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1        Abstract 
 

2  Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously 

3       difficult but critical for disease control.  We  present a nested approach for quantifying the importance    of 

4       host and vectors that integrates species’ physiological competence with their ecological traits.    We  apply 

5       this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia.       We 

6       find that vertebrate hosts with high physiological competence are not the most important for  community 

7       transmission; interactions between hosts and vectors largely underpin the importance of host species. For 

8    vectors, physiological competence is highly important. Our results identify primary and secondary vectors 

9       of RRV and suggest two potential transmission cycles in Brisbane:  an enzootic cycle involving birds   and 

10       an urban cycle involving humans.        The framework accounts for uncertainty from each fitted statistical 

11      model in estimates of species’ contributions to transmission and has has direct application to other zoonotic 

12      pathogens. 
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13        Introduction 
 

14       More than 60% of existing infectious diseases of humans are multi-host pathogens (i.e., moving   between 

15       non-human and human populations) and approximately 75% of emerging and re-emerging infectious dis- 

16      eases affecting humans have a non-human origin (Taylor et al., 2001, van Doorn, 2014). It it therefore critical 

17       to identify the role that different vertebrate host and vector species play in maintaining transmission  and 

18       facilitating spillover into humans.  However, identifying which species enable pathogen persistence    and 

19  quantifying the relative contribution that each species makes to transmission is notoriously difficult, partic- 

20   ularly because definitions for vectors and hosts vary greatly within the literature (Appendix 1-Table 1). The 

21       dynamics of multi-host pathogen systems can range in complexity from spillover between a single source 

22      population to a single target population (e.g., from bats to humans as has been postulated for SARS-CoV-1 

23       and SARS-CoV-2:  Boni et al. 2020) to large interconnected networks of species that maintain a    pathogen 

24       in a given environment and facilitate spillover into a target population (e.g., zoonotic arboviruses, such as 

25       West Nile and Rift Valley Fever viruses: Viana et al. 2014). 

26 Developing appropriate mitigation strategies for zoonotic pathogens hinges on quantifying which pro- 

27       cesses have the largest influence over each species’ importance in transmission cycles. Studies characteris- 

28       ing zoonotic arbovirus transmission often focus on pairwise transmission between non-human hosts   and 

29                vectors, or vectors and humans (for example work in West Nile virus:  Kilpatrick et al. 2006, Ross River 

30    Virus: Koolhof and Carver 2017, Stephenson et al. 2018, leishmaniasis: Stephens et al. 2016, Chagas disease: 

31       Gü rtler and Cardinal 2015, Jansen et al. 2018).  However, these and other proposed approaches (Appendix 

32                   1-Table  1) that capture only a portion of a pathogen’s transmission cycle cannot completely quantify a 

33       species’ contribution to transmission within a community.       Understanding the ecological importance of 

34       host and vector species for transmission requires modeling the complete transmission cycle   (host-vector- 

35       host or vector-host-vector transmission), “closing the loop” by estimating the number of new infections in 

36       the next generation.       This is needed to quantify each species’ contribution to R0, defined as the number 

37       of new infections arising from a single case in an otherwise susceptible population.  While this is well  un- 

38                derstood (e.g., see Turner et al., 2013, Fenton et al., 2015, Webster et al., 2017), this approach is used less 

39             frequently for multi-vector, multi-host pathogens because of the need for data across multiple phases of 

40       transmission for multiple host and vector species. 

41 Here, we present a general framework (Box 1) that:  1) quantifies host and vector species’ relative   im- 

42             portance across a complete transmission cycle of zoonotic arboviruses (Figure 1), using Ross River virus 

43             (RRV) as the model virus—a system for which we have data for many host and vector species for nearly 

44       all components of the transmission process; 2) identifies which of the many interacting physiological  and 
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45              ecological processes have the largest control over the importance of each species;  and 3) helps to reveal 

46    where the largest sources of uncertainty occur in order to identify which datasets require additional collec- 

47       tion for more robust predictions (Restif et al., 2012).       The approach uses three nested metrics of increas- 

48       ing biological complexity:       physiological competence;  transmission over one half of the pathogen’s life 

49       cycle (half-cycle transmission;  i.e.,  host-to-vector or vector-to-host transmission);  and transmission  over 

50       the pathogen’s complete life cycle (complete-cycle transmission) (Box 1).  This strategy has application   to 

51       other zoonotic pathogens for which some physiological and ecological data exist across vectors and hosts. 

52      Even for systems with limited data, a framework that integrates the entire transmission cycle can be useful 

53       for hypothesis testing and for guiding data collection by identifying the processes that most contribute  to 

54      uncertainty in competence (i.e., model-guided fieldwork, sensu Restif et al., 2012). 
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Box 1: Nested approach for characterising the complete transmission cycle of zoonotic arboviruses 
 

Stage 1: Physiological competence 
Characterizing the physiological response a species has to infection is fundamental to estimating its 
potential as a host or vector within a community. We define the physiological competence of a host 
species as its viremic response to infection multiplied by the proportion of individuals of that species 
that develop a viremic response when exposed to infection. We model each host species’ viremic re- 
sponse as a continuous function over time (Appendix 1-Figure 1); to compare hosts’ physiological 
competences we summarize their titer profiles using the area under the curve (AUC), which simulta- 
neously captures the magnitude and duration of titer (Appendix 1-Figure 2). For vectors, we quantify 
physiological competence using the product of the proportion of individuals that get infected follow- 
ing exposure to a given dose (Appendix 1-Figure 3) and the proportion that go on to transmit the virus 
(Appendix 1-Figure 4). Specifically, we quantify physiological vector competence using the multipli- 
cation of the AUC of these two curves (Appendix 1-Figure 5, Appendix 1-Figure 6). For a visualization 
of these components within an arbovirus life cycle see Figure 1. 

 

Stage 2: Transmission over one half of the pathogen’s life cycle (host-to-vector or vector-to-host trans- 
mission 
To begin to understand the role species play in community transmission, we quantify how many vec- 

55 
tors an infected host will generate or how many new host infections an infected vector will create. To 
do this, we combine host and vector physiological competence (Stage 1) with host and vector abun- 
dances and contact rates. Specifically, to quantify host-to-vector transmission we combine estimates 
(while propagating uncertainty) from host titer profiles over time, mosquito infection probabilities 
given titer (infectious dose), mosquito feeding behavior (which combines vector preference and host 
abundance), and mosquito abundance (Figure 1). For vector-to-host transmission we combine esti- 
mates from mosquito transmission probabilities, survival, mosquito feeding behavior, and host abun- 
dance. 

 

Stage 3: Transmission over the pathogen’s complete life cycle (host-vector-host or vector-host-vector 
transmission) 
A complete transmission cycle can be achieved by multiplying the two half-transmission calculations 
from Stage 2 (host-to-vector and vector-to-host) in either order; the R0 calculated from either order 
will be identical. However, each of the two multiplication orders reveals something different. Mul- 
tiplying host-to-vector by vector-to-host transmission gives host-vector-host transmission (a complete 
transmission cycle from the perspective of a host), which can be used to reveal all host-to-host pair- 
wise transmission pathways. In other words, beginning with an infected host, how many (and which) 
other hosts become infected? Conversely, multiplying vector-to-host transmission by host-to-vector 
will reveal all vector-to-vector transmission pathways starting with an infected vector. 
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1 - Frequentist linear model (Quadratic term) 

2 - Frequentist GLMM (Logistic Regression) 

3 - Bayesian multinomial mixed model 

Figure 1: The transmission cycle of Ross River virus, a multi-host, multi-vector arbovirus, and the components our 
framework uses to model this transmission cycle. The first requirements for transmission are physiologically com- 
petent hosts that become infected (A: “proportion viremic”) and are able to replicate the virus to suitable levels to 
infect vectors (A: “titer profiles”) and vector species that can become infected (B: “Mosquito infection probability”) 
and eventually are able to transmit virus (B: “Mosquito transmission probability”). Physiologically competent hosts 
and vectors contribute to the transmission of the virus through a continuous cycle of transmission, which can be 
viewed from two perspectives, either starting with an infected host or starting with an infected vector; regardless of 
perspective, a single complete cycle contains a single set of physiological and ecological components. Each of these 
components are used in our framework in one of three ways: statistical models fit to empirical data, from which un- 
certainty is propagated into the final calculations of transmission (boxes outlined in black); raw empirical data (boxes 
outlined in blue); and point estimates (boxes outlined in red). Italic bold numbers and text next to the boxes outlined in 
black describe, in brief, the type of statistical model used to estimate each component (GLMM stands for generalized 
linear mixed model). Details on all components are provided in the Methods, Supplemental Tables, and Appendix 
Figures that are listed next to framework components; associated raw Source Data files are also listed. 

 

56 As a case study, we focus on Ross River virus (RRV), an alphavirus that causes a disease syndrome 

57      characterized by polyarthritis, which is responsible for the greatest number of mosquito-borne human dis- 

58       ease notifications in Australia, with approximately 5,000 cases notified annually (Australian Govt.    Dept. 

59       of Health, 2020). It has also caused major epidemics in Pacific Islands involving tens of thousands of cases 

60       (Aaskov et al., 1981, Tesh et al., 1981, Harley et al., 2001), and may have the potential to emerge and  cause 

61       explosive epidemics out of its current geographical range (Flies et al., 2018, Shanks, 2019).      Understand- 

62                 ing the drivers of epidemic and endemic transmission of RRV  in Australia and Pacific Island countries 

63      has remained challenging because of the number of hosts and mosquitoes that potentially become infected 
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64       and the large uncertainty around which of these vectors and hosts contribute most to transmission.     Un- 

65                der controlled laboratory conditions, more than 30 species of mosquitoes from at least five genera have 

66       demonstrated the physiological ability to transmit RRV.  The disease has long been considered to exist    in 

67             a zoonotic transmission cycle, primarily because the number of human cases during winter months was 

68       considered to be too low to sustain community transmission (Harley et al., 2001).  However, the most  im- 

69             portant vertebrate hosts of RRV are highly ambiguous because more than 50 species have demonstrated 

70       serological evidence of natural exposure to RRV (reviewed in Stephenson et al., 2018).  Much   uncertainty 

71      remains as to which vertebrate species contribute to RRV community transmission and how the importance 

72       of these species in transmission varies by locations (such as urban vs. rural settings, or in Australia vs. the 

73       Pacific Islands, where there are different vertebrate communities).  Though insights have previously been 

74   gained through modelling approaches (Carver et al., 2009, Denholm et al., 2017, Koolhof and Carver, 2017), 

75      these studies note that future progress in RRV modelling requires consideration of the dynamics of multiple 

76   mosquito species and multiple hosts, accounting for their differing availability and physiological capability 

77       to transmit RRV. 

78 We  parameterize our framework for RRV to quantify the relative importance of hosts and vectors   for 

79       disease transmission and to illustrate how the relative importance of these species changes depending  on 

80       what metric is used.  Specifically, we ask the following questions for RRV transmission in Brisbane,   Aus- 

81       tralia, a community in which RRV is endemic: 
 

82 1. Which host and vector species are most physiologically competent for transmitting RRV? 

83 2. How does integrating species ecology change the most important hosts and vectors when considering 
84 a half (host-to-vector or vector-to-host) or complete (host-vector-host or vector-host-vector) transmis- 
85 sion cycle? 

86 3.     How do viruses circulate through different species in the community, i.e., which hosts and vectors 
87 contribute to intra- and inter-species transmission? 

 

 

88       Results 
 

89       Physiological competence 
 

90       Host competence 
 

91       To  quantify a host species’ physiological competence we multiplied the proportion of individuals of   that 

92       species that developed a viremic response by the area under that species’ estimated titer profile over time, 

93       which we fit to the individuals that mounted a viremic response. This AUC metric captures both the abso- 

94      lute magnitude and duration of a host species’ viremic response, weighted by how common this response is. 
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95       Of the vertebrate species available for the analysis in Brisbane, we estimated that rats and macropods had 

96       the strongest viremic response to RRV infection (Figure 2A). Sheep, rabbits, humans, and possums formed 

97       a distinct cluster of hosts with the next strongest responses; uncertainty in host titer profiles obscures  our 

98       ability to differentiate among the responses of these species.  Of the remaining species, we estimated  that 

99       ‘birds’ (an average of Gallus gallus domesticus [Chickens], Cacatua sanguinea [Little corella], and Anas super- 

100      ciliosa [Pacific black duck]) had a stronger viremic response than flying foxes, horses, and cattle. No dogs or 

101  cats developed detectable viremia when exposed to RRV experimentally (N = 10 for each species), resulting 

102       in the lowest physiological competence. Fitted titer profiles for all hosts for which data were available  are 

103   presented in Appendix 1-Figure 1 (AUC for these profiles are presented in Appendix 1-Figure 2), while the 

104            proportion of the cohort of each host species that developed a viremic response when exposed to RRV is 

105       listed in Table S1. 
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Figure 2: The most competent host species for Ross River virus transmission in Brisbane change when considering 
physiological traits alone (A) or also considering ecological traits (B, C). A. Estimated physiological response of 
hosts to experimental infection with RRV, summarized using the area under their estimated titer profiles over time 
(AUC). In all panels, points show median estimates; error bars are 95% confidence intervals (CIs) that combine the 
uncertainty from all statistical sub-models used to obtain the estimates presented in that panel (see Figure 1 and   
Box 1 for these components). Titer profile AUC is used only to quantify host physiological competence, while time- 
dependent titer profiles (pictured in Appendix 1-Figure 1) are used in half-cycle and complete-cycle transmission. The 
ordering of hosts based on highest (top) to lowest (bottom) physiological competence in A is conserved in B and C 
to aid visualization of host order changes among panels. B. Host-to-vector transmission; matrices show the median 
estimated number of vectors infected by each host species, while the points show infection totals (sums across matrix 
rows), with error bars. C. Host-vector-host transmission. As in B, the matrices show estimated median numbers of 
next-generation host infections for all host species pairs, while the points show sums across rows of the matrices (left 
plot) and the proportion of infections in the second generation that are in the same species as the original infected 
individual (center plot). 
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106       Vector competence 
 

107       To  quantify mosquito physiological competence we used the area under the infection probability    versus 

108       dose curve multiplied by the area under the transmission probability over time since infection curve.   We 

109    estimated that the mosquito species with the highest physiological potential for RRV transmission (suscep- 

110       tibility of mosquitoes to infection, and of those that become infected, their potential to transmit RRV)  was 

111               Coquillettidia linealis, though the 95% CI for this species overlaps with four species with the next highest 

112       median estimates (Aedes procax, Verrallina funerea, Ae.  vigilax, and Mansonia uniformis) (Figure 3A). In con- 

113       trast, Culex annulirostris, Cx.  quinquefasciatus, Ae.  notoscriptus, and Cx.     sitiens were estimated to all have 

114       low physiological potential.     Infection probability curves for all mosquito species for which we gathered 

115      data, including those in the Brisbane community and from elsewhere in Australia, are shown in Appendix 

116       1-Figure 3 and Appendix 1-Figure 5. 
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Figure 3: Ross River virus transmission capability of Brisbane mosquitoes remained consistent when considering 
physiological traits alone (A) or also considering ecological traits (B, C). A. Physiological response of mosquitoes to 
experimental infection with RRV, summarized using the area under (AUC) of their estimated infection probability ver- 
sus dose curves multiplied by the area under their transmission probability versus time curves. Points show median 
estimates; the error bars in each panel are 95% confidence intervals (CIs) that combine the uncertainty from all statis- 
tical sub-models used to obtain the estimates presented in that panel (see Figure 1 and Box 1 for these components). 
AUC is used only to quantify mosquito physiological competence; raw infection and transmission profiles (pictured in 
Appendix 1-Figure 3 and Appendix 1-Figure 4, respectively) are used in calculations of half-cycle and complete-cycle 
transmission. The ordering of vector species based on highest (top) to lowest (bottom) physiological competence in 
A is conserved in B and C to aid visualization of vector order changes among panels. B. Vector-to-host transmission; 
matrices show the median numbers of hosts infected by each vector species, while the points show infection totals 
(sums across matrix rows), with error bars. C. Vector-host-vector transmission. As in B, the matrices show median 
numbers of next-generation vector infections for all vector species pairs, while the points show sums across rows of 
the matrices (left plot) and the proportion of infections in the second generation that are in the same species as the 
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117       Half-transmission cycle 
 

118       Host-to-vector transmission 
 

119       Integrating host physiological competence with ecological factors governing host-vector contacts (see Fig- 

120      ure 1 and Box 1) can dramatically change estimated host importance (Figure 2B). Despite large uncertainty 

121       in estimates for the number of mosquitoes that a single infected host can infect while infectious,    humans 

122       have both the largest estimated median and highest estimated potential (upper 95% CI bound) for   infect- 

123       ing mosquitoes in Brisbane.  We  predict that an infected human would predominantly infect Ae.    vigilax, 

124      followed by Ae. procax and Cx. annulirostris. Both rats and macropods, which had the highest physiological 

125       potential for transmission (Figure 2A), dropped beneath possums, birds, and horses according to  median 

126       estimates, though overlapping 95% CIs obscure our ability to determine which host is able to infect  more 

127       mosquitoes while infectious.       Similarly,  sheep dropped from being in the cluster of the most important 

128       species when using physiological response alone (Figure 2A) to one of the lowest potential hosts for  RRV 

129       transmission to mosquitoes in Brisbane (Figure 2B). Conversely, horses, which had one of the lowest   esti- 

130      mated viremic responses, increased in importance when considering the contribution of ecological traits to 

131       community transmission.  Cats and dogs were estimated to be unable to transmit RRV to any  mosquitoes 

132       given that neither mount a viremic response. 

 

133      Vector-to-host transmission 
 

134              While host relative importance markedly changed between physiological competence and transmission 

135       over half a transmission cycle,  mosquito estimates did not.  Cq.  linealis,  Ae.  procax,  Ae.  vigilax,  and    Ve. 

136                   funerea were estimated to infect the largest number of hosts (using median estimates) after embedding 

137    mosquito physiological competence into vector-to-host transmission (Figure 3B), though wide overlapping 

138       95% CI make it impossible to differentiate among these species.  We estimated that an infected Cq.  linealis 

139      would mostly infect birds, while an infected Ae. procax and Ae. vigilax would infect a larger diversity of host 

140       species including birds, humans, and dogs. Of the remaining species, Cx. annulirostris, Cx. quinquefasciatus, 

141       and Cx. sitiens remained poor vectors, infecting only a small number of hosts. 
 

142       Complete-transmission cycle 
 

143                     We  calculated the number of second generation hosts an infected host would infect (or the number of 

144                 second generation mosquitoes an infected mosquito would infect) in a Brisbane host community using 

145               a next generation matrix (NGM). Our estimates across a complete-transmission cycle combine all of the 
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146       components listed in Figure 1 and described in Box 1; uncertainty is propagated from fitted statistical sub- 

147       models (see Table 1). 

 

148       Host-vector-host transmission 
 

149       Estimated host importance changed little between host-to-vector and host-vector-host transmission:    hu- 

150                 mans, birds, possums, horses, and macropods remained in the top cluster of hosts (Figure 2C). Despite 

151    wide 95% CI of humans that overlapped with birds, possums, horses, and macropods, much of the density 

152       distribution of host-vector-host transmission estimates (obtained by propagating uncertainty from all sta- 

153       tistical sub-models) for humans falls above that of other species (Appendix 2-Figure 1).  For example, 32% 

154       of the distribution of total host-to-host infections for humans is at higher estimates than the upper  bound 

155    of the 95% CI for birds, the next highest species by median estimate. We estimated that the mosquitoes that 

156   would acquire RRV from humans mostly go on to infect humans (‘self-infections’), followed by birds, dogs, 

157       and to a lesser extent possums.     Even when weighting second generation infections by the proportion of 

158      hosts that mount a viremic response (i.e., ignoring all sink infections in dogs and thus counting second gen- 

159       eration infectious hosts only), humans still produce the most second-generation infectious hosts by median 

160      estimate, though CI once again overlap with birds, macropods, horses, and possums (Appendix 2-Figure 2). 

161   We predicted that an infected bird (the species with the second highest estimated median) would primarily 

162      infect other birds, followed by dogs and humans, respectively (Figure 2C). 

163 Because humans are the only species without data from experimental infection studies (titer was mea- 

164       sured when infected humans began showing symptoms), we checked the robustness of our results by  re- 

165       running analyses assuming a host titer duration for humans reflecting only the observed human   viremic 

166       period.  Even when human titer duration was reduced, humans remained in the top cluster of hosts (with 

167  birds, possums, horses, and macropods) for RRV transmission potential despite an overall lower total num- 

168      ber of second generation infections (Appendix 2-Figure 3, Appendix 2-Figure 4). This highlights the robust 

169            result that humans likely contribute to the RRV transmission cycle in Brisbane due to their physiological 

170       competence, abundance, and attractiveness to competent mosquitoes like Ae. vigilax and Ae. procax. 

 

171      Vector-host-vector transmission 
 

172       Across a complete vector-host-vector transmission cycle, confidence intervals remained wide for the  esti- 

173   mated number of mosquitoes an infected mosquito of each species would infect over its lifetime (Figure 3C 

174       left panel).  Nonetheless, the results suggest that Cq.  linealis, Ae.  procax, Ve.  funerea, Ae.     vigilax, and Ma. 

175       uniformis have a much higher maximum transmission potential than Cx. annulirostris, Cx.  quinquefasciatus, 
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176       Cx. sitiens, and Ae. notoscriptus. 

177 Importantly, the results pictured in Figure 3C calculate second generation mosquito infections   condi- 

178              tional on starting with a mosquito exposed to 6.4 log10  infectious units of RRV per mL (the median dose 

179      used in experimental infection studies); if it is a rare event that a given mosquito species becomes exposed in 

180       the first place, basing mosquito importance on this metric could be misleading. For example, regardless of 

181       the species of the originally infected mosquito (rows of the Figure 3C matrix), we predict that most second 

182      generation infections will be in Ae. vigilax, followed by Ae. procax and Cq. linealis (columns of the Figure 3C 

183       matrix), because of their abundance and feeding preferences.  Similarly,  while an individual Ve.       funerea 

184       or Ma.  uniformis mosquito could potentially have the highest ability for producing second-generation  in- 

185                  fections in mosquitoes (Figure 3C), their rarity (0.27% and 0.14% of the Brisbane mosquito community, 

186       respectively; Table S2) means that few second generation infections from any source mosquito occur in Ve. 

187       funerea or Ma. uniformis. Thus, unlike Ae. vigilax, Ae. procax, and Cq. linealis, the rare mosquitoes Ve. funerea 

188      or Ma. uniformis are very unlikely to play an important role in RRV transmission over multiple generations 

189       in this ecological context. 

 

190       Multiple generations of transmission 
 

191       To estimate which host and mosquito species drive RRV spread as it invades a naive host population,   we 

192   approximated transmission over five complete RRV life cycles using the next-generation matrix (NGM) ap- 

193              proach to calculate transmission in discrete time steps where each time step represents a complete cycle 

194       of transmission.  Simulating the spread of infection over multiple generations,    starting with one initially 

195       infected human in an otherwise susceptible vertebrate population in Brisbane, shows that infections  tend 

196       to propagate through humans, birds, dogs, and horses (median estimates: Figure 4; estimates with  uncer- 

197       tainty: Appendix 2-Figure 5). Overall, while infection does circulate largely in the broader vertebrate com- 

198      munity (as opposed to continuously cycling between a small subset of vectors and hosts), we estimated that 

199      at the beginning of an epidemic in Brisbane, many infections would occur in humans and birds, a moderate 

200       number in horses, and many sink infections in dogs. These new infected individuals (apart from dogs and 

201             cats) continue to spread infection in the community, and already by the third generation of infection, the 

202       most dominant pathways of transmission have converged to birds infecting other birds, humans infecting 

203             other humans, humans infecting birds, horses infecting humans, and “wasted” transmissions from both 

204      humans and birds to dogs, a dead-end host (Figure 4 Generation 3). 

205 Starting with an initial infection in a Ma. uniformis mosquito (to illustrate the effect of beginning with an 

206      infection in a rare species), the multi-generation approximation shows that after only a single generation the 
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207      framework predicts that the majority of infected mosquitoes will be Ae. vigilax and Ae. procax, and to a lesser 

208  extent Cq. linealis and Cx. annulirostris (median estimates: Figure 4; estimates with uncertainty: Appendix 2- 

209    Figure 6), which mirrors the results in Figure 3C. Despite the potentially high competence of Ma. uniformis, 

210       their rarity in the Brisbane mosquito community causes them to participate little in sustained  community 

211       transmission.     After only three generations we predicted that most transmission of RRV in Brisbane was 

212       occurring from Ae.  vigilax, Ae.  procax, and Cq.  linealis; the dominance of these three species can be seen in 

213      Figure 4 by the large number of pairwise transmission events between them. 
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Figure 4: RRV epidemic dynamics propagate through initially na ı̈ve host and vector communities. Epidemics are 
simulated in two ways: transmission in the host community resulting from an initial infection in a human (top row), 
or transmission in the mosquito community arising from a source infection in a Ma. uniformis mosquito (bottom 
row). Each matrix cell contains the median estimated number of new infections in a given species (columns) arising 
from all infected individuals of a given species in the previous generation (rows). The red arrow shows the direction 
of infection. We show generations 1-3 here to illustrate how quickly infections propagate through the community 
and converge on dominant transmission pathways, by generation 3.  Uncertainty in the number of new infections   
in each host and mosquito species over five generations is shown in Appendix 2-Figure 5 and Appendix 2-Figure 6, 
respectively. 
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214        Discussion 
 

215       Motivated by a practical need to identify the relative importance of hosts and vectors for zoonotic arbovi- 

216       ral transmission,  we developed a nested approach that incorporates existing data,  uncertainty,  and    the 

217       complex, dynamic interactions that underpin the transmission of multi-host, multi-vector pathogens.   We 

218               applied this approach to RRV transmission in Brisbane, which is thought to have multiple transmission 

219       cycles (Stephenson et al., 2018, Claflin and Webb, 2015), and contributes a significant public health burden 

220       (Jansen et al., 2019).     Our approach highlights how species importance changes across physiological and 

221       ecological drivers of transmission across half, complete, and multiple generations of transmission   cycles, 

222       thus isolating the factors that contribute most to vector or host importance. 
 

223       Physiology meets ecology: changes in species importance 
 

224       The first aim of this study was to characterise which hosts and vectors had high physiological competence 

225       for RRV.  Species must be able to acquire and propagate the virus to be an important host or vector.      Our 

226   results corroborate some of what has been previously reported (Stephenson et al., 2018, Harley et al., 2001), 

227       but also generated some surprising results.  The strong physiological competence of macropods has   long 

228       been acknowledged, while cats and dogs have never been considered to play a role as hosts; our  research 

229       supported both of these ideas. By contrast, horses, which occasionally develop high viremia in response to 

230       RRV infection and have been previously considered a moderately competent host (described in   Stephen- 

231       son et al., 2018), have low physiological competence on average because less than 15% of exposed   horses 

232       develop a viremic response when infected.  Conversely, humans, which have not been considered  impor- 

233    tant for local transmission, had a moderate to high physiological competence following infection with RRV 

234       (Figure 2A). For vectors, RRV has long been considered a generalist virus, capable of persisting across  cli- 

235              mates and habitats within Australia;  our result that no single species was dominant in its physiological 

236       competence supports this view. 

237 Physiological competence alone, without ecological data, provides an incomplete picture of  transmis- 

238       sion and can be misleading.  For example, a host’s physiological competence is of little importance if   that 

239       host is rare or adopts behaviors that prevents exposure (Downs et al., 2019).      Further, mosquito feeding 

240       preferences can drive pathogen transmission more strongly than host competence (Simpson et al.,    2012). 

241             There are many documented circumstances in which species that are highly competent for transmission 

242                under controlled conditions play a minor role in community transmission (Levin et al., 2002, Kilpatrick 

243       et al., 2006), or conversely, where species with apparently low competence in laboratory studies are highly 

244       important for transmission in nature (Brady et al., 2014, Brook and Dobson, 2015).  We  found the    former 
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245       to be the case for RRV  hosts across half and complete transmission cycles.       For example,  we estimated 

246       that humans contributed more mosquito infections (Figure 2B) and second generation host infections (Fig- 

247       ure 2C) than the most physiologically competent species (rats, sheep, and macropods; though human 95% 

248       CI overlapped that of macropods).     There are longstanding debates within disease ecology surrounding 

249       how ecological interactions moderate disease dynamics, e.g., through dilution effects (Johnson and Thielt- 

250    ges, 2010) and zooprophylaxis (Donnelly et al., 2015). The nested approach is useful for identifying specific 

251       mechanisms because it analyzes transmission as a step-wise process with increasing ecological complexity 

252    by integrating different forms of trait data. Specifically, the results from a half transmission cycle represent 

253       the pairwise interactions between host and vector species.  For example, a physiologically competent host 

254                with low community competence based on host-to-vector cycles (for RRV this includes rats, sheep, and 

255                rabbits) occurs due to low rates of contact between this host and vectors with a high infection probabil- 

256       ity.  By contrast, a host with low competence across a complete transmission cycle, but high host-to-vector 

257   transmission competence, would reflect more on the transmission ability of the vectors that host infects. By 

258       separating transmission in this way,  we can examine the contribution each trait makes to species    impor- 

259             tance and test hypotheses such as whether it is more important for a host to infect a greater number and 

260       diversity of vectors, or fewer, more competent vectors. 

261 In our study, different ecological drivers likely underpin the importance of humans and birds, the  two 

262   species with the highest median estimates for complete-cycle transmission (Figure 2, Appendix 2-Figure 1). 

263    For example, when compared to all other hosts, humans had the highest susceptible population (contribut- 

264       ing 66% of the total community abundance, with less than 14% seropositivity).  This, in combination  with 

265       their moderately-high physiological competence (Figure 2B) contributes to their overall importance. These 

266      factors are more important than other ecological drivers. For example, although humans infect a large num- 

267       ber of moderately competent vectors (Ae.  vigilax and Ae.  procax; Table S3), the mosquito feeding  patterns 

268                 potentially limit human importance because many of the mosquitoes reported to feed on humans have 

269       lower competence for RRV (such as Cx.  annulirostris and Ae.  notoscriptus).  That being said, the number of 

270       Ae.  vigilax that humans infect (Figure 2B) suggests that a potentially fruitful path for reducing human  in- 

271    fections is vector control of Ae. vigilax populations, which is already one of the primary targets of mosquito 

272       control operations in Brisbane (Brisbane City Council, 2019).  In contrast, birds were estimated to be   only 

273   approximately 5% of the host community composition and almost a third were seropositive, further reduc- 

274       ing the total number of susceptible individuals.  Despite this relative scarcity, birds were highly important 

275       in the half and complete transmission cycles.  This high importance is likely driven by the strong   feeding 

276    association with the highly physiologically competent mosquito Cq. linealis rather than birds’ physiological 

277       competence or abundance. 
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278       Transmission pathways of RRV in Brisbane 
 

279      Moving beyond single transmission cycles, when we approximate transmission through the Brisbane com- 

280       munity over five generations (approximately the transmission season: Australian Govt.  Dept.  of  Health, 

281             2020), we estimate that infection spreads widely through the community, with the largest number in hu- 

282       mans, birds, dogs, and horses. The physiologically competent, abundant, and generalist feeder Ae.  vigilax 

283       plays an important role in this propagation.  Despite large uncertainty, our findings for RRV transmission 

284       cycles in Brisbane point to two overlapping transmission cycles: an enzootic cycle, characterized primarily 

285       by transmission between birds and Cq.     linealis, and a domestic cycle characterized by human-to-human 

286       infections facilitated by Ae. vigilax and Ae. procax. These two cycles are linked by these feeding generalists, 

287       which transfer infection between birds and humans.  Within each of these overlapping cycles, dogs play a 

288      diluting role by absorbing infectious bites as they are not able to transmit RRV. 

289 Multiple transmission cycles for RRV have long been hypothesized (Harley et al., 2001), yet no previous 

290      studies have implicated the species involved in these cycles or quantified their contribution to transmission. 

291       Humans and birds have been greatly understudied as potential hosts of RRV, yet unlike marsupials,  they 

292       persist across the geographic distribution of RRV.  Despite frequent detection of RRV in major   metropoli- 

293              tan centers (Claflin and Webb, 2015), the potential for humans to contribute to endemic transmission (as 

294       opposed to epidemic transmission: Rosen et al. 1981, Aaskov et al. 1981) has empirically been  understud- 

295       ied.     Though our predictions provide some support for the importance of these understudied pathways, 

296  because we were unable to model seasonal changes in vector abundance or the correlated seasonal changes 

297       in human RRV cases in Brisbane (which generally peak in late summer through early autumn:  Australian 

298       Govt. Dept. of Health 2020), more modeling and empirical work is needed. Hopefully our identification of 

299      multiple transmission pathways will allow for future research to formulate hypotheses for RRV seasonality. 

300    For such work data would need to be collected across seasons to distinguish the role of seasonality and the 

301      timing/drivers of spillover that shift transmission from an enzootic to domestic cycle. 

302 The vectors identified in Brisbane transmission cycles, Ae. vigilax, Ae. procax and Cq. linealis, are  recog- 

303       nised as important vectors for RRV and are regularly targeted in vector control programs.  However,   we 

304       predicted that Cx. annulirostris and Ae. notoscriptus are less competent vectors, though they are often  cited 

305       as key RRV vectors in Brisbane (Kay and JG, 1989, Russell, 1995, Watson and Kay, 1998).  The evidence   in 

306      favour of Cx. annulirostris as a vector is that RRV is frequently detected in wild-caught individuals, and that 

307      abundance has been high during previous outbreaks of RRV (Jansen et al., 2019). RRV has also been isolated 

308      from Ae. notoscriptus during outbreaks in Brisbane (Ritchie et al., 1997); however, the species had relatively 

309             low abundance in this study, and low transmission ability (Appendix 1-Figure 4) in comparison to other 
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310       potential vectors.  This suggests a new hypothesis that Cx.  annulirostris and Ae.  notoscriptus are secondary 

311       RRV vectors (capable of playing a supplemental role in transmission but unable to maintain an  epidemic) 

312  to other species such as Ae. vigilax which are primary RRV vectors (capable of starting and maintaining epi- 

313       demics).  Although novel for RRV, the distinction between primary and secondary vectors has been  made 

314   for other arboviruses (Turell et al., 2005). Finally, the isolation of RRV from wild caught mosquitoes demon- 

315             strates that a particular species is infected with the virus, it is incomplete evidence for mosquito species’ 

316       specific role in virus transmission. Even if found infected in the field, the lower transmission capability  of 

317       Cx.  annulirostris or Ae.  notoscriptus relative to Ae.  vigilax, Ae.  procax and Cq. linealis means that the former 

318       are likely to transmit infection to fewer hosts than the latter. 
 

319       Caveats and uncertainty 
 

320      It is important to acknowledge a number of caveats with the data and modeling assumptions we used. For 

321       physiological competence, experimental studies vary substantially in their methods.  We  overcame   some 

322       of this variation by transforming published data into the same viral units between studies (e.g., infectious 

323       units were converted to per milliliter:       IU/mL). However,  not all variation in experimental approaches 

324       could be included in our regression model because of data sparsity.      Thus, it is possible that some of the 

325       variation we attribute to species may in fact be explained by methodology used in different studies.     For 

326       the ecological data, the methods used to collect species abundance data can also result in bias, as different 

327       traps and survey types detect different species (Brown et al., 2014, Lü hken et al., 2014).  For example, the 

328               species trapped using CO2-baited light traps in this study may not be a true representation of the entire 

329  mosquito community in Brisbane. Similarly, vertebrate survey methods are biased against detecting species 

330      with cryptic behavior, and thus represent a biased sample of the host community available to host-seeking 

331       mosquitoes.  While the uncertainty captured in the reported data were propagated through our estimates 

332      of competence, unmeasured uncertainty arising due to experimental methods could additionally affect the 

333       results. However, compared with approaches that focus solely on a single physiological or ecological data 

334       source to infer competence, the approach presented here allows for a more detailed investigation of vector 

335       and host competence and their drivers. 

336 There are many potential hosts that are not included in this analysis due to data limitations. As a  min- 

337               imum requirement, host species were only included if they were included in mosquito blood meal field 

338              observations, were experimentally exposed to the virus, and were measured for background seropreva- 

339       lence and abundance in Brisbane.  In some instances, to meet these minimum data requirements,   species 

340       were aggregated by taxonomic group. For example, we averaged the responses of chickens, little corellas, 
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341       and Pacific black ducks to ’birds’ (while a strong simplifying assumption, the clustering of these   species’ 

342   physiological response does provide support for this choice: Appendix 1-Figure 2). In other instances (such 

343            as the potential for koalas to be hosts of RRV), species were unable to be modelled because of an absence 

344       of viremia data. Further, we ignore seasonal matching of transmission with host reproduction, ignore du- 

345                ration of host life stages, and either make a snapshot measure of host transmission capability (Figure 2, 

346       Figure 3) or make a simple five-generation approximation that averages across host and vector  infectious 

347       periods (Figure 4). Finally, some hosts and vectors may only be locally important for RRV transmission, as 

348      opposed to being important over the entire geographic distribution of the virus. For example, though sheep 

349       have high physiological importance, they were not locally important in Brisbane.  However, sheep   could 

350       play a greater role in the maintenance and spillover of RRV in rural areas where they are more   abundant 

351      and/or where other species of mosquitoes with higher biting affinity for sheep may occur. 

352 For mosquitoes, data sets with the most substantial gaps included host feeding data, physiological trans- 

353       mission capability,  and mosquito survival.   Blood meal data is difficult to collect,  but is very    important 

354       because feeding patterns enter into the equation twice for vector-host-vector transmission.  Limited blood 

355       meal counts (Table S3) led to high uncertainty in feeding patterns for many species (e.g., Ma.      uniformis), 

356                 which can have a large influence over the width of the 95% CI (Figure 3C). Addressing these data gaps 

357       is critical for refining vector predictions for RRV,  though these data are logistically difficult and costly   to 

358       obtain. More laboratory experiments on mosquito transmission probability over time, especially for those 

359      understudied species that we predict have the potential to be important transmitters would also help to bet- 

360    ter resolve transmission patterns in the Brisbane community. For example, the 95% confidence intervals for 

361       Ma. uniformis and Ve. funerea are particularly wide, which could place them as either highly important vec- 

362      tors or inefficient vectors. Finally, because we assumed identical survival for all species, with no uncertainty 

363             (i.e., survival did not contribute to the widths of the confidence intervals across species), the uncertainty 

364       we present is an underestimate.  Species-specific field-based mortality rates are a crucial data source   that 

365       needs to be obtained for more accurate measures of mosquito transmission capability.      It is important to 

366       note, however, that even in spite of large uncertainty for vector-host-vector transmission (Figure 3C),   the 

367       rarity of many of these mosquito species make them mostly irrelevant when approximating  transmission 

368       over multiple generations (Figure 4, Appendix 2-Figure 6). 

369 While all of these modeling choices and data shortcomings can influence model outcomes, a clear   ad- 

370       vantage of the framework is that uncertainty from each statistical sub-model fit to independent data   sets 

371       is accounted for in the overall estimates.  In doing so, parameters with high uncertainty, such as mosquito 

372   feeding preferences or transmission probabilities, can be targeted in future studies to help refine the frame- 

373       work’s predictions. 
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374       Applications for other vector borne diseases 
 

375       This framework can be applied to other vector-borne pathogens in a number of ways. A principal applica- 

376      tion would be to identify important vectors and hosts for other multi-host, multi-vector pathogens, includ- 

377               ing Rift Valley fever virus (Turell et al., 2008, Davies and Karstad, 1981, Gora et al., 2000, Busquets et al., 

378       2010); West Nile virus (Kain and Bolker, 2019), or yellow fever virus (Rosen, 1958, Jupp and Kemp,  2002), 

379       for which competence data exist for several species.      For these diseases, our framework and code can be 

380    used by substituting data and modifying the underlying statistical sub-models (e.g., titer profiles) to match 

381    the dynamics of the pathogen of interest; the subsequent calculations for host and vector competence, half- 

382  cycle transmission, and complete-cycle transmission are usable without modification. The generality of this 

383       framework and its nested approach can also support (with minimal modification) additional transmission 

384       pathways such as vertical transmission (where mosquitoes emerge from immature stages already infected 

385       with a given pathogen), or direct vertebrate-to-vertebrate transmission as can occur for some vector-borne 

386      diseases such as Rift Valley fever virus (Wichgers Schreur et al., 2016) or Zika virus (D’Ortenzio et al., 2016). 

387 Secondary applications for this framework could include identifying the largest gaps and uncertainties 

388       within datasets.  This is advantageous because in light of finite resources,    model-guided research (Restif 

389   et al., 2012) can identify the most important data needed to improve predictions for disease emergence and 

390       transmission.      Another application would be to apply the framework for a single pathogen across space 

391       and time, such as across the geographic range of RRV or between seasons. This is useful to compare shifts 

392    in transmission dynamics, identify hotspots or potential for spillover. Though our framework has not been 

393       developed to predict the timing and peak of epidemic events, it can be used to disentangle the underlying 

394       transmission dynamics of vector-borne pathogens in specific locations, which allows for the development 

395       of predictive modeling. 

396 Finally, the generality and multi-phase nature of this framework provide a common language to  com- 

397                 pare and contrast the transmission dynamics not just within a single pathogen, but also between them. 

398       Until now, the highly diverse methods, definitions and data required to characterise vectors and hosts has 

399       hindered the ability to make comparisons between pathogens. The integration of multidisciplinary data in 

400             this framework is done in a way that could be used to compare host or vector physiological competence 

401       and ecological traits for other multi-host, multi-vector pathogens. 
 

402      Conclusion 
 

403   Identifying important vectors and hosts of zoonotic pathogens is critical for mitigating emerging infectious 

404  diseases and understanding transmission in a changing world. However, attempts to do so have been ham- 
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405   pered by the multidisciplinary datasets required and differing definitions that can alter the importance of a 

406      species. Here we developed a nested approach that can be applied to any multi-host, multi-vector pathogen 

407      for which some competence data exists. Applying this approach to RRV transmission in Brisbane, we were 

408  able to: a) identify two hosts of potentially high importance that deserve further investigation (humans and 

409             birds), b) two potential transmission cycles (an enzootic cycle and a domestic cycle), and c) datasets that 

410      should be targeted (bloodmeal studies, vector transmission experiments, field-based mosquito survival es- 

411       timates) to reduce overall uncertainty and ultimately increase the future power of the framework.  Future 

412             studies that aim to identify and quantify the importance of different species in virus transmission cycles 

413       must integrate both physiological competence data and ecological assessments to more fully   understand 

414       the capacity of species to transmit pathogens.  The nested approach here provides a tool to integrate these 

415   different datasets while acknowledging uncertainty within each, which could be applied to any multi-host, 

416       multi-vector pathogen for which some competence data exists. 
 
 

417         Materials and Methods 
 

418       The methods are presented in three sections to reflect our three focal questions.        First,  we describe the 

419       calculation of host and vector physiological competence.   Second,  we describe half-cycle   (host-to-vector 

420       and vector-to-host transmission) and complete-cycle (host-vector-host or vector-host-vector) transmission. 

421              Third, we describe how we use complete-cycle transmission to approximate transmission over multiple 

422       generations.     We  introduce data and calculations for components that are used in multiple transmission 

423      metrics (e.g., host titer profiles) with the first metric in which they are used. 
 

424       Host and vector physiological competence 
 

425       Vertebrate hosts: titer profiles 
 

426      We fit host titer profiles as continuous functions over time to published data on host vertebrate responses to 

427  infection. For each of 15 experimentally infected non-human vertebrate species we extracted the proportion 

428      of exposed individuals that developed detectable viremia, their duration of detectable viremia in days, their 

429      peak viremia titer, and the unit of measure of this titer (such as median lethal dose (LD50), suckling mouse 

430                 intracerebral injection (SMIC50)) (from Whitehead, 1969, Spradbrow et al., 1973, Rosen et al., 1981, Kay 

431       et al., 1986, Ryan et al., 1997, Boyd et al., 2001, Boyd and Kay, 2002). All reported viral concentrations were 

432      converted to infectious units per millilitre (IU/mL) values, rather than 0.1mL or 0.02mL as reported in some 

433       studies. Titer data are summarized in Table S1 and a summary of these studies’ methodological details can 
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434      be found in Stephenson et al. (2018); all data extracted from these publications are available in Source Data 

435       1. 

436 For non-human species, only means and standard deviations for peak titer and duration of  detectable 

437       titer were reported.  We  transformed these summary measures into continuous titer profiles   (continuous 

438            functions of titer over time that are needed to quantify mosquito infection probability) by modeling titer 

439       profiles as quadratic functions of time since infection, based on observed patterns in the data.  For human 

440              titer profiles, for which experimental infection studies were not available, we used data from one obser- 

441       vational study (Rosen et al., 1981) that measured titer in humans exhibiting disease symptoms during   an 

442       outbreak in the Cook Islands in 1980.  Details on how we constructed continuous titer curves, with uncer- 

443       tainty, for all hosts are available in Appendix 1; for raw human titer data see Source Data 2.  In   Appendix 

444       1-Figure 1 we show 95% confidence intervals (CI) for each of the hosts’ quadratic profiles generated  from 

445            this procedure with the summary values of peak and duration of titer extracted from the literature over- 

446       layed.      To  quantify host physiological competence we summarized the titer profiles into a single metric 

447       using the area under the curve (AUC) of the time-dependent titer curves. We use AUC because it simulta- 

448       neously captures both titer magnitude and the duration of detectable titer (the host’s infectious duration). 

449              AUC is used only to summarize host competence; raw time-dependent titer values are used to calculate 

450       mosquito infection.       The AUC for the fitted titer profiles (Appendix 1-Figure 1) are shown in Appendix 

451       1-Figure 2. 

 

452       Mosquito vectors: infection and transmission probability 
 

453      We fit mosquito infection probabilities and mosquito transmission probabilities using published data from 

454       laboratory experimental exposure of mosquitoes to RRV.  From experimental infections of mosquitoes  we 

455                collected information on the infectious dose they were exposed to, the number of mosquitoes receiving 

456       an infectious dose, the proportion of mosquitoes that became infected, the proportion of mosquitoes   that 

457              went on to become infectious (i.e., transmitted the virus), and the time it took for mosquitoes to become 

458      infectious (the extrinsic incubation period) (from Kay et al., 1979, 1982a, Kay, 1982, Kay et al., 1982b, Ballard 

459                    and Marshall, 1986, Fanning et al., 1992, Vale  et al., 1992, Wells  et al., 1994, Doggett and Russell, 1997, 

460               Watson and Kay, 1998, Jennings and Kay, 1999, Ryan et al., 2000, Doggett et al., 2001, Jeffery et al., 2002, 

461       Kay and Jennings, 2002, Jeffery et al., 2006, Webb et al., 2008, Ram´ırez et al., 2018). Mosquito infection  and 

462      transmission data are summarized in Table S2; raw data files are included as Source Data 3 and Source Data 

463       4, respectively. 

464 We modeled both mosquito infection probability (the proportion of all experimentally exposed mosquitoes 
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465       with virus detected in their bodies) and transmission probability (the proportion of all experimentally  ex- 

466                posed mosquitoes with virus detected in their saliva,  measured via feeding on a susceptible vertebrate 

467                     species or using an in vitro method of saliva collection) using generalized linear mixed effects models 

468       (GLMM) with Binomial error distributions, fit in R using the package lme4 (Bates et al., 2015).  For  each 

469       model, the proportion of mosquitoes infected or transmitting was taken as the response variable and   the 

470      total number exposed to infection was used as weights; species were modeled using random effects. For ad- 

471       ditional details see the Supplemental Methods. Fitted infection probability curves for all mosquito species 

472    for which we gathered data—those found in Brisbane and elsewhere in Australia—are shown in Appendix 

473   1-Figure 3; transmission probability curves are shown in Appendix 1-Figure 4. To quantify mosquito physi- 

474   ological competence we summarized mosquito infection and transmission probabilities into a single metric 

475                using the area under the curve (AUC) of the dose-dependent infection curve multiplied by the area un- 

476       der the curve (AUC) of the time-dependent transmission curve. AUC is used only to summarize mosquito 

477      competence; raw probability values are used to calculate the probability a mosquito becomes infected when 

478             feeding on an infected host (given the titer in that host) and the probability they are able to transmit to a 

479       susceptible host (given the number of days post infection that the feeding occurs).  The AUC for the fitted 

480      infection probability (Appendix 1-Figure 3) and transmission probability (Appendix 1-Figure 4) curves are 

481       shown in Appendix 1-Figure 5 and Appendix 1-Figure 6, respectively. 
 

482       Half-cycle and complete-cycle transmission 
 

483       Both half-cycle (host-to-vector and vector-to-host) and complete-cycle (host-vector-host and   vector-host- 

484       vector) transmission nest host and vector physiological competence in an ecological context (Figure 1).  To 

485                   quantify each of these metrics we used a next-generation matrix (NGM) model (Diekmann et al., 1990, 

486               Hartemink et al., 2009),  which,  for a vector-borne disease,  requires the construction of two matrices of 

487       transmission terms.     The first matrix (denoted HV, where bold terms refer to matrices) contains species- 

488                 specific host-to-vector transmission terms,  which we write with hosts as rows and vectors as columns. 

489       The second matrix (VH) contains vector-to-host transmission terms and has vectors as rows and hosts   as 

490       columns. Cells of HV and VH contain the expected average number of infections between pairs of species 

491      over the whole infectious period of the infector (host in HV, vector in VH); each pairwise transmission term 

492       is a function of host and vector physiological competence as well as ecological factors.  Row sums of   HV 

493               give the total number of vectors (of all species) infected by each host (total host-to-vector transmission); 

494      similarly row sums of VH give the total number of hosts (of all species) infected by infectious vectors. 

495 We calculate the total number of individuals of each mosquito species j that a host species i infects over 
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497       where  pj |θidi    is  the  probability  that  a  susceptible  species  of  mosquito  (j)  would  become  infected  when 

498       biting host i on day di  when it has titer θidi . We model infection over a period of 9 days for all host species 

499                  given that the estimated titer of all host species is predicted to be undetectable by 9 days, equating to a 

500       very small mosquito infection probability (Appendix 1-Figure 1). The proportion of individuals of species 

501       i that manifest an infection with detectable titer θidi   is given by ωi, while φij  is the number of susceptible 
      βijαi  

502  mosquitoes of species i per host species j, σj is the daily biting rate of mosquito species j, and I 

i=1 

 

βijαi 

503                      is the proportion of all mosquito species j’s bites on host species i,  which is jointly determined by the 

504             relative abundance of host i (αi) and the intrinsic feeding preference of mosquito j on host i (βij ) (details 

505       given in Mosquito feeding behavior below).  Eq. 1 assumes no species specific host-by-mosquito interactions 

506       for infection probability; mosquito infection probability is uniquely determined by the level and  duration 

507       of titer within a host (i.e.,  a dose-response function of host titer).        The only direct evidence against this 

508   assumption that we are aware of is an example where more Cx. annulirostris became infected when feeding 

509      on a bird than on a horse despite there being a lower viremia in the bird (Kay et al., 1986). 

510 The total number of individuals of each host species i that a mosquito of species j infects over its infec- 

511       tious period rj (which gives entry [j, i] of VH) is given by: 
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512       where pirj   is the probability an infected mosquito of species j transfers infection to a given susceptible host 

513       by bite on day rj  of their infectious period, λjrj   is the probability of survival of mosquito species j until day 
      βijαi  

514   rj, σj is the daily biting rate of mosquito species j, and I 

i=1 

 

βijαi 
is the proportion of all mosquito species 

515       j’s bites on host species i.  We calculate mosquito-to-host transmission over 38 days given that we  assume 

516       mosquitoes do not survive longer than 38 days (see Mosquito survival below). 

517 The key differences between the host-to-vector (HV; Ivij ) and vector-to-host (VH; Ihji)   transmission 

518       matrix entries are two-fold.      First, HV assumes that host infectivity is titer- and time-dependent and de- 

519      pends on mosquito density per host; conversely, VH assumes that mosquito infectiousness is titer-independent 

520       (dose-independent) but time-dependent and depends on daily mosquito survival and host species relative 
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521       abundance.  Second, for HV we assume a single infected host of a given species enters into a   community 

522       of susceptible mosquitoes, while for VH we assume that a single mosquito of a given species becomes  ex- 

523               posed to a dose of 6.4 log10  infectious units per mL (the median dose used across all mosquito infection 

524       studies) and then enters a host community with empirically estimated background host immunity   (from 

525      Doherty et al. 1966, Marshall et al. 1980, Vale et al. 1991, Boyd and Kay 2002, Faddy et al. 2015, Skinner et al. 

526       2020; see Table S1 and Source Data 7 for sample sizes and the proportion of each host testing  seropositive 

527       for RRV). The primary similarity between these matrices is that mosquito biting rate, host abundance, and 

528       mosquito feeding preference (σj  times the fraction of α and β terms) are used in both matrix  calculations 

529    as the components that control the contact rate between infected hosts and susceptible mosquitoes (VH) or 

530       infected mosquitoes and susceptible hosts (VH). 

531 Complete-cycle transmission is calculated using the matrix product of HV and VH, which is commonly 

532       referred to as the “who acquires infection from whom” matrix (Schenzle, 1984, Anderson and May,   1985, 

533       Dobson, 2004).        Specifically, using HV*VH gives GHH, in which each cell describes the total number of 

534               pairwise host-vector-host transmission events, assuming a single infected host appears at the start of its 

535       infection in an otherwise susceptible host population.  Likewise, using VH*HV gives GVV, in which  each 

536       cell describes the total number of pairwise mosquito-to-mosquito transmission events, assuming a   single 

537   infected mosquito appears at the start of its infectious period in an otherwise susceptible mosquito popula- 

538  tion. Row sums of GHH  give the total number of new host infections in the second generation that originate 

539       from single source infections in each host species (total host-vector-host transmission), or the total number 

540       of mosquito-to-mosquito transmission events in the case of GVV.  Column sums of GHH  or GVV      give the 

541       total number of newly infected individuals of each host or mosquito species arising from one infection  in 

542      each host or mosquito, respectively. These properties can be used to find, for example, dead-end hosts (i.e., 

543  “diluters”; Schmidt and Ostfeld, 2001), which would be captured by host species with a small row sum and 

544       large column sum in GHH.     Further, Diekmann et al. (1990) show that the dominant eigenvalue of either 

545       GHH or GVV describes R0, the typical number of secondary cases, resulting from pathogen transmission in 

546      the heterogeneous community whose pairwise transmission dynamics are described in HV and VH. 

547 We estimated each of the parameters of HV and VH using either statistical sub-models fit to  empirical 

548       data or directly from empirical data taken from the literature.  Uncertainty from all statistical  sub-models 

549       was propagated into the calculations of HV and VH in one of three ways: 1) titer: by simulating 1000  titer 

550       curves given the uncertainty in peak titer and duration of titer in the published data sources (see   Supple- 

551  mental Methods); 2) mosquito infection probability and mosquito transmission probability: by constructing 

552       density distributions using the means and variance-covariance matrix of the estimated coefficients assum- 

553  ing univariate or multivariate normality (using 1000 samples; see Kain and Bolker 2017, 2019 for two exam- 
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554       ples using this method of uncertainty propagation in similar frameworks); 3) mosquito feeding  behavior: 

555       using the estimated Bayesian posterior.  We do not consider uncertainty for those framework components 

556       that rely on raw data (the proportion of hosts that mount a viremic response,   host and mosquito relative 

557       abundance, and host seroprevalence) or point estimates (mosquito to host ratio, mosquito biting rate, and 

558       mosquito survival). Thus, the 95% CIs we present contain uncertainty from fitted statistical models but do 

559       not account for the full uncertainty.  All of our framework’s parameters, the data used to parameterize  all 

560   sub-models within the framework, and methods of uncertainty propagation are listed in Table 1. Details on 

561    vertebrate host and mosquito abundance, mosquito survival, and mosquito feeding behavior are described 

562       below. 

 

563       Vertebrate host abundance 
 

564  Vertebrate abundance data for Brisbane was calculated from a variety of sources including published litera- 

565      ture and technical reports (see Table S1 and Source Data 5). Data on livestock species (cattle, sheep, horses) 

566    and humans arose from technical reports undertaken by agricultural and government agencies (Australian 

567  Bureau of Statistics, 2018, Meat and Livestock Australia, 2019a,b, Ward et al., 1996). Cat and dog abundance 

568                 was derived from a general pets per human ratio from a technical report (Animal Medicines Australia, 

569       2019), and scaled to the human population in Brisbane.     Abundance for wildlife was derived either from 

570       citizen science reports (birds, possums and macropods: Australian EPA 2019), or published fauna surveys 

571    undertaken in Brisbane (flying foxes: Queensland Government 2020; rats, rabbits: Skinner et al. 2020). Host 

572       abundance was calculated as a measure of density within Brisbane (hosts per km2).  We used the   relative 

573      densities of each of these species as reported in these sources as the species’ proportions in our community 

574       for our analysis. 

 

575       Mosquito abundance 
 

576       Mosquito relative abundances were estimated for Brisbane by combining data from mosquito surveys (re- 

577       quested from the Brisbane City Council mosquito surveillance program).  In brief, Brisbane City   Council 

578       operates weekly carbon-dioxide baited Centers for Disease Control (CDC)-style light traps across ten sites 

579                  in Brisbane.  Traps are set 1.5m off the ground before dusk, and collected just after dawn the following 

580   morning. Any trapped mosquitoes are stored in -20C until identification to species level by a single person. 

581       This data is not publicly available, but has been analyzed and described in Skinner et al. 2020.    Mosquito 

582                abundance from these surveys was calculated as an average weekly total during peak mosquito season 

583       (October to May).  Mosquito species abundance data was also supplemented with the results of   analyses 
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ij 
α 

584      of the vertebrate host origin of mosquito blood meals presented in previous published studies (Ryan et al., 

585       1997, Kay et al., 2007, Jansen et al., 2009). Mosquito abundance data is summarized in Table S2; raw data is 

586       available in Source Data 8. 

587 We used the observed proportion of each mosquito species detected in these surveys as the proportion 

588              of that species in our community for our analysis, which assumes that the observed species proportions 

589       are unbiased predictors of their true proportions. Because the number of mosquitoes per host (Eq. 1: φ) is 

590              needed to calculate the absolute number of mosquitoes an infected host would infect, we multiplied the 

591               relative abundances of mosquitoes by 40 (our assumed value for overall raw number of mosquitoes per 

592                   host in the community).  While this may be an over- (or under-) estimate of the true value in Brisbane, 

593  because this value is only a scalar in the NGM framework it will only affect the magnitude of estimates and 

594       not the relative estimates among species. 

 

595       Mosquito survival 
 

596       Survival data (either field or laboratory derived) for the mosquito species present in Brisbane,    Australia, 

597       is not available for most species.  For this reason, we modeled mosquito survival as being identical for  all 

598       species.       Specifically, we used an exponential decay model for mosquito survival using a daily survival 

599  probability that is half of the daily maximum survival rate of Culex annulirostris (calculated as 1/lifespan)  

600  measured in optimal laboratory conditions (from Shocket et al. 2018 who used data from McDonald et al.  

601   1980,  which may over-estimate survival rates in nature).   However,  we assume that mosquito survival    

602       probability falls to zero after day 38. 

 

603       Mosquito feeding behavior 
 

604   We  modeled the observed blood meals in wild-caught mosquitoes (the number of blood fed mosquitoes    

605 and the source of the blood meals) as arising jointly from the abundance of each host in the community and 

606 each mosquitoes’ intrinsic feeding preference on each host species (the latent variable that we model here). 

607    Data was extracted from published blood meal surveys specific to Brisbane (from Ryan et al., 1997, Kay    

608 et al., 2007, Jansen et al., 2009); mosquito blood meal data is summarized in Table S2 and Table S3; raw data 

609  is available in Source Data 6.  Specifically, we modeled the number of blood meals a mosquito of species j  

610      obtains from host species i (δij ) as: 

 

 
βijαi 

δ   ∼ Multi(N,   ), (3) 
 

  i ij 
i 

I 
i=1 β 
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611    where δij  is a multinomially distributed random variable (the extension of the binomial distribution for    

612 greater than two outcomes) with probability equal to the intrinsic preference of mosquito j for host species 

613  i (βij ), weighted by the abundance of host species i (αi), relative to all host species in the community (sum 

614     over all host species in the denominator).  Written in this way,  βij  is the ratio of the proportion of bites      

615  mosquito species j takes on host species i relative to biting host species j in proportion to their abundance  

616 in the community (which would occur if a mosquito were biting randomly). We fit this multinomial model 

617  in a Bayesian context in Stan (Carpenter et al., 2017), interfaced with R using the package rstan (Stan  

618    Development Team 2017).  For details on the fitting of this Bayesian model see Appendix 1; the full Stan    

619       model is also available in the GitHub repository hosting the code: Kain (2021). 

 

620       Tailoring the model to the Brisbane community 
 

621  One difficulty with the integration of diverse data types is variation in the biological scale at which these   

622  data are collected.  For our model, vertebrate host types are recorded at different taxonomic levels across   

623   data sets (e.g., laboratory infection experiments are conducted at the species level while mosquito blood    

624  meal surveys report identification of the blood meal host source at a taxonomic level ranging from species 

625    through to higher level classification such as class or family).  In order to integrate the predictions from     

626  our individual sub-models fit to single data types (e.g., infection experiments and blood meal surveys) to  

627 parameterize HV and VH, and thus draw inference on the importance of different hosts and mosquitoes in 

628 RRV transmission in Brisbane, Australia, we made three simplifying assumptions. First, we averaged each 

629    mosquito’s infection probability when biting ‘birds’ (the taxonomic level available for blood meal data)     

630  for the three species of birds with a measured viremic response (Pacific black duck:  Anas superciliosa, do-  

631  mestic chicken:  Gallus gallus domesticus, and little corella:  Cacatua sanguinea) and ‘macropods’ for the two  

632  macropod species with a measured viremic response (agile wallaby: Macropus agilis and eastern grey kan- 

633 garoo: Macropus giganteus). This averaging implicitly assumes (in the absence of species-level information) 

634 that all birds and all macropods respond identically to infection. Though a strong simplifying assumption, 

635  the three bird species have very similar viremic responses, as do the two macropod species (Appendix 1-   

636  Figure 2). Second, we summed all individuals of all bird species and all macropod species recorded in the 

637  Brisbane host surveys in order to calculate the relative abundance of each of these host types to match the 

638  aggregation of titer profiles (see Table S1 for the relative abundance of each host type in Brisbane). Finally, 

639 we retained only nine mosquito species for which we had both abundance data and blood meal data (Table 

640 S2); though this excludes many potentially relevant mosquito species, the nine species we retained account 

641   for 90% of the Brisbane mosquito community according to our abundance data (Table S1). Our inference on 
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642  host importance in Brisbane, Australia is thus focused on the following host groupings: birds, cats, cattle,  

643 dogs, flying foxes, horses, humans, macropods, possums (namely Brushtail possums Trichosurus vulpecula), 

644  rats, rabbits, and sheep. We consider the importance of the following mosquito species: Aedes notoscriptus,  

645     Ae.  procax, Ae.  vigilax, Coquillettidia linealis, Culex annulirostris, Cx.  australicus, Cx.  quinquefasciatus, Cx.      

646      sitiens, Verrallina funerea, and Mansonia uniformis. 

 

647       Multi-generation approximation 
 

648  We approximated how RRV would spread in a naive host and mosquito community at the start of an epi-  

649 demic to highlight which infection pathways drive transmission as RRV invades. To approximate epidemic 

650  transmission we used the next-generation matrix (NGM) approach to calculate the progression of the dis- 

651  ease in discrete time steps where each time step represents a complete cycle of transmission.  Because this 

652    method relies on the total number of mosquitoes infected over a host’s entire infectious period (9 days)     

653    and the total number of hosts infected by a mosquito over its entire lifespan (38 days; weighted by their    

654    probability of surviving over this period), it approximates how epidemics would propagate if pathogen    

655  transmission occurred in discrete generations, rather than continuously in overlapping generations.  It is   

656   therefore a simplification that does not fully represent time-dependent epidemic dynamics.  We  use this    

657    simulation simply to highlight the host and mosquito species that would experience the most infections    

658   early in an epidemic (given by the total transmission potential across both a host’s and mosquito’s infec-    

659       tious period). 

660 Specifically, we first calculated the number of hosts of each species that would become infected starting 

661  with a single infected host individual of one species using GHH.  To calculate which hosts would become   

662 infected in the next generation, we then used GHH starting with the individuals infected from the previous 

663 step. We repeated this process over only five generations to avoid modeling transmission over a longer pe- 

664 riod than one transmission season in Brisbane. By using the Brisbane community in which RRV is endemic, 

665 we use this analysis as an illustrative example of disease emergence and not to provide specific predictions 

666  for RRV emergence in any specific new location with no prior exposure to RRV. To estimate how infection  

667    spreads in the mosquito community we used a similar approach,  but instead started with one infected     

668  mosquito and used GVV.  As with host-vector-host transmission using GHH, while this strategy provides   

669    only a coarse approximation of transmission over time by assuming discrete generations of infection, it     

670  is useful for revealing important pathways of transmission and identifying species that remain important  

671  transmitters over multiple generations without the need to parameterize a dynamic, continuous-time epi- 

672       demic model. 
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687        Data Availability 

688       All data used in this study are uploaded as Source Data files. All code is hosted on GitHub: Kain (2021). 

 

689        Source data 

690 1.  Source Data 1:  host response.csv – Viremic responses of non-human vertebrates from  experimental 
691 infections. Shown in Appendix 1-Figure 1; summarized in Table S1 

692 2.  Source Data 2:       human titre.csv – Viremic  response of humans observed during natural infection. 
693 Shown in Appendix 1-Figure 1; summarized in Table S1 

694 3.  Source Data 3:  mosquito infection.csv – Laboratory infections of mosquitoes:  infection   probability. 
695 Shown in Appendix 1-Figure 3; summarized in Table S2 

696 4.  Source Data 4: mosquito transmission.csv – Laboratory infections of mosquitoes: transmission prob- 
697 ability. Shown in Appendix 1-Figure 4; summarized in Table S2 

698 5.  Source Data 5: host abundance.csv – Host densities in Brisbane, Australia. Summarized in Table S1 

699 6. Source Data 6: mosquito feeding.csv – Blood-feeding surveys of mosquito species’ found in Brisbane, 
700 Australia. Summarized in Table S2 

701 7.  Source Data 7:  host seroprevalence.csv – Seroprevalnece of vertebrate hosts in Brisbane,   Australia. 
702 Summarized in Table S1 

703 8.  Source Data 8:      mosquito abundance.csv – Abundance of mosquito species in Brisbane,  Australia. 
704 Summarized in Table S2 

 

705         Supplemental Files 

706 1.  Supplemental Table 1 (Table S1): Summary of host data – Summarized host titer, seropositivity,  and 
707 abundance data. 

708 2.  Supplemental Table 2 (Table S2):  Summary of vector data – Summarized mosquito infection  proba- 
709 bility, transmission probability, and abundance data. 

710 3.  Supplemental Table 3 (Table S3):  Summary of mosquito blood meal data — Summarized   mosquito 
711 blood meal data used in the mosquito feeding preference model. 

 

712         Appendix Tables 

713 1.  Appendix 1-Table 1: Summary of previous works’ definitions for host and vector importance. 
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Table 1: Model components, the transmission metrics in which they are used, and the data and statistical modelling choices used to est imate 
each. The column ”Parameter“ lists the parameters as they appear in Eq. 1 and Eq. 2. Abbreviations for the transmission metrics are: HC = host 
competence; H-to-V = host-to-vector transmission; V-to-H = vector-to-host; H-to-H = host-vector-host; V-to-V = vector-host-vector. The “Data” 
column lists the name of the supplemental file containing the raw data; all citations are listed in the online supplement (Table S3). Data sources are 
described in the Supplemental Methods: Data. The “Methodological Details” column lists where in the manuscript methods are described. 

 

Model Component Parameter Transmissi 
Metrics 

Data Statistical Model Uncertainty Methodological Details 

Proportion  of individ- 
uals   of   host   species 
i exposed to infection 
that produce viremia 

ωi HC 
H-to-V  H- 
to-H V-to- 
V 

host response.csv 
human titer.csv 

Raw Data None (Raw Data) Methods: Vertebrate hosts: titer 
profiles; Supplemental Meth- 
ods: Host physiological compe- 
tence; Table S1 

Host titer (in species   i 
on day j) 

θidi HC 
H-to-V  H- 
to-H V-to- 
V 

host response.csv 
human titer.csv 

Linear   model  with 
a quadratic term for 
days post infection 

1000 simulated titer curves 
for each species 

Methods: Vertebrate hosts: titer 
profiles;   Supplemental  Meth- 
ods: Host physiological compe- 
tence; Appendix 1-Figure 1; 
Table S1 

Proportion of host 
species i that are 
seronegative 

ηj V-to-H  H- 
to-H V-to- 
V 

host 
seroprevalence.csv 

Raw Data None (Raw Data) Table S1 

Infection probability of 
mosquito species j as a 
function of dose 

pj VC 
H-to-V  V- 
to-H H-to- 
H V-to-V 

mosquito 
infection.csv 

Generalized lin- 
ear model (logistic 
regression) 

1000  samples  from  a mul- 
tivariate Normal distribu- 
tion using the estimated 
means and vcov matrix 

Mosquito   vectors:      infection 
and transmission probability; 
Supplemental Methods: Vector 
physiological competence; Ap- 
pendix 1-Figure 3; Table S2 

Transmission probabil- 
ity of mosquito species 
j r days post infection 

pirj VC 
V-to-H  H- 
to-H V-to- 
V 

mosquito 
transmission.csv 

Generalized lin- 
ear model (logistic 
regression) 

1000  samples  from  a mul- 
tivariate Normal distribu- 
tion using the estimated 
means and vcov matrix 

Mosquito  vectors:  infection 
and   transmission  probability; 
Supplemental Methods: Vector 
physiological competence; Ap- 
pendix 1-Figure 4; Table S2 

Survival probability of 
mosquito species j up 
to r days post infection 

λjrj V-to-H  H- 
to-H V-to- 
V 

– Exponential    decay 
using point estimate 
for daily mortality 
probability 

None Methods: Mosquito  survival; 
Appendix 1-Figure 7 

Proportion of 
mosquito species 
j’s blood meals  that 
are obtained from host 
species i 

      βijαi  ),I       βijαi 
i=1 

V-to-H  H- 
to-H V-to- 
V 

mosquito 
feeding.csv 
host 
abundance.csv 

Custom Bayesian re- 
gression model 

Bayesian posterior Methods: Mosquito feeding 
preference; Supplemental Meth- 
ods: Mosquito feeding prefer- 
ence; Table S2; Table S3 

Number of susceptible 
mosquitoes of species i 
per host species j 

φij H-to-V  H- 
to-H V-to- 
V 

mosquito 
abundance.csv 

Raw    Data    +   As- 
sumption 

None  (Raw  Data  +  Point 
Estimate) 

 

Daily   biting   rate    of 
mosquito species j 

σj H-to-V  V- 
to-H H-to- 
H V-to-V 

– Assumption None (Point Estimate) Assumed value of 0.5 Day-1 

31 
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Appendix 1 

Statistical Sub-Models 

Vertebrate hosts: titer profiles 

We converted reported means and standard deviations for peak titer and duration of detectable titer into 
continuous titer profiles, which are needed to translate titer into mosquito infection probability given a 
feeding event. For each species we first simulated N titer values at each of the first day, the day hosts 
reached their peak titer, and the last day of infection (where N is the total number of individuals of each 
species in the infection experiment that developed detectable viremia). We simulated the last day of infec- 
tion and the log of peak titer for each species by drawing N samples from a Gaussian distribution using 
the reported means and standard deviations for infection duration and peak titer. We assumed titre on day 
one and the last day of infection were at a detectability threshold of 102.2 infectious units/ml blood (the 
detection limit of RRV in African green monkey kidney (Vero) cells: McLean et al. 2021), and that simulated 
peak titer occurred at the midpoint between the first and simulated last day of infection. We then fit a linear 
model in R to these simulated data using linear and quadratic terms for day post infection. To quantify 
uncertainty in quadratic titer profiles, we simulated and fit linear models to 1000 simulated sets of titer 
curves; in Appendix 1-Figure 1 we show the 95% CI for each of the 15 hosts’ quadratic profiles generated 
from this procedure with the raw summary values of peak and duration of titer extracted from the literature 
overlayed (the area under the curve for these titer profiles are shown in Appendix 1-Figure 2). 

For human titer profiles we used data obtained during an epidemic of RRV in the Cook Islands in  
1980 (Rosen et al., 1981). This study measured human titer from the day of symptom onset; raw data 
showed that humans experienced peak titer on day one of symptoms.  To  remain consistent with how   
we modeled non-human titer curves, we fit quadratic curves to the human titer data, which predict a 
peak at the first day of symptoms and that humans have detectable titer approximately three days prior to 
symptom onset. While it is uncertain how many days prior to symptom onset humans manifest a detectable 
viremic response, expert opinion on RRV (Leon Hugo and John Mackenzie pers com) is that it is likely at 
least one day, and for other arboviruses such as dengue, humans produce virus titers sufficient to infect 
mosquitoes for multiple days prior to symptom onset (Duong et al., 2015). Because our assumption of a 
quadratic titer curve extends titer to three days that have no direct quantitative empirical support—which 
results in humans having a longer duration of titer than any other host—as a conservative estimate of 
human physiological competence, we also run our model assuming that human titer increases from an 
undetectable level to a peak on day 1 of symptom onset after only a single day (instead of approximately 
three as predicted with the quadratic model). 

 
Mosquito vectors: infection and transmission probability 

In total, we gathered data for 17 experimentally infected mosquito species (all extracted data is available as 
.csv data files in the Online Supplemental Material). In these experiments, mosquitoes were fed a given 
dose of RRV via an artificial blood source which contained diluted stock virus or, in limited cases, from 
living organisms, such as suckling mice. The proportion that went on to become infected (RRV detected in 
the body) and infectious (RRV detected in the saliva measured artificially or via feeding on a susceptible 
vertebrate) was recorded. In the generalized linear mixed effects model (GLMM) for mosquito infection 
probability, we used virus dose as the sole fixed effect and modeled variation among mosquito species 
using a random intercept and slope over dose. For transmission probability over time, we used days since 
infection as the sole fixed effect and modeled variation among mosquito species’ transmission over time 
using a random intercept and slope over time (days since feeding). While the maximum transmission 
probability is sometimes allowed to vary by mosquito species, we lacked the data to estimate different 
maxima for each species. Thus, we used simple logistic regression which models probability using an 
asymptote of one. Uncertainty among mosquito species (which were modeled using a random effect) were 
obtained from the conditional modes and conditional covariances of the random effect for species (for 
further details see the code available on GitHub: Kain (2021). 
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Mosquito vectors: feeding behavior 

We fit our multinomial model in a Bayesian context because a Bayesian model allows us to incorporate 
prior probabilities in order to model feeding patterns on species that were either: (A) not detected in the 
host survey but appear in the blood meal data; or (B) detected in the host survey but do not show up in 
the blood meal data. Specifically, for case (A), priors allow us to model a mosquito’s feeding patterns on a 
species that would otherwise have an abundance of zero without having to make an arbitrary assumption 
such as, for example, that a given host species that was not observed in the community but whose blood 
was observed in a mosquito was exactly equal in rarity to the rarest detected species (e.g., see Hamer et al. 
2009). For case (B), priors allow us to avoid the biologically implausible assumption that a mosquitoes’ 
preference for a host that simply was not recorded in that specific blood meal survey is exactly zero. For 
example, in our blood meal data, zero Culex quinquefasciatus were recorded to have taken a blood meal 
from humans, though it is well understood that this species does occasionally bite humans and can lead 
to human infection of, for example, West Nile virus (Molaei et al., 2007). We used a Dirichlet distribution 
for our prior on host abundance, which is the conjugate prior to the multinomial distribution (Tu, 2014). 
The Dirichlet distribution is parameterized with a vector of positive reals (α), with length equal to the 
number of categories being modeled (for us, hosts). For our Dirichlet prior we smoothed the observed host 
proportions in the data in an attempt to control for the low detection probability of more cryptic species to 
produce the following α vector (rounded for display): human = 917, dog = 187, cat 138, bird =73, possum = 
22, flying fox = 19, cattle = 14, macropod = 7, sheep = 0.4, horse = 0.2, rabbit = 0.2, rat = 0.2. 

We assume that the underlying feeding preference of each mosquito species (proportional increases or 
decreases in biting host species relative to biting those species in proportion to their relative abundance) 
across host species is Gamma distributed (a flexible two-parameter distribution on [0, inf) that can resemble 
an exponential distribution with mode at zero or a Gaussian-like distribution with strictly positive values). 
We allow the shape of this Gamma distribution to vary among mosquito species, which, in biological terms, 
flexibly allows the model to capture mosquitoes with specialist feeding preferences (skewed Gamma across 
host species—mosquitoes bite many host species rarely and a few species often) and generalist feeding 
tendencies (flatter Gamma—mosquitoes bite hosts in accordance with their relative abundance). To do so, 
we use a multi-level model in which we assume that the shape of the Gamma distributions describing 
each mosquito species’ preference are in turn Gamma distributed. This can be interpreted as being used 
to model the distribution of specialists and generalists mosquitoes in the sample. Specifically, to allow  
the “shape” of the species-level Gamma distributions to vary, we assume that the two parameters that 
describe those Gamma distributions are drawn from two higher-level Gamma distributions; we used a 
prior of gamma(4, 4) for each of the higher-level Gamma distributions which are minimally informative 
priors used to constrain the model to search a realistic space of feeding preferences (e.g., not a perfectly 
uniform case or an extremely skewed exponential case). 



 

 

Appendix 1 Table 1: Reviews suggesting frameworks on how to define the terms “host” and “vector” vary greatly in which physiological and 
ecological criteria they consider (indicated with ”X”) contribute to the importance of a species as hosts or vectors. 

 

Reference 
Host 
or vector 

Physiological Ecological 
Pathogen 
load (e.g. 
titre dura- 
tion and 
magni- 
tude) 

Pathogen 
isolated 
(e.g. virus 
isolation) 

Immune 
response 
(e.g. de- 
tectable 
antibod- 
ies) 

Survival 
(i.e. sur- 
vives long 
enough to 
transmit) 

Population 
suscepti- 
bility 

Abundance Contact 
with vec- 
tor/host 

Breeding 
patterns 

Activity 
patterns 

DeFoliart et al. 1987 Host  X   X X X X  
Levin et al. 2002 Host X X X  X     
Ashford 1997 Host X  X  X  X   
Haydon et al. 2002 Host   X  X X X   
Kuno et al. 2017 Host X X X  X     
(Cleaveland and 
Dye, 1995) 

Host X  X  X     

Silva et al. 2005 Host X   X X  X   
WHO Scien- 
tific  Group on 
Arthropod-Borne 
and Rodent-Borne 
Viral Diseases 1985 

Host X  X X X   X  

Scott 1988 Host X  X X   X   
Wilson et al. 2017 Vector          
DeFoliart et al. 1987 Vector X X     X   
Kahl et al. 2002 Vector X   X   X   
Killick-Kendrick 
1990 

Vector X X    X X  X 

Beier 2002 Vector          
WHO Scien- 
tific  Group on 
Arthropod-Borne 
and Rodent-Borne 
Viral Diseases 1985 

Vector X X     X   

Kuno and Chang 
2005 

Vector          

34 
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Appendix 1 Figure 1: Continuous titer profiles over hosts’ infectious periods constructed using empirical estimates 
of peak titer and titer duration. For all non-human species ‘Day’ represents days since experimental exposure to Ross 
River virus (RRV). Solid black curves and grey envelopes show predicted medians and 95% CI calculated from all 
simulated titer curves. Horizontal dashed blue lines show empirically estimated peak titers (Table S1) for each species 
and horizontal dotted blue lines show 1 SD. Vertical dashed red lines show empirically estimated end dates of 
detectable titer and vertical dotted red lines show 1 SD. Horizontal solid black lines show the maximum detectable 
titer. For humans, points show reported means from raw data and error bars show 1 SD. The human titer data is 
shifted in time for visualization purposes (in the raw data the first observation of human titer is recorded on day 1 of 
symptoms not exposure). Our predictions for humans ignore the outlier data point pictured at day 10, but do simulate 
titer on days prior to empirically observed titer. For further details see commenting in the R code available on GitHub: 
Kain (2021). 
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Appendix 1 Figure 2: Area under the curve (AUC) calculated from the host titer curves pictured in Appendix 1- 
Figure 1. We use AUC to collapse the continuous host titer curves (Appendix 1-Figure 1) into a single metric because 
it simultaneously captures both the height of the curve (actual titer values) and duration of detectable titer (infectious 
duration). We use AUC to quantify host physiological responses (see Figure 2A); however, the complete titer curves 
(Appendix 1-Figure 1) are used to host-to-mosquito or mosquito-to-host transmission, not AUC. Orange points and 
error bars (95% CI) show calculated AUC multiplied by the proportion of all of the individuals of each species that 
develop detectable viremia when exposed to virus (see Table S1 for the proportion of individuals of each species that 
developed a viremic response in infection experiments). Green points and error bars show calculated AUC ignor- 
ing ignoring the proportion of hosts that display a viremic response. Note, for example, the large difference in the 
physiological competence of horses using these two metrics; horses have been considered important hosts histori- 
cally, though this claim has ignored the large proportion that do not produce detectable viremia (see Stephenson et al. 
2018). 
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Appendix 1 Figure 3: Probability mosquitoes become infected with RRV as a function of infectious dose. Data 
points show the proportion of mosquitoes with infection detected at a given infectious dose in laboratory experimental 
infections of mosquitoes; point size reflects the total number of mosquitoes exposed to infection. Model predictions 
are from a binomial GLMM, with dose as a fixed effect and mosquito species as a random effect (intercept and slope 
over dose), which was fit in R using the package lme4 (Bates et al., 2015). Solid black lines show predicted medians, 
and grey envelopes are 95% CI constructed from the conditional modes and conditional covariances of the random 
effect (for further details see the code on GitHub: Kain (2021)). 
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Appendix 1 Figure 4:  Probability over time that an infected mosquito transmits RRV to a susceptible host given  
a feeding event. Data points show the proportion of mosquitoes transmitting infection (virus detected in salivary 
glands) in laboratory experimental infections of mosquitoes; point size reflects the total number of mosquitoes ex- 
posed to infection and color shows the experimental dose mosquitoes were exposed to. Model predictions are from a 
binomial GLMM, with day as a fixed effect and random effects of mosquito species (intercept and slope over day) and 
reference (intercept), fit in R using the package lme4 (Bates et al., 2015). Solid black lines show predicted medians, and 
grey envelopes are 95% CI constructed from the conditional modes and conditional covariances of the random effect. 
We did not include dose as a fixed effect because of model fitting/parameter identifiability issues, but show the doses 
used in the laboratory experiments here (color). Dotted lines connect data points that are from the same experiment. 
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Appendix 1 Figure 5: Area under the curve of the mosquito infection probability curves shown in Appendix 1- 
Figure 3. Points show medians and error bars show 95% CI. 
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Appendix 1 Figure 6: Area under the curve of the mosquito transmission probability curves shown in Appendix 
1-Figure 4. Points show medians and error bars show 95% CI. Of all mosquitoes without data just Ve lineata is pictured 
here as in Appendix 1-Figure 4. 
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Culex annulirostris survival at half max of optimal laboratory 
conditions from Shocket et al. 2018 Elife 
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Appendix 1 Figure 7:  Culex annulirostris daily survival in laboratory conditions using the half-max of survival  
in optimal conditions. In the absence of species-specific survival for most of our species we use this survival curve 
(from Shocket et al. 2018 who used data from McDonald et al. 1980) for all of the species in our model, but assume 
that survival after day 38 falls to zero. 
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Appendix 2 

Results Figures 
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Appendix 2 Figure 1: Complete density distributions for total estimated host-to-host transmission for the the top 
5 species by median estimates (Humans, Birds, Possums, Horses, Macropods. Distributions show the 1000 samples 
obtained by propagating uncertainty from all statistical sub-models see Table 1 for details. The vertical dotted lines 
show distribution medians. 
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Appendix 2 Figure 2: RRV transmission capability of hosts as measured by the number of second generation 
hosts exposed to infection vs RRV transmission capability of hosts as measured by the total number of second 
generation hosts that mount a viremic response. The top panel is recreated from Figure 2C; the bottom row uses 
the same calculation for transmission but weights all second generation hosts by the proportion of those hosts that 
display a viremic response (i.e., dogs do not contribute to the sum in the bottom row). Though host ranks do not 
change depending on the method of quantifying host transmission importance, overall estimates of transmission 
decrease when removing sink infections (bottom panel). 
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Appendix 2 Figure 3: Ross River virus transmission capability of hosts based on physiological traits alone or with 
consideration of ecological traits that drive transmission — assuming human titer begins only 1 day prior to symptom 
onset instead of assuming a full quadratic titer profile as we do in the main text. A. Physiological response of hosts to 
experimental infection with RRV, summarized using the area under their estimated titer profiles over time (AUC). In 
all panels, points show median estimates; error bars are 95% confidence intervals (CIs) that combine the uncertainty 
from all statistical sub-models used to obtain the estimates presented in that panel (see Figure 1 and Box 1 for these 
components). Titer profile AUC is used only to quantify host physiological competence, while raw titer profiles 
(pictured in Appendix 1-Figure 1) are used in half-cycle and complete-cycle transmission. The ordering of hosts based 
on highest (top) to lowest (bottom) physiological competence in A is conserved in B and C to aid visualization of host 
order changes among panels. B. Host-to-vector transmission; matrices show the median numbers of vectors infected 
by each host species, while the points show infection totals (sums across matrix rows), with error bars. C. Host-vector- 
host transmission. As in B, the matrices show median numbers of next-generation host infections for all host species 
pairs, while the points show sums across rows of the matrices (left plot) and the proportion of infections in the second 
generation that are in the same species as the original infected individual (center plot). 
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Appendix 2 Figure 4:  Ross River virus transmission capability of mosquitoes based on physiological traits alone     
or with consideration of ecological traits that drive transmission — assuming human titer begins only 1 day prior to 
symptom onset instead of assuming a full quadratic titer profile as we do in the main text. A. Physiological response of 
mosquitoes to experimental infection with RRV, summarized using the area under (AUC) of their estimated infection 
probability versus dose curves multiplied by the area under their transmission probability versus time curves. Points 
show median estimates; the error bars in each panel are 95% confidence intervals (CIs) that combine the uncertainty 
from all statistical sub-models used to obtain the estimates presented in that panel (see Figure 1 and Box 1 for these 
components). AUC is used only to quantify mosquito physiological competence; raw infection and transmission 
profiles (pictured in Appendix 1-Figure 3 and Appendix 1-Figure 4, respectively) are used in calculations of half- 
cycle and complete-cycle transmission. The ordering of vector species based on highest (top) to lowest (bottom) 
physiological competence in A is conserved in B and C to aid visualization of vector order changes among panels. B. 
Vector-to-host transmission; matrices show the median numbers of hosts infected by each vector species, while the 
points show infection totals (sums across matrix rows), with error bars. C. Vector-host-vector transmission. As in B, 
the matrices show median numbers of next-generation vector infections for all vector species pairs, while the points 
show sums across rows of the matrices (left plot) and the proportion of infections in the second generation that are in 
the same species as the original infected individual (center plot). 
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Appendix 2 Figure 5: An initial human infection propagates infection through the host community. Starting with 
a single infected human in generation “zero” (all hosts begin with zero infected individuals except humans), the 
next generation matrix approach can be used to approximate (using the time step of a generation) how an epidemic 
would unfold in the community. Here we show the total number of new infections of each species as the infection 
spreads in the community across generations beginning with the source infection in one human. In generation one, all 
infections arise from the source human infection. In subsequent generations, the plotted number of infections for each 
species is the estimated total number of infections in that species arising from all transmission pathways. Our median 
R0 estimate for RRV transmission in Brisbane is just above one, which results in a very slow increase in cases over 
generations (solid lines); however, large uncertainty for the number of infections produced by each infected host and 
mosquito (see Figure 2, Figure 3) results in the possibility of explosive epidemics and thousands of infected individual 
hosts after a few generations. The thin grey black lines are 500 epidemic realizations. Because we assume a fully 
susceptible host and vector population, this is an epidemic simulation, which would over-estimate the amount of 
RRV transmission in Brisbane because of the high host immunity in the host population that is ignored here. 
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Appendix 2 Figure 6: An initial Ma. uniformis infection propagates through the mosquito community. Starting with 
a single infected Ma. uniformis in generation “zero”, the next generation matrix approach approximates the number 
of mosquitoes infected in subsequent generations. All generation one mosquito infections arise from the source Ma. 
uniformis infecting hosts and those hosts infecting mosquitoes; the plotted number of infections for each mosquito 
species is the estimated total number of infections in that species arising from all transmission pathways. As these 
results are generated from the same model that produced the results in Appendix 2-Figure 5 (simply with a different 
perspective) median estimates (bold black line) show slightly increasing numbers of infections in mosquitoes over gen- 
erations. However, large uncertainty for the number of infections produced by each infected host and mosquito (see 
Figure 2, Figure 3) results in the possibility of explosive epidemics and thousands of infected individual mosquitoes 
after a few generations. As in Appendix 2-Figure 5, the thin grey black lines are 500 epidemic realizations. Because 
we assume a fully susceptible host and vector population, this is an epidemic simulation, which would over-estimate 
the amount of RRV transmission in Brisbane because of the high host immunity in the host population that is ignored 
here. 

T
o

ta
l 
N

u
m

b
e

r 
In

fe
c
te

d
 



48  

A 

 

    

 

 
Host Species 

A 
B 

B 

Mosquito Species 

One 
Two 

C  

   

D E F 

T
ra

n
s
m

is
s
io

n
 P

ro
b

a
b

ili
ty

 
T

it
re

 

P
ro

b
a

b
ili

ty
 o

f 
s
u

rv
iv

in
g

 u
n

ti
l 
d

a
y
 X

 
In

fe
c
ti
o

n
 P

ro
b

a
b

ili
ty

 

D
a
ily

 T
ra

n
s
m

is
s
io

n
 

In
fe

c
ti
o

n
 P

ro
b

a
b

ili
ty

 

1.00 

5 
 

0.75 
4 

1.00 
 

 
0.75 

 
 

Host Σ(Host to Mosquito) 

 
3 0.50 

 
2 0.25 

 

0.50 

 

 
0.25 

A 8.42 

B 9.02 

 

1 
 
 
 
 

1.00 
 

 
0.75 

 
 
 

2.5 5.0 7.5 
Day 

 

 
0.00 

 
 

 
0.8 

 

 
0.6 

 
 
 

2 4 6 
Titre 

 

 
0.00 

 
 
 

 
0.20 

 
 
 

2.5 5.0 7.5 
Day 

 
 
 
 

 
Host Σ(Host to Host) 

 

0.50 0.4 

0.15 
 

 
0.10 

A 4.14 

B 4.10 

0.25 0.2 0.05 
 

 
0.00 

5 10 15 20 
Day 

 

 
0.0 

 
 

 
5 10 15 20 

Day 

 

 
0.00 

 
 

 
5 10 15 20 

Day 

Appendix 2 Figure 7: Simulated illustrative example for how host species can change rank between host-to- 
mosquito (panels A-C) and host to host (panels D-F) definitions of competence, even without considering host 
abundance, mosquito abundance, mosquito biting preference, or differences in mosquito survival (each of these 
variables makes increases the possible routes to host rank reversal). In this example, host species A has a more 
peaked titer curve than host species B (panel A). Here, when each of these host species are bit by two different 
mosquito species with different infection probability curves (panel B), host species B has an overall higher proba- 
bility of infecting these two mosquitoes (panel C). To the right of the top panel shows the total number of mosquitoes 
infected over the course of 8 days of infection in these two host species, assuming 5 susceptible mosquitoes of each 
species per host and a daily biting rate of 0.4 for each mosquito species. When these mosquito species differ in their 
incubation rate and thus transmission probability (panel D), and the same survival probability (differential survival 
makes the reversal of ranks easier – if mosquito species 2 has lower survival the gap between host species will widen) 
even if they have the same survival probability (panel E), they will have different survival-weighted transmission rates 
per bite over time (panel F). Taking the total number of infected mosquitoes of each species in the host to mosquito in- 
fection step and multiplying by the total number of transmissions over the mosquitoes lifetime, considering mosquito 
biting rate, results in host species A producing a fraction more host to host infections than species B. 
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Ibarra-Cerdeñ a, M. P. Ibarra Ló pez, L. I. Iñ iguez Dávalos, and M. M. Ramı́rez Martı́nez, 2016.  Can you 
judge a disease host by the company it keeps? Predicting disease hosts and their relative importance: a 
case study for Leishmaniasis. PLoS Neglected Tropical Diseases 10(10), e0005004. 

Stephenson, E. B., A. J. Peel, S. A. Reid, C. C. Jansen, and H. McCallum, 2018. The non-human reservoirs of 
Ross River virus: a systematic review of the evidence. Parasites & Vectors 11(1), 188. 

Taylor, L. H., S. M. Latham, and M. E. Woolhouse, 2001. Risk factors for human disease emergence. Philo- 
sophical Transactions of the Royal Society of London. Series B: Biological Sciences 356(1411), 983–989. 

Tesh, R. B., R. G. McLean, D. A. Shroyer, C. H. Calisher, and L. Rosen, 1981. Ross river virus (togaviridae: 
Alphavirus) infection (epidemic polyarthritis) in American Samoa. Transactions of the Royal Society of 
Tropical Medicine and Hygiene 75(3), 426–431. 

Tu, S., 2014. The Dirichlet-multinomial and Dirichlet-categorical models for Bayesian inference. Computer 
Science Division, UC Berkeley. 



55  

Turell, M. J., D. J. Dohm, M. R. Sardelis, M. L. O’guinn, T. G. Andreadis, and J. A. Blow, 2005. An update 
on the potential of north american mosquitoes (Diptera: Culicidae) to transmit West Nile virus. Journal of 
Medical Entomology 42(1), 57–62. 

Turell, M. J., K. J. Linthicum, L. A. Patrican, F. G. Davies, A. Kairo, and C. L. Bailey, 2008. Vector competence 
of selected African mosquito (diptera: Culicidae) species for Rift Valley fever virus. Journal of Medical 
Entomology 45(1), 102–108. 

Turner, J., R. G. Bowers, and M. Baylis, 2013. Two-host, two-vector basic reproduction ratio (r0) for blue- 
tongue. PloS One 8(1), e53128. 

Vale, T., M. Dowling, and M. Cloonan, 1992. Infection and multiplication of Ross River virus in the mosquito 
vector Aedes Vigilax (Skuse). Australian journal of zoology 40(1), 35–41. 

Vale, T., D. Spratt, and M. Cloonan, 1991. Serological evidence of arbovirus infection in native and domes- 
ticated mammals on the south coast of New-South-Wales. Australian Journal of Zoology 39(1), 1–7. 

van Doorn, H. R., 2014. Emerging infectious diseases. Medicine 42(1), 60–63. 

Viana, M., R. Mancy, R. Biek, S. Cleaveland, P. C. Cross, J. O. Lloyd-Smith, and D. T. Haydon, 2014. Assem- 
bling evidence for identifying reservoirs of infection. Trends in Ecology & Evolution 29(5), 270–279. 

Ward, M., P. Black, A. Childs, F. Baldock, W. Webster, B. Rodwell, and S. Brouwer, 1996. Negative findings 
from serological studies of equine morbillivirus in the Queensland horse population. Australian Veterinary 
Journal 74(3), 241–243. 

Watson, T. M. and B. H. Kay, 1998. Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Ross 
River virus in Queensland, Australia. Journal of Medical entomology 35(2), 104–106. 

Webb, C. E., S. L. Doggett, S. A. Ritchie, and R. C. Russell, 2008. Vector competence of three Australian 
mosquitoes, Verrallina carmenti, Verrallina lineata, and Mansonia septempunctata (diptera: Culicidae), for 
Ross River virus. Journal of medical entomology 45(4), 737–740. 

Webster, J. P., A. Borlase, and J. W. Rudge, 2017. Who acquires infection from whom and how? Disentan- 
gling multi-host and multi-mode transmission dynamics in the ‘elimination’era. Philosophical Transactions 
of the Royal Society B: Biological Sciences 372(1719), 20160091. 

Wells, P., R. Russell, M. Cloonan, L. Hueston, and M. Geary, 1994. Virus infection and vector competence of 
Aedes alternans (Westwood)(diptera: Culicidae) for Ross River virus. Australian Journal of Entomology 33(4), 
373–375. 

Whitehead, R., 1969. Experimental infection of vertebrates with Ross River and Sindbis viruses, two group 
A arboviruses isolated in Australia. Australian Journal of Experimental Biology and Medical Science 47(1), 
11–15. 

WHO Scientific Group on Arthropod-Borne and Rodent-Borne Viral Diseases, 1985. Arthropod-borne and 
rodent-borne viral diseases. Number 719. 

Wichgers Schreur, P. J., L. Van Keulen, J. Kant, N. Oreshkova, R. J. Moormann, and J. Kortekaas, 2016. Co- 
housing of Rift Valley fever virus infected lambs with immunocompetent or immunosuppressed lambs 
does not result in virus transmission. Frontiers in microbiology 7, 287. 

Wilson, A. J., E. R. Morgan, M. Booth, R. Norman, S. E. Perkins, H. C. Hauffe, N. Mideo, J. Antonovics, 
H. McCallum, and A. Fenton, 2017. What is a vector? Philosophical Transactions of the Royal Society B: 
Biological Sciences 372(1719), 20160085. 


