

1 Response to Valle and Zorello Laporta: Clarifying the use of instrumental variable methods to
2 understand the effects of environmental change on infectious disease transmission

3

4 Running head: Response to the critique by Valle & Zorello Laporta

5

6 Andrew J. MacDonald^{1*} & Erin A. Mordecai²

7 1. Earth Research Institute and Bren School of Environmental Science and Management,

8 University of California, Santa Barbara, CA, USA

9 2. Department of Biology, Stanford University, Stanford, CA, USA

10 *Corresponding author: Bren School of Environmental Science and Management, University of

11 California, Santa Barbara, CA 93106-5131; andy.j.macdon@gmail.com

12

13 Keywords: causal inference; instrumental variables; environmental change; vector-borne disease;
14 earth observation data

15

16 Abstract: 164 words

17 Text: 2264 words

18 Figures: 0

19 Tables: 0

20 SI: 1 SI table

21

22

23 Abstract

24 Identifying the effects of environmental change on the transmission of vector-borne and
25 zoonotic diseases is of fundamental importance in the face of rapid global change. Causal
26 inference approaches, including instrumental variable (IV) estimation, hold promise in
27 disentangling plausibly causal relationships from observational data in these complex systems.
28 Valle and Zorello Laporta recently critiqued the application of such approaches in our recent
29 study of the effects of deforestation on malaria transmission in the Brazilian Amazon on the
30 grounds that key statistical assumptions were not met. Here, we respond to this critique by: 1)
31 deriving the IV estimator in order to clarify the assumptions that Valle and Zorello Laporta
32 conflate and misrepresent in their critique; 2) discussing these key assumptions as they relate to
33 our original study and how our original approach reasonably satisfies the assumptions; and 3)
34 presenting model results using alternative instrumental variables that can be argued more
35 strongly satisfy key assumptions, illustrating that our results and original conclusion—that
36 deforestation drives malaria transmission—remain unchanged.

37

38

39

40

41

42

43

44

45 Main Text

46 There is substantial and increasing interest in understanding the role that processes of
47 global change are playing in the ecology and transmission of vector-borne and zoonotic
48 diseases.^{1,2} While these questions are of fundamental importance given the increasing rate of
49 climate and land use change, and the large proportion of emerging infectious diseases that are
50 vector-borne or of zoonotic origin,³ causally linking these two processes is an enormous
51 challenge. Take as an example the case of deforestation impacts on malaria transmission in the
52 Brazilian Amazon, the focus of MacDonald & Mordecai⁴ and the critique by Valle & Zorello
53 Laporta.⁵ The gold standard of a randomized controlled trial in which deforestation is
54 experimentally manipulated and randomly assigned to different regions to assess its impact on
55 malaria transmission presents obvious logistical and ethical barriers that make such an approach
56 largely infeasible. As a result, researchers must rely on observational data and employ statistical
57 approaches to approximate, as closely as possible, the experimental ideal.

58 One promising set of statistical techniques—broadly referred to as causal inference
59 methods, which includes Instrumental Variable (IV) estimation, are increasingly being leveraged
60 to disentangle plausibly causal relationships from observational data in ecology. Due to the
61 challenges described above, these approaches have been employed by researchers assessing
62 global change impacts on infectious disease,⁶⁻¹⁴ including in another recent study investigating
63 the effects of deforestation on malaria transmission in Brazil,¹⁴ with similar results to our own
64 work. Valle and Zorello Laporta⁵ rightly point out that model assumptions are critically
65 important in such approaches, and that causal conclusions should be carefully drawn in these
66 contexts. However, the authors unfortunately conflate the assumptions of IV estimation in their

67 perspective piece. As a relatively new approach in ecology and environmental science,⁶ it is
68 important that the underlying assumptions are clear for appropriate application.

69 IV is a useful approach to overcome what is known as endogeneity bias, which is due to a
70 relationship between the error term and one or more of the explanatory variables, (formally,
71 $E[\varepsilon_i | x_i] \neq 0$ where ε and x represent the error term and explanatory variable for observation i).
72 Such a relationship could be due to bidirectional causality where, for example, deforestation may
73 drive malaria transmission but malaria burden may also influence rates of deforestation. In IV, a
74 third variable, known as an instrument (z_i), is used to isolate exogenous variation in explanatory
75 variable x_i and recover a statistically consistent estimator for the true relationship between the
76 exogenous variable and the outcome.

77 The instrument must meet two conditions for IV to be a consistent estimator, which are
78 sometimes termed “relevance” and “exclusion” criteria. In words, the instrument must be
79 statistically associated with the endogenous variable (“relevance”) and must be related to the
80 outcome only through its relationship with the endogenous variable (“exclusion”). While the
81 wording is easy to remember, it leaves much open to interpretation. For example, does relevance
82 require a causal link? Does exclusion require statistical independence? The derivation makes
83 these key assumptions much more apparent. Before showing the derivation, we will first provide
84 brief background to our original study,⁴ the critique by Valle & Zorello Laporta⁵ and our
85 response.

86 In MacDonald & Mordecai,⁴ we were first interested in predicting annual malaria
87 incidence as a function of annual deforestation, and use aerosol optical depth (AOD) in the
88 month of September from MODIS satellite imagery as our “instrument.” We expand on the
89 methodology and terminology below, but set the context of the argument here. Valle & Zorello

90 Laporta⁵ have two critiques of our IV approach. The first, however, is a misrepresentation of the
91 assumptions of IV, namely that a valid IV requires that the IV has a *causal* effect on the
92 endogenous explanatory variable. They state, “However, it is deforestation that causes aerosol
93 pollution [...] rather than aerosol pollution that causes deforestation [...] As a result, [the
94 relevance] assumption is clearly violated.” As we show below, causality is not required.¹⁵
95 Rather, there must be an “association”, or more specifically, the covariance between the
96 instrument and the endogenous variable must not be zero. However, it is possible that an
97 instrumental variable itself introduces endogeneity bias if it does not meet the exclusion criteria,
98 and this can be particularly problematic in the case of “weak instruments” as we show below.
99 This can occur, for example, in cases where the instrument (e.g., AOD) is strongly driven by the
100 endogenous predictor variable (e.g., deforestation). In our case, we chose AOD as an instrument
101 for deforestation, as it is an indicator of human activity on the landscape.¹⁶ Further, over our
102 study period, AOD was decoupled from deforestation as biomass burning in the Brazilian
103 Amazon—and resulting AOD—was primarily driven by fires intentionally set to keep *existing*
104 pastures and agricultural lands clear¹⁶ and by drought conditions leading to wildfires in already
105 degraded forests,¹⁶⁻¹⁸ rather than by new deforestation activity.

106 Nevertheless, to explore the extent to which our original IV estimates of the effect of
107 deforestation on malaria may have been affected by potential endogeneity introduced by the use
108 of AOD as an IV, we run additional IV models using 1) last year’s AOD as an instrument for this
109 year’s deforestation, and 2) remotely sensed, average municipality soil quality¹⁹ processed in
110 Google Earth Engine,²⁰ interacted with annual international soy and beef commodity prices from
111 the World Bank. We chose last year’s AOD since it is correlated with this year’s deforestation
112 (relevance), but this year’s deforestation could not have caused last year’s AOD. While this

113 addresses the issue of reverse causality, it is plausible that there remain endogeneity issues in this
114 context. For example, if last year's AOD somehow acts upon this year's malaria through
115 mechanisms beyond deforestation, then the exclusion criteria would fail. To address these
116 potential lingering concerns, we run additional models using soil quality coupled with
117 international agricultural commodity prices for key Brazilian exports, which may influence a
118 land owners' decision to clear forest for agricultural production (relevance); in this case,
119 deforestation rates do not cause soil quality and are highly unlikely to shift international
120 commodity prices (exclusion). We run these IV models on our interior Amazon sample of
121 municipalities, where active deforestation rates are highest and where we predict forest clearing
122 should have the strongest effect on malaria transmission,⁴ predicting both total malaria and
123 *Plasmodium falciparum* malaria incidence, following our original study.⁴ Results are presented
124 in the SI (Table S1). In brief, we find significant positive effects of deforestation on malaria
125 transmission in each of these additional model specifications, with coefficients of similar, though
126 slightly larger magnitude than our original study. Our main conclusion, that deforestation
127 increases malaria transmission in the Brazilian Amazon, remains unchanged.

128 The second goal of MacDonald & Mordecai⁴ is to understand whether annual malaria
129 burden feeds back to influence annual rates of deforestation, and we use optimal temperature for
130 malaria transmission in the dry season as our instrument for malaria. Optimal temperature was
131 defined as the sum of days falling within a narrow temperature band that is optimal for malaria
132 transmission (24-26°C) based on earlier mosquito and parasite trait-based mechanistic modeling
133 studies.²¹ Valle & Zorello Laporta's⁵ second critique is that the exclusion assumption may be
134 violated in this model because "it is possible that temperature affects deforestation not only
135 through malaria, but also through other causal paths," particularly the relationship between

136 temperature and agricultural gross domestic production.²² In other words, favorable temperatures
137 for mosquitos and malaria parasites may affect deforestation not just through malaria, but by also
138 being favorable agricultural growing conditions, which increase the potential value of forest
139 clearing. We agree that temperature is important to both agriculture and malaria, and that those
140 clearing land may consider the land's growing potential. However, rather than counting the
141 number of days in a 2°C temperature window during the dry season, we suggest agricultural
142 producers will instead consider the general growing conditions of a region as it relates to
143 commonly grown crops—for example, soil quality, climate, topography, and infrastructure. As
144 land clearing for agriculture is a large and long-term investment, average growing conditions are
145 much more likely to influence clearing decisions than are small deviations in weather from year
146 to year.

147 There are two additional primary reasons that our IV, optimal malaria transmission
148 temperature, is highly unlikely to fail the exclusion criteria. First, we specifically employ
149 municipality “fixed effects” or dummy variables¹⁵ to remove roughly time invariant
150 characteristics specific to each municipality through differencing. Thus, average characteristics
151 (e.g., soil quality, average precipitation, average temperature) that are likely to influence the
152 evolution of regional agricultural land use and the location of processing plants and other
153 infrastructure are removed and the model is identified from deviations from the municipality-
154 specific mean. Second, the range of optimal average temperatures for soybean—Brazil’s main
155 crop by area and production²³—cultivation and development in Brazil is from 20°C to 35°C.²⁴
156 Recall optimal temperature for malaria transmission is 24°C to 26°C, and we use the number of
157 days in the dry season within this narrow temperature band as our instrument. Thus, an
158 additional day at 25°C relative to 27°C would be expected to lead to increases in malaria

159 transmission. However, this same change in temperature would likely have a trivial impact on
160 soy yields, as both temperatures are well within the bounds of optimal soy cultivation. Given the
161 breadth of favorable temperatures for soy, it is unlikely that changes in the number of days
162 between 24°C to 26°C will influence land clearing decisions for agricultural production.

163 We too feel that causal inference approaches hold much promise in disease ecology, and
164 agree that researchers interested in exploring the use of such methods should carefully consider
165 model assumptions. Toward that end, we briefly derive the simplest form of IV to illustrate to
166 potential users what is under the hood of the IV approach and how the exclusion and relevance
167 assumptions function in this technique.

168

169 *Deriving the IV Estimator:* To keep it as intuitive as possible, let us assume a bivariate regression
170 of the form,

171

$$172 \quad y_i = \alpha + \beta x_i + \varepsilon_i \quad 1$$

173

174 Where y_i is the outcome variable (e.g., malaria incidence) for observation (e.g., municipality) i ,
175 x_i is the endogenous explanatory variable (e.g., deforestation), ε_i is the error term, α is the
176 intercept, and β is the coefficient of interest.

177

178 To derive the IV estimator, we can take the covariance of each side of equation 1 with respect to
179 the instrument, z_i :

180

$$181 \quad cov(z_i, y_i) = cov(z_i, \alpha) + cov(z_i, \beta x_i) + cov(z_i, \varepsilon_i) \quad 2$$

182

183
$$= 0 + \beta \text{cov}(z_i, x_i) + \text{cov}(z_i, \varepsilon_i) \quad 3$$

184

185 Since α is a constant, and the covariance of a variable with a constant is 0, the first term drops
 186 out. Similarly, because β is a constant, it can be removed from the covariance. The exclusion
 187 assumption of IV is that the instrument (z_i) only affects the outcome through changes in the
 188 endogenous variable (x_i), which is more formally written as $\text{cov}(z_i, \varepsilon_i) = 0$. Thus with basic
 189 rearranging, we have derived the IV estimator (β_{IV}),

190

191
$$\beta_{IV} = \frac{\text{cov}(z_i, y_i)}{\text{cov}(z_i, x_i)} \quad 4$$

192

193 *Consistency of IV:* If we then want to illustrate that the IV estimator is consistent—in other
 194 words, as the sample size gets larger and larger the distribution of the estimator converges to the
 195 true parameter value—we can plug the right-hand side of equation 1 into y_i in equation 4. We
 196 substitute β_{IV} with $\widehat{\beta_{IV}}$ since we are considering whether the estimated slope from an IV
 197 converges in probability to the true slope β .

198

199
$$\text{plim } \widehat{\beta_{IV}} = \frac{\text{cov}(z_i, \alpha + \beta x_i + \varepsilon_i)}{\text{cov}(z_i, x_i)} \quad 5$$

200

201 Following a similar logic as with equation 3, equation 5 becomes:

202

203
$$\text{plim } \widehat{\beta_{IV}} = \frac{\beta \text{cov}(z_i, x_i)}{\text{cov}(z_i, x_i)} + \frac{\text{cov}(z_i, \varepsilon_i)}{\text{cov}(z_i, x_i)}.$$
 6

204

205 From equation 6, the second assumption of IV becomes evident. The second assumption is the
 206 relevance assumption, or that the instrument must be statistically associated with the endogenous
 207 variable (x_i). As can be seen in equation 6, this means, in mathematical terms, $\text{cov}(z_i, x_i) \neq 0$.
 208 Covariance does not imply a direction to the relationship, whether AOD (our instrument)
 209 determines deforestation or deforestation determines AOD (or neither) is irrelevant, as it is the
 210 covariance between the two that is important.

211

212 By these two assumptions of IV, that $\text{cov}(z_i, \varepsilon_i) = 0$ and $\text{cov}(z_i, x_i) \neq 0$, equation 6 simplifies
 213 to $\text{plim } \widehat{\beta_{IV}} = \beta$, illustrating IV is a consistent estimator of the true relationship.

214

215 *Weak Instruments:* Equation 6 also illustrates another important aspect when considering the
 216 application of instrumental variables, and that is a problem known as “weak instruments.” The
 217 problem occurs if the exclusion criteria, $\text{cov}(z_i, \varepsilon_i) = 0$, fails. Based on the relationship between
 218 covariance and correlation (namely, $\text{cov}(x, y) = \text{corr}(x, y) * \sigma_x \sigma_y$ where σ is the standard
 219 deviation of each variable) and assuming $\text{cov}(z_i, x_i) \neq 0$, we can rewrite equation 6 to illustrate
 220 the problem (omitting subscripts for simplicity).

221

222
$$\text{plim } \widehat{\beta_{IV}} = \beta + \frac{\text{corr}(z, \varepsilon) * \sigma_z \sigma_\varepsilon}{\text{corr}(z, x) * \sigma_z \sigma_x} = \beta + \frac{\text{corr}(z, \varepsilon) * \sigma_\varepsilon}{\text{corr}(z, x) * \sigma_x}.$$
 7

223

224 If there is a small correlation between the instrument and the error, the last term in equation 7
225 does not drop out and the IV estimator is inconsistent ($\text{plim } \widehat{\beta}_{IV} \neq \beta$). If $\text{corr}(z, \varepsilon)$ is just
226 slightly different from zero and $\text{corr}(z, x)$ is much different than zero, the last term is of
227 minimal influence. However, if the instrument is only weakly correlated with the endogenous
228 covariate, the last term of equation 7 can become large. In practice, weak instruments can cause
229 the IV estimator to be severely biased. Since there is no test to validate the exclusion criteria, the
230 strength of the relationship between the instrument and the endogenous variable is very
231 important in practice, and can be formally tested²⁵ as in the supplementary material from
232 MacDonald and Mordecai.⁴

233

234 *Conclusion:* Understanding the effects of environmental change on infectious disease
235 transmission—from diseases long endemic to the tropics like malaria, to novel emerging
236 pathogens we have yet to discover like SARS-COV-2—is of fundamental and increasing
237 importance. In these complex socio-ecological systems that are difficult to study experimentally,
238 emerging data sources (e.g., high spatio-temporal resolution earth observation data) and causal
239 inference methods (e.g., IV estimation) represent one methodological approach that can help us
240 achieve such clearer understanding.

241

242 Acknowledgements: We would like to acknowledge Dr. Ashley Larsen and two anonymous
243 reviewers for their thoughtful comments and feedback on this manuscript.

244

245 Financial Support: AJM and EAM were supported by the National Science Foundation and the
246 Fogarty International Center (DEB-2011147). EAM was supported by the National Science

247 Foundation (DEB-1518681), the National Institute of General Medical Sciences
248 (R35GM133439), the Stanford King Center for Global Development and the Terman Award.

249

250 Conflicts of Interest: The authors declare no conflicts of interest.

251

252 Author Contact Information:

253 Andrew J. MacDonald: Bren School of Environmental Science and Management, University of
254 California, Santa Barbara, CA 93106-5131; andy.j.macdon@gmail.com

255 Erin A. Mordecai: Department of Biology, Stanford University, Stanford, CA 94305;
256 emordeca@stanford.edu

257

258 References

- 259 1. Plowright RK, Reaser JK, Locke H, Woodley SJ, Patz JA, Becker DJ, Oppler G, Hudson
260 PJ, Tabor GM, 2021. Land use-induced spillover: a call to action to safeguard
261 environmental, animal, and human health. *Lancet Planet Health* 5(4):e237-e245.
262 doi:10.1016/S2542-5196(21)00031-0.
- 263 2. Thomas MB, 2020. Epidemics on the move: Climate change and infectious disease. *PLoS
264 Biol* 18(11):e3001013–2. doi:10.1371/journal.pbio.3001013.
- 265 3. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P, 2008.
266 Global trends in emerging infectious diseases. *Nature* 451(7181):990-993.

267 4. MacDonald AJ, Mordecai EA, 2019. Amazon deforestation drives malaria transmission,
268 and malaria burden reduces forest clearing. *Proc Natl Acad Sci USA* 116(44):22212-
269 22218. doi:10.1073/pnas.2014828117.

270 5. Valle D, Laporta GZ, 2021. A Cautionary Tale Regarding the Use of Causal Inference to
271 Study How Environmental Change Influences Tropical Diseases. *Am J Trop Med Hyg.*
272 doi:10.4269/ajtmh.20-1176.

273 6. Larsen AE, Meng K, Kendall BE, 2019. Causal analysis in control-impact ecological
274 studies with observational data. *Methods Ecol Evol* 10(7):924-934. doi:10.1111/2041-
275 210X.13190.

276 7. Bonds MH, Dobson AP, Keenan DC, 2012. Disease Ecology, Biodiversity, and the
277 Latitudinal Gradient in Income. *PLoS Biol* 10(12):e1001456.
278 doi:10.1371/journal.pbio.1001456.

279 8. MacDonald AJ, Larsen AE, Plantinga AJ, 2019. Missing the people for the trees:
280 Identifying coupled natural-human system feedbacks driving the ecology of Lyme
281 disease. *J Appl Ecol* 56(2):354-364. doi:10.1111/1365-2664.13289.

282 9. Bauhoff S, Busch J, 2020. Does deforestation increase malaria prevalence? Evidence from
283 satellite data and health surveys. *World Dev* 127:104734.
284 doi:10.1016/j.worlddev.2019.104734.

285 10. Jones IJ, et al., 2020. Improving rural health care reduces illegal logging and conserves
286 carbon in a tropical forest. *Proc Natl Acad Sci USA* 117(45):28515-28524.

287 11. Garg T, 2019. Ecosystems and human health: The local benefits of forest cover in
288 Indonesia. *J Environ Econ Manage* 98(24):102271. doi:10.1016/j.jeem.2019.102271.

289 12. Couper LI, MacDonald AJ, Mordecai EA, 2021. Impact of prior and projected climate
290 change on US Lyme disease incidence. *Glob Chang Biol* 27(4):738-754.
291 doi:10.1111/gcb.15435.

292 13. Larsen AE, MacDonald AJ, Plantinga AJ, 2014. Lyme Disease Risk Influences Human
293 Settlement in the Wildland-Urban Interface: Evidence from a Longitudinal Analysis of
294 Counties in the Northeastern United States. *Am J Trop Med Hyg* 91(4):747-755.
295 doi:10.4269/ajtmh.14-0181.

296 14. Santos AS, Almeida AN, 2018. The Impact of Deforestation on Malaria Infections in the
297 Brazilian Amazon. *Ecol Econ* 154:247-256.

298 15. Wooldridge JM. *Econometric Analysis of Cross Section and Panel Data*. first edition.
299 Cambridge, Massachusetts: MIT Press; 2002.

300 16. Morgan WT, Darbyshire E, Spracklen DV, Artaxo P, Coe H, 2019. Non-deforestation
301 drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions
302 across Amazonia. *Sci Rep* 9:16975. doi:10.1038/s41598-019-53112-6.

303 17. Aragão LEOC, et al., 2018. 21st Century drought-related fires counteract the decline of
304 Amazon deforestation carbon emissions. *Nat Commun* 9:536. doi:10.1038/s41467-017-
305 02771-y.

306 18. Chen Y, Morton DC, Jin Y, Collatz G, Kasibhatla PS, van der Werf GR, DeFries RS,
307 Randerson J, 2013. Long-term trends and interannual variability of forest, savanna and
308 agricultural fires in South America. *Carbon Manag* 4(6):617-638. doi:10.4155/cmt.13.61.

309 19. Hengl T, Wheeler I, 2018. Soil organic carbon content in x 5g / kg at 6 standard depths (0,
310 10, 30, 60, 100 and 200 cm) at 250m resolution (Version v0.2).
311 doi:10.5281/zenodo.2525553.

312 20. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R, 2017. Google Earth
313 Engine: Planetary-scale geospatial analysis for everyone. *Remote Sens Environ* 202(C):18-
314 27. doi:10.1016/j.rse.2017.06.031.

315 21. Mordecai EA, et al., 2012. Optimal temperature for malaria transmission is dramatically
316 lower than previously predicted. *Ecol Lett* 16(1):22-30. doi:10.1111/ele.12015.

317 22. Burke M, Hsiang SM, Miguel E, 2015. Global non-linear effect of temperature on
318 economic production. *Nature* 527(7577):235-239. doi:10.1038/nature15725.

319 23. Cattelan AJ, Dall'Agnol A, 2018. The rapid soybean growth in Brazil. *OCCL* 25(1):D102.
320 doi:10.1051/ocl/2017058.

321 24. Viana JS, Gonçalves EP, Silva AC, Matos VP, 2013. *Climatic Conditions and Production*
322 *of Soybean in Northeastern Brazil*. IntechOpen. doi:10.5772/52184.

323 25. Olea JLM, Pflueger C, 2013. A robust test for weak instruments. *J Bus Econ Stat*
324 31(3):358-369. doi:10.1080/00401706.2013.806694.