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ABSTRACT

Hyperdimensional computing (HDC) has emerged as a new light-
weight learning algorithm with smaller computation and energy
requirements compared to conventional techniques. In HDC, data
points are represented by high-dimensional vectors (hypervectors),
which are mapped to high-dimensional space (hyperspace). Typi-
cally, a large hypervector dimension (> 1000) is required to achieve
accuracies comparable to conventional alternatives. However, un-
necessarily large hypervectors increase hardware and energy costs,
which can undermine their benefits. This paper presents a tech-
nique to minimize the hypervector dimension while maintaining
the accuracy and improving the robustness of the classifier. To
this end, we formulate the hypervector design as a multi-objective
optimization problem for the first time in the literature. The pro-
posed approach decreases the hypervector dimension by more than
32X while maintaining or increasing the accuracy achieved by con-
ventional HDC. Experiments on a commercial hardware platform
show that the proposed approach achieves more than one order
of magnitude reduction in model size, inference time, and energy
consumption. We also demonstrate the trade-off between accuracy
and robustness to noise and provide Pareto front solutions as a
design parameter in our hypervector design.

CCS CONCEPTS

+ Computing methodologies — Machine learning; - Hard-
ware — Power and energy.

KEYWORDS

Hyperdimensional computing, low-power learning algorithm, opti-
mization

1 INTRODUCTION

The number of Internet of Things (IoT) devices and the data gen-
erated by them increase every year [6, 32]. Wearable IoT, which
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utilizes edge devices and applications for remote health monitor-
ing [14], has been a rapidly growing subfield of IoT in recent
years [3, 5, 10]. These devices fuse data from multiple sensors, such
as inertial measurement units (IMU) and biopotential amplifiers, to
achieve accurate real-time tracking. For example, assistive devices
for Parkinson’s Disease patients need to provide precisely timed
audio cues to cope with gait disturbances [10, 12]. Despite the in-
tensity of sensor data, these devices must operate at a tight energy
budget (~pW) due to limited battery capacity [2, 9]. Offloading
the data to the cloud is not an attractive solution since it increases
the communication energy [35] and raises privacy concerns [25].
Likewise, deep neural networks and other sophisticated algorithms
are not viable due to the limited computation and energy capacity of
wearable edge devices. Therefore, there is a strong need for compu-
tationally light learning algorithms that can provide high accuracy,
real-time inference, and robustness to noisy sensor data [2].
Brain-inspired hyperdimensional computing [17] provides com-
petitive accuracy to state-of-the-art machine learning (ML) algo-
rithms with significantly lower computational requirements for
various applications, such as human activity recognition, language
processing, image recognition, and speech recognition [11]. It mod-
els the human short-term memory [17, 19] using high-dimensional
representations of the data points, which is motivated by the large
size of neuronal interactions in the brain to associate a sensory
input with the human memory. The main difference between HDC
and conventional learning approaches is the primary data type. HDC
maps data points (raw samples or extracted input features) in the
input space to random high-dimensional vectors, called sample hy-
pervectors. Then, the sample hypervectors that belong to the same
class are combined linearly to obtain ensemble class hypervectors,
called class encoders. During inference, the input data is used to
generate a query hypervector (Q) in the same way as the sample hy-
pervectors. The classifier simply finds the closest class hypervector
to Q, generally using cosine similarity or the Hamming distance.
Thanks to the simplicity of binary operations, as discussed in
Section 3, HDC lends itself to efficient hardware implementation. A
recent study [8] shows that custom hardware implementations can
provide high energy efficiency and inference speed while reducing
the design complexity. However, HDC requires a large dimension
(e.g. D > 1000) to achieve a high inference accuracy [15] due to the
random mapping process. A sufficiently large dimension is needed
to ensure, with a high probability, that the sample hypervectors are
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orthogonal to each other [8, 11]. A larger dimension implies higher
energy consumption, longer inference time, and more hardware
resources [15]. Consequently, redundant computations can under-
mine the benefits of using HDC over other learning algorithms.
Therefore, there is a critical need to optimize the design of hypervec-
tors such that the performance of HDC is maintained with smaller
dimensions.

This paper presents a novel optimization algorithm for repre-
senting the input data points in the hyperspace instead of relying on
random mapping. We conceptualize the mapping of the data points
in the hyperspace by geometric notions. Using this insight and a
novel non-uniform quantization approach, we refine the distribu-
tion of randomly generated sample hypervectors in the hyperspace
to achieve increased robustness to noise in smaller dimensions
and similar accuracy levels to that of conventional HDC. To the
best of our knowledge, this is the first technique that formulates
hypervector design as a multi-objective optimization problem to
achieve higher accuracy and robustness using smaller dimensions
(i.e., lower energy and computational resources). The proposed
approach is evaluated using four representative health-oriented
applications since health monitoring is an emerging and attrac-
tive field in wearable IoT literature: Parkinson’s Disease diagnosis,
electroencephalography (EEG) classification, human activity recog-
nition, and fetal state diagnosis.

The major contributions of the proposed approach are as follows:

o It boosts the effectiveness of HDC by enabling more than one
order of magnitude model compression while maintaining simi-
lar performance to conventional HDC. Furthermore, hardware
measurements show over 66x higher energy efficiency.

e It introduces novel geometric concepts and illustrations to better
understand the effect of HDC mapping from the input features
to the hyperspace.

e By optimizing the trade-off between accuracy and robustness to
noise, it achieves 2x higher robustness while maintaining the
same accuracy, or 1%—-16% higher accuracy without sacrificing
the robustness.

In the rest, Section 2 reviews the related work, while Section 3
overviews HDC. Section 4 presents the proposed hypervector de-
sign optimization. Section 5 presents the evaluation of the proposed
approach and provides results on four applications. Finally, Section
6 concludes the paper.

2 RELATED WORK

HDC utilizes high-dimensional vectors to map the input features to
high-dimensional space. It achieves competitive results compared to
other state-of-the-art ML approaches [11]. However, HDC requires
large dimensions (D > 1000) to achieve high inference accuracy due
to the random mapping process. In turn, large dimensions increase
on-chip storage, computation, and energy requirements, which are
limited in wearable edge devices. Hence, there is a critical need to
optimize the mapping process in HDC to achieve similar or higher
accuracy and robustness with smaller dimensions.

One idea to remedy high-dimensional data is using dimensional-
ity reduction techniques, which are linear/nonlinear transforma-
tions that map the high-dimensional data to a lower-dimensional
space. Recently, nonlinear dimensionality reduction techniques or
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manifold learning algorithms, such as ISOMAP, local linear embed-
ding (LLE), and Laplacian eigenmaps, have become widely used for
dimensionality reduction [31]. These algorithms mainly focus on
preserving the geometric information of the high-dimensional data in
the low dimensional space in contrast to another widely used linear
technique, principal component analysis (PCA), which may distort
the local proximities by mapping the data points that are distant
in the original space to nearby positions in the lower dimensional
space [18]. However, the main drawback of the manifold learning
methods is learning the low-dimensional representations of the
high-dimensional input data samples implicitly. Explicit mapping
from the input data manifold to the output embedding cannot be ob-
tained after the training process [26, 31] without compromising the
memory and computational limitations of a wearable edge device.
For instance, the ARM Cortex-M series is a widely used family of
low-power processors for wearable edge devices [33]. This family
offers an on-chip SRAM of a few KB and nonvolatile flash memory
with a size of up to 2 MB [34]. Considering a large amount of train-
ing data and the dimensionality in HDC (D > 1000), the memory
footprint of these low-power processors is not sufficient to obtain
an explicit mapping. Therefore, an optimized representation of the
data in smaller dimensions is necessary for these devices.

A recent work investigated the impact of dimensionality on the
classification accuracy and energy efficiency of HDC [15]. The au-
thors show that energy consumption and inference time decrease
with smaller dimensions. However, smaller dimensions yield lower
accuracy values. Hersche et al. propose a mapping technique based
on the training of random projection to produce distinct hypervec-
tors as part of learned projections [13]. The learned projections are
shown to be effective in terms of accuracy at lower dimensions.
However, this mapping does not preserve the level dependency
between level hypervectors in HDC, which is critical for robust
classification, as elaborated in Section 4.1. Another study reduces
the high-dimensionality of the class encoders by dividing it into
multiple smaller dimensional segments and adding them up to form
a lower-dimensional class encoder [24]. However, during inference,
the query hypervector is formed using high-dimensional level hy-
pervectors that need to be stored in memory and thus undermine
the potential energy savings.

In contrast to prior work, this paper focuses on optimizing hy-
pervector design at the initial stage of HDC training. We formulate
the hypervector design as a multi-objective optimization problem
for the first time in literature. Moreover, none of the prior studies
discuss the robustness to the noise of the HDC model. The proposed
approach produces an efficient and robust representation of the
data points in the hyperspace while preserving similarity between
level hypervectors. It is also the first work that enables a trade-off
between robustness and accuracy by providing a Pareto front set
of hypervector design.

3 BACKGROUND ON HDC
3.1 HDC Training

Training in HDC consists of three steps: (1) Quantization and map-
ping , @ Construction of sample hypervectors and 3) Classifier
encoding, as illustrated in Figure 1. We refer to this architecture as
the baseline HDC implementation in the rest of the paper.
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Table 1: Notation table. “HV: Hypervector

Symb.  Description Symb.  Description Symb.  Description Symb.  Description

N # of features q(.) Quantizer function Xs Training sample s m D-dim level HV* for

F N-dim input space S # of training samples Xs D-dim sample HV* for x5 " m™ level of f;,

fn n'? dimension of F D Hyperspace dimension Q D-dim query HV* b # of flipped bits between
M # of quantization levels  ¢g(.) Nonlinear bit-flip function K # of different classes L™ and L1

Ys Class label for xg Ex Encoder for k™ class Q Set of quantization intervals

(@ Quantization and mapping: The first step of HDC is to quan-
tize the input space and represent it using D-dimensional level
hypervectors. This is achieved in two steps: (i) quantization in low
dimension, and (ii) mapping to high dimension.
Quantization in low dimension: Let F = {fj, f2, ..., fN} denote
the N-dimensional input feature, where f;, € R corresponds to the
nth feature. Suppose that there are S training samples. Each training
sample x fors € {1,..., S} isan N-tuple x5 = {xsl, x?, xi\]}, where
x¥ € Ris the value of feature f;, in this sample for n € {1,.., N}.
Using the training set, we find the minimum (f™") and the
maximum (f; %) values of each feature. Let Q = {1,..., M} be
the set of quantization levels. The baseline HDC quantizes each
feature space into M uniform levels using a quantization function
q : R — Q such that g(x7') returns the quantization level for feature
fn in input sample x;.
Mapping to the high dimension: The minimum level of each
feature ™" is assigned a random bipolar D-dimensional hypervec-
tor L,11, where L € {-1, l}D, and typically D > 1000. The rest of the
level hypervectors L% to LM are calculated by randomly flipping
b = D/2(M — 1) bits to generate each consecutive hypervector.
This operation is denoted by LT = g(L™,b) V m € Q, where
g(u,0) : {(w,0)| u € {-1,1}P,0 € N} —» {-1,1} is a nonlinear
function that flips v (scalar) indices of u (vector). This process tracks
the flipped bits and ensures that they do not flip again in subsequent
levels. At the end, it produces N X M different level hypervectors
L™V n, m that represent the quantized features in the hyperspace.
This process also ensures that hypervectors L} and LY orthogonal
for each feature f;, [11]. The notation is summarized in Table 1.
@ Construction of sample hypervectors (Xs): The next step is
constructing the sample hypervectors using the input samples x
and level hypervectors found in step (D). We first determine the
quantization levels g(x7) that contain the value for each feature of

the current sample xs. Then, we fetch the level hypervectors LZ(Xg )

L ® Quantization and Mapping

- 1 D dimensional level HV
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that correspond to these quantization levels and add them up:
N
Xs = Z Lz(xél) Vse{1,2 .5}, where X; € ZP (1)
n=1
Toy example: For a better understanding of steps ) and (), we
present a simple representative example. Consider a 2-D problem
with fi € [0,1] and f € [-10,0] with M = 10 quantization lev-
els and D = 1000. The quantization intervals between flmin =0
and f{"¥ =1 are [0,0.1), [0.1,0.2), ..., [0.9, 1]. Similarly, the quan-
tization intervals for f; are [-10,-9), [-9, —8), ..., [-1,0]. The in-
tervals [0,0.1) and [-10,—9) are assigned random bipolar 1000-
dimensional hypervectors L% and L;. To find the rest of the level
hypervectors Lf to L%O and Lg to Léo, we first calculate the number
of bits to flip at each consecutive level as b = D/2(M — 1) = 55.
Then, L% is found by L% = g(L}, 55) and the rest of LT and LT* are
calculated through the same procedure. As a result, we obtain 20
different level hypervectors that represent the quantized fi and f5.

After finding the level hypervectors, input samples xs are mapped
to their corresponding hypervectors Xs. For example, consider an
arbitrary sample x3 = {0.17, —1.2}. We first find the quantization
levels 0.17 and —1.2 fall into. These levels are given by q(xé) =2
and q(x%) = 8. Then, we find X3 = L% + Lg using Equation 1. This
procedure is repeated for all x; in the training set.

(3 Classifier encoding: Suppose that there are K classes with
labels 1,2, ..., K. The label of sample hypervector X is given by
ys € {1,.., K} for all samples s € {1,...,S}. The class hypervector
Eg € ZP that represents class k is found by adding all the sample
hypervectors with label k:

S
Ep = Xslys =k ()
s=1

where [.] operation represents the Iverson Bracket that is equivalent
to the indicator function [16].

1
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Figure 1: Overview of baseline HDC. D = 16 and M = 8 are chosen for illustration purposes. Bit values are chosen arbitrarily.
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Figure 2: Evaluation of the proposed approach on a motivational example. a) Initial problem structure. b) Baseline HDC (D =
8192) classification result. ¢) HDC classification result obtained by separating significant levels for both features (D = 64). d)

Number of bits to flip for each feature and level.

3.2 HDC Inference

During inference, the query samples with unknown class labels are
first mapped to the hyperspace using the procedure defined in steps
@ and (2). The resulting hypervectors are called query hypervectors
Q. Then, the cosine similarity between the query hypervectors and
each class encoder Ej given in Equation 2 is calculated. Finally, the
class k with the highest similarity is decided as the class label of
the query data point as follows:

Q- Eg
argmax ————— 3
re b IO IEK] ®)

4 OPTIMIZED HYPERVECTOR DESIGN
4.1 Motivation

Distance in the hyperspace: Two samples from different classes
may be close to each other, in the low dimensional input space,
based on the extracted features or raw data. This proximity eventu-
ally decreases the accuracy and robustness of the classifier. From a
geometrical perspective, we can consider the sample hypervectors,
i.e., the mapping to the high-dimensional domain, as data points
in the hyperspace. Using this insight, the optimized hypervector
design should achieve two objectives: 1) Spread sample hypervectors
from different classes as far as possible, 2) Cluster sample hypervectors
of the same class close to each other.

Dependency between feature levels: One can assign orthogo-
nal hypervectors to each level hypervector during quantization
to spread them far apart [20]. This approach can provide high
classification efficiency if all levels are represented in the training
data. However, if the training data has gaps, e.g., certain levels are
underrepresented, then the classifier can make random choices.
Hence, the hypervector optimization technique must maintain the
dependency between the level hypervectors L) for each feature
n € {1,2,..,N}. We provide a mathematical illustration with a
simple example in the Appendix to not distort the flow of the paper.

4.2 TIllustration using a Motivational Example

This section presents a motivational example to illustrate the signif-
icance of the proposed hypervector optimization. In this example,
the data points are divided into four classes (C1, C2, C3, and C4) and
represented by two features F = {fi, f2}, as shown in Figure 2(a).

For the baseline HDC implementation, we choose D = 8192
and M = 20 and follow the procedure explained in Section 3 to
represent the data points in the hyperspace. All data points are
included in the training and test set for illustration purposes. The
baseline HDC misclassifies a significant number of data points
concentrated around the class boundaries, as shown in Figure 2(b).
The specification in Figure 2(a) shows that the levels 6, 11, and
16 are critical for the first feature (x—axis), while level 6 and 16
are critical for the second feature (y—axis). However, the baseline
HDC ignores this fact and quantizes the levels uniformly, leading
to misclassified points at the boundaries.

In contrast to uniform quantization levels, the proposed approach
emphasizes the distinctive levels in the training data. For example,
Figure 2(d) shows that the number of bits flipped by the proposed
approach between consecutive levels. The lower plot clearly shows
that it allocates a significantly higher number of bits for levels 6
and 16, which precisely matches with our earlier observation. In
general, the proposed approach flips a different number of bits at
each consecutive level as opposed to the uniform b = D/2(M - 1)
bits used by the baseline HDC. As a result, it achieves 100% classifi-
cation accuracy by judiciously separating the quantization levels
of both dimensions, as illustrated in Figure 2(c). More remarkably,
the proposed approach achieves a higher level of accuracy than
the baseline HDC by using only D = 64 dimensions, as opposed
to 8192. This result indicates that the number of dimensions can
be significantly compressed while increasing the accuracy through
optimized hypervector design.

We also demonstrate a geometrical illustration on the same ex-
ample using 2-D t-distributed stochastic neighbor embedding (t-
SNE) [21] representation of the sample hypervectors. t-SNE is a
nonlinear dimensionality reduction algorithm that works especially
well in visualizing high-dimensional data points. Figure 3(a) shows
that the baseline HDC performs poorly in separating hypervec-
tors for different classes despite a large number of dimensions
(D = 8192). In contrast, Figure 3(b) shows that the optimized sam-
ple hypervectors are separated well from each other according to
their classes while using a much smaller D = 64. The t-SNE and
accuracy results illustrate the importance of the objectives set for
the hypervector optimization presented in the next section.



Hypervector Design for Efficient Hyperdimensional Computing on Edge Devices

25

«Cl | s 2) b)
-C2 | 5 1 4
3|5 b 4 & .
-15
C4 25 Before opt: D = 8192 After opt: D = 64
25 -15 -5 5 15 25 -25-15 -5 5 15 25

Figure 3: t-SNE illustration of sample hypervectors in 2-D
for the motivational example.

4.3 Optimization Problem Formulation

This section formulates the level hypervector design as an opti-
mization problem where the number of bits to flip between each
consecutive level hypervector, b]’, values are the optimization pa-
rameters. In contrast to baseline HDC which uses a uniform num-
ber of levels as b = D/2(M — 1), we use a variable number of bits
b*Vne{l,.,N}and m € {1,.., M}. The optimization parame-
ters are defined as a matrix Bnxpr, which includes all b1 values
for N features and M levels. Suppose that there are K classes in
the dataset, and TP, and FNj represent the true positives and false
negatives for class k, respectively. We construct the following multi-
objective optimization problem with two objectives: (i) maximize
the training accuracy and (ii) minimize the similarity between class
encoders:

K
1 TPy
Bmax wAcc = ké_ —_— 4

NxM

==

Bmin avgSim = for k#k’ (5)

NxM

ﬁ ﬁ Ep - Ep
LU LB Tz
M
subject to Z bt < where n € {1,..N} (6)
m=1

where Equation 6 ensures that the total number of bits flipped be-
tween L} and LY does not exceed D/2. This condition is critical
to satisfy the orthogonality condition between distant values in
the input space, as explained in Section 3.1. The proposed formula-
tion uses the weighted accuracy (wAcc) instead of the total accu-
racy since the total accuracy calculation suffers from imbalanced
datasets. wAcc used in this work corresponds to the macro-averaged
recall. Equation 5 formulates the geometric mean of cosine similar-
ity between each class encoder pairs. It provides a lumped similarity
metric between class encoders. The effect of outliers (e.g. one class
encoder is significantly different from the others) is greatly damp-
ened in the geometric mean. The distance between different class
encoders (i.e., 1 — avgSim) is used as a measure of robustness and
maximized by Equation 5.

4.4 Optimization Problem Solution

The objective functions in the proposed formulation (Equations 4
and 5) are nonlinear functions that can be evaluated only at inte-
gral points. Furthermore, there are integer constraints since the
optimization parameters are the number of bits flipped between
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each consecutive level hypervector. Hence, we need to solve a non-
convex optimization problem with integer constraints, i.e., an NP-
hard problem. One can employ gradient-based approaches to solve
this problem by relaxing the integer constraints (e.g., using continu-
ous variables and rounding them to the nearest integer to evaluate
the objective functions). However, gradient-based approaches get
stuck at a local minimum near the starting point. This obstruction
occurs since the objective functions typically have many minimums,
and rounding is used during evaluation. To overcome this limita-
tion, we employed gradient approaches using multiple starting
points. Nevertheless, the solutions are still not far from the original
starting points, which are not close to the optimal solution. Hence,
we conclude that gradient-based approaches are not suitable for
our problem. We employ a genetic algorithm (GA), an evolutionary
heuristic search approach, to find a solution close to the global
minimum. Our aim is not only to obtain the best solution that gives
the highest accuracy but also to optimize the trade-off between the
accuracy and the robustness of the model. Since GA maintains a
population of possible solutions at every generation and is a highly
explorative algorithm, it is preferred in this work, considering the
objective functions have many local minima.

Algorithm 1 describes the search approach to find the optimum
hypervector design. The input to the algorithm is P randomly gen-
erated B, ,, matrices, where P is the population size in GA. This
input corresponds to the first generation in GA. First, the algo-
rithm updates the level hypervectors based on the b ¥V n, m for
each population. Then, the sample hypervectors and class encoders
are updated using the new level hypervectors. Next, the objective
functions are evaluated based on the updated hypervectors. Next,
GA selects a new set of populations used in the next generation
according to the values of the objectives. After a predefined number
of generations, we obtain the Pareto front Byxps set as an output
of the algorithm. Our proposed approach utilizes the gamultiobj
function of MATLAB [23]. For our evaluations, we use a popula-
tion size of P = 1000 and allow the search to run for at least 200
generations with a fixed seed.

Algorithm 1: Optimized hypervector design with GA

Input: Randomly generated B, ,, matrices for each
population

Output: Pareto front B, ,, set

G = number of generations in GA

P = set of all populations

L = set of all level hypervectors

X = set of sample hypervectors

E = set of class encoders

for i =1: |G| do
for j =1:|P| do
By L LoXX—>E

Compute wAcc and avgSim
Compute feasibility of the current solution
Obtain new % for the next generation
Obtain Pareto front Byxp set
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5 EXPERIMENTS
5.1 Benchmark Applications

We perform our evaluations on four publicly available represen-
tative wearable health applications: Parkinson’s Disease digital
biomarker DREAM Challenge [29], EEG error-related potentials [7],
human activity recognition [4], and cardiotocography [22]. All the
training and test sets used in this work will be released to the public
for the reproducibility of our results.

o Parkinson’s Disease digital biomarker DREAM challenge
dataset (PD Challenge) provides the mPower dataset, which
includes 35410 walking tasks with expert labels (positive or neg-
ative diagnosis). For each task, the winning team extracted 57
features that can be used by standard supervised learning al-
gorithms, such as SVM, for accurate classification [29]. These
features and the training/test data provided by this challenge are
used to evaluate the proposed approach.

e EEG error-related potentials (ERPs) dataset is collected from
six subjects to study ERPs. User studies consist of two sessions,
which are divided into ten blocks. Each block is further divided
into 64-2000 ms long trials. During each trial, EEG is recorded
from 64 electrodes with a sampling rate of 512 Hz. The first and
second sessions are used for training and testing, respectively.
Since the dataset provides raw EEG data, we follow the proce-
dure outlined in [27] for the baseline HDC implementation. The
reported accuracy is the average of all six subjects.

e Human activity recognition (HAR) dataset provides stretch
sensor and accelerometer readings of 22 subjects while they
are performing eight activities: jump, lie down, sit, stand, walk,
stairs up, stairs down, transition. It provides 120 comprehensive
features extracted from the raw data. We choose a subset of 33
features using sequential feature selection [1]. The data is divided
randomly into 80% training and 20% test sets.

e Cardiotocography (CTG) dataset provides 21 features from
2126 fetal cardiotocograms, which are extracted to diagnose the
fetal state. The fetal state is divided into three classes: normal,
suspect, and pathological. We randomly chose 80% of the data as
the training set and 20% as the test set.

O Baseline @Proposed mSVM
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5.2 Accuracy — Robustness Evaluation

This section evaluates the proposed approach using the weighted
accuracy (wAcc) and similarity (avgSim) metrics defined in Section
4.3. Note that the results obtained here is based on single-pass HDC
training. We first sweep the dimensionality of the hyperspace (D €
{128, ...,8192}) to decide a dimension to be used in baseline HDC
implementation for each dataset. Specifically, baseline dimensions
are selected as 2048, 2048, 8192, and 1024 for PD Challenge, EEG ERP,
HAR, and CTG datasets, respectively. Then, the proposed approach
is used to minimize the number of dimensions while maintaining
the baseline HDC accuracy. For example, baseline HDC achieves
85% weighted accuracy with D = 2048 dimensions for the PD
Challenge dataset. Our approach reduces the number of dimensions
to D = 32 (i.e., by 64X) while achieving 86% weighted accuracy,
as shown in Figure 4. Similarly, the proposed approach reduces
the dimension significantly for other datasets while maintaining or
slightly improving the weighted accuracy. Specifically, it decreases
the dimension size by 32x, 128x%, and 32X for EEG ERP, HAR, and
CTG datasets, respectively. Another commonly used metric in multi-
class problems is the total accuracy, which is the number of correct
classifications divided by the total number of samples. Figure 4(c)
shows that the proposed approach also successfully maintains the
total accuracy.

We also apply a light-weight ML algorithm, linear SVM, to all
datasets as a comparison point. HDC achieves competitive accu-
racy with SVM both for weighted and total accuracy, as shown
in Figure 4. Moreover, the proposed optimization approach yields
higher weighted accuracy compared to other methods for imbal-
anced datasets with raw input data. We also note that linear SVM
requires additional pre-processing steps on top of the necessary
filtering operations, especially for biosignals acquired using many
channels/electrodes. For example, canonical correlation analysis
is applied to multi-channel EEG data to select the channels with
a high signal-to-noise ratio such that the accuracy increases [30].
In contrast, HDC does not require such computationally intensive
pre-processing steps.

Accuracy vs. robustness trade-off: A unique strength of our ap-
proach is optimizing the trade-off between accuracy and robustness,
which is not explored by prior work. Robustness is measured by the
dissimilarity between class encoders defined as 1 — avgSim in terms

c128x 2) ) 100% 1, 100%
E 64x § 0% ?? 0%
g 3 80% 5 80%
‘% o
2 g 70% < 70%
& 7 7 = 3
g Z é 3 60% S 60%
© 7 7 i .., G %

16x 50% 50%

EEG HAR CTG EEG HAR CTG PD EEG HAR CTG

Challenge ERP

Challenge ERP

Challenge ERP

Figure 4: a) Compression ratio obtained using proposed hypervector design optimization. b) Weighted Accuracy Comparison.

c) Total Accuracy Comparison.
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of the average similarity metric introduced in Section 4.3. It is a
measure of how distant the clusters for different classes are in the
hyperspace. Figure 5 shows the Pareto front solutions in terms of
the weighted accuracy (x—axis) and dissimilarity (y—axis). For all
applications, the Pareto front solutions yield a more robust choice
of hypervectors than the baseline HDC. For example, the weighted
accuracy and robustness of the baseline HDC are (70%, 0.017) with
D = 2048 dimensions for the EEG ERP dataset, as shown with  in
Figure 5(b). The proposed approach increases both weighted accu-
racy and robustness to (86%,0.035) using only D = 64 dimensions,
as shown by the arrow. It can also trade the accuracy off to improve
the robustness to as high as 0.08 while still achieving higher accu-
racy than the baseline HDC. Weighted accuracy and robustness for
the Pareto front solutions range from (86%,0.035) to (78%, 0.08).
Similarly, the proposed approach improves weighted accuracy and
robustness for other datasets. It improves the weighted accuracy
by 2%, 1%, and 6% while also increasing the robustness by 3Xx, 2X,
and 2X for PD Challenge, HAR, and CTG datasets, respectively. At
the same time, it can achieve 2X, 2.5, and 6x higher robustness
while maintaining the accuracy of the baseline HDC. In summary,
our approach provides a set of hypervector designs to choose from
that can be used to achieve a specific objective based on the nature
of the application.

5.3 Evaluation on Hardware

We evaluate the proposed approach by running the inference for all
applications on the Odroid XU3 platform. Both the baseline HDC
implementation and the HDC implementation using the level hy-
pervectors obtained by the proposed hypervector design approach
are implemented using the C programming language. The appli-
cations run on a single little core (A7) with the lowest frequency

| < Pareto Front % Baseline HDC

0-25 4) PD Challenge 0.15/h) EEG ERP
g 02 0.12
.(7) = =
0.15 D=32 0.09 o ’D 64
S
> 0.1 ‘%}\ 0.06 &
™ 0.05 D=2048 3k 0.03/ D=2048 &
0 o ¥ \
75 80 85 90 95 100 65 70 75 80 85 90
0.3 c) HAR D=64 0.5 d) Cardlotocography
G,0.18 % 0.3
; »
v 0.12 N 102 B3
~0.06 D=8192% 0.1 o
o o, D=1024% X
65 70 75 80 85 90 65 70 75 80 85 90
wAcc (%) wAcc (%)

Figure 5: The Pareto front solutions in terms of wAcc and 1—
avgSim. For EEG ERP, the values are obtained using subject
one’s data.
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Table 2: Inference evaluation on Odroid XU3. The numbers
in parenthesis shows the reduction we obtain using the pro-
posed approach. *PD: PD Challenge, "HDC: Baseline HDC

Model Size (kB) Power Cons. (mW) Inf. Time (ms)
HDC* Proposed HDC* Proposed HDC* Proposed

PD* 7508 1209 (62x) 103 73 (1.41x) 36 0.24 (150x)

CTG 1420 451 (31x) 94 0(1.34x) 6 0.09 (66x)

HAR 17828 1414 (126X) 107 71(1.51x) 128  0.39 (328X)
( )

EEGERP 558  17.6 (31x) 87 1(1.23%) 14 0.26(54x)

setting (200 MHz) since this setup is the closest configuration to a
computationally limited edge device. We note that the model size is
independent of this choice, while the relative savings in inference time
is comparable to those obtained with other configurations. Built-in
sensors report the power consumption of little cores and memory
separately. We plan to evaluate the proposed technique on low-
power embedded processors and custom hardware accelerators as
part of our future work.

Table 2 compares the baseline HDC implementation and the
proposed approach in terms of the model size, power consumption,
and inference time per sample for all applications. For example, for
PD Challenge dataset, baseline HDC has a model size of 7.5 MB
using hypervector dimension as D = 2048. The proposed approach
reduces the number of dimensions to D = 32 (i.e., by 64X as shown
in Figure 4(a)) and thus, reduces the model size to 120.9 kB (i.e.,
by 62x). This reduction in model size, which is independent of
the hardware, leads to a 1.41X reduction in power consumption
and a 150X reduction in inference time. Since the A7 core is a
general-purpose core, we cannot observe a significant decrease
in power consumption. The reason behind that is that the core is
highly utilized with the lowest frequency setting. However, we can
deduce that overall computation and the communication inside
the hardware are decreased which yields a huge boost in inference
time. Similarly, the proposed approach reduces the model size by
31X, 126X, 31X, power consumption by 1.34%, 1.51%, 1.23X, and
inference time by 66X, 328X, 54X for CTG, HAR, and EEG ERP
datasets, respectively. Overall, it achieves more than 66X energy
efficiency while significantly reducing the model size to around 100
kB. By evaluating the proposed approach on a commercial hardware,
we observe that it can boost the effectiveness of HDC by enabling
more than one order of magnitude reduction in model compression.
Hence, we conclude that hypervector design optimization is vital
to enable light-weight and accurate HDC on edge devices with
stringent energy and computational power constraints.

6 CONCLUSION

IoT applications require light-weight learning algorithms to achieve
high inference speed and accuracy within the computational power
and energy constraints of edge devices. HDC is a computationally
efficient learning algorithm due to its simple operations on high-
dimensional vectors. This paper presents an optimized hypervector
design approach to achieve higher accuracy and robustness using
a significantly smaller model size. It formulates the hypervector
design as a multi-objective optimization problem and presents an
efficient algorithm for the first time in literature. Evaluations on



TinyML Research Symposium’21, March 2021, San Jose, CA

four representative health applications show that the proposed
approach boosts HDC’s effectiveness by achieving more than one
order of magnitude reduction in model size, inference time, and
energy consumption while maintaining or increasing baseline HDC
accuracy. It also optimizes the trade-off between accuracy and
robustness of the model and achieves over 2x higher robustness.
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APPENDIX

In Appendix, we provide the mathematical illustration of a simple
binary classification example to show the significance of the level
dependency.

Let us assume, there are 10 samples xs evenly distributed in the
feature space F = {f1} where fi € [0, 10] as shown in Figure A.1(a).
These classes are separated from fi = 5, such that the class labels
ys are as follows:

1if <5

vs = 2 otherwise (A1)
In this problem, flmin = 0 and f{"% = 10. We select the first 9
samples for HDC training, and leave the last sample as a query point.
We choose quantization level as M = 10 such that the quantization
intervals from fl1 to fllo are [0,1),[1,2),...,[9, 10].
Classification using orthogonal hypervectors as level hyper-
vectors: We assign random D-dimensional bipolar hypervectors L]
to L%o to these intervals. In high dimensions, random hypervectors
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a) X X X X X ? Query point

12 3 4 5 6 7 8 9 10

b) X X X X X . . . . X Wrong
1 2 3 4 5 6 7 8 9 10

) X X X X X .+ . * Correct
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Figure A.1: Simple binary classification example. a) Initial
problem structure. b) Classification using orthogonal hyper-
vectors. ¢) Classification using hypervectors with level de-
pendency

are nearly orthogonal to each other [11]. Given xs, corresponding

1
sample hypervector becomes X = L?(x") where g(x!) is the quan-
tization level that contains value for the feature f; of the current

sample x;. Then, we generate class encoders E; and E; as:

5 5 9 9
1 1
Ei=) X = ZL?“‘S’ andBp = y X, = ZL?(XS) (A.2)
s=1 s=1 $=6 $=6
Given a query point Q with value 10, corresponding query hypervec-
1
tor becomes Q = L;](xlo). Classification is performed by calculating
the cosine similarity between Q and Ej, E3. Since the generated

TinyML Research Symposium’21, March 2021, San Jose, CA

level hypervectors are orthogonal to each other, the dot product
operation in the cosine similarity calculation yields a value close
to 0, and thus, the decision becomes random and may give wrong
results as shown in Figure A.1(b):

Ey-Q=E-Q~0 (A.3)
9 1 5 1

D pgbe) L ) L N a6 1) g (A

s=6 s=1

Classification using hypervectors with level dependency as
level hypervectors: A random D-dimensional bipolar hypervector
L% is assigned to the interval [0, 1). Unlike the previous approach,
we follow the baseline HDC implementation explained in Section 3
to obtain the rest of the level hypervectors. Thus, the level depen-
dency between level hypervectors for fi is preserved. Then, we
generate sample hypervectors and calculate the class encoders as in
Equation A.2. Finally, classification is performed by calculating the
cosine similarity between query hypervector and class encoders.
Since the query hypervector is more similar to the sample hypervec-
tors that is used to generate E; due to preserved level dependency,
the classification is correct and the class label of the query point is
predicted as 2 as shown in Figure A.1(c):

9 1 5 .
Ey-Q= ZL;](xé) . L;z(xlo) SE-Q= ZL;](x;) . Lf<x1°) (A5)

s=6 s=1
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