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Abstract 23 

 Identifying the effects of environmental change on the transmission of vector-borne and 24 

zoonotic diseases is of fundamental importance in the face of rapid global change. Causal 25 

inference approaches, including instrumental variable (IV) estimation, hold promise in 26 

disentangling plausibly causal relationships from observational data in these complex systems. 27 

Valle and Zorello Laporta recently critiqued the application of such approaches in our recent 28 

study of the effects of deforestation on malaria transmission in the Brazilian Amazon on the 29 

grounds that key statistical assumptions were not met. Here, we respond to this critique by: 1) 30 

deriving the IV estimator in order to clarify the assumptions that Valle and Zorello Laporta 31 

conflate and misrepresent in their critique; 2) discussing these key assumptions as they relate to 32 

our original study and how our original approach reasonably satisfies the assumptions; and 3) 33 

presenting model results using alternative instrumental variables that can be argued more 34 

strongly satisfy key assumptions, illustrating that our results and original conclusion—that 35 

deforestation drives malaria transmission—remain unchanged. 36 

 37 
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 39 

 40 

 41 

 42 

 43 
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Main Text 45 

 There is substantial and increasing interest in understanding the role that processes of 46 

global change are playing in the ecology and transmission of vector-borne and zoonotic 47 

diseases.1,2 While these questions are of fundamental importance given the increasing rate of 48 

climate and land use change, and the large proportion of emerging infectious diseases that are 49 

vector-borne or of zoonotic origin,3 causally linking these two processes is an enormous 50 

challenge. Take as an example the case of deforestation impacts on malaria transmission in the 51 

Brazilian Amazon, the focus of MacDonald & Mordecai4 and the critique by Valle & Zorello 52 

Laporta.5 The gold standard of a randomized controlled trial in which deforestation is 53 

experimentally manipulated and randomly assigned to different regions to assess its impact on 54 

malaria transmission presents obvious logistical and ethical barriers that make such an approach 55 

largely infeasible. As a result, researchers must rely on observational data and employ statistical 56 

approaches to approximate, as closely as possible, the experimental ideal. 57 

 One promising set of statistical techniques—broadly referred to as causal inference 58 

methods, which includes Instrumental Variable (IV) estimation, are increasingly being leveraged 59 

to disentangle plausibly causal relationships from observational data in ecology. Due to the 60 

challenges described above, these approaches have been employed by researchers assessing 61 

global change impacts on infectious disease,6-14 including in another recent study investigating 62 

the effects of deforestation on malaria transmission in Brazil,14 with similar results to our own 63 

work. Valle and Zorello Laporta5 rightly point out that model assumptions are critically 64 

important in such approaches, and that causal conclusions should be carefully drawn in these 65 

contexts. However, the authors unfortunately conflate the assumptions of IV estimation in their 66 
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perspective piece. As a relatively new approach in ecology and environmental science,6 it is 67 

important that the underlying assumptions are clear for appropriate application.  68 

IV is a useful approach to overcome what is known as endogeneity bias, which is due to a 69 

relationship between the error term and one or more of the explanatory variables, (formally, 70 

𝐸[𝜀𝑖|𝑥𝑖] ≠ 0 where 𝜀 and 𝑥 represent the error term and explanatory variable for observation i). 71 

Such a relationship could be due to bidirectional causality where, for example, deforestation may 72 

drive malaria transmission but malaria burden may also influence rates of deforestation. In IV, a 73 

third variable, known as an instrument (𝑧𝑖), is used to isolate exogenous variation in explanatory 74 

variable 𝑥𝑖 and recover a statistically consistent estimator for the true relationship between the 75 

exogenous variable and the outcome.  76 

The instrument must meet two conditions for IV to be a consistent estimator, which are 77 

sometimes termed “relevance” and “exclusion” criteria. In words, the instrument must be 78 

statistically associated with the endogenous variable (“relevance”) and must be related to the 79 

outcome only through its relationship with the endogenous variable (“exclusion”). While the 80 

wording is easy to remember, it leaves much open to interpretation. For example, does relevance 81 

require a causal link? Does exclusion require statistical independence? The derivation makes 82 

these key assumptions much more apparent. Before showing the derivation, we will first provide 83 

brief background to our original study,4 the critique by Valle & Zorello Laporta5 and our 84 

response. 85 

In MacDonald & Mordecai,4 we were first interested in predicting annual malaria 86 

incidence as a function of annual deforestation, and use aerosol optical depth (AOD) in the 87 

month of September from MODIS satellite imagery as our “instrument.” We expand on the 88 

methodology and terminology below, but set the context of the argument here. Valle & Zorello 89 
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Laporta5 have two critiques of our IV approach. The first, however, is a misrepresentation of the 90 

assumptions of IV, namely that a valid IV requires that the IV has a causal effect on the 91 

endogenous explanatory variable. They state, “However, it is deforestation that causes aerosol 92 

pollution […] rather than aerosol pollution that causes deforestation […] As a result, [the 93 

relevance] assumption is clearly violated.” As we show below, causality is not required.15 94 

Rather, there must be an “association”, or more specifically, the covariance between the 95 

instrument and the endogenous variable must not be zero. However, it is possible that an 96 

instrumental variable itself introduces endogeneity bias if it does not meet the exclusion criteria, 97 

and this can be particularly problematic in the case of “weak instruments” as we show below. 98 

This can occur, for example, in cases where the instrument (e.g., AOD) is strongly driven by the 99 

endogenous predictor variable (e.g., deforestation). In our case, we chose AOD as an instrument 100 

for deforestation, as it is an indicator of human activity on the landscape.16 Further, over our 101 

study period, AOD was decoupled from deforestation as biomass burning in the Brazilian 102 

Amazon—and resulting AOD—was primarily driven by fires intentionally set to keep existing 103 

pastures and agricultural lands clear16 and by drought conditions leading to wildfires in already 104 

degraded forests,16-18 rather than by new deforestation activity.  105 

Nevertheless, to explore the extent to which our original IV estimates of the effect of 106 

deforestation on malaria may have been affected by potential endogeneity introduced by the use 107 

of AOD as an IV, we run additional IV models using 1) last year’s AOD as an instrument for this 108 

year’s deforestation, and 2) remotely sensed, average municipality soil quality19 processed in 109 

Google Earth Engine,20 interacted with annual international soy and beef commodity prices from 110 

the World Bank. We chose last year’s AOD since it is correlated with this year’s deforestation 111 

(relevance), but this year’s deforestation could not have caused last year’s AOD. While this 112 



 6 

addresses the issue of reverse causality, it is plausible that there remain endogeneity issues in this 113 

context. For example, if last year’s AOD somehow acts upon this year’s malaria through 114 

mechanisms beyond deforestation, then the exclusion criteria would fail. To address these 115 

potential lingering concerns, we run additional models using soil quality coupled with 116 

international agricultural commodity prices for key Brazilian exports, which may influence a 117 

land owners’ decision to clear forest for agricultural production (relevance); in this case, 118 

deforestation rates do not cause soil quality and are highly unlikely to shift international 119 

commodity prices (exclusion). We run these IV models on our interior Amazon sample of 120 

municipalities, where active deforestation rates are highest and where we predict forest clearing 121 

should have the strongest effect on malaria transmission,4 predicting both total malaria and 122 

Plasmodium falciparum malaria incidence, following our original study.4 Results are presented 123 

in the SI (Table S1). In brief, we find significant positive effects of deforestation on malaria 124 

transmission in each of these additional model specifications, with coefficients of similar, though 125 

slightly larger magnitude than our original study. Our main conclusion, that deforestation 126 

increases malaria transmission in the Brazilian Amazon, remains unchanged. 127 

The second goal of MacDonald & Mordecai4 is to understand whether annual malaria 128 

burden feeds back to influence annual rates of deforestation, and we use optimal temperature for 129 

malaria transmission in the dry season as our instrument for malaria. Optimal temperature was 130 

defined as the sum of days falling within a narrow temperature band that is optimal for malaria 131 

transmission (24-26ºC) based on earlier mosquito and parasite trait-based mechanistic modeling 132 

studies.21 Valle & Zorello Laporta’s5 second critique is that the exclusion assumption may be 133 

violated in this model because “it is possible that temperature affects deforestation not only 134 

through malaria, but also through other causal paths,” particularly the relationship between 135 
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temperature and agricultural gross domestic production.22 In other words, favorable temperatures 136 

for mosquitos and malaria parasites may affect deforestation not just through malaria, but by also 137 

being favorable agricultural growing conditions, which increase the potential value of forest 138 

clearing. We agree that temperature is important to both agriculture and malaria, and that those 139 

clearing land may consider the land’s growing potential. However, rather than counting the 140 

number of days in a 2ºC temperature window during the dry season, we suggest agricultural 141 

producers will instead consider the general growing conditions of a region as it relates to 142 

commonly grown crops—for example, soil quality, climate, topography, and infrastructure. As 143 

land clearing for agriculture is a large and long-term investment, average growing conditions are 144 

much more likely to influence clearing decisions than are small deviations in weather from year 145 

to year. 146 

 There are two additional primary reasons that our IV, optimal malaria transmission 147 

temperature, is highly unlikely to fail the exclusion criteria. First, we specifically employ 148 

municipality “fixed effects” or dummy variables15 to remove roughly time invariant 149 

characteristics specific to each municipality through differencing. Thus, average characteristics 150 

(e.g., soil quality, average precipitation, average temperature) that are likely to influence the 151 

evolution of regional agricultural land use and the location of processing plants and other 152 

infrastructure are removed and the model is identified from deviations from the municipality-153 

specific mean. Second, the range of optimal average temperatures for soybean—Brazil’s main 154 

crop by area and production23—cultivation and development in Brazil is from 20ºC to 35ºC.24 155 

Recall optimal temperature for malaria transmission is 24ºC to 26ºC, and we use the number of 156 

days in the dry season within this narrow temperature band as our instrument. Thus, an 157 

additional day at 25ºC relative to 27ºC would be expected to lead to increases in malaria 158 
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transmission. However, this same change in temperature would likely have a trivial impact on 159 

soy yields, as both temperatures are well within the bounds of optimal soy cultivation. Given the 160 

breadth of favorable temperatures for soy, it is unlikely that changes in the number of days 161 

between 24ºC to 26ºC will influence land clearing decisions for agricultural production.  162 

We too feel that causal inference approaches hold much promise in disease ecology, and 163 

agree that researchers interested in exploring the use of such methods should carefully consider 164 

model assumptions. Toward that end, we briefly derive the simplest form of IV to illustrate to 165 

potential users what is under the hood of the IV approach and how the exclusion and relevance 166 

assumptions function in this technique.   167 

 168 

Deriving the IV Estimator: To keep it as intuitive as possible, let us assume a bivariate regression 169 

of the form, 170 

 171 

𝑦𝑖 =  𝛼 + 𝛽𝑥𝑖 +  𝜀𝑖 1 172 

 173 

Where 𝑦𝑖 is the outcome variable (e.g., malaria incidence) for observation (e.g., municipality) i, 174 

𝑥𝑖 is the endogenous explanatory variable (e.g., deforestation), 𝜀𝑖 is the error term, 𝛼 is the 175 

intercept, and 𝛽 is the coefficient of interest.  176 

 177 

To derive the IV estimator, we can take the covariance of each side of equation 1 with respect to 178 

the instrument, 𝑧𝑖: 179 

 180 

𝑐𝑜𝑣(𝑧𝑖, 𝑦𝑖) = 𝑐𝑜𝑣(𝑧𝑖, 𝛼) + 𝑐𝑜𝑣(𝑧𝑖, 𝛽𝑥𝑖) +  𝑐𝑜𝑣(𝑧𝑖, 𝜀𝑖) 2 181 



 9 

 182 

= 0 + 𝛽𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖) +  𝑐𝑜𝑣(𝑧𝑖, 𝜀𝑖) 3 183 

 184 

Since 𝛼 is a constant, and the covariance of a variable with a constant is 0, the first term drops 185 

out. Similarly, because 𝛽 is a constant, it can be removed from the covariance. The exclusion 186 

assumption of IV is that the instrument (𝑧𝑖) only affects the outcome through changes in the 187 

endogenous variable (𝑥𝑖), which is more formally written as  𝑐𝑜𝑣(𝑧𝑖, 𝜀𝑖) = 0. Thus with basic 188 

rearranging, we have derived the IV estimator (𝛽𝐼𝑉), 189 

 190 

𝛽𝐼𝑉 =
𝑐𝑜𝑣(𝑧𝑖, 𝑦𝑖)

𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖)
 . 4 191 

 192 

Consistency of IV: If we then want to illustrate that the IV estimator is consistent—in other 193 

words, as the sample size gets larger and larger the distribution of the estimator converges to the 194 

true parameter value—we can plug the right-hand side of equation 1 into 𝑦𝑖 in equation 4. We 195 

substitute 𝛽𝐼𝑉 with 𝛽𝐼𝑉̂ since we are considering whether the estimated slope from an IV 196 

converges in probability to the true slope 𝛽. 197 

 198 

𝑝𝑙𝑖𝑚 𝛽𝐼𝑉̂ =
𝑐𝑜𝑣(𝑧𝑖, 𝛼 + 𝛽𝑥𝑖 +  𝜀𝑖)

𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖)
 . 5 199 

 200 

Following a similar logic as with equation 3, equation 5 becomes:  201 

 202 
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𝑝𝑙𝑖𝑚 𝛽𝐼𝑉̂ =
𝛽𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖)

𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖)
+

𝑐𝑜𝑣(𝑧𝑖, 𝜀𝑖)

𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖)
. 6 203 

 204 

From equation 6, the second assumption of IV becomes evident. The second assumption is the 205 

relevance assumption, or that the instrument must be statistically associated with the endogenous 206 

variable (𝑥𝑖). As can be seen in equation 6, this means, in mathematical terms, 𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖) ≠ 0. 207 

Covariance does not imply a direction to the relationship, whether AOD (our instrument) 208 

determines deforestation or deforestation determines AOD (or neither) is irrelevant, as it is the 209 

covariance between the two that is important.  210 

 211 

By these two assumptions of IV, that 𝑐𝑜𝑣(𝑧𝑖, 𝜀𝑖) = 0 and 𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖) ≠ 0, equation 6 simplifies 212 

to 𝑝𝑙𝑖𝑚 𝛽𝐼𝑉̂ = 𝛽, illustrating IV is a consistent estimator of the true relationship.  213 

 214 

Weak Instruments: Equation 6 also illustrates another important aspect when considering the 215 

application of instrumental variables, and that is a problem known as “weak instruments.” The 216 

problem occurs if the exclusion criteria, 𝑐𝑜𝑣(𝑧𝑖, 𝜀𝑖) = 0, fails. Based on the relationship between 217 

covariance and correlation (namely, 𝑐𝑜𝑣(𝑥, 𝑦) = 𝑐𝑜𝑟𝑟(𝑥, 𝑦) ∗ 𝜎𝑥𝜎𝑦 where 𝜎 is the standard 218 

deviation of each variable) and assuming 𝑐𝑜𝑣(𝑧𝑖, 𝑥𝑖) ≠ 0, we can rewrite equation 6 to illustrate 219 

the problem (omitting subscripts for simplicity).  220 

 221 

𝑝𝑙𝑖𝑚 𝛽𝐼𝑉̂ = 𝛽 +
𝑐𝑜𝑟𝑟(𝑧, 𝜀) ∗ 𝜎𝑧𝜎𝜀

𝑐𝑜𝑟𝑟(𝑧, 𝑥) ∗ 𝜎𝑧𝜎𝑥
=  𝛽 +

𝑐𝑜𝑟𝑟(𝑧, 𝜀) ∗ 𝜎𝜀

𝑐𝑜𝑟𝑟(𝑧, 𝑥) ∗ 𝜎𝑥
. 7 222 

 223 
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If there is a small correlation between the instrument and the error, the last term in equation 7 224 

does not drop out and the IV estimator is inconsistent (𝑝𝑙𝑖𝑚 𝛽𝐼𝑉̂ ≠ 𝛽). If 𝑐𝑜𝑟𝑟(𝑧, 𝜀) is just 225 

slightly different from zero and 𝑐𝑜𝑟𝑟(𝑧, 𝑥) is much different than zero, the last term is of 226 

minimal influence. However, if the instrument is only weakly correlated with the endogenous 227 

covariate, the last term of equation 7 can become large. In practice, weak instruments can cause 228 

the IV estimator to be severely biased. Since there is no test to validate the exclusion criteria, the 229 

strength of the relationship between the instrument and the endogenous variable is very 230 

important in practice, and can be formally tested25 as in the supplementary material from 231 

MacDonald and Mordecai.4  232 

   233 

Conclusion: Understanding the effects of environmental change on infectious disease 234 

transmission—from diseases long endemic to the tropics like malaria, to novel emerging 235 

pathogens we have yet to discover like SARS-COV-2—is of fundamental and increasing 236 

importance. In these complex socio-ecological systems that are difficult to study experimentally, 237 

emerging data sources (e.g., high spatio-temporal resolution earth observation data) and causal 238 

inference methods (e.g., IV estimation) represent one methodological approach that can help us 239 

achieve such clearer understanding.  240 
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