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We add nonlinear and state-dependent terms to quantum field theory. We show that the resulting low-
energy theory, nonlinear quantum mechanics, is causal, preserves probability and permits a consistent
description of the process of measurement. We explore the consequences of such terms and show that
nonlinear quantum effects can be observed in macroscopic systems even in the presence of decoherence.
We find that current experimental bounds on these nonlinearities are weak and propose several
experimental methods to significantly probe these effects. The locally exploitable effects of these
nonlinearities have enormous technological implications. For example, they would allow large-scale
parallelization of computing (in fact, any other effort) and enable quantum sensing beyond the standard
quantum limit. We also expose a fundamental vulnerability of any nonlinear modification of quantum
mechanics—these modifications are highly sensitive to cosmic history and their locally exploitable effects
can dynamically disappear if the observed universe has a tiny overlap with the overall quantum state of the
universe, as is predicted in conventional inflationary cosmology. We identify observables that should
persist in this case and discuss opportunities to detect them in cosmic ray experiments, tests of strong field
general relativity and current probes of the equation of state of the universe. Nonlinear quantum mechanics
also enables novel gravitational phenomena and may open new directions to solve the black hole
information problem and to uncover the theory underlying quantum field theory and gravitation.
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I. INTRODUCTION

Quantum mechanics is the bedrock of physics. Its
seemingly ad hoc and phenomenologically derived axioms
have proven to be remarkably resistant to parametrized
deviation. Given its central importance to physics, there is a
clear need to develop a consistent framework to test
deviations from these axioms. But what parts of quantum
mechanics can we modify? Quantum theory rests on two
elements. First, it unavoidably introduces an element of
probability into physics due to the act of measurement.
Second, it requires time evolution to be linear.
The unease triggered by the fundamental role of prob-

ability has prompted several efforts to modify the theory to
make its predictions absolutely deterministic. In our view,
the elimination of probability as an integral element of
describing the outcome of physical processes does not
seem likely. This is due to the physical fact that a finite
system is only allowed to have a finite set of energies, even
though its constituents possess continuous observables and
symmetries. These aspects of physical systems are placed

in conflict when one tries to impose the concept of a
deterministic measurement of all the observables of the
system. As an example, consider the ground state of the
hydrogen atom. The electron in the atom has continuous
observable properties, for example, its position relative to the
proton.Moreover, the system is also endowed with rotational
symmetry. If the electron could exist in a state with a
deterministic position and energy, application of the rota-
tional symmetry would generate an infinite set of states that
all have the same energy but with different electron positions
—a continuous degeneracy. This would then contradict the
assumption that the system only has a single ground state
(and in general, a finite set of energy eigenstates below some
energy). Probability allows quantum mechanics to retain a
finite set of energy states with the existence of continuous
symmetries and observables by sacrificing deterministic
measurement. The Bell inequalities [1], the Sufficiency of
Subsystem Correlations [2] and Kochen-Specker theorems
[3] are mathematical illustrations of this conflict.
Motivated by the above, in this paper we pursue the

possibility of modifying the second element of quantum
mechanics, namely, linear time evolution. There have been
several attempts to introduce nonlinear evolution into
quantum mechanics [4] and they generically suffer from
problems of causality [5,6].

Additionally, nonlinear evolution requires a careful
treatment of the concept of measurement. Our goal in this
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paper is to provide a causal nonlinear modification of
quantum mechanics with a consistent description of meas-
urement. The key ingredients that enable such a description
are the following. First, the modification proposed by us
breaks the basis independence of the Schrödinger equation
and is explicitly written in terms of the position basis. The
basis independence of the Schrödinger equation, while
mathematically pleasing, is at odds with the physical fact
that interactions are local, resulting in the position basis
being a preferred basis to describe the world. The position
basis can also manifestly enforce causality—precisely
because causality is fundamentally a consequence of the
local nature of interactions. Second, we will not describe
measurement as a phenomenon that is somehow distinct
from any of the other interactions in the theory. Instead, we
will adopt the view that measurement arises as the result of
an interaction between a measuring device and a quantum
system, with the interaction being described by the time-
evolution equations that govern any other interaction in the
theory.1 Using this concept of measurement, while causally
consistent, we will find it to be fundamentally in conflict
with the notion of a measuring device whose measurements
are accurate and repeatable. Nonlinear evolution continu-
ally affects the evolution of a systems in a state-dependent
way and introduces a fundamental notion of error into all
measurements.
The specific modification that we investigate is described

in detail in the next section. The basic procedure that we
follow is to take the Hamiltonian of a quantum field theory
and include additional state-dependent terms in it. These
additional terms are obtained by taking existing interactions
in the theory and replacing the bosonic (or fermion bilinear)
field operators by their expectation values in the full
quantum state. Thus it can be implemented in any interact-
ing theory. This additional (state-dependent) expectation
value manifests as a background field and adds an element
of classical time evolution to the theory. In low-energy
single-particle quantum mechanics, it manifests itself as a
(causal) nonlinear term in the wave function’s time evo-
lution. Our goal in this paper is to establish the viability of
this framework and investigate the phenomenological,
experimental and cosmological implications of this
modification.
This paper is organized as follows. In Sec. II, we develop

a transparent framework to show that the modification can
be implemented in a causal and gauge-invariant manner.
We show that this modification allows for the existence of
stationary states (Sec. II B), an essential element of quan-
tum systems and we develop a consistent notion of

measurement (Sec. II D) and derive its consequences.
In Sec. III, we analyze the consequences of this framework.
We show that nonlinear quantum effects can be observed
even in the presence of decoherence. However, the human
ability to exploit these nonlinear effects is subject to our
cosmic history (Sec. III B) wherein these effects can
dynamically disappear if our macroscopic universe was
produced as a result of quantum fluctuations as is the case
in canonical inflationary theories. We highlight that this
aspect of nonlinear quantum mechanics is not unique to our
modification but is rather a general feature of any causal
nonlinear modification. Nonlinear quantum mechanics can
lead to unusual gravitational and causal phenomena and we
discuss these in Sec. III C. In Sec. IV we analyze current
experimental limits on such nonlinearities and find them to
be surprisingly weak. In Sec. V, we then propose exper-
imental protocols to test these nonlinearities for different
classes of cosmic history—one where our universe origi-
nated and evolved as a result of deterministic classical
processes and another where it was the result of quantum
processes. There have been prior investigations of this class
of modifications [7–12] as well as more general inves-
tigations of nonlinear quantummechanics [4,5]. We discuss
the ways in which our efforts have advanced these inves-
tigations in Sec. VI. We then conclude in Sec. VII.

II. FRAMEWORK

We begin by describing nonlinear quantum evolution in
field theory prior to describing these effects on single-
particle quantum mechanics (see Sec. II A). This order,
while unconventional, nevertheless adds clarity and makes
it clear the modification is derived from a local theory. Field
theory is an accurate description of nature. It naturally
describes multiparticle separated systems and by explicitly
recognizing the special nature of position it enforces
causality. It thus transparently addresses issues that have
confronted prior nonlinear modifications of quantum
mechanics. We first consider flat space before generalizing
this description to include gravitation. Throughout this
paper, we work in the Schrödinger picture where the
quantum states jχðtÞi are time dependent while the oper-
ators are time independent.
In the Schrödinger picture of quantum field theory, the

states jχðtÞi time evolve as per the Schrödinger equation:

i
∂jχðtÞi

∂t ¼ HjχðtÞi; ð1Þ

where H ¼ R
d3HðxÞ is the Hamiltonian of the theory and

HðxÞ is the Hamiltonian density constructed from the time-
independent field operators. Notice that this Schrödinger
equation for jχðtÞi can be obtained from the following
action:

1This view parallels the treatment of measurement in the
“many-worlds” interpretation of quantum mechanics—one can-
not implement, for example, the “Copenhagen interpretation” of
measurement with its ad hoc rule causing the “collapse” of the
wave function since such a collapse causes violence to nonlinear
terms, and is anyway itself a modification of quantum mechanics.
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SQFT ¼
Z

dt
i
2
ðh _χjχi − hχj _χiÞ þ hχjHjχi: ð2Þ

The Schrödinger equation (1) can be obtained as an
extremum of the action (2) under variations of the path
jχðtÞi. Consider, for example, the Yukawa theory with the
interaction yϕðxÞΨ̄ðxÞΨðxÞ, depicting a scalar ϕ interact-
ing with a fermion Ψ with Yukawa coupling y. Notice that
the action (2) of this theory contains the term

SQFT ⊃
Z

dtd3xyhχðtÞjϕðxÞΨ̄ðxÞΨðxÞjχðtÞi: ð3Þ

We incorporate nonlinear quantum mechanical evolution
for this Yukawa theory by constructing the nonlinear
action:

SNL¼SQFT

þϵ

Z
dtd3xyhχðtÞjϕðxÞjχðtÞihχðtÞjΨ̄ðxÞΨðxÞjχðtÞi;

ð4Þ

where ϵ is the strength of the nonlinearity.2 The integrand of
(5) is time-reversal invariant, just like the integrand of (2).
This ensures that the resulting evolution is unitary.
Moreover, in the vacuum state, the correction vanishes
and thus the evolution of the vacuum is Lorentz invariant.
When the quantum state is not the vacuum, the nonlinearity
appears as a state-dependent in-medium effect. In Sec. II C,
we show that these in-medium effects are causal.
The time evolution of jχðtÞi is obtained by computing

the extrema of the action (4) leading to time evolution of the
form

i
∂jχðtÞi

∂t ¼
�
HL þ ϵy

Z
d3xðhχðtÞjϕðxÞjχðtÞiΨ̄ðxÞΨðxÞ

þ hχðtÞjΨ̄ðxÞΨðxÞjχðtÞiÞϕðxÞ
�
jχðtÞi; ð5Þ

where HL is the standard state-independent (i.e., linear)
Hamiltonian of the Yukawa theory. The nonlinear
action (4) and the corresponding state-dependent nonlinear
Hamiltonian of the theory are natural extensions of the
corresponding linear theory obtained from the action (3). In
the above, we have included nonlinear terms from both the
expectation value of ϕ and the fermion bilinear Ψ̄Ψ. This is
a consequence of (4) which is a natural extension of (2) and
as we will see in Sec. II A permits a natural way to construct
conserved quantities in this theory, as we will discuss in

Sec. II B. But, there is no requirement to include both
expectation values as it is possible to construct nonlinear
quantum-mechanical theories that only include the expect-
ation value of ϕ (for example) and show in detail that
energy (and other quantities) are conserved in such
theories.
The quantization of this theory can be described pertur-

batively. At zeroth order, the theory is simply standard
quantum field theory and one may use standard canonical
procedures to define the quantum states of the theory.
Nonlinear corrections can be computed perturbatively and
these only require knowledge of the lower-order terms.
Effectively, in this theory, the lower-order terms contribute
as background classical fields, permitting a straightforward
analysis of the quantum evolution.
The Hamiltonian evolution in (5) can also be described

using the path integral formalism. The specific nonlinear
interaction in (4) can be described perturbatively by
computing the path integral with the effective Lagrangian:

Leff ⊃ yϕΨ̄Ψþ ϵyhχjϕjχiΨ̄Ψþ ϵyϕhχjΨ̄Ψjχi; ð6Þ

where we have included additional “interaction” terms in
the Lagrangian with the state-dependent expectation values
being treated as background classical fields (themselves
evaluated at lower order in ϵ) in the path integral.
With an eye towards the single-particle theory, let us

describe how the fermion Ψ behaves in this theory. To first
order in ϵ, Ψ responds to

yϕþ yϵhχjϕjχi; ð7Þ

i.e., both the quantum field ϕ and the background classical
field created by the expectation value hχjϕjχi. The expect-
ation value hχjϕðxÞjχi of ϕ in the state jχi is obtained from
the full interacting theory. Evaluating this expectation value
perturbatively in y and to zeroth order in ϵ,

hχjϕðxÞjχi ¼ y
Z

d4x1hχjΨ̄ðx1ÞΨðx1ÞjχiGRðx; x1Þ þ…;

ð8Þ

where GRðx; x1Þ is the retarded Green function from the
space-time point x1 to x of the massless field ϕ and x1, for
example, is the 4-vector ðt;x1Þ. The ellipsis includes the
time-evolved initial condition for the ϕ field itself. In the
above, we use the renormalized expression for hχjΨ̄Ψjχi
which removes the vacuum energy divergence in this
expression.
This construction can also be extended to gauge

theories and gravitation. These theories are more easily
described using the Lagrangian formalism rather than the
Hamiltonian formalism and we will thus use the former.
Consider a Uð1Þ gauge field Aμ. Notice that under a gauge
transformation Aμ → Aμ þ ∂μα,

2We could also divide by the (conserved) normalization of the
state, hχðtÞjχðtÞi, but we will set this equal to unity for notational
simplicity, but keeping track of this normalization when discus-
sing probabilities.
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Bμ ¼
Aμ þ ϵhχjAμjχi

1þ ϵ
ð9Þ

also transforms as Bμ → Bμ þ ∂μα. Using this fact, we can
construct a gauge-invariant nonlinear quantum-mechanical
action for Aμ by taking the interaction term eJμAμ of the
theory and replacing Aμ → Bμ. For example, in QED this
leads to nonlinear interactions of the form

LQED ⊃ eAμΨ̄γμΨ → Leff ⊃ eBμΨ̄γμΨ: ð10Þ

Perturbatively, the effect is essentially an additional back-
ground electromagnetic field treated classically (no differ-
ent than how we do QED at low energies).
Gauge-invariant nonlinear interactions can also be incor-

porated via the kinetic terms. For example, in QED:

LQED ⊃ F2
μν → Leff ⊃ F2

μν þ ϵhχjFμνjχiFμν: ð11Þ

In general, the nonlinear coefficients in (10) and (11) need
not be the same. Moreover, the terms in (10) need not be
flavor universal. For simplicity, in this paper, we will set the
nonlinear term in (11) to zero and take (10) to be flavor
universal. We will address non-flavor-universal effects in
vectorlike and chiral theories in future work.
Much like the Yukawa case, in the quantum theory of the

fermion Ψ, hχjAμjχi is a classical background. After gauge
fixing, one finds the leading-order contribution to this
expectation value to be (perturbatively)

hχjAμjχi¼ e
Z

d4x1hχjΨ̄ðx1ÞγνΨðx1ÞjχiGRμνðx;x1Þþ…;

ð12Þ

where GRμν is the retarded Green function. The gauge
invariance of the Lagrangian implies that we can still gauge
fix Aμ and define its physical degrees of freedom.
In principle, a similar construction can also be performed

for non-Abelian gauge theories. However, the quantum
consistency of the non-Abelian theory may imply addi-
tional constraints on the nonlinear coefficients ϵ—we leave
a detailed analysis of this consistency check for future
work.
This nonlinear construction can also be extended to

gravitation. Similar to the case of Uð1Þ electromagnetism,
one can observe the fact that g̃μν defined by

g̃μν ¼
gμν þ ϵhχjgμνjχi

1þ ϵ
ð13Þ

has the same tensor properties as the metric gμν. By writing
the matter terms in the Lagrangian of General Relativity
using the metric g̃ instead of g, we obtain a covariant way to
incorporate nonlinear quantum mechanics into General
Relativity. Similar in spirit to (11), it may also be possible

to introduce nonlinearities via the kinetic terms. We explore
these possibilities in future work.
Superposition is a fundamental feature of quantum

mechanics and the theory admits states that feature linear
combinations of space-time metrics. Our formalism permits
a well-defined way to include nonlinearity into quantum
gravity thus permitting, in principle, computable cosmo-
logical consequences of these nonlinearities, something we
discuss in part in the next section and more fully in future
work. For now, we simply note that the elements of the
Lagrangian are tensor fields on the manifold and they have
a geometric meaning independent of any specific metric.
There is thus no ambiguity in defining the action.
In the following subsections, we derive the single-

particle Schrödinger equation (Sec. II A) and show that
this equation allows quantum states to have a conserved
norm, permitting a probabilistic interpretation of the theory.
In Sec. II B we show that this framework allows quantum
systems to have stationary states with well-defined ener-
gies. We describe separated systems and show that the
theory is causal (Sec. II C), and then describe the meaning
of and the effects on measurement in our modification
(Sec. II D).

A. Single-particle quantum mechanics

The nonlinear evolution proposed by us is interaction-
(and field) dependent. Thus, the single-particle Schrödinger
equation that results from this modification depends on the
specific field theory. We describe these effects for a fermion
Ψ that interacts via a Yukawa coupling yϕΨ̄Ψ with a scalar
ϕ. The state of a single Ψ quantum is described by its wave
function Ψðt;xÞ [where x ¼ ðt;xÞ and three-vectors are in
bold]. Under the nonlinearity, the time evolution of this
wave function is governed by the equation

i
∂Ψðt;xÞ

∂t ¼
�
Hþ ϵy

Z
d4x1Ψ�ðt1;x1ÞΨðt1;x1ÞGRðx;x1Þ

�

×Ψðt;xÞ; ð14Þ

where H is the usual Hermitian Hamiltonian of quantum
mechanics in the position representation and GR is the
relativistic retarded Green function between the points
ðt;xÞ and ðt1;x1Þ. This equation governs the evolution
of the position degrees of freedom of the state and we
trace over internal quantum numbers (such as spin). Notice
that this equation is invariant under the transformation
Ψðt;xÞ → eiθΨðt;xÞ. It thus admits a conserved proba-
bility current and norm, permitting a probabilistic inter-
pretation of the wave function.
The above equation has the same form as the

Schrödinger-Newton equation that is sometimes described
as the nonlinear Schrödinger equation. But, the nonlinear
Schrödinger equation is used to describe the linear quan-
tum-mechanical evolution of a particle in the mean field of
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a large number of particles all of which are in the same
quantum state. In (14), we are proposing a nonlinear
quantum evolution of a single-particle state. As we will
see below, this nonlinear behavior leads to considerably
different physical phenomena than the linear quantum
evolution of a multiparticle system.
There is a key mathematical difference between the

Schrödinger equation and (14). Formally, this equation
requires knowledge of the full past of ΨðxÞ in order to
describe its future evolution as opposed to simply its value
at a given time t0. Alternately, one may specify the value of
the wave function at t0 and specify an additional boundary
condition to capture the effects of the past and then perform
the nonlinear evolution. The latter approach is physically
motivated: Eq. (14) arises from a Yukawa interaction that
allows the system to interact with itself via the sourced
scalar field. The additional boundary condition is then the
specification of the background value of this scalar field at
that specific time slice. Even though, in principle, the
evolution of ΨðxÞ requires the full knowledge of the past of
ΨðxÞ, in practice, the effects of distant events on its
evolution are suppressed. This is because the influence
of the past is felt via the Green function in (14) which
naturally suppresses the effects of the past on the current
evolution of the system. In this aspect, the time evolution of
the quantum state ΨðxÞ is similar to the evolution of a two-
(or multi) particle state in an interacting quantum theory
where the time evolution of the state does depend (in
principle) on the full past of all the particles in the state.
But, the effects of events in the past are suppressed
precisely by these Green functions.

B. Stationary states and energy conservation

The existence of stationary states is one of the central
consequences of quantum mechanics. It allows for the
existence of ground states of quantum systems without
which we cannot define a stable vacuum. Using perturba-
tion theory and induction, it is straightforward to show that
nonlinear evolution permits the existence of stationary
states. We will explicitly demonstrate this for single-
particle quantum mechanics. It is appropriate to use
perturbative arguments since the nonlinear corrections do
not source instabilities or runaway potentials in the
Hamiltonian, as long as the correction is small enough
for a given potential (for shallow binding potentials, the
existence of bound states can be used to constrain the
nonlinearity; see Sec. IV). Similar arguments can also be
applied to the field theory case where we can perturbatively
describe single-particle states. Note that this perturbative
argument shows that if the linear quantum-mechanical
Hamiltonian was bounded from below, sufficiently small
nonlinear perturbations do not change that fact. If the linear
quantum-mechanical Hamiltonian was unbounded from
below, perturbative nonlinear effects are unlikely to alter
that aspect of the spectrum.

We now show the existence of stationary states in single-
particle quantum systems of the Yukawa theory described
by (14). We will take the scalar field to be massless so it is
relevant to the cases of the photon and graviton, though
the inclusion of a mass is straight forward. In this case,
the Green function that appears in (14) would be that
of a massless Klein-Gordon field, GRðt;x; t1;x1Þ ¼
δðt1 − t − jx1 − xjÞ=ð4πjx1 − xjÞ.
By a single-particle stationary state, we mean a state that

has a wave function whose sole time dependence is an
overall phase,Ψðt;xÞ ¼ e−iEtΨð0;xÞ, and thus satisfies the
equation

2
64H þ ϵy

Z
d3x1

Ψ�ð0;x1ÞΨð0;x1Þ
4πjx1 − xj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VNL

3
75Ψðt;xÞ ¼ EΨðt;xÞ:

ð15Þ

Having done the time integral in the non-linear component,
we see this term is a state-dependent, but time-independent,
correction to the effective Hamiltonian. Thus, for
Hamiltonians with known spectra (such as the hydrogen
atom), one can solve for stationary states perturbatively in ϵ
by expanding Ψ, E, and VNL as

Ψ¼ Ψ0 þ ϵΨ1 þ ϵ2Ψ2 þ � � �
E¼ E0 þ ϵE1 þ ϵ2E2 þ � � �

VNL½Ψ;Ψ�� ¼ VNL½Ψ0;Ψ�
0�

þ ϵ

Z
z1

�
Ψ1ð0;z1Þ

�
δVNL

δΨð0;z1Þ
�

Ψ¼Ψ0

þH:c:

�

þ � � �

and solving Eq. (15) order by order. Note that the potential
term VNL is already at order ϵ. Thus, for example, the kth-
order equation will only involve potential terms with Ψi’s
for i < k, and thus the equations will be linear and, in
general, solvable.
The existence of stationary states has key implications

for the stability of the theory—it ensures that the theory has
stable ground states and prevents runaway violations of
energy conservation. To see this, observe that the proba-
bility densities of stationary states are independent of time.
The nonlinear terms that appear in their time evolution are
time independent. This time translation invariance implies
that the energies of these states are conserved. This is
reassuring as these are the only states of the theory that have
a well-defined energy. A general state that is a linear
combination of these stationary states will have time-
dependent probability densities and the nonlinear terms
that govern their evolution are time dependent. The energy
of these states, as measured by the nonlinear Hamiltonian,
is not conserved. This is not surprising since these states do
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not actually have a well-defined energy. However, even
though the energy of the state is not conserved, one does
not expect disastrous runaway violations of energy con-
servation since the system possesses a ground state. In
linear quantum mechanics this is proven by constructing a
positive definite conserved energy functional—namely, the
expectation value of the stress energy tensor. This stress
tensor is obtained from a time translation-invariant
Lagrangian.
One can show that an actual conserved energy can be

constructed for this nonlinear modification. Instead of the
one-particle equation, we use the underlying field theory
where energy conservation is trivial to show via Noether’s
theorem. This is because the integrand in (4) that is used to
obtain the theory is time translation invariant. It thus
possesses a conserved energy. This conserved energy
depends on the normalized expectation value of ϕ. Thus
some of the conserved energy can be seen to be stored in
the background field and in general (as we will see
examples later) can move between dynamic fields and
the background.

C. Separated systems and causality

A key obstacle in prior attempts [4] to introduce non-
linear evolution in quantum mechanics has been the ability
to describe separated but entangled systems while preserv-
ing causality. The field theoretic underpinning of our
modification is local and thus should be causal. It also
enables us to handle these issues in a transparent manner in
the low-energy theory. It is instructive to demonstrate in our
framework this causal evolution explicitly for a two-
particle system. This demonstration will also illustrate
some key features of the nonlinear but unitary nature of
the time evolution. For definiteness, we again illustrate this
in the case of the Yukawa theory in flat space but our results
apply more generally. We direct the reader to Sec. III C for
unusual causal phenomena that are possible in curved
space-times.
Suppose we have two particles described by the coor-

dinates x and y respectively. Following the field theory
insertion of (8), one can generate a clear prescription for
multiparticle states, and it is easy to show that the time
evolution of the two-particle wave function Ψðx; y; tÞ is
described by

i
∂
∂tΨðx;y; tÞ ¼ ðHþ yϵ

Z
d3x1d3y1dτjΨðx1;y1;τÞj2

× ½GRðt;x;τ;x1ÞþGRðt;y;τ;x1Þ
þGRðt;x;τ;y1ÞþGRðt;y;τ;y1Þ�ÞΨðx;y; tÞ:

ð16Þ

We now show that this prescription preserves causality
when we have a well-separated entangled state. The second
and third Green functions serve to causally connect the

subsystems at x and y via nonlinear evolution—these terms
are thus not a threat to causality. Causal problems could
potentially arise from the first and last terms. For example,
suppose some local operation is performed on the particle
in the x region. This would change its wave function. If the
change to this wave function changes the time evolution of
the particle in the y region solely through the fourth Green
function in (16) (i.e., without the aid of the second causal
Green function), we would have violated causality. We will
show that this is not the case.
The term containing the fourth Green function in (16),

Z
d3x1d3y1dτjΨðx1; y1; τÞj2GRðt; y; τ; y1Þ; ð17Þ

would produce causality violation if a local operation on x
changed the integral over the x1 coordinates: causality
would be violated because the change would instantly
affect the evolution of the particle at y. In the absence of the
second term in (16), we will see that the full nonlinear time
evolution due to local operations on x can be represented
by unitary operators of the form U ¼ U1ðx1Þ ⊗ U2ðy1Þ
and the time evolution results in Ψðx; y; tÞ → U½Ψðx; y; tÞ�
with separate unitary transformations on the separated
systems. When this is the case, the integral over x1 in
(17) does not change and causality is preserved.
The unitary, factorized form of this time evolution can be

proven in our nonlinear case using time-dependent pertur-
bation theory. At zeroth order, the time evolution of the
system is given by linear quantummechanics. In this case, a
local operation on x is indeed represented by a factorized
unitary operator on the full system. The first-order correc-
tion from the nonlinear dynamics is obtained by using the
zeroth-order wave function Ψ0. In the absence of the
second and third terms in (16), assuming the systems are
causally disconnected, this first-order correction is opera-
tionally no different than computing the first-order correc-
tion due to the time-dependent potential

V1ðt;xÞ ¼ ϵ

Z
d3x1d3y1dτΨ�

0Ψ0GRðt;x; τ;x1Þ: ð18Þ

That is, the nonlinear correction is equivalent to computing
the effect of a potential that solely depends on x in linear
quantum mechanics. But, in the latter case, since we are
now dealing with linear quantum evolution of two sepa-
rated systems, the time evolution is indeed represented by a
factorized unitary operator. Note that in (18) we have only
written down the nonlinear correction to x. There is a
similar additive term that acts on y arising from the fourth
Green function in (16). The effective correction is thus of
the form V1ðxÞ þ Ṽ1ðyÞ. Due to its additive and separable
form, the unitary evolution from these corrections is of the
form U ¼ U1ðxÞ ⊗ U2ðyÞ as required. This logic can be
extended to show the factorized unitary nature of the time
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evolution to all orders in perturbation theory. Moreover, this
logic can also be extended to field theory to show that the
field theory evolution is also unitary. In perturbation theory,
all that is necessary to establish the unitary nature of the
evolution is to note at zeroth order in ϵ, the time evolution is
that of quantum field theory and is thus unitary. To first order
in ϵ, the nonlinear correction enters as a Hermitian back-
ground classical field and thus the first-order correction is
also unitary. This can be extended to all higher orders in
perturbation theory since the perturbative correction at any
order relies solely on computing the lower-order corrections
which enter as classical background fields.
We note that [5] argued that the nonlinear evolution of

separated systems must be additive in order to preserve
causality. This is precisely the form of (16) where we see
that this structure naturally arises from field theory.3 The
additive nature of nonlinear evolution also implies that
when a system is entangled with the environment, the
environmental degrees of freedom are traced over in
the nonlinear evolution. This implies that nonlinear effects
persist even in the presence of decoherence. This was
pointed out by [5] and we develop the enormous exper-
imental importance of this fact in Sec. V.

D. Measurement

Our definition of measurement parallels the operational
concept of measurement described by the many-worlds
interpretation of quantum mechanics. In the many-worlds
interpretation, measurement is the time evolution of an
initial state jΨi of some subsysterm that is brought in contact
with another subsystem (the measuring device) that is in a
sufficiently stable initial state. This state could either be a
stationary state of the subsystem or a coherent state that is
robust against environmental decoherence. Label this initial
state as jA0i. The system evolves as per the Schrödinger
equation in a deterministic way. In order to measure an
observable associated with a Hermitian operator Ô, whose
eigenvectors are jii, the interactionHamiltonian between the
state and the measuring device must be such that the initial
state jΨi ⊗ jA0i time evolves into

jΨi ⊗ jA0i →
X
i

cijii ⊗ jAii; ð19Þ

where jΨi ¼ P
i cijii. The jAii are a set of convenient (i.e.

easily interpretable) states of the measuring device such as
stationary or coherent states of the system. When the jAii
are stationary states, hAijAji ¼ δij. If the jAii are taken to be
coherent states, the overlap is in general not zero—but for a

good measuring device, the states are chosen so that the
overlap is exponentially small. Of course, all of this is a
prediction of quantummechanics and not an “interpretation.”
Due to the suppressed overlap between the jAii, the reduced
density matrix for the system jΨi is effectively justP

i jcij2jiihij. This reduced density matrix is interpreted
classically as the direct sum of many possible outcomes jii
each with probability jcij2 as determined by the states jAii of
the measuring device.
We adopt this operational procedure to define measure-

ment: we bring the quantum state jΨi in contact with a
measuring device that is initially in either a nearly sta-
tionary state or a coherent state (i.e., a state that is robust
against environmental decoherence). Call this state jα0i.
The interaction between these two systems will in general
lead to an entangled state where the states of the measuring
device are some desired states jαji (such as nearly sta-
tionary states or coherent states). We will “intepret” this
state in classical probabilistic terms. While the above
describes the process of measurement, there are important
differences in the phenomenology of measurement between
linear quantum mechanics and this nonlinear modification.
In linear quantum mechanics, the construction of the

desired interaction between the system and the measuring
device (the Hamiltonian) only requires knowledge of the
eigenstates jii of the operator Ô and the relevant states jAji
of the measuring device. Knowledge of the actual state jΨi
that is being measured is not necessary. In nonlinear
quantum mechanics the nonlinear interactions depend on
the actual quantum state jΨi. There is thus a more
complicated map between the outcomes of the measuring
device and the incoming state unlike the simple, direct map
in linear quantum mechanics.
But more importantly, unlike linear quantum mechanics,

the states jαii of the measuring devicewill in general overlap
with each other atOðϵÞ. Normally (linear quantum mechan-
ics) when one designs a measurement device, the time
evolution is known and the Hamiltonian can be designed
to result in orthogonal states. Because the time evolution
depends on the (unknown) initial state, one cannot neces-
sarily guarantee this orthogonality. Consequently, we expect
hαjjαii ∝ ϵ.4 This implies that if the state jΨi ⊗ jα0i evolves
into

P
i cijiijαii, the reduced density matrix that describes

jΨi will not be diagonal in the basis jii, and a partial trace
over the measuring device subsystem gives TrMðρÞ ¼P

i;j c
�
jcihαjjαiijiihjj ≠

P
i jcij2jiihij. Consequently, even

after measurement, interference between the states jii and jji
can be observed. This state cannot be cleanly interpreted as
the direct sum of many possible outcomes each with
probability jcij2 since the different worlds continue to
interfere with each other.3This form also violates one of the axions of [13] that proved a

no-go theorem for modifications of quantum mechanics. Refer-
ence [13] felt that the additive structure demanded by [5] was not
well motivated. We have demonstrated that this additive structure
is a natural consequence of field theory.

4This statement can be easily verified for the stationary states
of the system. It might be interesting to explicitly prove this for
coherent states as well.
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If one wishes to retain the clean interpretation of
measurement as the direct sum of many classical worlds,
the interaction Hamiltonian would have to evolve the initial
state into

P
cijiijAii where the jAii are orthogonal states

(for example, the usual energy eigenstates of the linear
quantum-mechanical Hamiltonian governing the measur-
ing device). But, these are not stationary states of the
nonlinear Hamiltonian and thus the measured outcome
continues to evolve after the measurement. In this case,
while the reduced density matrix of the quantum system
itself has a ready classical interpretation as the direct sum of
many outcomes, the time evolution of the measuring device
does not reflect this clean interpretation.
Further, in quantum mechanics once there is entangle-

ment between the quantum state jΨi and a macroscopic
measuring device, the system undergoes decoherence.
Thus, different outcomes of the measurement cannot
influence each other i.e., the world “splits” into many
distinct worlds. As we will see in Sec. III A, nonlinear
effects can persist even in the presence of decoherence and
thus the different outcomes or “worlds” can continue
influencing each other. In general, these will also cause
further time evolution of the states jαji away from their
values at the time of measurement.
We thus learn that there is not a clean concept of

measurement in nonlinear quantum mechanics where the
state of the measuring device is faithfully correlated with the
classical probabilistic reduced density matrix that describes
the quantum system after measurement. It is thus the case
that measurement in this nonlinear system is unavoidably
noisy. Our analysis of this nonlinear system is perturbative
and thus we would like to orient our discussion as close
as possible to quantum mechanics. To that end, we will
define measurement using the energy eigenstates (or
coherent states) jAii of the linear quantum-mechanical
Hamiltonian: measurement is a process that takes
the quantum state jΨi ⊗ jA0i →

P
i cijiijAii with jΨi ¼P

i cijii. This state can be interpreted as a classical direct
sum of many possible outcomes jii each with probability
c�i ci=hΨjΨi where hΨjΨi is the norm of the full quan-
tum state.

III. ANALYSIS

In this section, we derive the key phenomenological
consequences of this nonlinear modification. This includes
the phenomenology of entangled macroscopic states
(Sec. III A), the sensitivity of this effect to cosmology
(Sec. III B) and the causal aspects of this scenario in curved
space-times (Sec. III C).

A. Nonlinearity and the macroscopic world

In quantum mechanics, it is difficult to observe quantum
effects on macroscopic objects since the interactions of a
macroscopic system with its environment leads to rapid

decoherence. Upon decoherence, the macroscopic system
is described by a classical probability distribution. The
subsequent evolution of this system can be described purely
in terms of evolving this classical probability distribution
where each classical outcome evolves independently of the
other outcomes. Interestingly, this is not the case for the
nonlinearities proposed here—deviations from classical
evolution are possible even in the presence of decoherence.
We focus on the effects in nonrelativistic quantum

mechanics. The local nature of interactions implies that
the position of a macroscopic body is rapidly entangled
with the environment—i.e., macroscopic bodies are most
easily described in the position basis. Suppose ΨMðτ;x0Þ is
the wave function of a macroscopic body M (where for
notational simplicity, we are using a single position
coordinate x0 to represent the position coordinates of all
the particles in the macroscopic body). Upon interaction
with the environmentO, this state evolves into an entangled
state whose wave function is ΨMðτ;x0ÞΦOðτ; y0;x0Þ where
ΦOðτ; y0;x0Þ is the wave function of the environment at
time τ described by the position coordinate y0 (again, for
notational simplicity, y0 denotes the positions of all the
particles in the environment). This wave function is
correlated with the position x0 of M. The nonlinear
evolution of M is governed by the term

Z
d3x0d3y0dτΨ�

Mðτ;x0ÞΨMðτ;x0ÞΦ�
Oðτ; y0;x0ÞΦOðτ; y0;x0Þ

×GRðt;x; τ;x0Þ:

The different environments entangled with different parts
of the macroscopic body’s wave function will generally be
distinct enough to have essentially no overlap. In other
words, Φ�

Oðτ; y0;x0ÞΦOðτ; y0;x0Þ will be “diagonal” when
y0 is integrated over. The integral thus inherits the time
dependence of Ψ�

Mðτ;x0ÞΨMðτ;x0Þ, i.e., the actual time
dependence of the full probability density of M. This
probability density contributes as a time-dependent poten-
tial that affects the evolution of M, leading to a deviation
from classical evolution even in the presence of
decoherence. The persistence of these effects even in the
presence of decoherence enables potent experimental
probes of this scenario since the demands on environmental
isolation of the probing systems can be significantly
relaxed. We comment on these possibilities in Sec. V.

B. Cosmological sensitivity

The nonlinear effects that we have described are tremen-
dously sensitive to cosmic history—as we show below,
even if these terms exist in the theory, many of their effects
can become negligible under certain cosmic conditions
such as canonical inflationary cosmology.
To see this, suppose the quantum state of the universe is

such that it is in a macroscopic superposition jχi ¼ αjWi þ
βjVi of two states jVi and jWi, where jVi is the vacuum
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state and jWi is the observer’s world. The expectation value
hχjϕjχi ¼ jαj2hWjϕjWi and thus vanishes as α → 0,
suppressing the effect of the nonlinearity, independent of
the value of ϵ. If the origin of the universe was such that
the quantum state ended up in such a linear combination
with jαj ≪ 1, there is no local operation that can be
performed by the observer in jWi to boost the effects of
the nonlinearity. This is dramatically different from the
effects of the standard linear evolution terms in quantum
mechanics—their effects on the physics of jWi are inde-
pendent of α.
The experimentally testable aspects of this theory are

thus highly dependent on cosmology. We illustrate this by
considering two scenarios, one where the universe’s macro-
scopic structure was sensitive to early quantum fluctuations
(scenario A), and the other where the macroscopic structure
was determined dominantly by classical evolution (scenario
B). Scenario A includes conventional inflationary cosmol-
ogy in which the origin of structure in the universe is tied to
quantum fluctuations of the inflaton field. These fluctua-
tions decohere as they exit the horizon, giving rise to a
quantum state that is the superposition of a very large
number of distinct universes all of whom have the same
statistical properties. This implies that the quantum state is
such that in the vast majority of these universes, the space-
time point where the Earth exists is likely to be in
interstellar space. Thus, if a terrestrial observer tries to
discover the effects of this nonlinearity by trying to modify
the value of the expectation value hχjϕjχi (such as the
experiments in Sec. VA), the observer will have to contend
with the tremendous suppression of this effect due to the
small probability that the Earth exists at that specific space-
time point (not to mention the observer themselves) in the
full quantum state of the theory. The testable aspects of this
theory would be along the lines described in Sec. V B. On
the other hand, we could consider scenario B—this could
be an inflationary scenario where the perturbations have a
classical origin, such as in warm inflation models [14]
where the fluctuations are thermal. In this case, the
evolution would be deterministic and the probability that
a macroscopic object, such as the Earth, is at this space-
time point could be non-negligible. The experiments
described in Sec. VAwould then be a feasible path towards
probing these effects.
Importantly, while this cosmological sensitivity is trans-

parent in this nonlinear modification, it is a generic fact
about any local nonlinear modification of quantum
mechanics. This is because the nonlinear interactions, by
the very nature of nonlinearity, will depend upon the
coefficients of the quantum state. Local operations cannot
undo small coefficients arising due to an unfavorable
cosmic superposition. Importantly, in a local theory, one
cannot boost these effects by writing down operators that
would allow the observer to condition the effect based on
the quantum state the observer finds themselves in. This is

because there is no local operator that can represent the
entire environment. Specifically, suppose the quantum state
is jχi ¼ α1jO1ijE1i þ α2jO2ijE2i where the observer is in
states jO1;2i corresponding to entanglement with the
environmental states E1;2, respectively. If the nonlinear
terms governing the evolution of these terms were to be
divided by a projection operator of the environmental state
E1, the observer O1 could hope to see nonlinear effects
unsuppressed by α1. However, the projection on to the
environmental state E1 cannot be performed by a local
operator since the environment, by definition, is a delo-
calized state.
The generic nature of this cosmological sensitivity raises

the interesting possibility that the observed linearity of
quantum mechanics is the result of dynamical evolution of
the universe (such as inflationary cosmology), even if the
laws of quantum mechanics are fundamentally nonlinear.

C. Curved space

In this section, we consider the possibility that the
universe is placed in a linear superposition of metrics
i.e., we consider quantum states of the form

jχi ¼ α1jO1ijM1i þ α2jO2ijM2i; ð20Þ

where the observers O1;2 are entangled with two different
metrics M1;2. We clarify our formalism in this case and
discuss possible new phenomena. We note in this nonlinear
theory, the creation of such a superposition likely involves
nontrivial gravitational dynamics since the matter in both
these metrics can gravitationally influence each other. We
will defer a detailed discussion of these dynamics for future
work. In this section, we highlight phenomena that seem
intuitively possible.
An important aspect of nonlinearity is that it removes the

freedom to independently perform coordinate transforma-
tions on individual universes (i.e., metrics)Mi. There is still
freedom to pick coordinates on the space-time manifold
(general covariance)—but once these coordinates are
picked, the coordinate change has to be reflected on all
the parts of the wave function. Unlike linear quantum
mechanics where each metric in the superposition evolves
independently, the nonlinear evolution inextricably links all
these metrics together. Nonlinearity can thus be naturally
embedded into the 3þ 1 Hamiltonian formalism of
General Relativity in which gravitation is described as
the global time evolution of the metric on a spatial Cauchy
surface.

1. Metrics and contraction

A generic field theoretic Lagrangian involves contraction
between vectors and tensors that are performed using the
metric tensor. We introduce nonlinearity via expectation
values of bosonic operators—in particular, these bosonic
operators can be gauge fields (or really any tensor,
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including gravity). In linear quantum mechanics, since
hM2jM1i ¼ 0 there is never any ambiguity in contracting
gauge fields to obtain the Lagrangian since the entangle-
ment of the observer with a specific metric forces the
observer to use that metric to contract tensors. In our case,
the expectation value of the bosonic fields will get con-
tributions from terms in (20).
To see how to handle these terms, let us focus on the case

of electromagnetism where the nonlinear interaction is of
the form ϵgμνhχjAμjχiJν. Formally, in this expression gμν is
an operator. Further, hχjAμjχi is simply a vector at a point
on the manifold—this vector has an existence that is
independent of any particular metric on the manifold.
This term is then a well-defined mathematical operation
which makes the metric tensor operator gμν act on two
vectors hχjAμjχi and Jν. This operation is thus well
defined. Now subject the state (20) to nonlinear evolution.
Treating gravitation semiclassically, the observer Oi will
see the term gμνðjMiiÞJνðjMiiÞhχjAμjχi. Now, hχjAμjχi¼
α�1α1hO1;M1jAμjO1;M1iþα�2α2hO2;M2jAμjO2;M2i. These
terms are generally described in terms of the coordinate
systems used to describe the metrics M1, M2, respectively.
But, this vector has a geometric meaning independent of
the coordinate system on the manifold, and thus its
components in any one coordinate system can be converted
into those of any other coordinate system. In this nonlinear
case, this conversion is straightforward. A coordinate
system was initially chosen on the space-time manifold
in order to define the initial quantum state. While M1 and
M2 were conventional coordinate charts used by O1 and
O2, since they were constructed from the same underlying
manifold, there is a natural map between these coordinate
systems via the underlying coordinate chart on the space-
time manifold. This map can be used to port vectors and
tensors from one coordinate system to another.

2. Quantum wormholes

Nonlinear evolution coupled to metric superpositions
allows for novel causal phenomena. To illustrate this,
suppose the quantum state jχi is in the superposition
(20) with the state jM1i being de Sitter space and jM2i
beingMinkowski space. Pick two space-time points x and y
such that they are not causally connected in M1 but are
causally connected in M2. In linear quantum mechanics,
jM1i and jM2i are two independent universes that do not
communicate between each other. Accordingly, the
observer O1 cannot send signals from x to y while the
observer O2 can send signals between these two points.
Nonlinear evolution enables communication between these
two worlds and allows for a quantum channel of commu-
nication. For example, in the Yukawa theory (8), the
observer O1 can create an oscillating source of hϕi using
fermions in M1 at x. This oscillating background can give
rise to a propagating wave of ϕ inM2. Since the space-time
points x and y are causally connected in M2, this wave can

propagate inM2 from x to y. This propagatingwave contains
a nonzero hϕi and it can thus influence fermions inM1 at the
point y. We call this phenomenon a “quantum wormhole.”
While this causal behavior is unusual, it is fundamentally
causal—the quantum state of the universe has to allow the
points to be causally connected in at least one of the metrics
that are in superposition. The fact that causality on the
manifold depends on the quantum state is not unusual—this
is true even in linear quantummechanics where it is possible
that two points on a manifold are causally connected in one
metric but not in another. The nonlinear terms simply prevent
a clear demarcation of the quantum state into distinct
universes/metrics. Note that this behavior does not require
quantum nonlinearities in gravitation—it exists even for the
nonlinearYukawa theory as long as the quantum state itself is
a superposition of different metrics.
It is interesting to ask if this kind of nonlinear behavior

could help solve the black hole information problem. The
evaporation of a black hole will spread the position of the
black hole over a distance ∼rs in a Page time. If there are
nonlinearities, the singularity that is behind the horizon in
one metric may find itself in contact with a space-time point
that is outside the horizon in another metric and that could
in principle allow for information to escape from the
singularity. While such communication is possible, this
phenomenon alone cannot solve the black hole information
problem—the nonlinear terms are cosmologically sensitive.
If the black holes were formed in a universe that was
produced as a result of quantum inflationary perturbations,
these nonlinear terms will be vanishingly small and black
holes formed in such a universe will not be able to lose their
information via this mechanism. But, in this case nonlinear
effects arising from the interference of metrics (see
Secs. III C 3 and V B) can persist. It is possible that this
metric interference would treat the event horizon as a
special point (since one can no longer perform coordinate
redefinitions without changing coordinates over all the
universes) leading to new causal structures at the horizon.
These causal structures may induce new vacuum energy
divergences (similar to those found at the inner horizons of
black holes—see, for example, [15]) that could potentially
result in the appearance of horizon scale singularities
similar to the firewall solutions discussed in [16]. This
possibility deserves further study.
Nonlinearities may also be useful as theoretical tools to

define gauge-invariant observables in gravitation. For
example, if the quantum state is a superposition of a
gravitating system and Minkowski space, the nonlinear
terms will allow the Minkowski observer to probe the
physics of the gravitating system without this observer’s
measuring devices being affected by gravity.

3. Gravitational phenomena from interfering metrics

In this subsection, we speculate about phenomena that
may exist when quantum nonlinearities are present in
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gravitation. The effective metric that is seen by an observer
is then the sum g̃μν ¼ ðgμν þ ϵhχjgμνjχiÞ=ð1þ ϵÞwhere gμν
is the metric the observer experiences in the linear theory.
With the nonlinearity, the observer sees the effective metric
g̃μν but would not be able to identify matter sources in his
universe that would describe the dynamics arising from the
term hχjgμνjχi. Using the linear theory, the observer would
infer the existence of “dark matter”—which in this case
would be the existence of a parallel universe. It would be
interesting to examine this possible explanation for the
observed dark matter in our universe—but we leave this
investigation for future work.
Novel gravitational dynamics may be possible in this

situation. For example, in (20) we may consider a quantum
state that is a superposition of a crunching metric and a
slowly expanding metric. In linear quantum mechanics the
crunching metric would collapse to a singularity—but in
this nonlinear case, the contribution from the slowly
expanding metric would alter the dynamics of the crunch-
ing state and may cause it to undergo a bounce and
reexpand. The observer in the crunching universe would
view the contribution from the expanding metric as a
background null-energy violating source. But the
source of this null-energy violation is positive energy
matter in the parallel universe. Similarly, metric interfer-
ence from other universes may manifest itself observatio-
nally as a “long distance modification” of gravitation
(see Sec. IV) and may be tested with probes of such
modifications.
A key point to highlight in all of the above discussions is

that the nonlinear quantum terms are genuinely distinct
from theoretical attempts to get novel gravitational phe-
nomena by modifying gravity itself (for reviews, see
[17,18]). In the latter, these modifications introduce addi-
tional degrees of freedom. In this nonlinear modification,
there are no additional degrees of freedom since the
dynamical field content is identical to that of conventional
linear quantum field theory. The additional “freedom”
arises purely from the freedom in the quantum states
themselves. While this freedom exists even in linear
quantum mechanics, the nonlinearity allows these states
to influence their collective behavior. Note that unlike
typical modifications of gravity, this theory does not appear
to hit strong coupling at some arbitrary scale. The cutoff is
the Planck scale.

IV. CONSTRAINTS

In this section, we discuss current experimental limits on
these nonlinearities. Owing to the cosmological sensitivity
of nonlinear quantum mechanics (see Sec. III B), limits
can only be placed within the context of a given cosmo-
logical scenario. We discuss constraints on the three
nonlinear couplings ϵγ and ϵG associated with nonlinear-
ities in electromagnetism and gravity, respectively, which
includes expectation values of their mediators and their

sources.5 Many of the bounds we estimate can only be
placed on this nonlinear scenario in a classical universe
where there is considerable overlap between the macro-
scopic observed world and the total wave function of the
universe. Even in this case, our analysis indicates that the
bounds on these scenarios are rather weak but that they can
be considerably improved with dedicated experiments.
Following this, we discuss constraints on the quantum

scenario where our observed world has a tiny overlap with
the total wave function of the universe. That is, we take
the quantum state of the universe to be of the form

jΨi ¼ 1ffiffiffi
N

p jUi þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

N

q
jRi where jUi is our world and

jRi represents vastly different worlds. We discuss two
kinds of phenomena in this case. First, we consider
expectation values sourced from our world. These expect-
ation values are suppressed by 1

N and thus the quantity that
affects nonlinear evolution is the combination ϵ=N. These
vanish in the limit N → ∞. Second, we consider the effects
of the expectation value of the entire quantum state on
physical processes in our universe. These are direct limits
on ϵ but they are dependent on the state of the overall
superposition. We focus on limits that exist even when
N → ∞ in this case i.e., limits that are resistant to quantum
dilution.
Naively, it would seem that violating quantum mechan-

ics would dramatically alter pristine and well-probed
quantum systems such as atomic and nuclear states leading
to significant constraints on ϵγ and ϵS. This expectation fails
due to the following reason. In linear quantum mechanics,
when confronted with a two-body problem (such as an
electron bound to a nucleus), one can simplify the problem
by changing coordinates into the center of mass and relative
coordinates. The center of mass motion of the system is
irrelevant in determining the bound-state energies of the
system which only depend on the relative coordinates. In
nonlinear quantum mechanics, the entire wave function of
the particle is relevant. This is true not just in our specific
modification but is a general property of (causal) nonlinear
systems. This implies that the center of mass motion of the
system would enter in describing the effects of the non-
linearity on the energy levels of the system.
Let us analyze the specific case of the electromagnetic

coupling ϵγ in the hydrogen atom. Suppose we localize the
proton to essentially a fixed point in space—we localize it
so that the spread of the proton wave function is much less
than the Bohr radius a0 ∼ 100 pm of the atom. In this case,
the nonlinearity causes a self-interaction in the electron
cloud and it can be verified that it will break the degeneracy
between the 2S and 2P levels of hydrogen and thus

5Though we have not explicitly developed the theory, we could
in principle explore bounds on ϵS, nonlinearity in the strong
interactions. For reasons discussed below, a naive reading of the
expected effects of this coupling suggests no nontrivial bounds
can be placed on this parameter.
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contribute to the Lamb shift. But, in a typical experiment
that measures the Lamb shift the center of mass of the
hydrogen atom is not localized. The spread in the center of
mass suppresses the expectation value of the electromag-
netic field which is ultimately the term responsible for
shifting the energy levels in the atom due to the non-
linearity. In a neutral atom that is localized to a distance
λ ≫ a0, the expectation value of the electromagnetic
potential is nonzero only over a small thickness ∼a0 at
the edge of the region where the atom is localized. In
typical measurements, the Lamb shift is measured via
spectroscopy in a gas with vapor densities ∼1015 cm−3

[19] yielding λ ∼ 0.1 μm.
We estimate the maximum energy shift as follows.6 Treat

the hydrogen atom as being confined within a box of size λ.
Let ψ0 be the part of the total wave function of the atom
with the center of mass of the atom being in the bulk of the
box and ψ1 be the part where the center of mass of the
atom being at the surface of the box within a thickness ∼a0.
The quantum state of the atom is of the form ∼ψ0 þ κψ1

with jκj2 ∼ a0
λ ∼ 10−3. The electric field is essentially

only nonzero in the surface region and is of order
δE ∼ e=λ2. From perturbation theory, the energy shift is
∼ϵγejκj2hψ1jδEjψ1i ∼ ϵγαjκj2δEa0. Requiring this energy
shift to be smaller than the current uncertainty in the Lamb
shift ∼5 × 10−11 eV, we get jϵγj ⪅ 10−4. This is a very
conservative estimate since the atom is in fact not literally
confined in a box of size λ—the wave function may spread
beyond this, weakening this effect, and the boundaries of
the region it is in may have canceling effects from other
atoms. The Lamb shift has also been measured in ions [20]
where the ions are also localized to within ∼0.1 μm. The
charge of the ion is spread over this distance λ and the
electric field from this charge can shift the energies of
the electron. Requiring this electric field to be smaller than
the background electric fields in these systems ∼50 V=cm
yields jϵγj ⪅ 1.
A more stringent but sign-dependent bound on ϵγ can be

placed by making use of the fact that traps have been used
to trap ions. When ϵγ is positive, the nonlinearity causes the
ion’s wave function to repel itself, leading to a repulsive
potential ∼ϵγαEM=L where L is the size of the trap. This
repulsive potential must be smaller than the confining
potential of the trap. The confining potentials in the
L ∼ 200 nm traps used in [21] are ∼100 neV, yielding
ϵγ ⪅ 10−5. When ϵγ is negative, the nonlinearity induces an
attractive potential and thus the ion is more easily confined.
A detailed mapping of the ion’s confinement within the trap
could constrain ϵγ in this case. It would be interesting to
analyze data from current ion trap experiments to probe ϵγ
in this case and we leave this possibility for future work.

Similarly, in nuclear physics, it can be verified that the
self-interaction causes a state of total angular momentum L
to mix with states of total angular momentum L� 2n
(where n ⊂ Z) as long as L ≠ 0. This mixing would lead to
enhanced decay of isomers such as 180mTa that are
stabilized by high angular momentum. But, the decay rate
due to nonlinear effects is suppressed by the spread of the
nuclear wave function in the gas or material and thus no
useful limit can be extracted from the lifetime of such
states.
The fact that nonlinear quantum effects can persist in

macroscopic bodies even in the presence of decoherence
suggests that these superpositions would be the natural way
to probe the gravitational nonlinearity ϵG. But, to realize
this possibility, a macroscopic superposition needs to be
created. There are straightforward ways of engineering
such a superposition and, as we discuss in Sec. V, these can
be used to experimentally probe ϵG. But, we are not aware
of any current experimental data from human-made sys-
tems that can be used to constrain ϵG. It is also the case that
the quantum spread of the wave function of natural bodies
whose gravitational effects are well understood are small—
this is not a surprise since such bodies have a large mass
and single quantum events, without the intervention of
human engineering, do not backreact significantly on the
positions of these macroscopic bodies. For example, a
natural source of the spreading of the wave functions of the
Sun or the Earth is the radiation (thermal or particle
emission) from these objects. We estimate that in the
lifetime of the universe, these effects cause the wave
functions of the Sun and the Earth to spread by no more
than ⪅ 10−11 km, a distance that is too small to be of
observational importance. It thus appears that the only
limits on ϵS and ϵG are theoretical ones, requiring them to
be smaller thanOð1Þ so that we may describe these systems
using perturbative techniques and our extension is well
defined.
All of the above limits on the various ϵ parameters are

assuming a classically evolved universe (i.e., N ¼ 1), but
really should be considered bounds on ϵ̃ ∼ ϵ=N. In the
quantum universe, N ≠ 1, we first consider bounds that
arise from sources in our universe. In this context, we can
robustly constrain the quantity ϵγ=N from stellar energy
loss arguments. The physical location of a star in our
universe is likely to be a part of empty space in the other
universes and thus time-dependent expectation values of
sources in the stellar interior can excite particles in other
universes leading to energy loss. Using standard astro-
physical results on stellar energy loss, we get ϵγ

N ⪅ 10−13

[22], thus rendering stronger bounds in this case than
terrestrial ones.
We now consider the case where the expectation value of

the full quantum state affects the evolution of objects in
our universe. When we have a large number N → ∞ of
universes in the full quantum state, we can only expect

6The actual limit requires detailed knowledge of the setup—we
perform a conservative, order of magnitude estimate.
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homogeneous effects to persist. Unlike any other quantum
field, the metric is expected to have a nonvanishing
expectation value in every quantum state. Moreover, since
the total energy density in all these quantum states is
positive, the expectation value of the metric across the
entire quantum state will not average down to zero—it may
at worst get diluted to the nonzero flat space metric.
A strikingly N-independent bound could potentially be
placed on ϵG in this scenario. This is because (for example)
the Schwarzschild metric of an astronomical body will be
polluted with a nearly locally flat metric from the rest
of the wave function (where no spherical body exists). We
defer a complete discussion of this possibility for future
work.
Note, these bounds on the quantum universe scenario are

invalid when N ¼ 1 (classically evolved universe) because
energy cannot be lost from the interior of a star to another
part of the wave function if a star is located at the same
place in every universe, and metrics are not changed for the
same reason.

V. EXPERIMENTAL OPPORTUNITIES

In this section, we highlight various experimental pro-
tocols and noise mitigation strategies that could be used to
probe these nonlinearities. In a companion paper, we
present fully developed experimental proposals with sen-
sitivity estimates. The cosmological sensitivity of the
nonlinearity necessitates different experimental strategies.
Accordingly, we consider two possibilities—a classical
universe where the observed world has significant overlap
with the total wave function of the universe and an
inflationary quantum universe where the universe is in a
superposition of states which all have the same statistical
properties.
Given the fact that quantum mechanics underlies the

basic laws of nature, one may wonder if a classical universe
is ever possible. Naively, one could expect quantum
phenomena to result in runaway dynamical behavior that
would place the universe in vastly different structures. But,
there are good reasons to think that the world could be
classical. While it is possible to engineer single quantum
events to dramatically alter the behavior of macroscopic
systems (as we propose to do in the following experimental
protocols), there is reason to be skeptical that such events
occur naturally. Suppose one needs to affect the state of ∼n
atoms to significantly alter the behavior of a macroscopic
system. It is not unreasonable to expect n⪆Oð10–100Þ (as
opposed to n ∼ 1). The macroscopic system is then
governed by the average behavior of these n atoms. The
quantum-mechanical random spread in this distribution is
rapidly suppressed with n. The evolution is dominated by
that of the expectation value which evolves in a determin-
istic and classical way. Interestingly, it is possible that n ∼ 1
for biological systems and we comment about this pos-
sibility in Sec. VA 3.

The quantum cosmology case could be considerably
more complicated than the inflationary scenario considered
here with the superposition involving states that do not look
anything like our universe at all. But some of the generic
strategies outlined in the quantum case are likely to be
useful in probing these broader scenarios as well.

A. Classical universe

In a classical universe, there is the potential to probe
nonlinear quantum mechanics via pristine atomic systems
and through persistence of nonlinear effects in macroscopic
superpositions. We describe these in the following and then
address the problem of “quantum pollution,” a potentially
worrying fact about preserving these nonlinearities given
their fickle nature.

1. Atomic systems

The electromagnetic self-interaction term ϵγ can poten-
tially be probed via single-ion interferometry. Take an ion
and place it in a spatial superposition with the ion being at
location x1 with probability p and x2 with probability
1 − p. Now, hold the ion at those locations for a time T.
The nonlinear interaction will induce a relative phase shift
between these two paths. Such a phase shift is absent in
quantum mechanics. Importantly, this nonlinear phase shift
depends on the intensities p and 1 − p of the wave
functions at the two positions x1 and x2. This is unlike
the case in quantum mechanics where the phase difference
between two arms of an interferometer is independent of
the intensity of the arms. In a single-ion system, phase
differences arise due to background noise. But, by using the
fact that the nonlinear signal depends on the intensity of the
arms while the noise does not, it should be possible to
engineer differential measurements that can robustly probe
this effect. In fact, it is possible that data from current ion
experiments could already place limits on these arm
intensity-dependent effects leading to bounds on ϵγ that
are more stringent than the Lamb shift measurements
described above. But, it is clear that a dedicated setup
will offer a sharper probe. To obtain the maximum signal, it
is advantageous to place the two arms of the ions as close as
possible but without overlap in the respective probability
densities. Note though that the estimated spread in the wave
function of the Earth due to the emission of radiation limits
the closest distance the ions can be brought together to
around ∼10−11 km ¼ 10 nm. The signal also grows lin-
early with the interrogation time of the experiment.

2. Macroscopic superpositions

The persistence of nonlinear interactions even in the
presence of decoherence enables the dramatic possibility of
using macroscopic systems to test this theory. Consider the
following protocol. Depending upon the outcome of a
single quantum event (such as a spin measurement),
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we perform dramatically different macroscopic operations.
In conventional quantum mechanics we will end up in
different worlds with the respective outcomes. In each of
those outcomes, we can now test for the existence of the
“otherworld” by suitable sensors. In the followingweoutline
a few experimental concepts to test various interactions.
(1) Place a magnetometer next to a coil of wire that

initially has no current through it. Place the system in
a macroscopic superposition by measuring the out-
come of a spin measurement. For example, suppose
we measure a spin-1=2 system. If we measure spin
up, we turn on current into the coil. If we measure
spin down, we leave the wire undisturbed. Then we
measure the magnetic field in the magnetometer and
see if there is an unexpected change in the magnetic
field arising as a result of the current that was turned
on in the other world. Electric systems in this vein
may also be similarly constructed. This setup can be
used to probe ϵγ . This protocol could be implemented
in an experimental setup such as Cosmic Axion Spin
Precession Experiment [23].

(2) The gravitational coupling ϵG can potentially also be
probed by using a protocol similar to the one
proposed above. Consider an accelerometer, which
could be an optical or atomic interferometer, and a
large movable mass. Place the system in a super-
position by a spin measurement. If we get spin up, we
move the mass near the accelerometer. If we get spin
down, wemove it away from the accelerometer. In the
case where we observed spin down, the accelerometer
can be interrogated to probe the existence of the world
where the spin was measured to be up.7 This protocol
could be implemented in an experimental setup such
as Mid-band Atomic Gravitational wave Interferom-
eter Sensor [25] or Laser Interferometer Gravitational
Wave Observatory (LIGO)/VIRGO.

(3) In both of the systems considered above, it might
also be possible to devise resonant systems that
would boost the signal. If the measuring devices
were resonant at a certain frequency, in all the cases
where the spins were measured to be up, the
macroscopic objects (currents, charges, masses)
can be moved at the resonant frequency of the
measuring device, amplifying the effect of the
communication between these worlds.

(4) To probe shorter-range interactions such as QCD (and
the weak interactions), one might choose to place
material in the pathway of a beamdepending upon the
outcome of a spin measurement. One could look for
the anomalous scattering of the beam in the world

where the material was not placed in the beam’s path,
the origin of the scattering being the material that was
along the beam’s path in the other world. These
phenomena could be tested in beam-dump experi-
ments [26]. These kinds of measurements can also be
performed using coherent electromagnetic sources
such as lasers and microwaves, for example, in
experiments such as Any Light Particle Search [27].

In all of the above cases, the experiments can be trivially
modified to ensure that the effects are discovered in both
parts of the macroscopic superposition. For example, in the
case of the magnetometer experiment, we could have two
well-shielded coils with magnetometers in each of them.
Depending upon the outcome of the spin measurement, the
experimentalist can turn on the current in one coil and
measure the magnet field in the other coil.

3. Evolutionary dilution?

It is conceivable that while the large-scale structure of the
universe and the solar system are classical, significant
quantum spread could have occurred in the evolution of
biological systems. For example, it is conceivable that
single quantum events may have had enormous impact on
evolutionary dynamics, e.g., the original formation or
stability of RNA or mutations triggered by radioactive
decays. In this scenario, it is possible that the formation of
life on Earth has low probability and that in most of the
wave function of the universe, there is no life on Earth. It is
also possible that there are multiple biological civilizations
that are currently coexisting on the Earth, all of them
witnessing the same macroscopic classical universe. In
these cases, the macroscopic effects discussed above will be
suppressed due to the small overlap of the experiment with
the rest of the wave function.
The following protocol could be used to detect non-

linearities in the case of evolutionary dilution. One may
construct a shielded room and place a radio telescope inside
this room and use it to try and detect bright coherent
astronomical radio sources. If evolution had led to signifi-
cant spread in local dynamics on the Earth, the shielded
room would not be present at that spatial location in most of
the wave function. But, in a classical world, the astro-
nomical source will be identical across the entire wave
function and thus lead to an unsuppressed expectation value
of the electromagnetic field at that spatial point. The
nonlinear coupling would allow the radio telescope to
detect this expectation value without being suppressed by
the local spread of the wave function. Another possible
probe of this scenario is to try and measure the coherent
magnetic field of the Earth inside a shielded room. The
shield would not exist at the same spatial location in the rest
of the wave function, leading to a signal inside the shield.
The fact that the Gravity Probe B experiment successfully
created magnetic shielding at the level ∼100 nG [28] level
implies a bound of ϵγ ⪅ 10−7 in this scenario.

7An experiment along these lines was suggested in [24] to see
if gravitation was “quantum” or “classical.” In our work, we
highlight the fact that this need not have a binary answer—a
deformation of quantum mechanics permits all fundamental
forces to have both quantum and classical behavior.
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Interestingly, if such effects were to be observed, not
only would we have discovered nonlinear quantum
mechanics but we would also have unprecedented access
to evolutionary dynamics. Intriguingly, in this case even
though evolutionary dynamics dilutes the local nonlinear-
ity, it might be possible for human engineering to recover
the full nonlinear effect. One may for example consider
game theory scenarios similar to those used by search for
extra-terrestrial intelligence to search for extraterrestrial
intelligence to send signals to other civilizations that may
quantum-mechanically coexist on the Earth. If sufficiently
many of them had also discovered nonlinear quantum
mechanics, it may be possible to communicate between
these branches of the wave function (using game theory
scenarios, for example, using frequencies and locations of
coherent astronomical sources) to coherently restore the
possibility of exploiting quantum nonlinearities. For exam-
ple, a number of civilizations could conceivably agree to
pick fixed locations on the Earth to create coherent
electromagnetic fields that may then be exploited as a
community resource.

4. Quantum pollution

The nonlinearity is sourced by the expectation values of
various operators and it is thus dependent on the behavior
of the entire quantum state. Even in a hitherto classical
world where single quantum events have not significantly
changed the nature of the quantum state near the observer,
there is always the potential that such changes could be
caused due to the ease with which the world can be placed
in macroscopic superpositions. These changes could
dramatically suppress the ability to detect and preserve
quantum nonlinearities.
To illustrate this worry, suppose an experimentalist A

performs the magnetometer experiment and discovers this
effect. The results are announced and experimentalist B
wants to test these results. Suppose it was the case that A’s
initial spin measurement was set to return spin up (down)
with probability 0.5 (0.5). This implies that the universe is
now in a quantum superposition. B is entangled with these
two states of A. When B tries to repeat this experiment in B’s
laboratory, unless both versions of B in this entangled state
have current in their coil turned on at the same time, the
effective magnetic field that could be detected by B would be
lower than the corresponding effect seen by A. It is
conceivable that these two entangled states of B may choose
to turn on current in their coils at different times since it is not
unreasonable that the discovery of such an effect could result
in single quantum events dramatically altering macroscopic
behavior even in an otherwise classical world. To mitigate
this risk, we suggest the following protocols.
(1) The initial macroscopic split by using the spin

measurement need not be 0.5. It is likely prudent
to sacrifice sensitivity and preserve the effect. One
could then set up the initial spin measurement so that

it returns spin up with a probability p ≪ 1 and spin
down with probability 1 − p. In this case, the initial
signal is smaller by p and would thus require a more
sensitive instrument to detect. However, this protects
the nonlinearity since the initial split can be repeated
without significantly changing the wave function.
Indeed, for this reason, it would be wise to operate in
the regime p ≪ 1 even when A is trying to search
for the nonlinearity.

(2) It would be advantageous to run experiments for
sufficiently long periods of time so that there is the
improved possibility of overlap between the differ-
ent versions of B.

(3) The dilution of the nonlinearity can also be de-
creased by communicating between different parts
of the wave function. For example, if A discovers
these effects, A can use his setup as a way to
communicate between different parts of the super-
position and this communication channel can be
used by B to ensure that both versions of B agree on
experimental protocols.

(4) In the best case scenario, the experiment is set up
where both worlds will see an effect—for example,
spin measurements result in a macroscopic oscillat-
ing source of different frequencies. The nonlinear
effects will allow detection of the oscillations at both
frequencies, essentially the same result for both. In
addition, if the decision-making spin (quantum)
measurement can automatically (i.e., without active
human intervention) trigger the macroscopic source,
it may be possible for the experimentalist to see the
results in an equivalent way in either world.

B. Inflationary quantum universe

In canonical inflationary cosmology, the observed uni-
verse is in a macroscopic quantum superposition with a
large number N of other universes that all have the same
statistical properties, but are locally completely different.
Local experiments of the kind described in Sec. VA are
trying to measure the nonlinearity by directly manipulating
the expectation values of various fields. These experiments
have to contend with two suppressions—the nonlinearity
parameter ϵ and a suppression of ∼1=N from the fact that
the experiment is only performed in a tiny part of the
overall wave function. In the large-N limit, these effects
disappear, even if ϵ ∼Oð1Þ.
In this scenario, our observational strategy must hone in

on the fact that in the vast majority of the wave function,
any space-time point, x, is in interstellar space, even though
in our universe it may be inside a laboratory, the Earth, or a
star. We can thus try to detect signatures that should be
observable in interstellar space. Importantly, these observ-
ables need to source the expectation value of a bosonic field
(such as electromagnetism) to be discoverable. The follow-
ing signatures could be fruitfully pursued.
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(1) One could build a deep underground cosmic ray
proton detector. The atmospheric and terrestrial
overburden blocks cosmic ray protons from our
universe from penetrating to this underground de-
tector. But, the cosmic ray flux at the point x in the
wave function is nonzero and this flux causes a time-
dependent electromagnetic field which can excite
the underground detector. The IceCube experiment
could potentially be used to search for this possibil-
ity but it would need to be able to distinguish high-
energy neutrino events from events caused by
protons or millicharged particles.

(2) One may similarly build a well-shielded detector to
search for coherent electromagnetic waves such as
those produced by pulsars. These instruments would
be similar to current dark matter detectors such as
ADMX [29] and DMRadio [30] that are looking for
coherent dark matter waves.

(3) One might hope for a signal from the dominant
source of cosmic rays in the universe, namely the
cosmic microwave background and starlight. How-
ever, they do not give rise to these signatures. This is
because in the quantum states of these particles
hχjAμjχi is effectively zero as these are thermal
states.

In all of the above cases, the signal would average down
with the number of universes as ϵ=

ffiffiffiffi
N

p
because of their

stochastic nature. This is more favorably than the experi-
ments described in Sec. VA, but nevertheless vanishing in
the large-N limit.
The reason that the above signatures average down as

1=
ffiffiffiffi
N

p
is because of the fact that they are searching for

effects that oscillate in time faster than the Hubble scale and
are also varying in space. In an isotropic, homogeneous
background these effects are expected to average down. We
might thus expect isotropic and homogeneous effects that
evolve over cosmological timescales to survive even when
we have a large number of universes. This is indeed the
case—for example, as we discussed earlier, quantum non-
linearity in gravity would imply that an observer can detect
metric interference in this universe. The observer would
attribute this metric interference to a source of energy
density that he is otherwise unable to detect i.e. some sort of
“dark energy.” But this dark energy would have an equation
of state that tracks the cosmological energy density in the
universe. Experiments that probe the equation of state of
the universe may thus be well placed to probe these effects.
Similarly metric interference also leads to departures from
the Schwarzschild metric as discussed in Sec. IV and
manifests itself as a “long distance modification” of gravity.
Tests of strong field General Relativity may thus be used to
further probe this scenario. Moreover, as discussed in
Sec. III C metric interference also likely leads to the
creation of firewalls in black hole geometries and these
may lead to signatures in gravitational wave detectors and

the Event Horizon Telescope. We defer a detailed dis-
cussion of these effects to future work.

VI. COMPARISON WITH PRIOR EFFORTS

Nonlinear modifications to quantum mechanics have
been considered in the past and elements of our approach
have been discussed. We now describe the ways in which
we have advanced these efforts. The specific framework for
modifying quantum mechanics by incorporating state-
dependent expectation values in quantum field theory
was considered by Kibble in [7]. This work was largely
focused on the “measurement problem” and pointed out
that in scalar field theories such terms would give rise to
state-dependent corrections to the mass of a particle. But,
this work did not investigate the full scope of these
modifications. Inspired by [7], this class of modifications
was further pursued by [8–12]. These investigations
focused on developing a gauge-invariant path integral
formalism to describe gravitation and discussed experi-
mental consequences in the interference pattern of a single
particle where quantum coherence of the interfering particle
needs to be maintained. In our paper, we have shown that
gauge invariance can be incorporated in a straightforward
manner for both gravitation and gauge theories. The
experimental avenues that we pursue in this paper are
focused on nonlinear quantum effects that can be observed
in macroscopic systems even in the presence of
decoherence.
Building on the formalism of Weinberg [4], Polchinski

proposed [5] a causal, nonlinear modification of single-
particle quantum mechanics. The persistence of nonlinear
quantum-mechanical effects in the presence of macroscopic
decoherence as well as the potential for the dilution of
nonlinear effects was pointed out in [5]. In our work, the
recognition that nonlinear effects can be naturally incorpo-
rated in quantum field theory significantly changes the
experimental approach towards probing these nonlinear-
ities. It also leads to a refined understanding of the dilution
of nonlinear effects where we recognize that this dilution is
not inevitable but rather depends upon cosmic history.
Further, we also recognize that there are some cosmological
nonlinear effects that are resistant to dilution. In the
following, we elaborate on these aspects:
(1) The investigations in [5] were aimed at a general

understanding of nonlinear single-particle quantum
mechanics and thus the nonlinear observables de-
scribed were toy models that were single-particle
contact interactions. We have constructed explicit
nonlinear observables that arise from existing long-
range interactions in the theory such as electromag-
netism and gravitation. These long-range fields vastly
change the experimental approach to detecting
nonlinear quantum-mechanical effects: one may
source long-range fields from macroscopic systems
(e.g., the gravitational field of a macroscopic body)
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and use these to search for the nonlinearity. This
allows for an exciting experimental program since the
effects could in principle be large as opposed to
suppressed contact interactions.

(2) The dilution of nonlinearities is not automatic.
Nonlinear effects arise from the expectation values
of quantum fields and as long as the large-scale
behavior of the universe is classical, all nonlinear
quantum effects can be experimentally accessed and
exploited.

(3) We point out that in canonical inflationary cosmol-
ogy where quantum perturbations are the source of
structure in the universe, many nonlinear quantum
effects can be diluted. The fact that nonlinear effects
can be associated with long-range fields implies
there are astronomical and cosmological signatures
that can persist even in the presence of dilution (see
Sec. V B). Indeed, some of the most dramatic effects
such as metric interference leading to new effective
sources of dark energy in the universe and the
modification of the Schwarzschild metric persist
even in the presence of extraordinary dilution
(Sec. III C 3).

(4) In [5], the concept of measurement in nonlinear
quantum mechanics was discussed but not fully
developed. We have developed this framework
and pointed out that there is a consistent interpre-
tation of measurement phenomena in nonlinear
quantum mechanics, albeit at the expense of accept-
ing a fundamental source of error in all measurement
processes.

VII. CONCLUSION

In this paper, we have shown that field theory permits a
natural way to introduce causal nonlinear time evolution
into quantum mechanics. Surprisingly, despite the exist-
ence of pristine quantum environments such as atomic and
nuclear systems, these modifications are presently ill con-
strained. Moreover, we have also shown that any local
nonlinear modification of quantum mechanics is funda-
mentally fickle—it is highly sensitive to cosmic history and
it also has the potential to dilute itself unless proper
protocols are followed to preserve its effects. In addition,
these nonlinear effects are visible even when the quantum
system decoheres. This makes it possible to test them in a
variety of experiments, even when the underlying quantum
state has a complex cosmic history. These are the key
results of this paper.
There are several avenues for continued exploration of

these ideas. We have articulated many experimental pro-
tocols to test this scenario and it would be interesting to
develop corresponding experimental proposals. These pro-
posals should develop strategies to mitigate the potential
fallout of the “quantum pollution” possibilities inherent in
nonlinear modifications. The sensitivity of this scenario to

cosmic history makes these kinds of experiments especially
important—a positive result would not just fundamentally
overthrow the rules of quantummechanics but it would also
provide an unprecedented experimental probe into cosmic
history. For example, a positive signal in an experiment that
tests the “classical universe” scenario would show that the
entire history of the universe has been deterministic. It
would be a serious challenge to the conventional infla-
tionary paradigm—at the very least it would call for a
classical source of perturbations that produced our
universe.
Alternately, if experimental measurements, such as those

of the cosmic microwave background [31], prove the
quantum origin of structure in our universe, it would
dynamically explain the hitherto observed linear nature
of quantum mechanics. It would also highlight the impor-
tant role of cosmological measurements of the equation of
state of the universe and tests of strong field General
Relativity to search for nonlinear effects that are resistant to
such dilution. There is also a clear case to explore the role
of nonlinearities during inflation itself. If quantum non-
linearities in either the inflaton or in gravitation are
significant, it is possible that the many distinct universes
that are typically produced in inflationary cosmology may
significantly influence each other’s evolution resulting in a
very different quantum state than conventionally assumed.
Smaller nonlinearities could result in interesting non-
Gaussian structures where one might see a collision
induced in the sky from a particle emerging from another
universe, similar to the cosmic ray experiments proposed
by us.
The implications of discovering nonlinearity in quantum

mechanics are momentous. It allows for a rewrite of the
fundamental rules of physics. We have seen that these
nonlinearities allow for entirely new causal behavior (such
as quantum wormholes) and permit new phenomena in
General Relativity (via metric interference) which may help
solve the black hole information problem. It would also
provide a useful theoretical tool to study strong gravity
wherein one may conceive of observers who are colocated
in a weakly gravitating parallel universe to probe the
physics of strong gravity. The possibility that quantum
mechanics itself could be nonlinear raises important ques-
tions about the pursuit of the ultimate theory of nature that
unifies quantum field theory with gravitation. These efforts
are currently pursued based on the assumption that linear
quantum mechanics holds to arbitrary energy. As we have
seen, modifications of quantum mechanics can dramati-
cally alter the behavior of physical systems and these
modifications can be field dependent. Without experimen-
tal knowledge of these facts, it is difficult to see how purely
mathematical pursuits of the ultimate theory of nature could
result in a unique solution.
There are remarkable technological implications as well:

the key advantage offered by quantum computers is their
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ability to use superpositions to implement multiple com-
putations in parallel. In linear quantum mechanics, this
advantage can be realized only if the system is able to
retain quantum coherence despite the presence of the
environment—a task that has proven to be challenging.
The nonlinear effects described by us would permit
communication between different parts of this superposi-
tion. One may use a quantum event to place a classical
computer into a superposition, run a parallelized algorithm
on the classical computer in these different worlds and then
communicate the results of the computation using the
nonlinearity. While this parallelization realizes some of
the benefits of a quantum computer, it does not achieve the
full promise of a quantum computer. Unlike linear quantum
mechanics, the nonlinear effects decrease when the system
is placed into a larger superposition. Thus, communication
of the result of the computation across the entire wave
function requires more energy. There is thus a trade-off
between computation and the energy needed to commu-
nicate the results i.e., the power of the protocol increases
with the number of times the wave function is split but this
also diminishes the overall strength of the nonlinearity. The
diminished strength can be compensated for by creating
more energetic sources to communicate the nonlinearity.
This trade-off between information and energy is useful
since the energy necessary for these purposes can be
produced by brute force methods (e.g., a power plant) as
opposed to the cost associated with computing (e.g., a
supercomputer). But, the diminished strength of the non-
linearity fundamentally implies that this protocol cannot
solve non polynomial time problems without a prohibitive
increase in the energy associated with communicating the
result. This is unlike the case of linear quantum mechanics
where the linear effects do not decrease as the system is
placed in a large superposition.
These benefits extend beyond just computing—

nonlinearities can also revolutionize quantum sensing.
For example, the fundamental quantum limit on a sensor

is set by shot noise. This shot-noise limit can be vastly
improved by exploiting the nonlinearity. Suppose we have a
spin 1=2 system where the spin is in the state jSi ¼ αjUi þ
βjDi and we want to know the coefficients α and β. We can
now measure the spin in the bases jUi and jDi which
would place the universe in the superposition αjUijMUi þ
βjDijMDi, where jMU;Di are states of the measuring
device. In both universes, we now turn on a laser of fixed
power and we now try to detect the laser from the other
universe. Since the strength of the nonlinearity depends on
α and β, by measuring the available power, we infer α and
β. Interestingly, this phenomenon permits the inference of
the full quantum state with a single measurement as
opposed to the repeated measurements necessary in linear
quantum mechanics. It thus provides an independent
realization of the “Born rule.”
Most stunningly, nonlinearities would also make it pos-

sible to parallelize large-scale human efforts whose purpose
is the discovery of information. For example, one may
parallelize the search for natural resources. Suppose there
is a natural resource in a large area. We may divide the area
into a number of individual blocks. We can then appropri-
ately split the wave function of the universe. In each part of
the wave function we only search for the resource in a
particular block. Upon discovery of the resource, the
information can be transmitted across the rest of the wave
function using the nonlinearity. Given these mind-blowing
implications and the relatively straightforward experimental
program that could be pursued to discover these effects, we
believe there is a very strong case to explore this paradigm.
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