, defined as the number
of new infections arising from a single case in an otherwise susceptible population. While this is well un-
derstood (e.g., see Turner et al., 2013, Fenton et al., 2015, Webster et al., 2017), this approach is used less
frequently for multi-vector, multi-host pathogens because of the need for data across multiple phases of

transmission for multiple host and vector species.

Here, we present a general framework (Box 1) that: 1) quantifies host and vector species’ relative im-
portance across a complete transmission cycle of zoonotic arboviruses (Figure 1), using Ross River virus
(RRV) as the model virus —a system for which we have data for many host and vector species for nearly

all components of the transmission process; 2) identifies which of the many interacting physiological and



a5 ecological processes have the largest control over the importance of each species; and 3) helps to reveal
s where the largest sources of uncertainty occur in order to identify which datasets require additional collec-
47 tion for more robust predictions (Restif et al., 2012). ~ The approach uses three nested metrics of increas-
s ing biological complexity:  physiological competence; transmission over one half of the pathogen’s life
s cycle (half-cycle transmission; i.e., host-to-vector or vector-to-host transmission); and transmission over
so the pathogen’s complete life cycle (complete-cycle transmission) (Box 1). This strategy has application to
st other zoonotic pathogens for which some physiological and ecological data exist across vectors and hosts.
s2 Even for systems with limited data, a framework that integrates the entire transmission cycle can be useful
s3  for hypothesis testing and for guiding data collection by identifying the processes that most contribute to

s« uncertainty in competence (i.e., model-guided fieldwork, sensu Restif et al., 2012).
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Box 1: Nested approach for characterising the complete transmission cycle of zoonotic arboviruses

Stage 1: Physiological competence

Characterizing the physiological response a species has to infection is fundamental to estimating its
potential as a host or vector within a community. We define the physiological competence of a host
species as its viremic response to infection multiplied by the proportion of individuals of that species
that develop a viremic response when exposed to infection. We model each host species” viremic re-
sponse as a continuous function over time (Appendix 1-Figure 1); to compare hosts’ physiological
competences we summarize their titer profiles using the area under the curve (AUC), which simulta-
neously captures the magnitude and duration of titer (Appendix 1-Figure 2). For vectors, we quantify
physiological competence using the product of the proportion of individuals that get infected follow-
ing exposure to a given dose (Appendix 1-Figure 3) and the proportion that go on to transmit the virus
(Appendix 1-Figure 4). Specifically, we quantify physiological vector competence using the multipli-
cation of the AUC of these two curves (Appendix 1-Figure 5, Appendix 1-Figure 6). For a visualization
of these components within an arbovirus life cycle see Figure 1.

Stage 2: Transmission over one half of the pathogen’s life cycle (host-to-vector or vector-to-host trans-
mission

To begin to understand the role species play in community transmission, we quantify how many vec-
tors an infected host will generate or how many new host infections an infected vector will create. To
do this, we combine host and vector physiological competence (Stage 1) with host and vector abun-
dances and contact rates. Specifically, to quantify host-to-vector transmission we combine estimates
(while propagating uncertainty) from host titer profiles over time, mosquito infection probabilities
given titer (infectious dose), mosquito feeding behavior (which combines vector preference and host
abundance), and mosquito abundance (Figure 1). For vector-to-host transmission we combine esti-
mates from mosquito transmission probabilities, survival, mosquito feeding behavior, and host abun-
dance.

Stage 3: Transmission over the pathogen’s complete life cycle (host-vector-host or vector-host-vector
transmission)

A complete transmission cycle can be achieved by multiplying the two half-transmission calculations
from Stage 2 (host-to-vector and vector-to-host) in either order; the Ro calculated from either order
will be identical. However, each of the two multiplication orders reveals something different. Mul-
tiplying host-to-vector by vector-to-host transmission gives host-vector-host transmission (a complete
transmission cycle from the perspective of a host), which can be used to reveal all host-to-host pair-
wise transmission pathways. In other words, beginning with an infected host, how many (and which)
other hosts become infected? Conversely, multiplying vector-to-host transmission by host-to-vector
will reveal all vector-to-vector transmission pathways starting with an infected vector.
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Figure 1: The transmission cycle of Ross River virus, a multi-host, multi-vector arbovirus, and the components our
framework uses to model this transmission cycle. The first requirements for transmission are physiologically com-
petent hosts that become infected (A: “proportion viremic”) and are able to replicate the virus to suitable levels to
infect vectors (A: “titer profiles”) and vector species that can become infected (B: “Mosquito infection probability”)
and eventually are able to transmit virus (B: “Mosquito transmission probability”). Physiologically competent hosts
and vectors contribute to the transmission of the virus through a continuous cycle of transmission, which can be
viewed from two perspectives, either starting with an infected host or starting with an infected vector; regardless of
perspective, a single complete cycle contains a single set of physiological and ecological components. Each of these
components are used in our framework in one of three ways: statistical models fit to empirical data, from which un-
certainty is propagated into the final calculations of transmission (boxes outlined in black); raw empirical data (boxes
outlined in blue); and point estimates (boxes outlined in red). Italic bold numbers and text next to the boxes outlined in
black describe, in brief, the type of statistical model used to estimate each component (GLMM stands for generalized
linear mixed model). Details on all components are provided in the Methods, Supplemental Tables, and Appendix
Figures that are listed next to framework components; associated raw Source Data files are also listed.

56 As a case study, we focus on Ross River virus (RRV), an alphavirus that causes a disease syndrome
sz characterized by polyarthritis, which is responsible for the greatest number of mosquito-borne human dis-
ss ease notifications in Australia, with approximately 5,000 cases notified annually (Australian Govt. Dept.
ss of Health, 2020). It has also caused major epidemics in Pacific Islands involving tens of thousands of cases
s (Aaskov etal., 1981, Tesh et al., 1981, Harley et al., 2001), and may have the potential to emerge and cause
st explosive epidemics out of its current geographical range (Flies et al., 2018, Shanks, 2019).  Understand-
62 ing the drivers of epidemic and endemic transmission of RRV in Australia and Pacific Island countries

ss has remained challenging because of the number of hosts and mosquitoes that potentially become infected
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and the large uncertainty around which of these vectors and hosts contribute most to transmission. ~Un-
der controlled laboratory conditions, more than 30 species of mosquitoes from at least five genera have
demonstrated the physiological ability to transmit RRV. The disease has long been considered to exist in
a zoonotic transmission cycle, primarily because the number of human cases during winter months was
considered to be too low to sustain community transmission (Harley et al., 2001). However, the most im-
portant vertebrate hosts of RRV are highly ambiguous because more than 50 species have demonstrated
serological evidence of natural exposure to RRV (reviewed in Stephenson et al., 2018). Much uncertainty
remains as to which vertebrate species contribute to RRV community transmission and how the importance
of these species in transmission varies by locations (such as urban vs. rural settings, or in Australia vs. the
Pacific Islands, where there are different vertebrate communities). Though insights have previously been
gained through modelling approaches (Carver et al., 2009, Denholm et al., 2017, Koolhof and Carver, 2017),
these studies note that future progress in RRV modelling requires consideration of the dynamics of multiple
mosquito species and multiple hosts, accounting for their differing availability and physiological capability
to transmit RRV.
We parameterize our framework for RRV to quantify the relative importance of hosts and vectors for
disease transmission and to illustrate how the relative importance of these species changes depending on
what metric is used. Specifically, we ask the following questions for RRV transmission in Brisbane, Aus-

tralia, a community in which RRV is endemic:

1. Which host and vector species are most physiologically competent for transmitting RRV?

2. How does integrating species ecology change the most important hosts and vectors when considering
a half (host-to-vector or vector-to-host) or complete (host-vector-host or vector-host-vector) transmis-
sion cycle?

3. How do viruses circulate through different species in the community, i.e., which hosts and vectors
contribute to intra- and inter-species transmission?

Results

Physiological competence
Host competence

To quantify a host species’ physiological competence we multiplied the proportion of individuals of that
species that developed a viremic response by the area under that species” estimated titer profile over time,
which we fit to the individuals that mounted a viremic response. This AUC metric captures both the abso-

lute magnitude and duration of a host species’ viremic response, weighted by how common this response is.



o Of the vertebrate species available for the analysis in Brisbane, we estimated that rats and macropods had
s the strongest viremic response to RRV infection (Figure 2A). Sheep, rabbits, humans, and possums formed
o a distinct cluster of hosts with the next strongest responses; uncertainty in host titer profiles obscures our
e ability to differentiate among the responses of these species. Of the remaining species, we estimated that
e ’‘birds’ (an average of Gallus gallus domesticus [Chickens], Cacatua sanguinea [Little corella], and Anas super-
100 ciliosa [Pacific black duck]) had a stronger viremic response than flying foxes, horses, and cattle. No dogs or

101 cats developed detectable viremia when exposed to RRV experimentally (N = 10 for each species), resulting

o

12 in the lowest physiological competence. Fitted titer profiles for all hosts for which data were available are
103 presented in Appendix 1-Figure 1 (AUC for these profiles are presented in Appendix 1-Figure 2), while the
14 proportion of the cohort of each host species that developed a viremic response when exposed to RRV is

105 listed in Table S1.

A Physiological B Half-cycle transmission C Complete-cycle transmission
competence
- T
Th ThH— " Th— "~ — T
Rat —— Rat{™ Rat{w ~ Second
Macropod i Macsrﬁpod o Macropod {e— — generation

Sheep bt eep 4 Infected Sheep 44 el host
] H nrecte B osts
O Rabbit b Rabbit 7¢ . Rabbit ¢ H infected
8§ Human . Human . [ | mosquitoes  pyman [ - [ | B | oerhost
(% Possum ns! Possum {r— 0.75 Possum {r— o B

Bird * Bird {F— 0.50 Bird {re——1 m—|

@ Flying fox{ ® Flying fox {# 025 Flying fox {u . 06
:'O: Horse | ™ Horse {1 000 Horse e f— 0.4

Cattle{ C%ttle ¢ : Cattle ¢ — 0.2

I Dog 1* og 1 Dog e

I Cat* Catq Cat4e 0.0

0 2 4 638 00 15 80 yyyOQnozs 00153.045600.00.20.40.602Z0R 0D TLODQ
AUC Titer Profile Total Host to 0%%®§%+%+9(+ﬁo®€ Total Hostto  Proportion of ‘9&@%%0%(?’%%@%%*
Mosquito IO Host Infections Infections Self ~ %° © 2% 5
Infections OF T S 2% > *
2, 28 2%
% xS @
% 8,
S,
%

Newly Infected Mosquitoes

Figure 2: The most competent host species for Ross River virus transmission in Brisbane change when considering
physiological traits alone (A) or also considering ecological traits (B, C). A. Estimated physiological response of
hosts to experimental infection with RRV, summarized using the area under their estimated titer profiles over time
(AUCQC). In all panels, points show median estimates; error bars are 95% confidence intervals (Cls) that combine the
uncertainty from all statistical sub-models used to obtain the estimates presented in that panel (see Figure 1 and
Box 1 for these components). Titer profile AUC is used only to quantify host physiological competence, while time-
dependent titer profiles (pictured in Appendix 1-Figure 1) are used in half-cycle and complete-cycle transmission. The
ordering of hosts based on highest (top) to lowest (bottom) physiological competence in A is conserved in B and C
to aid visualization of host order changes among panels. B. Host-to-vector transmission; matrices show the median
estimated number of vectors infected by each host species, while the points show infection totals (sums across matrix
rows), with error bars. C. Host-vector-host transmission. As in B, the matrices show estimated median numbers of
next-generation host infections for all host species pairs, while the points show sums across rows of the matrices (left
plot) and the proportion of infections in the second generation that are in the same species as the original infected
individual (center plot).



16 Vector competence

17 To quantify mosquito physiological competence we used the area under the infection probability versus

18 dose curve multiplied by the area under the transmission probability over time since infection curve. We

o
=3

100 estimated that the mosquito species with the highest physiological potential for RRV transmission (suscep-

1

o tibility of mosquitoes to infection, and of those that become infected, their potential to transmit RRV) was
11 Coquillettidia linealis, though the 95% CI for this species overlaps with four species with the next highest
1z median estimates (Aedes procax, Verrallina funerea, Ae. vigilax, and Mansonia uniformis) (Figure 3A). In con-
ns  trast, Culex annulirostris, Cx. quinquefasciatus, Ae. notoscriptus, and Cx.  sitiens were estimated to all have
1a low physiological potential. Infection probability curves for all mosquito species for which we gathered
15 data, including those in the Brisbane community and from elsewhere in Australia, are shown in Appendix

16 1-Figure 3 and Appendix 1-Figure 5.
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Figure 3: Ross River virus transmission capability of Brisbane mosquitoes remained consistent when considering
physiological traits alone (A) or also considering ecological traits (B, C). A. Physiological response of mosquitoes to
experimental infection with RRV, summarized using the area under (AUC) of their estimated infection probability ver-
sus dose curves multiplied by the area under their transmission probability versus time curves. Points show median
estimates; the error bars in each panel are 95% confidence intervals (Cls) that combine the uncertainty from all statis-
tical sub-models used to obtain the estimates presented in that panel (see Figure 1 and Box 1 for these components).
AUC is used only to quantify mosquito physiological competence; raw infection and transmission profiles (pictured in
Appendix 1-Figure 3 and Appendix 1-Figure 4, respectively) are used in calculations of half-cycle and complete-cycle
transmission. The ordering of vector species based on highest (top) to lowest (bottom) physiological competence in
A is conserved in B and C to aid visualization of vector order changes among panels. B. Vector-to-host transmission;
matrices show the median numbers of hosts infected by each vector species, while the points show infection totals
(sums across matrix rows), with error bars. C. Vector-host-vector transmission. As in B, the matrices show median
numbers of next-generation vector infections for all vector species pairs, while the points show sums across rows of
the matrices (left plot) and the proportion of infections in the second generation that are in the same species as the
original infected individual (center plot).
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Half-transmission cycle
Host-to-vector transmission

Integrating host physiological competence with ecological factors governing host-vector contacts (see Fig-
ure 1 and Box 1) can dramatically change estimated host importance (Figure 2B). Despite large uncertainty
in estimates for the number of mosquitoes that a single infected host can infect while infectious, humans
have both the largest estimated median and highest estimated potential (upper 95% CI bound) for infect-
ing mosquitoes in Brisbane. We predict that an infected human would predominantly infect Ae. vigilax,
followed by Ae. procax and Cx. annulirostris. Both rats and macropods, which had the highest physiological
potential for transmission (Figure 2A), dropped beneath possums, birds, and horses according to median
estimates, though overlapping 95% Cls obscure our ability to determine which host is able to infect more

mosquitoes while infectious. ~ Similarly, sheep dropped from being in the cluster of the most important
species when using physiological response alone (Figure 2A) to one of the lowest potential hosts for RRV

transmission to mosquitoes in Brisbane (Figure 2B). Conversely, horses, which had one of the lowest esti-
mated viremic responses, increased in importance when considering the contribution of ecological traits to
community transmission. Cats and dogs were estimated to be unable to transmit RRV to any mosquitoes

given that neither mount a viremic response.

Vector-to-host transmission

While host relative importance markedly changed between physiological competence and transmission
over half a transmission cycle, mosquito estimates did not. Cq. linealis, Ae. procax, Ae. vigilax, and Ve.

funerea were estimated to infect the largest number of hosts (using median estimates) after embedding

mosquito physiological competence into vector-to-host transmission (Figure 3B), though wide overlapping

95% CI make it impossible to differentiate among these species. We estimated that an infected Cg. linealis
would mostly infect birds, while an infected Ae. procax and Ae. vigilax would infect a larger diversity of host
species including birds, humans, and dogs. Of the remaining species, Cx. annulirostris, Cx. quinquefasciatus,

and Cu. sitiens remained poor vectors, infecting only a small number of hosts.

Complete-transmission cycle

We calculated the number of second generation hosts an infected host would infect (or the number of
second generation mosquitoes an infected mosquito would infect) in a Brisbane host community using

a next generation matrix (NGM). Our estimates across a complete-transmission cycle combine all of the



146

147

148

149

150

151

1

@

2

1

53

3

154

155

156

157

158

1

@

9

1

)

0

161

162

163

164

165

166

components listed in Figure 1 and described in Box 1; uncertainty is propagated from fitted statistical sub-

models (see Table 1).

Host-vector-host transmission

Estimated host importance changed little between host-to-vector and host-vector-host transmission: hu-
mans, birds, possums, horses, and macropods remained in the top cluster of hosts (Figure 2C). Despite
wide 95% CI of humans that overlapped with birds, possums, horses, and macropods, much of the density
distribution of host-vector-host transmission estimates (obtained by propagating uncertainty from all sta-
tistical sub-models) for humans falls above that of other species (Appendix 2-Figure 1). For example, 32%
of the distribution of total host-to-host infections for humans is at higher estimates than the upper bound
of the 95% CI for birds, the next highest species by median estimate. We estimated that the mosquitoes that
would acquire RRV from humans mostly go on to infect humans (‘self-infections’), followed by birds, dogs,
and to a lesser extent possums. Even when weighting second generation infections by the proportion of
hosts that mount a viremic response (i.e., ignoring all sink infections in dogs and thus counting second gen-
eration infectious hosts only), humans still produce the most second-generation infectious hosts by median
estimate, though CI once again overlap with birds, macropods, horses, and possums (Appendix 2-Figure 2).
We predicted that an infected bird (the species with the second highest estimated median) would primarily
infect other birds, followed by dogs and humans, respectively (Figure 2C).
Because humans are the only species without data from experimental infection studies (titer was mea-
sured when infected humans began showing symptoms), we checked the robustness of our results by re-
running analyses assuming a host titer duration for humans reflecting only the observed human viremic

period. Even when human titer duration was reduced, humans remained in the top cluster of hosts (with

167 birds, possums, horses, and macropods) for RRV transmission potential despite an overall lower total num-
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175

ber of second generation infections (Appendix 2-Figure 3, Appendix 2-Figure 4). This highlights the robust
result that humans likely contribute to the RRV transmission cycle in Brisbane due to their physiological

competence, abundance, and attractiveness to competent mosquitoes like Ae. vigilax and Ae. procax.

Vector-host-vector transmission

Across a complete vector-host-vector transmission cycle, confidence intervals remained wide for the esti-
mated number of mosquitoes an infected mosquito of each species would infect over its lifetime (Figure 3C
left panel). Nonetheless, the results suggest that Cq. linealis, Ae. procax, Ve. funerea, Ae.  vigilax, and Ma.

uniformis have a much higher maximum transmission potential than Cx. annulirostris, Cx. quinquefasciatus,

10
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Cx. sitiens, and Ae. notoscriptus.
Importantly, the results pictured in Figure 3C calculate second generation mosquito infections condi-
tional on starting with a mosquito exposed to 6.4 logio infectious units of RRV per mL (the median dose
used in experimental infection studies); if it is a rare event that a given mosquito species becomes exposed in
the first place, basing mosquito importance on this metric could be misleading. For example, regardless of
the species of the originally infected mosquito (rows of the Figure 3C matrix), we predict that most second
generation infections will be in Ae. vigilax, followed by Ae. procax and Cg. linealis (columns of the Figure 3C
matrix), because of their abundance and feeding preferences. Similarly, while an individual Ve.  funerea
or Ma. uniformis mosquito could potentially have the highest ability for producing second-generation in-
fections in mosquitoes (Figure 3C), their rarity (0.27% and 0.14% of the Brisbane mosquito community,
respectively; Table S2) means that few second generation infections from any source mosquito occur in Ve.
funerea or Ma. uniformis. Thus, unlike Ae. vigilax, Ae. procax, and Cq. linealis, the rare mosquitoes Ve. funerea
or Ma. uniformis are very unlikely to play an important role in RRV transmission over multiple generations

in this ecological context.

Multiple generations of transmission

To estimate which host and mosquito species drive RRV spread as it invades a naive host population, we
approximated transmission over five complete RRYV life cycles using the next-generation matrix (NGM) ap-
proach to calculate transmission in discrete time steps where each time step represents a complete cycle
of transmission. Simulating the spread of infection over multiple generations, starting with one initially
infected human in an otherwise susceptible vertebrate population in Brisbane, shows that infections tend
to propagate through humans, birds, dogs, and horses (median estimates: Figure 4; estimates with uncer-
tainty: Appendix 2-Figure 5). Overall, while infection does circulate largely in the broader vertebrate com-
munity (as opposed to continuously cycling between a small subset of vectors and hosts), we estimated that
at the beginning of an epidemic in Brisbane, many infections would occur in humans and birds, a moderate
number in horses, and many sink infections in dogs. These new infected individuals (apart from dogs and
cats) continue to spread infection in the community, and already by the third generation of infection, the
most dominant pathways of transmission have converged to birds infecting other birds, humans infecting
other humans, humans infecting birds, horses infecting humans, and “wasted” transmissions from both
humans and birds to dogs, a dead-end host (Figure 4 Generation 3).
Starting with an initial infection in a Ma. uniformis mosquito (to illustrate the effect of beginning with an

infection in a rare species), the multi-generation approximation shows that after only a single generation the

11



27 framework predicts that the majority of infected mosquitoes will be Ae. vigilax and Ae. procax, and to a lesser
28 extent Cq. linealis and Cx. annulirostris (median estimates: Figure 4; estimates with uncertainty: Appendix 2-
209 Figure 6), which mirrors the results in Figure 3C. Despite the potentially high competence of Ma. uniformis,
210 their rarity in the Brisbane mosquito community causes them to participate little in sustained community

211 transmission.  After only three generations we predicted that most transmission of RRV in Brisbane was

2

2 occurring from Ae. vigilax, Ae. procax, and Cq. linealis; the dominance of these three species can be seen in

213 Figure 4 by the large number of pairwise transmission events between them.

12
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Figure 4: RRV epidemic dynamics propagate through initially na'ive host and vector communities. Epidemics are
simulated in two ways: transmission in the host community resulting from an initial infection in a human (top row),
or transmission in the mosquito community arising from a source infection in a Ma. uniformis mosquito (bottom
row). Each matrix cell contains the median estimated number of new infections in a given species (columns) arising
from all infected individuals of a given species in the previous generation (rows). The red arrow shows the direction
of infection. We show generations 1-3 here to illustrate how quickly infections propagate through the community
and converge on dominant transmission pathways, by generation 3. Uncertainty in the number of new infections
in each host and mosquito species over five generations is shown in Appendix 2-Figure 5 and Appendix 2-Figure 6,
respectively.
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» Discussion

215 Motivated by a practical need to identify the relative importance of hosts and vectors for zoonotic arbovi-
26 ral transmission, we developed a nested approach that incorporates existing data, uncertainty, and the
217 complex, dynamic interactions that underpin the transmission of multi-host, multi-vector pathogens. We
218 applied this approach to RRV transmission in Brisbane, which is thought to have multiple transmission
219 cycles (Stephenson et al., 2018, Claflin and Webb, 2015), and contributes a significant public health burden
20 (Jansen et al., 2019). Our approach highlights how species importance changes across physiological and
221 ecological drivers of transmission across half, complete, and multiple generations of transmission cycles,

22 thus isolating the factors that contribute most to vector or host importance.

2 Physiology meets ecology: changes in species importance

224 The first aim of this study was to characterise which hosts and vectors had high physiological competence
25 for RRV. Species must be able to acquire and propagate the virus to be an important host or vector. ~ Our

2.

N}
=3

results corroborate some of what has been previously reported (Stephenson et al., 2018, Harley et al., 2001),
2z but also generated some surprising results. The strong physiological competence of macropods has long
28 been acknowledged, while cats and dogs have never been considered to play a role as hosts; our research
29 supported both of these ideas. By contrast, horses, which occasionally develop high viremia in response to
20 RRV infection and have been previously considered a moderately competent host (described in Stephen-
21 son et al., 2018), have low physiological competence on average because less than 15% of exposed horses

22 develop a viremic response when infected. Conversely, humans, which have not been considered impor-
23 tant for local transmission, had a moderate to high physiological competence following infection with RRV
24 (Figure 2A). For vectors, RRV has long been considered a generalist virus, capable of persisting across cli-
s mates and habitats within Australia; our result that no single species was dominant in its physiological

26 competence supports this view.

237 Physiological competence alone, without ecological data, provides an incomplete picture of transmis-
zs  sion and can be misleading. For example, a host’s physiological competence is of little importance if that
2o host is rare or adopts behaviors that prevents exposure (Downs et al., 2019).  Further, mosquito feeding

20 preferences can drive pathogen transmission more strongly than host competence (Simpson et al., 2012).
2 There are many documented circumstances in which species that are highly competent for transmission
242 under controlled conditions play a minor role in community transmission (Levin et al., 2002, Kilpatrick
s et al., 2006), or conversely, where species with apparently low competence in laboratory studies are highly

24 important for transmission in nature (Brady et al., 2014, Brook and Dobson, 2015). We found the former

14



us  to be the case for RRV hosts across half and complete transmission cycles. ~ For example, we estimated
26 that humans contributed more mosquito infections (Figure 2B) and second generation host infections (Fig-
27 ure 2C) than the most physiologically competent species (rats, sheep, and macropods; though human 95%
s Cl overlapped that of macropods). There are longstanding debates within disease ecology surrounding

29 how ecological interactions moderate disease dynamics, e.g., through dilution effects (Johnson and Thielt-

2!

@

o ges, 2010) and zooprophylaxis (Donnelly et al., 2015). The nested approach is useful for identifying specific
1 mechanisms because it analyzes transmission as a step-wise process with increasing ecological complexity

2!

a

2 by integrating different forms of trait data. Specifically, the results from a half transmission cycle represent
3 the pairwise interactions between host and vector species. For example, a physiologically competent host
254 with low community competence based on host-to-vector cycles (for RRV this includes rats, sheep, and
255 rabbits) occurs due to low rates of contact between this host and vectors with a high infection probabil-
6 ity. By contrast, a host with low competence across a complete transmission cycle, but high host-to-vector
257 transmission competence, would reflect more on the transmission ability of the vectors that host infects. By

8 separating transmission in this way, we can examine the contribution each trait makes to species impor-

@

e tance and test hypotheses such as whether it is more important for a host to infect a greater number and
x0 diversity of vectors, or fewer, more competent vectors.

261 In our study, different ecological drivers likely underpin the importance of humans and birds, the two
22 species with the highest median estimates for complete-cycle transmission (Figure 2, Appendix 2-Figure 1).
23 For example, when compared to all other hosts, humans had the highest susceptible population (contribut-
24 ing 66% of the total community abundance, with less than 14% seropositivity). This, in combination with
25 their moderately-high physiological competence (Figure 2B) contributes to their overall importance. These
xs factors are more important than other ecological drivers. For example, although humans infect a large num-
27 ber of moderately competent vectors (Ae. vigilax and Ae. procax; Table S3), the mosquito feeding patterns
268 potentially limit human importance because many of the mosquitoes reported to feed on humans have
e lower competence for RRV (such as Cx. annulirostris and Ae. notoscriptus). That being said, the number of
a0 Ae. vigilax that humans infect (Figure 2B) suggests that a potentially fruitful path for reducing human in-
a1 fections is vector control of Ae. vigilax populations, which is already one of the primary targets of mosquito
22 control operations in Brisbane (Brisbane City Council, 2019). In contrast, birds were estimated to be only
273 approximately 5% of the host community composition and almost a third were seropositive, further reduc-
274 ing the total number of susceptible individuals. Despite this relative scarcity, birds were highly important
s in the half and complete transmission cycles. This high importance is likely driven by the strong feeding

2

N

s association with the highly physiologically competent mosquito Cgq. linealis rather than birds” physiological

27 competence or abundance.
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Transmission pathways of RRV in Brisbane

Moving beyond single transmission cycles, when we approximate transmission through the Brisbane com-
munity over five generations (approximately the transmission season: Australian Govt. Dept. of Health,

2020), we estimate that infection spreads widely through the community, with the largest number in hu-
mans, birds, dogs, and horses. The physiologically competent, abundant, and generalist feeder Ae. vigilax
plays an important role in this propagation. Despite large uncertainty, our findings for RRV transmission
cycles in Brisbane point to two overlapping transmission cycles: an enzootic cycle, characterized primarily
by transmission between birds and Cq.  linealis, and a domestic cycle characterized by human-to-human
infections facilitated by Ae. vigilax and Ae. procax. These two cycles are linked by these feeding generalists,
which transfer infection between birds and humans. Within each of these overlapping cycles, dogs play a
diluting role by absorbing infectious bites as they are not able to transmit RRV.

Multiple transmission cycles for RRV have long been hypothesized (Harley et al., 2001), yet no previous
studies have implicated the species involved in these cycles or quantified their contribution to transmission.
Humans and birds have been greatly understudied as potential hosts of RRV, yet unlike marsupials, they
persist across the geographic distribution of RRV. Despite frequent detection of RRV in major metropoli-

tan centers (Claflin and Webb, 2015), the potential for humans to contribute to endemic transmission (as
opposed to epidemic transmission: Rosen et al. 1981, Aaskov et al. 1981) has empirically been understud-

ied. Though our predictions provide some support for the importance of these understudied pathways,

26 because we were unable to model seasonal changes in vector abundance or the correlated seasonal changes
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309

in human RRV cases in Brisbane (which generally peak in late summer through early autumn: Australian
Govt. Dept. of Health 2020), more modeling and empirical work is needed. Hopefully our identification of
multiple transmission pathways will allow for future research to formulate hypotheses for RRV seasonality.
For such work data would need to be collected across seasons to distinguish the role of seasonality and the
timing/ drivers of spillover that shift transmission from an enzootic to domestic cycle.

The vectors identified in Brisbane transmission cycles, Ae. vigilax, Ae. procax and Cq. linealis, are recog-
nised as important vectors for RRV and are regularly targeted in vector control programs. However, we
predicted that Cx. annulirostris and Ae. notoscriptus are less competent vectors, though they are often cited
as key RRV vectors in Brisbane (Kay and ]G, 1989, Russell, 1995, Watson and Kay, 1998). The evidence in
favour of Cx. annulirostris as a vector is that RRV is frequently detected in wild-caught individuals, and that
abundance has been high during previous outbreaks of RRV (Jansen et al., 2019). RRV has also been isolated
from Ae. notoscriptus during outbreaks in Brisbane (Ritchie et al., 1997); however, the species had relatively

low abundance in this study, and low transmission ability (Appendix 1-Figure 4) in comparison to other
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potential vectors. This suggests a new hypothesis that Cx. annulirostris and Ae. notoscriptus are secondary
RRV vectors (capable of playing a supplemental role in transmission but unable to maintain an epidemic)
to other species such as Ae. vigilax which are primary RRV vectors (capable of starting and maintaining epi-
demics). Although novel for RRYV, the distinction between primary and secondary vectors has been made
for other arboviruses (Turell et al., 2005). Finally, the isolation of RRV from wild caught mosquitoes demon-
strates that a particular species is infected with the virus, it is incomplete evidence for mosquito species’
specific role in virus transmission. Even if found infected in the field, the lower transmission capability of
Cx. annulirostris or Ae. notoscriptus relative to Ae. vigilax, Ae. procax and Cg. linealis means that the former

are likely to transmit infection to fewer hosts than the latter.

Caveats and uncertainty

It is important to acknowledge a number of caveats with the data and modeling assumptions we used. For
physiological competence, experimental studies vary substantially in their methods. We overcame some
of this variation by transforming published data into the same viral units between studies (e.g., infectious
units were converted to per milliliter:  IU/mL). However, not all variation in experimental approaches
could be included in our regression model because of data sparsity. ~ Thus, it is possible that some of the
variation we attribute to species may in fact be explained by methodology used in different studies. ~ For
the ecological data, the methods used to collect species abundance data can also result in bias, as different
traps and survey types detect different species (Brown et al., 2014, Liihken et al., 2014). For example, the
species trapped using CO»-baited light traps in this study may not be a true representation of the entire
mosquito community in Brisbane. Similarly, vertebrate survey methods are biased against detecting species
with cryptic behavior, and thus represent a biased sample of the host community available to host-seeking
mosquitoes. While the uncertainty captured in the reported data were propagated through our estimates
of competence, unmeasured uncertainty arising due to experimental methods could additionally affect the
results. However, compared with approaches that focus solely on a single physiological or ecological data
source to infer competence, the approach presented here allows for a more detailed investigation of vector
and host competence and their drivers.

There are many potential hosts that are not included in this analysis due to data limitations. As a min-
imum requirement, host species were only included if they were included in mosquito blood meal field
observations, were experimentally exposed to the virus, and were measured for background seropreva-

lence and abundance in Brisbane. In some instances, to meet these minimum data requirements, species

were aggregated by taxonomic group. For example, we averaged the responses of chickens, little corellas,
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and Pacific black ducks to “birds’ (while a strong simplifying assumption, the clustering of these species’
physiological response does provide support for this choice: Appendix 1-Figure 2). In other instances (such
as the potential for koalas to be hosts of RRV), species were unable to be modelled because of an absence
of viremia data. Further, we ignore seasonal matching of transmission with host reproduction, ignore du-
ration of host life stages, and either make a snapshot measure of host transmission capability (Figure 2,
Figure 3) or make a simple five-generation approximation that averages across host and vector infectious
periods (Figure 4). Finally, some hosts and vectors may only be locally important for RRV transmission, as
opposed to being important over the entire geographic distribution of the virus. For example, though sheep
have high physiological importance, they were not locally important in Brisbane. However, sheep could
play a greater role in the maintenance and spillover of RRV in rural areas where they are more abundant
and/or where other species of mosquitoes with higher biting affinity for sheep may occur.

For mosquitoes, data sets with the most substantial gaps included host feeding data, physiological trans-
mission capability, and mosquito survival. Blood meal data is difficult to collect, butis very important
because feeding patterns enter into the equation twice for vector-host-vector transmission. Limited blood
meal counts (Table S3) led to high uncertainty in feeding patterns for many species (e.g., Ma.  uniformis),

which can have a large influence over the width of the 95% CI (Figure 3C). Addressing these data gaps
is critical for refining vector predictions for RRV, though these data are logistically difficult and costly to
obtain. More laboratory experiments on mosquito transmission probability over time, especially for those
understudied species that we predict have the potential to be important transmitters would also help to bet-

ter resolve transmission patterns in the Brisbane community. For example, the 95% confidence intervals for
Ma. uniformis and Ve. funerea are particularly wide, which could place them as either highly important vec-
tors or inefficient vectors. Finally, because we assumed identical survival for all species, with no uncertainty
(i.e., survival did not contribute to the widths of the confidence intervals across species), the uncertainty
we present is an underestimate. Species-specific field-based mortality rates are a crucial data source that
needs to be obtained for more accurate measures of mosquito transmission capability. It is important to
note, however, that even in spite of large uncertainty for vector-host-vector transmission (Figure 3C), the
rarity of many of these mosquito species make them mostly irrelevant when approximating transmission
over multiple generations (Figure 4, Appendix 2-Figure 6).

While all of these modeling choices and data shortcomings can influence model outcomes, a clear ad-
vantage of the framework is that uncertainty from each statistical sub-model fit to independent data sets
is accounted for in the overall estimates. In doing so, parameters with high uncertainty, such as mosquito

feeding preferences or transmission probabilities, can be targeted in future studies to help refine the frame-

work’s predictions.
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Applications for other vector borne diseases

This framework can be applied to other vector-borne pathogens in a number of ways. A principal applica-
tion would be to identify important vectors and hosts for other multi-host, multi-vector pathogens, includ-
ing Rift Valley fever virus (Turell et al., 2008, Davies and Karstad, 1981, Gora et al., 2000, Busquets et al.,
2010); West Nile virus (Kain and Bolker, 2019), or yellow fever virus (Rosen, 1958, Jupp and Kemp, 2002),
for which competence data exist for several species.  For these diseases, our framework and code can be
used by substituting data and modifying the underlying statistical sub-models (e.g., titer profiles) to match

the dynamics of the pathogen of interest; the subsequent calculations for host and vector competence, half-

cycle transmission, and complete-cycle transmission are usable without modification. The generality of this

framework and its nested approach can also support (with minimal modification) additional transmission
pathways such as vertical transmission (where mosquitoes emerge from immature stages already infected
with a given pathogen), or direct vertebrate-to-vertebrate transmission as can occur for some vector-borne
diseases such as Rift Valley fever virus (Wichgers Schreur et al., 2016) or Zika virus (D’Ortenzio et al., 2016).
Secondary applications for this framework could include identifying the largest gaps and uncertainties
within datasets. This is advantageous because in light of finite resources, model-guided research (Restif
et al., 2012) can identify the most important data needed to improve predictions for disease emergence and
transmission.  Another application would be to apply the framework for a single pathogen across space
and time, such as across the geographic range of RRV or between seasons. This is useful to compare shifts
in transmission dynamics, identify hotspots or potential for spillover. Though our framework has not been
developed to predict the timing and peak of epidemic events, it can be used to disentangle the underlying
transmission dynamics of vector-borne pathogens in specific locations, which allows for the development
of predictive modeling.
Finally, the generality and multi-phase nature of this framework provide a common language to com-
pare and contrast the transmission dynamics not just within a single pathogen, but also between them.
Until now, the highly diverse methods, definitions and data required to characterise vectors and hosts has
hindered the ability to make comparisons between pathogens. The integration of multidisciplinary data in
this framework is done in a way that could be used to compare host or vector physiological competence

and ecological traits for other multi-host, multi-vector pathogens.

Conclusion

Identifying important vectors and hosts of zoonotic pathogens is critical for mitigating emerging infectious

a4 diseases and understanding transmission in a changing world. However, attempts to do so have been ham-
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a0s pered by the multidisciplinary datasets required and differing definitions that can alter the importance of a
s species. Here we developed a nested approach that can be applied to any multi-host, multi-vector pathogen
a7 for which some competence data exists. Applying this approach to RRV transmission in Brisbane, we were
a8 able to: a) identify two hosts of potentially high importance that deserve further investigation (humans and
ws  birds), b) two potential transmission cycles (an enzootic cycle and a domestic cycle), and c) datasets that
a0 should be targeted (bloodmeal studies, vector transmission experiments, field-based mosquito survival es-
a1 timates) to reduce overall uncertainty and ultimately increase the future power of the framework. Future
sz studies that aim to identify and quantify the importance of different species in virus transmission cycles
sz must integrate both physiological competence data and ecological assessments to more fully understand
s4  the capacity of species to transmit pathogens. The nested approach here provides a tool to integrate these

4

s different datasets while acknowledging uncertainty within each, which could be applied to any multi-host,

#e  multi-vector pathogen for which some competence data exists.

« Materials and Methods

ss The methods are presented in three sections to reflect our three focal questions. First, we describe the
se  calculation of host and vector physiological competence. Second, we describe half-cycle (host-to-vector
a0 and vector-to-host transmission) and complete-cycle (host-vector-host or vector-host-vector) transmission.
421 Third, we describe how we use complete-cycle transmission to approximate transmission over multiple
a2 generations. We introduce data and calculations for components that are used in multiple transmission

a3 metrics (e.g., host titer profiles) with the first metric in which they are used.

2 Host and vector physiological competence
w25 Vertebrate hosts: titer profiles

a6 Wefit host titer profiles as continuous functions over time to published data on host vertebrate responses to
sz7 infection. For each of 15 experimentally infected non-human vertebrate species we extracted the proportion
w28 of exposed individuals that developed detectable viremia, their duration of detectable viremia in days, their
w20 peak viremia titer, and the unit of measure of this titer (such as median lethal dose (LD50), suckling mouse
430 intracerebral injection (SMIC50)) (from Whitehead, 1969, Spradbrow et al., 1973, Rosen et al., 1981, Kay
s etal., 1986, Ryan et al., 1997, Boyd et al., 2001, Boyd and Kay, 2002). All reported viral concentrations were
a2 converted to infectious units per millilitre (IU/mL) values, rather than 0.1mL or 0.02mL as reported in some

sz studies. Titer data are summarized in Table S1 and a summary of these studies” methodological details can
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be found in Stephenson et al. (2018); all data extracted from these publications are available in Source Data
1.
For non-human species, only means and standard deviations for peak titer and duration of detectable
titer were reported. We transformed these summary measures into continuous titer profiles (continuous
functions of titer over time that are needed to quantify mosquito infection probability) by modeling titer
profiles as quadratic functions of time since infection, based on observed patterns in the data. For human
titer profiles, for which experimental infection studies were not available, we used data from one obser-
vational study (Rosen et al., 1981) that measured titer in humans exhibiting disease symptoms during an
outbreak in the Cook Islands in 1980. Details on how we constructed continuous titer curves, with uncer-
tainty, for all hosts are available in Appendix 1; for raw human titer data see Source Data 2. In Appendix
1-Figure 1 we show 95% confidence intervals (CI) for each of the hosts” quadratic profiles generated from
this procedure with the summary values of peak and duration of titer extracted from the literature over-
layed. To quantify host physiological competence we summarized the titer profiles into a single metric
using the area under the curve (AUC) of the time-dependent titer curves. We use AUC because it simulta-
neously captures both titer magnitude and the duration of detectable titer (the host’s infectious duration).
AUC is used only to summarize host competence; raw time-dependent titer values are used to calculate
mosquito infection.  The AUC for the fitted titer profiles (Appendix 1-Figure 1) are shown in Appendix
1-Figure 2.

Mosquito vectors: infection and transmission probability

We fit mosquito infection probabilities and mosquito transmission probabilities using published data from
laboratory experimental exposure of mosquitoes to RRV. From experimental infections of mosquitoes we

collected information on the infectious dose they were exposed to, the number of mosquitoes receiving
an infectious dose, the proportion of mosquitoes that became infected, the proportion of mosquitoes that

went on to become infectious (i.e., transmitted the virus), and the time it took for mosquitoes to become
infectious (the extrinsic incubation period) (from Kay et al., 1979, 1982a, Kay, 1982, Kay et al., 1982b, Ballard

and Marshall, 1986, Fanning et al., 1992, Vale et al., 1992, Wells et al., 1994, Doggett and Russell, 1997,

Watson and Kay, 1998, Jennings and Kay, 1999, Ryan et al., 2000, Doggett et al., 2001, Jeffery et al., 2002,
Kay and Jennings, 2002, Jeffery et al., 2006, Webb et al., 2008, Ram 1rez et al., 2018). Mosquito infection and
transmission data are summarized in Table S2; raw data files are included as Source Data 3 and Source Data
4, respectively.

Wemodeled both mosquito infection probability (the proportion of all experimentally exposed mosquitoes
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with virus detected in their bodies) and transmission probability (the proportion of all experimentally ex-
posed mosquitoes with virus detected in their saliva, measured via feeding on a susceptible vertebrate
species or using an in vitro method of saliva collection) using generalized linear mixed effects models
(GLMM) with Binomial error distributions, fitin R using the package 1me4 (Bates et al., 2015). For each
model, the proportion of mosquitoes infected or transmitting was taken as the response variable and the
total number exposed to infection was used as weights; species were modeled using random effects. For ad-
ditional details see the Supplemental Methods. Fitted infection probability curves for all mosquito species
for which we gathered data —those found in Brisbane and elsewhere in Australia —are shown in Appendix
1-Figure 3; transmission probability curves are shown in Appendix 1-Figure 4. To quantify mosquito physi-
ological competence we summarized mosquito infection and transmission probabilities into a single metric
using the area under the curve (AUC) of the dose-dependent infection curve multiplied by the area un-
der the curve (AUC) of the time-dependent transmission curve. AUC is used only to summarize mosquito
competence; raw probability values are used to calculate the probability a mosquito becomes infected when
feeding on an infected host (given the titer in that host) and the probability they are able to transmit to a
susceptible host (given the number of days post infection that the feeding occurs). The AUC for the fitted
infection probability (Appendix 1-Figure 3) and transmission probability (Appendix 1-Figure 4) curves are

shown in Appendix 1-Figure 5 and Appendix 1-Figure 6, respectively.

Half-cycle and complete-cycle transmission

Both half-cycle (host-to-vector and vector-to-host) and complete-cycle (host-vector-host and vector-host-
vector) transmission nest host and vector physiological competence in an ecological context (Figure 1). To
quantify each of these metrics we used a next-generation matrix (NGM) model (Diekmann et al., 1990,
Hartemink et al., 2009), which, for a vector-borne disease, requires the construction of two matrices of
transmission terms.  The first matrix (denoted HV, where bold terms refer to matrices) contains species-
specific host-to-vector transmission terms, which we write with hosts as rows and vectors as columns.
The second matrix (VH) contains vector-to-host transmission terms and has vectors as rows and hosts as
columns. Cells of HV and VH contain the expected average number of infections between pairs of species
over the whole infectious period of the infector (host in HV, vector in VH); each pairwise transmission term
is a function of host and vector physiological competence as well as ecological factors. Row sums of HV
give the total number of vectors (of all species) infected by each host (total host-to-vector transmission);
similarly row sums of VH give the total number of hosts (of all species) infected by infectious vectors.

We calculate the total number of individuals of each mosquito species j that a host species i infects over
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its infectious period d (which gives entry [i, j] of HV) as:

S Biai
Ivi= (P46ig,) 0 -Qjj - gj- —F ’ 1)
di=1 i i=1 B i
di=1 ijdi

where p;jl0ig, is the probability that a susceptible species of mosquito (j) would become infected when
biting host i on day d; when it has titer 8iq,. We model infection over a period of 9 days for all host species

given that the estimated titer of all host species is predicted to be undetectable by 9 days, equating to a
very small mosquito infection probability (Appendix 1-Figure 1). The proportion of individuals of species
i that manifest an infection with detectable titer 8ig, is given by w;, while ¢/; is the number of susceptible

Bijai
mosquitoes of species i per host species j, 0j is the daily biting rate of mosquito species j, and ).,

j=1Byai
is the proportion of all mosquito species j's bites on host species i, which is jointly determined by the
relative abundance of host i (@) and the intrinsic feeding preference of mosquito j on host i (8j;) (details
given in Mosquito feeding behavior below). Eq. 1 assumes no species specific host-by-mosquito interactions
for infection probability; mosquito infection probability is uniquely determined by the level and duration
of titer within a host (i.e., a dose-response function of host titer). The only direct evidence against this
assumption that we are aware of is an example where more Cx. annulirostris became infected when feeding
on a bird than on a horse despite there being a lower viremia in the bird (Kay et al., 1986).

The total number of individuals of each host species i that a mosquito of species j infects over its infec-

tious period rj (which gives entry [j, i] of VH) is given by:

38 Bijai
Thjp = pir, Ny Ajry 05—
i=1B i

1
1 ijdi

/ )

7
ry

where pjr, is the probability an infected mosquito of species j transfers infection to a given susceptible host
by bite on day r; of their infectious period, Ajr, is the probability of survival of mosquito species j until day
rj, 0jis the daily biting rate of mosquito species j, and T/iﬁ is the proportion of all mosquito species
j’'s bites on host species i. We calculate mosquito-to-host transmission over 38 days given that we assume
mosquitoes do not survive longer than 38 days (see Mosquito survival below).
The key differences between the host-to-vector (HV; Ivj; ) and vector-to-host (VH; Ihjj) transmission
matrix entries are two-fold.  First, HV assumes that host infectivity is titer- and time-dependent and de-

pends on mosquito density per host; conversely, VH assumes that mosquito infectiousness is titer-independent

(dose-independent) but time-dependent and depends on daily mosquito survival and host species relative
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abundance. Second, for HV we assume a single infected host of a given species enters intoa community
of susceptible mosquitoes, while for VH we assume that a single mosquito of a given species becomes ex-
posed to a dose of 6.4 log1o infectious units per mL (the median dose used across all mosquito infection
studies) and then enters a host community with empirically estimated background host immunity (from
Doherty et al. 1966, Marshall et al. 1980, Vale et al. 1991, Boyd and Kay 2002, Faddy et al. 2015, Skinner et al.
2020; see Table S1 and Source Data 7 for sample sizes and the proportion of each host testing seropositive
for RRV). The primary similarity between these matrices is that mosquito biting rate, host abundance, and
mosquito feeding preference (0; times the fraction of @ and S terms) are used in both matrix calculations
as the components that control the contact rate between infected hosts and susceptible mosquitoes (VH) or
infected mosquitoes and susceptible hosts (VH).

Complete-cycle transmission is calculated using the matrix product of HV and VH, which is commonly
referred to as the “who acquires infection from whom” matrix (Schenzle, 1984, Anderson and May, 1985,
Dobson, 2004). Specifically, using HV*VH gives Gun, in which each cell describes the total number of

pairwise host-vector-host transmission events, assuming a single infected host appears at the start of its
infection in an otherwise susceptible host population. Likewise, using VH*HV gives Gvv, in which each

cell describes the total number of pairwise mosquito-to-mosquito transmission events, assuming a single

sv7 infected mosquito appears at the start of its infectious period in an otherwise susceptible mosquito popula-

s38 tion. Row sums of Gun give the total number of new host infections in the second generation that originate
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from single source infections in each host species (total host-vector-host transmission), or the total number
of mosquito-to-mosquito transmission events in the case of Gyy. Column sums of Guu or Gyv  give the
total number of newly infected individuals of each host or mosquito species arising from one infection in

each host or mosquito, respectively. These properties can be used to find, for example, dead-end hosts (i.e.,

“diluters”; Schmidt and Ostfeld, 2001), which would be captured by host species with a small row sum and

large column sum in Gun.  Further, Diekmann et al. (1990) show that the dominant eigenvalue of either
Gau or Gvv describes Ro, the typical number of secondary cases, resulting from pathogen transmission in
the heterogeneous community whose pairwise transmission dynamics are described in HV and VH.

We estimated each of the parameters of HV and VH using either statistical sub-models fit to empirical
data or directly from empirical data taken from the literature. Uncertainty from all statistical sub-models
was propagated into the calculations of HV and VH in one of three ways: 1) titer: by simulating 1000 titer

curves given the uncertainty in peak titer and duration of titer in the published data sources (see Supple-

sst mental Methods); 2) mosquito infection probability and mosquito transmission probability: by constructing

552

density distributions using the means and variance-covariance matrix of the estimated coefficients assum-

ss3 ing univariate or multivariate normality (using 1000 samples; see Kain and Bolker 2017, 2019 for two exam-
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ples using this method of uncertainty propagation in similar frameworks); 3) mosquito feeding behavior:
using the estimated Bayesian posterior. We do not consider uncertainty for those framework components
that rely on raw data (the proportion of hosts that mount a viremic response, host and mosquito relative
abundance, and host seroprevalence) or point estimates (mosquito to host ratio, mosquito biting rate, and
mosquito survival). Thus, the 95% Cls we present contain uncertainty from fitted statistical models but do
not account for the full uncertainty. All of our framework’s parameters, the data used to parameterize all
sub-models within the framework, and methods of uncertainty propagation are listed in Table 1. Details on
vertebrate host and mosquito abundance, mosquito survival, and mosquito feeding behavior are described

below.

Vertebrate host abundance

s+ Vertebrate abundance data for Brisbane was calculated from a variety of sources including published litera-
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ture and technical reports (see Table S1 and Source Data 5). Data on livestock species (cattle, sheep, horses)

and humans arose from technical reports undertaken by agricultural and government agencies (Australian

ss7 Bureau of Statistics, 2018, Meat and Livestock Australia, 2019a,b, Ward et al., 1996). Cat and dog abundance
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was derived from a general pets per human ratio from a technical report (Animal Medicines Australia,
2019), and scaled to the human population in Brisbane. ~Abundance for wildlife was derived either from
citizen science reports (birds, possums and macropods: Australian EPA 2019), or published fauna surveys
undertaken in Brisbane (flying foxes: Queensland Government 2020; rats, rabbits: Skinner et al. 2020). Host
abundance was calculated as a measure of density within Brisbane (hosts per km?). We used the relative
densities of each of these species as reported in these sources as the species” proportions in our community

for our analysis.

Mosquito abundance

Mosquito relative abundances were estimated for Brisbane by combining data from mosquito surveys (re-
quested from the Brisbane City Council mosquito surveillance program). In brief, Brisbane City Council
operates weekly carbon-dioxide baited Centers for Disease Control (CDC)-style light traps across ten sites
in Brisbane. Traps are set 1.5m off the ground before dusk, and collected just after dawn the following
morning. Any trapped mosquitoes are stored in -20C until identification to species level by a single person.
This data is not publicly available, but has been analyzed and described in Skinner et al. 2020. Mosquito
abundance from these surveys was calculated as an average weekly total during peak mosquito season

(October to May). Mosquito species abundance data was also supplemented with the results of analyses
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s Of the vertebrate host origin of mosquito blood meals presented in previous published studies (Ryan et al.,
sss 1997, Kay et al., 2007, Jansen et al., 2009). Mosquito abundance data is summarized in Table S2; raw data is
s available in Source Data 8.

587 We used the observed proportion of each mosquito species detected in these surveys as the proportion
588 of that species in our community for our analysis, which assumes that the observed species proportions

se  are unbiased predictors of their true proportions. Because the number of mosquitoes per host (Eq. 1: ) is

so  needed to calculate the absolute number of mosquitoes an infected host would infect, we multiplied the
591 relative abundances of mosquitoes by 40 (our assumed value for overall raw number of mosquitoes per
502 host in the community). While this may be an over- (or under-) estimate of the true value in Brisbane,

se3 because this value is only a scalar in the NGM framework it will only affect the magnitude of estimates and

s not the relative estimates among species.

sss  Mosquito survival

s Survival data (either field or laboratory derived) for the mosquito species present in Brisbane, Australia,
s is not available for most species. For this reason, we modeled mosquito survival as being identical for all
ses  species.  Specifically, we used an exponential decay model for mosquito survival using a daily survival
se probability that is half of the daily maximum survival rate of Culex annulirostris (calculated as 1/lifespan)
s0 Mmeasured in optimal laboratory conditions (from Shocket et al. 2018 who used data from McDonald et al.
eo1 1980, which may over-estimate survival rates in nature). However, we assume that mosquito survival

ez probability falls to zero after day 38.

ss Mosquito feeding behavior

s« We modeled the observed blood meals in wild-caught mosquitoes (the number of blood fed mosquitoes
s0s and the source of the blood meals) as arising jointly from the abundance of each host in the community and
s0s each mosquitoes’ intrinsic feeding preference on each host species (the latent variable that we model here).
sv Data was extracted from published blood meal surveys specific to Brisbane (from Ryan et al., 1997, Kay
eos et al., 2007, Jansen et al., 2009); mosquito blood meal data is summarized in Table S2 and Table S3; raw data
e is available in Source Data 6. Specifically, we modeled the number of blood meals a mosquito of species j

s10  Obtains from host species i (0 ) as:

&7 ~ MultiiN, —————)r 3
’ ( f=15 ai ©
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e where 0jj is a multinomially distributed random variable (the extension of the binomial distribution for
sz greater than two outcomes) with probability equal to the intrinsic preference of mosquito j for host species
o131 (Bij ), weighted by the abundance of host species i (Gj), relative to all host species in the community (sum
14 over all host species in the denominator). Written in this way, Bjj is the ratio of the proportion of bites
s1s Mosquito species j takes on host species i relative to biting host species j in proportion to their abundance
stein the community (which would occur if a mosquito were biting randomly). We fit this multinomial model
7 in a Bayesian context in Stan (Carpenter et al., 2017), interfaced with R using the package rstan (Stan
s1s Development Team 2017). For details on the fitting of this Bayesian model see Appendix 1; the full Stan

s1e  model is also available in the GitHub repository hosting the code: Kain (2021).

s20 Tailoring the model to the Brisbane community

e21 One difficulty with the integration of diverse data types is variation in the biological scale at which these
s22 data are collected. For our model, vertebrate host types are recorded at different taxonomic levels across
e2s data sets (e.g., laboratory infection experiments are conducted at the species level while mosquito blood
s« meal surveys report identification of the blood meal host source at a taxonomic level ranging from species
es through to higher level classification such as class or family). In order to integrate the predictions from
e26 our individual sub-models fit to single data types (e.g., infection experiments and blood meal surveys) to
ez parameterize HV and VH, and thus draw inference on the importance of different hosts and mosquitoes in
s RRV transmission in Brisbane, Australia, we made three simplifying assumptions. First, we averaged each
20 Mosquito’s infection probability when biting “birds’ (the taxonomic level available for blood meal data)
ss0 for the three species of birds with a measured viremic response (Pacific black duck: Anas superciliosa, do-
es1 mestic chicken: Gallus gallus domesticus, and little corella: Cacatua sanguinea) and ‘macropods’ for the two
sz macropod species with a measured viremic response (agile wallaby: Macropus agilis and eastern grey kan-
ss3 garoo: Macropus giganteus). This averaging implicitly assumes (in the absence of species-level information)
suthat all birds and all macropods respond identically to infection. Though a strong simplifying assumption,
ess the three bird species have very similar viremic responses, as do the two macropod species (Appendix 1-
s Figure 2). Second, we summed all individuals of all bird species and all macropod species recorded in the
s7 Brisbane host surveys in order to calculate the relative abundance of each of these host types to match the
e aggregation of titer profiles (see Table S1 for the relative abundance of each host type in Brisbane). Finally,
sse we retained only nine mosquito species for which we had both abundance data and blood meal data (Table
s0 S2); though this excludes many potentially relevant mosquito species, the nine species we retained account

a1 for 90% of the Brisbane mosquito community according to our abundance data (Table S1). Our inference on
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es2 host importance in Brisbane, Australia is thus focused on the following host groupings: birds, cats, cattle,
ssdogs, flying foxes, horses, humans, macropods, possums (namely Brushtail possums Trichosurus vulpecula),
eas Tats, rabbits, and sheep. We consider the importance of the following mosquito species: Aedes notoscriptus,
ws Ae. procax, Ae. wvigilax, Coquillettidia linealis, Culex annulirostris, Cx. australicus, Cx. quinquefasciatus, Cx.

s sitiens, Verrallina funerea, and Mansonia uniformis.

« Multi-generation approximation

ss We approximated how RRV would spread in a naive host and mosquito community at the start of an epi-
a0 demic to highlight which infection pathways drive transmission as RRV invades. To approximate epidemic
ss0 transmission we used the next-generation matrix (NGM) approach to calculate the progression of the dis-
es1 ease in discrete time steps where each time step represents a complete cycle of transmission. Because this
ez method relies on the total number of mosquitoes infected over a host’s entire infectious period (9 days)
3 and the total number of hosts infected by a mosquito over its entire lifespan (38 days; weighted by their
es4 probability of surviving over this period), it approximates how epidemics would propagate if pathogen
ess transmission occurred in discrete generations, rather than continuously in overlapping generations. It is
ese therefore a simplification that does not fully represent time-dependent epidemic dynamics. We use this
7 simulation simply to highlight the host and mosquito species that would experience the most infections
ess early in an epidemic (given by the total transmission potential across both a host’s and mosquito’s infec-
ese  tious period).

680 Specifically, we first calculated the number of hosts of each species that would become infected starting
1 with a single infected host individual of one species using Gun. To calculate which hosts would become
szinfected in the next generation, we then used Gun starting with the individuals infected from the previous
sssstep. We repeated this process over only five generations to avoid modeling transmission over a longer pe-
ss4riod than one transmission season in Brisbane. By using the Brisbane community in which RRV is endemic,
sss we use this analysis as an illustrative example of disease emergence and not to provide specific predictions
ses for RRV emergence in any specific new location with no prior exposure to RRV. To estimate how infection
e spreads in the mosquito community we used a similar approach, but instead started with one infected
sss mosquito and used Gvv. As with host-vector-host transmission using Gun, while this strategy provides
eo only a coarse approximation of transmission over time by assuming discrete generations of infection, it
e70 is useful for revealing important pathways of transmission and identifying species that remain important
e71 transmitters over multiple generations without the need to parameterize a dynamic, continuous-time epi-

ez demic model.
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Data Availability

All data used in this study are uploaded as Source Data files. All code is hosted on GitHub: Kain (2021).

So

1.

(@)

urce data

Source Data 1: hostresponse.csv - Viremic responses of non-human vertebrates from experimental
infections. Shown in Appendix 1-Figure 1, summarized in TableS]

Source Data2:  human titre.csv - Viremic response of humans observed during natural infection.
Shown in Appendix 1-Figure 1; summarized in TableS]1

Source Data 3: mosquito infection.csv - Laboratory infections of mosquitoes: infection probability.
Shown in Appendix 1-Figure 3; summarized in TableS2

Source Data 4: mosquito transmission.csv — Laboratory infections of mosquitoes: transmission prob-
ability. Shown in Appendix 1-Figure 4; summarized in Table S2

Source Data 5: host.abundance.csv - Host densities in Brisbane, Australia. Summarized in Table S1

. Source Data 6: mosquito feeding.csv - Blood-feeding surveys of mosquito species” found in Brisbane,
Australia. Summarized in Table 52

7. Source Data 7: host seroprevalence.csv - Seroprevalnece of vertebrate hosts in Brisbane, Australia.
Summarized in Table S1
8. Source Data 8:  mosquito abundance.csv - Abundance of mosquito species in Brisbane, Australia.
Summarized in Table S2
Supplemental Files
1. Supplemental Table 1 (Table S1): Summary of host data - Summarized host titer, seropositivity, and
abundance data.
2. Supplemental Table 2 (Table S2): Summary of vector data - Summarized mosquito infection proba-
bility, transmission probability, and abundance data.
3. Supplemental Table 3 (Table S3): Summary of mosquito blood meal data — Summarized mosquito
blood meal data used in the mosquito feeding preference model.
Appendix Tables
1. Appendix 1-Table 1: Summary of previous works” definitions for host and vectorimportance.
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Table 1: Model components, the transmission metrics in which they are used, and the data and statistical modelling choices used to estimate
each. The column “Parameter” lists the parameters as they appear in Eq. 1 and Eq. 2. Abbreviations for the transmission metrics are: HC = host
competence; H-to-V = host-to-vector transmission; V-to-H = vector-to-host; H-to-H = host-vector-host; V-to-V = vector-host-vector. The “Data”
column lists the name of the supplemental file containing the raw data; all citations are listed in the online supplement (Table S3). Data sources are
described in the Supplemental Methods: Data. The “Methodological Details” column lists where in the manuscript methods are described.

Model Component Parameter Transmissi | Data Statistical Model Uncertainty Methodological Details
Metrics
Proportion of individ- | w; HC host.response.csv | Raw Data None (Raw Data) Methods: Vertebrate hosts: titer
uals of host species H-to-V H- | human titer.csv profiles; Supplemental Meth-
i exposed to infection to-H V-to- ods: Host physiological compe-
that produce viremia \Y% tence; Table S1
Host titer (in species i | bia; HC host response.csv | Linear model with | 1000 simulated titer curves | Methods: Vertebrate hosts: titer
on day j) H-to-V H- | human titer.csv a quadratic term for | for each species profiles; Supplemental Meth-
to-H V-to- days post infection ods: Host physiological compe-
Vv tence; Appendix 1-Figure 1;
Table S1
Proportion of host | nj V-to-H H- | host- Raw Data None (Raw Data) Table S1
species i that are to-H V-to- | seroprevalence.csv
seronegative \%
Infection probability of | pj VC mosquito Generalized lin- | 1000 samples from a mul- | Mosquito vectors:  infection
mosquito species j as a H-to-V V- | infection.csv ear model (logistic tivariate Normal distribu- | and transmission probability;
function of dose to-H H-to- regression) tion using the estimated | Supplemental Methods: Vector
H V-to-V means and vcov matrix physiological competence; Ap-
pendix 1-Figure 3; Table S2
Transmission probabil- | Pir, vC mosquito- Generalized lin- | 1000 samples from a mul- | Mosquito wvectors: infection
ity of mosquito species V-to-H H- | transmission.csv | ear model (logistic tivariate Normal distribu- | and transmission probability;
j r days post infection to-H V-to- regression) tion using the estimated | Supplemental Methods: Vector
\% means and vcov matrix physiological competence; Ap-
pendix 1-Figure 4; Table S2
Survival probability of | Ajr, V-to-H H- | - Exponential decay | None Methods: Mosquito survival;
mosquito species j up to-H V-to- using point estimate Appendix 1-Figure 7
to r days post infection \% for daily mortality
probability
Proportion of | »7° E,'.ja ; | V-to-H H- | mosquito_ Custom Bayesian re- | Bayesian posterior Methods:  Mosquito  feeding
mosquito species = to-H V-to- | feeding.csv gression model preference; Supplemental Meth-
j's blood meals that Vv host_ ods: Mosquito feeding prefer-
are obtained from host abundance.csv ence; Table S2; Table S3
species i
Number of susceptible | Pijj H-to-V H- | mosquito Raw Data + As- | None (Raw Data + Point
mosquitoes of species i to-H V-to- | abundance.csv sumption Estimate)
per host species j \%
Daily biting rate of | Oy H-to-V V- | - Assumption None (Point Estimate) Assumed value of 0.5 Day
mosquito species j to-H H-to-

H V-to-V




Appendix 1

Statistical Sub-Models

Vertebrate hosts: titer profiles

We converted reported means and standard deviations for peak titer and duration of detectable titer into
continuous titer profiles, which are needed to translate titer into mosquito infection probability given a
feeding event. For each species we first simulated N titer values at each of the first day, the day hosts
reached their peak titer, and the last day of infection (where N is the total number of individuals of each
species in the infection experiment that developed detectable viremia). We simulated the last day of infec-
tion and the log of peak titer for each species by drawing N samples from a Gaussian distribution using
the reported means and standard deviations for infection duration and peak titer. We assumed titre on day
one and the last day of infection were at a detectability threshold of 1022 infectious units/ml blood (the
detection limit of RRV in African green monkey kidney (Vero) cells: McLean et al. 2021), and that simulated
peak titer occurred at the midpoint between the first and simulated last day of infection. We then fit a linear
model in R to these simulated data using linear and quadratic terms for day post infection. To quantify
uncertainty in quadratic titer profiles, we simulated and fit linear models to 1000 simulated sets of titer
curves; in Appendix 1-Figure 1 we show the 95% CI for each of the 15 hosts” quadratic profiles generated
from this procedure with the raw summary values of peak and duration of titer extracted from the literature
overlayed (the area under the curve for these titer profiles are shown in Appendix 1-Figure 2).

For human titer profiles we used data obtained during an epidemic of RRV in the Cook Islands in
1980 (Rosen et al., 1981). This study measured human titer from the day of symptom onset; raw data
showed that humans experienced peak titer on day one of symptoms. To remain consistent with how
we modeled non-human titer curves, we fit quadratic curves to the human titer data, which predict a
peak at the first day of symptoms and that humans have detectable titer approximately three days prior to
symptom onset. While it is uncertain how many days prior to symptom onset humans manifest a detectable
viremic response, expert opinion on RRV (Leon Hugo and John Mackenzie pers com) is that it is likely at
least one day, and for other arboviruses such as dengue, humans produce virus titers sufficient to infect
mosquitoes for multiple days prior to symptom onset (Duong et al., 2015). Because our assumption of a
quadratic titer curve extends titer to three days that have no direct quantitative empirical support —which
results in humans having a longer duration of titer than any other host—as a conservative estimate of
human physiological competence, we also run our model assuming that human titer increases from an
undetectable level to a peak on day 1 of symptom onset after only a single day (instead of approximately
three as predicted with the quadraticmodel).

Mosquito vectors: infection and transmission probability

In total, we gathered data for 17 experimentally infected mosquito species (all extracted data is available as
.csv data files in the Online Supplemental Material). In these experiments, mosquitoes were fed a given
dose of RRV via an artificial blood source which contained diluted stock virus or, in limited cases, from
living organisms, such as suckling mice. The proportion that went on to become infected (RRV detected in
the body) and infectious (RRV detected in the saliva measured artificially or via feeding on a susceptible
vertebrate) was recorded. In the generalized linear mixed effects model (GLMM) for mosquito infection
probability, we used virus dose as the sole fixed effect and modeled variation among mosquito species
using a random intercept and slope over dose. For transmission probability over time, we used days since
infection as the sole fixed effect and modeled variation among mosquito species’ transmission over time
using a random intercept and slope over time (days since feeding). While the maximum transmission
probability is sometimes allowed to vary by mosquito species, we lacked the data to estimate different
maxima for each species. Thus, we used simple logistic regression which models probability using an
asymptote of one. Uncertainty among mosquito species (which were modeled using a random effect) were
obtained from the conditional modes and conditional covariances of the random effect for species (for
further details see the code available on GitHub: Kain (2021).
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Mosquito vectors: feeding behavior

We fit our multinomial model in a Bayesian context because a Bayesian model allows us to incorporate
prior probabilities in order to model feeding patterns on species that were either: (A) not detected in the
host survey but appear in the blood meal data; or (B) detected in the host survey but do not show up in
the blood meal data. Specifically, for case (A), priors allow us to model a mosquito’s feeding patterns on a
species that would otherwise have an abundance of zero without having to make an arbitrary assumption
such as, for example, that a given host species that was not observed in the community but whose blood
was observed in a mosquito was exactly equal in rarity to the rarest detected species (e.g., see Hamer et al.
2009). For case (B), priors allow us to avoid the biologically implausible assumption that a mosquitoes’
preference for a host that simply was not recorded in that specific blood meal survey is exactly zero. For
example, in our blood meal data, zero Culex quinquefasciatus were recorded to have taken a blood meal
from humans, though it is well understood that this species does occasionally bite humans and can lead
to human infection of, for example, West Nile virus (Molaei et al., 2007). We used a Dirichlet distribution
for our prior on host abundance, which is the conjugate prior to the multinomial distribution (Tu, 2014).
The Dirichlet distribution is parameterized with a vector of positive reals (@), with length equal to the
number of categories being modeled (for us, hosts). For our Dirichlet prior we smoothed the observed host
proportions in the data in an attempt to control for the low detection probability of more cryptic species to
produce the following a vector (rounded for display): human = 917, dog = 187, cat 138, bird =73, possum =
22, flyingfox =19, cattle = 14, macropod =7, sheep = 0.4, horse = 0.2, rabbit = 0.2, rat =0.2.

We assume that the underlying feeding preference of each mosquito species (proportional increases or
decreases in biting host species relative to biting those species in proportion to their relative abundance)
across host species is Gamma distributed (a flexible two-parameter distribution on [0, inf) that can resemble
an exponential distribution with mode at zero or a Gaussian-like distribution with strictly positive values).
We allow the shape of this Gamma distribution to vary among mosquito species, which, in biological terms,
flexibly allows the model to capture mosquitoes with specialist feeding preferences (skewed Gamma across
host species —mosquitoes bite many host species rarely and a few species often) and generalist feeding
tendencies (flatter Gamma —mosquitoes bite hosts in accordance with their relative abundance). To do so,
we use a multi-level model in which we assume that the shape of the Gamma distributions describing
each mosquito species” preference are in turn Gamma distributed. This can be interpreted as being used
to model the distribution of specialists and generalists mosquitoes in the sample. Specifically, to allow
the “shape” of the species-level Gamma distributions to vary, we assume that the two parameters that
describe those Gamma distributions are drawn from two higher-level Gamma distributions; we used a
prior of gamma(4, 4) for each of the higher-level Gamma distributions which are minimally informative
priors used to constrain the model to search a realistic space of feeding preferences (e.g., not a perfectly
uniform case or an extremely skewed exponential case).
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Appendix 1 Table 1: Reviews suggesting frameworks on how to define the terms “host” and “vector” vary greatly in which physiological and
ecological criteria they consider (indicated with ”X") contribute to the importance of a species as hosts or vectors.

i3

Ref Host Physiological Ecological
eference . . . P
or vector | Pathogen | Pathogen | Immune | Survival Population| Abundance| Contact Breeding | Activity

load (e.g. | isolated response | (i.e. sur- | suscepti- with vec- | patterns patterns
titre dura- | (e.g. virus | (e.g. de- | viveslong | bility tor/host
tion and | isolation) | tectable enough to
magni- antibod- transmit)
tude) ies)

DeFoliart et al. 1987 | Host X X X X X

Levin et al. 2002 Host X X X X

Ashford 1997 Host X X X X

Haydon et al. 2002 Host X X X X

Kuno et al. 2017 Host X X X X

(Cleaveland and | Host X X X

Dye, 1995)

Silva et al. 2005 Host X X X X

WHO Scien- | Host X X X X X

tific  Group on

Arthropod-Borne

and Rodent-Borne

Viral Diseases 1985

Scott 1988 Host X X X X

Wilson et al. 2017 Vector

DeFoliart et al. 1987 | Vector X X X

Kahl et al. 2002 Vector X X X

Killick-Kendrick Vector X X X X X

1990

Beier 2002 Vector

WHO Scien- | Vector X X X

tific  Group on

Arthropod-Borne

and Rodent-Borne

Viral Diseases 1985

Kuno and Chang | Vector

2005
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Appendix 1 Figure 1: Continuous titer profiles over hosts” infectious periods constructed using empirical estimates
of peak titer and titer duration. For all non-human species ‘Day’ represents days since experimental exposure to Ross
River virus (RRV). Solid black curves and grey envelopes show predicted medians and 95% ClI calculated from all
simulated titer curves. Horizontal dashed blue lines show empirically estimated peak titers (Table S1) for each species
and horizontal dotted blue lines show - SD. Vertical dashed red lines show empirically estimated end dates of
detectable titer and vertical dotted red lines show-d SD. Horizontal solid black lines show the maximum detectable
titer. For humans, points show reported means from raw data and error bars shows+1 SD. The human titer data is
shifted in time for visualization purposes (in the raw data the first observation of human titer is recorded on day 1 of
symptoms not exposure). Our predictions for humans ignore the outlier data point pictured at day 10, but do simulate
titer on days prior to empirically observed titer. For further details see commenting in the R code available on GitHub:
Kain (2021).
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Appendix 1 Figure 2: Area under the curve (AUC) calculated from the host titer curves pictured in Appendix 1-
Figure 1. We use AUC to collapse the continuous host titer curves (Appendix 1-Figure 1) into a single metric because
it simultaneously captures both the height of the curve (actual titer values) and duration of detectable titer (infectious
duration). We use AUC to quantify host physiological responses (see Figure 2A); however, the complete titer curves
(Appendix 1-Figure 1) are used to host-to-mosquito or mosquito-to-host transmission, not AUC. Orange points and
error bars (95% CI) show calculated AUC multiplied by the proportion of all of the individuals of each species that
develop detectable viremia when exposed to virus (see Table S1 for the proportion of individuals of each species that
developed a viremic response in infection experiments). Green points and error bars show calculated AUC ignor-
ing ignoring the proportion of hosts that display a viremic response. Note, for example, the large difference in the
physiological competence of horses using these two metrics; horses have been considered important hosts histori-
cally, though this claim has ignored the large proportion that do not produce detectable viremia (see Stephenson et al.

2018).
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Appendix 1 Figure 3: Probability mosquitoes become infected with RRV as a function of infectious dose. Data
points show the proportion of mosquitoes with infection detected at a given infectious dose in laboratory experimental
infections of mosquitoes; point size reflects the total number of mosquitoes exposed to infection. Model predictions
are from a binomial GLMM, with dose as a fixed effect and mosquito species as a random effect (intercept and slope
over dose), which was fit in R using the package 1me4 (Bates et al., 2015). Solid black lines show predicted medians,
and grey envelopes are 95% CI constructed from the conditional modes and conditional covariances of the random
effect (for further details see the code on GitHub: Kain (2021)).
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Appendix 1 Figure 4: Probability over time that an infected mosquito transmits RRV to a susceptible host given
a feeding event. Data points show the proportion of mosquitoes transmitting infection (virus detected in salivary
glands) in laboratory experimental infections of mosquitoes; point size reflects the total number of mosquitoes ex-
posed to infection and color shows the experimental dose mosquitoes were exposed to. Model predictions are from a
binomial GLMM, with day as a fixed effect and random effects of mosquito species (intercept and slope over day) and
reference (intercept), fit in R using the package 1me4 (Bates et al., 2015). Solid black lines show predicted medians, and
grey envelopes are 95% CI constructed from the conditional modes and conditional covariances of the random effect.
We did not include dose as a fixed effect because of model fitting/ parameter identifiability issues, but show the doses
used in the laboratory experiments here (color). Dotted lines connect data points that are from the same experiment.
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Appendix 1 Figure 5: Area under the curve of the mosquito infection probability curves shown in Appendix 1-
Figure 3. Points show medians and error bars show 95% CIL.

39




Cq linealis i i

Ae procax i |

Ae aegypti i i

Ae camptorhynchus i i

Cx austraclicus i i

Ve funerea i i

Ma uniformis i i

Ve lineata i i

Mosquito

Ma septempunctata i i

Ae vigilax I |

Cx annulirostris i i

Ve carmenti i |

Cx sitiens i I

Ae alternans I |

Ae notoscriptus i I

0 5 10 15 20
Area Under Transmission Probability Curve

Appendix 1 Figure 6: Area under the curve of the mosquito transmission probability curves shown in Appendix
1-Figure 4. Points show medians and error bars show 95% CI. Of all mosquitoes without data just Ve lineata is pictured
here as in Appendix 1-Figure4.
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Appendix 1 Figure 7: Culex annulirostris daily survival in laboratory conditions using the half-max of survival
in optimal conditions. In the absence of species-specific survival for most of our species we use this survival curve
(from Shocket et al. 2018 who used data from McDonald et al. 1980) for all of the species in our model, but assume
that survival after day 38 falls to zero.
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Appendix 2

Results Figures
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Appendix 2 Figure 1: Complete density distributions for total estimated host-to-host transmission for the the top
5 species by median estimates (Humans, Birds, Possums, Horses, Macropods. Distributions show the 1000 samples
obtained by propagating uncertainty from all statistical sub-models see Table 1 for details. The vertical dotted lines
show distribution medians.
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Appendix 2 Figure 2: RRV transmission capability of hosts as measured by the number of second generation
hosts exposed to infection vs RRV transmission capability of hosts as measured by the total number of second
generation hosts that mount a viremic response. The top panel is recreated from Figure 2C; the bottom row uses
the same calculation for transmission but weights all second generation hosts by the proportion of those hosts that
display a viremic response (i.e., dogs do not contribute to the sum in the bottom row). Though host ranks do not
change depending on the method of quantifying host transmission importance, overall estimates of transmission

decrease when removing sink infections (bottom panel).
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Appendix 2 Figure 3: Ross River virus transmission capability of hosts based on physiological traits alone or with
consideration of ecological traits that drive transmission — assuming human titer begins only 1 day prior to symptom
onset instead of assuming a full quadratic titer profile as we do in the main text. A. Physiological response of hosts to
experimental infection with RRV, summarized using the area under their estimated titer profiles over time (AUC). In
all panels, points show median estimates; error bars are 95% confidence intervals (Cls) that combine the uncertainty
from all statistical sub-models used to obtain the estimates presented in that panel (see Figure 1 and Box 1 for these
components). Titer profile AUC is used only to quantify host physiological competence, while raw titer profiles
(pictured in Appendix 1-Figure 1) are used in half-cycle and complete-cycle transmission. The ordering of hosts based
on highest (top) to lowest (bottom) physiological competence in A is conserved in B and C to aid visualization of host
order changes among panels. B. Host-to-vector transmission; matrices show the median numbers of vectors infected
by each host species, while the points show infection totals (sums across matrix rows), with error bars. C. Host-vector-
host transmission. As in B, the matrices show median numbers of next-generation host infections for all host species
pairs, while the points show sums across rows of the matrices (left plot) and the proportion of infections in the second
generation that are in the same species as the original infected individual (center plot).
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Appendix 2 Figure 4: Ross River virus transmission capability of mosquitoes based on physiological traits alone
or with consideration of ecological traits that drive transmission — assuming human titer begins only 1 day prior to
symptom onset instead of assuming a full quadratic titer profile as we do in the main text. A. Physiological response of
mosquitoes to experimental infection with RRV, summarized using the area under (AUC) of their estimated infection
probability versus dose curves multiplied by the area under their transmission probability versus time curves. Points
show median estimates; the error bars in each panel are 95% confidence intervals (Cls) that combine the uncertainty
from all statistical sub-models used to obtain the estimates presented in that panel (see Figure 1 and Box 1 for these
components). AUC is used only to quantify mosquito physiological competence; raw infection and transmission
profiles (pictured in Appendix 1-Figure 3 and Appendix 1-Figure 4, respectively) are used in calculations of half-
cycle and complete-cycle transmission. The ordering of vector species based on highest (top) to lowest (bottom)
physiological competence in A is conserved in B and C to aid visualization of vector order changes among panels. B.
Vector-to-host transmission; matrices show the median numbers of hosts infected by each vector species, while the
points show infection totals (sums across matrix rows), with error bars. C. Vector-host-vector transmission. As in B,
the matrices show median numbers of next-generation vector infections for all vector species pairs, while the points
show sums across rows of the matrices (left plot) and the proportion of infections in the second generation that are in
the same species as the original infected individual (center plot).
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Appendix 2 Figure 5: An initial human infection propagates infection through the host community. Starting with
a single infected human in generation “zero” (all hosts begin with zero infected individuals except humans), the
next generation matrix approach can be used to approximate (using the time step of a generation) how an epidemic
would unfold in the community. Here we show the total number of new infections of each species as the infection
spreads in the community across generations beginning with the source infection in one human. In generation one, all
infections arise from the source human infection. In subsequent generations, the plotted number of infections for each
species is the estimated total number of infections in that species arising from all transmission pathways. Our median
Ro estimate for RRV transmission in Brisbane is just above one, which results in a very slow increase in cases over
generations (solid lines); however, large uncertainty for the number of infections produced by each infected host and
mosquito (see Figure 2, Figure 3) results in the possibility of explosive epidemics and thousands of infected individual
hosts after a few generations. The thin grey black lines are 500 epidemic realizations. Because we assume a fully
susceptible host and vector population, this is an epidemic simulation, which would over-estimate the amount of
RRYV transmission in Brisbane because of the high host immunity in the host population that is ignored here.
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Appendix 2 Figure 6: An initial Ma. uniformis infection propagates through the mosquito community. Starting with
a single infected Ma. uniformis in generation “zero”, the next generation matrix approach approximates the number
of mosquitoes infected in subsequent generations. All generation one mosquito infections arise from the source Ma.
uniformis infecting hosts and those hosts infecting mosquitoes; the plotted number of infections for each mosquito
species is the estimated total number of infections in that species arising from all transmission pathways. As these
results are generated from the same model that produced the results in Appendix 2-Figure 5 (simply with a different
perspective) median estimates (bold black line) show slightly increasing numbers of infections in mosquitoes over gen-
erations. However, large uncertainty for the number of infections produced by each infected host and mosquito (see
Figure 2, Figure 3) results in the possibility of explosive epidemics and thousands of infected individual mosquitoes
after a few generations. As in Appendix 2-Figure 5, the thin grey black lines are 500 epidemic realizations. Because
we assume a fully susceptible host and vector population, this is an epidemic simulation, which would over-estimate
the amount of RRV transmission in Brisbane because of the high host immunity in the host population that is ignored
here.
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Appendix 2 Figure 7: Simulated illustrative example for how host species can change rank between host-to-
mosquito (panels A-C) and host to host (panels D-F) definitions of competence, even without considering host
abundance, mosquito abundance, mosquito biting preference, or differences in mosquito survival (each of these
variables makes increases the possible routes to host rank reversal). In this example, host species A has a more
peaked titer curve than host species B (panel A). Here, when each of these host species are bit by two different
mosquito species with different infection probability curves (panel B), host species B has an overall higher proba-
bility of infecting these two mosquitoes (panel C). To the right of the top panel shows the total number of mosquitoes
infected over the course of 8 days of infection in these two host species, assuming 5 susceptible mosquitoes of each
species per host and a daily biting rate of 0.4 for each mosquito species. When these mosquito species differ in their
incubation rate and thus transmission probability (panel D), and the same survival probability (differential survival
makes the reversal of ranks easier - if mosquito species 2 has lower survival the gap between host species will widen)
even if they have the same survival probability (panel E), they will have different survival-weighted transmission rates
per bite over time (panel F). Taking the total number of infected mosquitoes of each species in the host to mosquito in-
fection step and multiplying by the total number of transmissions over the mosquitoes lifetime, considering mosquito
biting rate, results in host species A producing a fraction more host to host infections than species B.
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