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Abstract

Identifying the effects of environmental change on the transmission of vector-borne and
zoonotic diseases is of fundamental importance in the face of rapid global change. Causal
inference approaches, including instrumental variable (IV) estimation, hold promise in
disentangling plausibly causal relationships from observational data in these complex systems.
Valle and Zorello Laporta recently critiqued the application of such approaches in our recent
study of the effects of deforestation on malaria transmission in the Brazilian Amazon on the
grounds that key statistical assumptions were not met. Here, we respond to this critique by: 1)
deriving the IV estimator in order to clarify the assumptions that Valle and Zorello Laporta
conflate and misrepresent in their critique; 2) discussing these key assumptions as they relate to
our original study and how our original approach reasonably satisfies the assumptions; and 3)
presenting model results using alternative instrumental variables that can be argued more
strongly satisfy key assumptions, illustrating that our results and original conclusion—that

deforestation drives malaria transmission—remain unchanged.
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Main Text

There is substantial and increasing interest in understanding the role that processes of
global change are playing in the ecology and transmission of vector-borne and zoonotic
diseases.!> While these questions are of fundamental importance given the increasing rate of
climate and land use change, and the large proportion of emerging infectious diseases that are
vector-borne or of zoonotic origin, causally linking these two processes is an enormous
challenge. Take as an example the case of deforestation impacts on malaria transmission in the
Brazilian Amazon, the focus of MacDonald & Mordecai* and the critique by Valle & Zorello
Laporta.’ The gold standard of a randomized controlled trial in which deforestation is
experimentally manipulated and randomly assigned to different regions to assess its impact on
malaria transmission presents obvious logistical and ethical barriers that make such an approach
largely infeasible. As a result, researchers must rely on observational data and employ statistical
approaches to approximate, as closely as possible, the experimental ideal.

One promising set of statistical techniques—broadly referred to as causal inference
methods, which includes Instrumental Variable (IV) estimation, are increasingly being leveraged
to disentangle plausibly causal relationships from observational data in ecology. Due to the
challenges described above, these approaches have been employed by researchers assessing
global change impacts on infectious disease,’'* including in another recent study investigating
the effects of deforestation on malaria transmission in Brazil,'# with similar results to our own
work. Valle and Zorello Laporta® rightly point out that model assumptions are critically
important in such approaches, and that causal conclusions should be carefully drawn in these

contexts. However, the authors unfortunately conflate the assumptions of IV estimation in their
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perspective piece. As a relatively new approach in ecology and environmental science,® it is
important that the underlying assumptions are clear for appropriate application.

IV is a useful approach to overcome what is known as endogeneity bias, which is due to a
relationship between the error term and one or more of the explanatory variables, (formally,
E[&;|x;] # 0 where € and x represent the error term and explanatory variable for observation 7).
Such a relationship could be due to bidirectional causality where, for example, deforestation may
drive malaria transmission but malaria burden may also influence rates of deforestation. In IV, a
third variable, known as an instrument (z;), is used to isolate exogenous variation in explanatory
variable x; and recover a statistically consistent estimator for the true relationship between the
exogenous variable and the outcome.

The instrument must meet two conditions for IV to be a consistent estimator, which are
sometimes termed “relevance” and “exclusion” criteria. In words, the instrument must be
statistically associated with the endogenous variable (“relevance”) and must be related to the
outcome only through its relationship with the endogenous variable (“exclusion’). While the
wording is easy to remember, it leaves much open to interpretation. For example, does relevance
require a causal link? Does exclusion require statistical independence? The derivation makes
these key assumptions much more apparent. Before showing the derivation, we will first provide
brief background to our original study,* the critique by Valle & Zorello Laporta® and our
response.

In MacDonald & Mordecai,* we were first interested in predicting annual malaria
incidence as a function of annual deforestation, and use aerosol optical depth (AOD) in the
month of September from MODIS satellite imagery as our “instrument.” We expand on the

methodology and terminology below, but set the context of the argument here. Valle & Zorello
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Laporta® have two critiques of our IV approach. The first, however, is a misrepresentation of the
assumptions of IV, namely that a valid IV requires that the IV has a causal effect on the
endogenous explanatory variable. They state, “However, it is deforestation that causes aerosol
pollution [...] rather than aerosol pollution that causes deforestation [...] As a result, [the
relevance] assumption is clearly violated.” As we show below, causality is not required.'
Rather, there must be an “association”, or more specifically, the covariance between the
instrument and the endogenous variable must not be zero. However, it is possible that an
instrumental variable itself introduces endogeneity bias if it does not meet the exclusion criteria,
and this can be particularly problematic in the case of “weak instruments” as we show below.
This can occur, for example, in cases where the instrument (e.g., AOD) is strongly driven by the
endogenous predictor variable (e.g., deforestation). In our case, we chose AOD as an instrument
for deforestation, as it is an indicator of human activity on the landscape.'® Further, over our
study period, AOD was decoupled from deforestation as biomass burning in the Brazilian
Amazon—and resulting AOD—was primarily driven by fires intentionally set to keep existing
pastures and agricultural lands clear'¢ and by drought conditions leading to wildfires in already

degraded forests, !¢

rather than by new deforestation activity.

Nevertheless, to explore the extent to which our original IV estimates of the effect of
deforestation on malaria may have been affected by potential endogeneity introduced by the use
of AOD as an IV, we run additional IV models using 1) last year’s AOD as an instrument for this
year’s deforestation, and 2) remotely sensed, average municipality soil quality!® processed in
Google Earth Engine,?® interacted with annual international soy and beef commodity prices from

the World Bank. We chose last year’s AOD since it is correlated with this year’s deforestation

(relevance), but this year’s deforestation could not have caused last year’s AOD. While this
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addresses the issue of reverse causality, it is plausible that there remain endogeneity issues in this
context. For example, if last year’s AOD somehow acts upon this year’s malaria through
mechanisms beyond deforestation, then the exclusion criteria would fail. To address these
potential lingering concerns, we run additional models using soil quality coupled with
international agricultural commodity prices for key Brazilian exports, which may influence a
land owners’ decision to clear forest for agricultural production (relevance); in this case,
deforestation rates do not cause soil quality and are highly unlikely to shift international
commodity prices (exclusion). We run these IV models on our interior Amazon sample of
municipalities, where active deforestation rates are highest and where we predict forest clearing
should have the strongest effect on malaria transmission,* predicting both total malaria and
Plasmodium falciparum malaria incidence, following our original study.* Results are presented
in the SI (Table S1). In brief, we find significant positive effects of deforestation on malaria
transmission in each of these additional model specifications, with coefficients of similar, though
slightly larger magnitude than our original study. Our main conclusion, that deforestation
increases malaria transmission in the Brazilian Amazon, remains unchanged.

The second goal of MacDonald & Mordecai? is to understand whether annual malaria
burden feeds back to influence annual rates of deforestation, and we use optimal temperature for
malaria transmission in the dry season as our instrument for malaria. Optimal temperature was
defined as the sum of days falling within a narrow temperature band that is optimal for malaria
transmission (24-26°C) based on earlier mosquito and parasite trait-based mechanistic modeling
studies.?! Valle & Zorello Laporta’s® second critique is that the exclusion assumption may be
violated in this model because “it is possible that temperature affects deforestation not only

through malaria, but also through other causal paths,” particularly the relationship between
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temperature and agricultural gross domestic production.?? In other words, favorable temperatures
for mosquitos and malaria parasites may affect deforestation not just through malaria, but by also
being favorable agricultural growing conditions, which increase the potential value of forest
clearing. We agree that temperature is important to both agriculture and malaria, and that those
clearing land may consider the land’s growing potential. However, rather than counting the
number of days in a 2°C temperature window during the dry season, we suggest agricultural
producers will instead consider the general growing conditions of a region as it relates to
commonly grown crops—for example, soil quality, climate, topography, and infrastructure. As
land clearing for agriculture is a large and long-term investment, average growing conditions are
much more likely to influence clearing decisions than are small deviations in weather from year
to year.

There are two additional primary reasons that our IV, optimal malaria transmission
temperature, is highly unlikely to fail the exclusion criteria. First, we specifically employ
municipality “fixed effects” or dummy variables!® to remove roughly time invariant
characteristics specific to each municipality through differencing. Thus, average characteristics
(e.g., soil quality, average precipitation, average temperature) that are likely to influence the
evolution of regional agricultural land use and the location of processing plants and other
infrastructure are removed and the model is identified from deviations from the municipality-
specific mean. Second, the range of optimal average temperatures for soybean—DBrazil’s main
crop by area and production’*—cultivation and development in Brazil is from 20°C to 35°C.**
Recall optimal temperature for malaria transmission is 24°C to 26°C, and we use the number of
days in the dry season within this narrow temperature band as our instrument. Thus, an

additional day at 25°C relative to 27°C would be expected to lead to increases in malaria
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transmission. However, this same change in temperature would likely have a trivial impact on
soy yields, as both temperatures are well within the bounds of optimal soy cultivation. Given the
breadth of favorable temperatures for soy, it is unlikely that changes in the number of days
between 24°C to 26°C will influence land clearing decisions for agricultural production.

We too feel that causal inference approaches hold much promise in disease ecology, and
agree that researchers interested in exploring the use of such methods should carefully consider
model assumptions. Toward that end, we briefly derive the simplest form of IV to illustrate to
potential users what is under the hood of the IV approach and how the exclusion and relevance

assumptions function in this technique.

Deriving the IV Estimator: To keep it as intuitive as possible, let us assume a bivariate regression

of the form,

Yi= a+fx;+ g 1

Where y; is the outcome variable (e.g., malaria incidence) for observation (e.g., municipality) i,

x; 1s the endogenous explanatory variable (e.g., deforestation), ¢; is the error term, « is the

intercept, and [ is the coefficient of interest.

To derive the IV estimator, we can take the covariance of each side of equation 1 with respect to

the instrument, z;:

cov(z;,y;) = cov(z;, a) + cov(z;, Bx;) + cov(z;, &) 2
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= 0+ fcov(z;, x;) + cov(z;, &;)
Since a is a constant, and the covariance of a variable with a constant is 0, the first term drops
out. Similarly, because £ is a constant, it can be removed from the covariance. The exclusion
assumption of IV is that the instrument (z;) only affects the outcome through changes in the
endogenous variable (x;), which is more formally written as cov(z;, €;) = 0. Thus with basic
rearranging, we have derived the IV estimator (f,y),
By = cov(z;,y;)
V" cov(z, %)

Consistency of IV: 1f we then want to illustrate that the IV estimator is consistent—in other
words, as the sample size gets larger and larger the distribution of the estimator converges to the
true parameter value—we can plug the right-hand side of equation 1 into y; in equation 4. We
substitute B, with B, since we are considering whether the estimated slope from an IV

converges in probability to the true slope .

.~ cov(zj,a+ PBx; + &)
plim By =

cov(z;, x;)

Following a similar logic as with equation 3, equation 5 becomes:
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. Beov(z;,x;) cov(z, &)

li = + ' °
plim By cov(z;, x;) cov(z;, x;)

From equation 6, the second assumption of IV becomes evident. The second assumption is the
relevance assumption, or that the instrument must be statistically associated with the endogenous
variable (x;). As can be seen in equation 6, this means, in mathematical terms, cov(z;, x;) # 0.
Covariance does not imply a direction to the relationship, whether AOD (our instrument)
determines deforestation or deforestation determines AOD (or neither) is irrelevant, as it is the

covariance between the two that is important.

By these two assumptions of IV, that cov(z;, €;) = 0 and cov(z;, x;) # 0, equation 6 simplifies

to plim B,y = B, illustrating IV is a consistent estimator of the true relationship.

Weak Instruments.: Equation 6 also illustrates another important aspect when considering the
application of instrumental variables, and that is a problem known as “weak instruments.” The
problem occurs if the exclusion criteria, cov(z;, €;) = 0, fails. Based on the relationship between
covariance and correlation (namely, cov(x,y) = corr(x,y) * 0,0, where o is the standard
deviation of each variable) and assuming cov(z;, x;) # 0, we can rewrite equation 6 to illustrate

the problem (omitting subscripts for simplicity).

corr(z, &) * 0,0, corr(z,€) * g,

limBy =B + = _
plim By = f corr(z,x) * 0,0, corr(z,x) * o,

10



224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

If there is a small correlation between the instrument and the error, the last term in equation 7

does not drop out and the IV estimator is inconsistent (plim By # B). If corr(z, €) is just
slightly different from zero and corr(z, x) is much different than zero, the last term is of
minimal influence. However, if the instrument is only weakly correlated with the endogenous
covariate, the last term of equation 7 can become large. In practice, weak instruments can cause
the IV estimator to be severely biased. Since there is no test to validate the exclusion criteria, the
strength of the relationship between the instrument and the endogenous variable is very
important in practice, and can be formally tested? as in the supplementary material from

MacDonald and Mordecai.*

Conclusion: Understanding the effects of environmental change on infectious disease
transmission—from diseases long endemic to the tropics like malaria, to novel emerging
pathogens we have yet to discover like SARS-COV-2—is of fundamental and increasing
importance. In these complex socio-ecological systems that are difficult to study experimentally,
emerging data sources (e.g., high spatio-temporal resolution earth observation data) and causal
inference methods (e.g., IV estimation) represent one methodological approach that can help us

achieve such clearer understanding.
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