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Quasi-positive curvature on Bazaikin spaces
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Abstract We completely characterize the sectional curvature of all of the 13-
dimensional Bazaikin spaces. In particular, we show that all Bazaikin spaces admit
a quasi-positively curved Riemannian metric, and that, up to isometry, there is a
unique Bazaikin space which is almost positively curved but not positively curved.
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1 Introduction

Given a 5-tuple of odd integers § = (g1, ...,¢5) with ged(qi,...,¢5) = 1, one can
define an action of Sp(2) x S* on SU(5) as follows. Given (A + Bj) € Sp(2) with
A and B complex 2 x 2 matrices, z € S*, and C € SU(5), we have

—1

A BO
(A+ Bj, z) * C = diag(z%,...,2%)C |-BA 0 ,
0 0217

where ¢ = > ;.
As is well known, the above action is effectively free if and only if

gcd(qo(1) + 9o (2)s 9o (3) + do(a)) = 2

for every o € Ss. If ¢ = (qu, ..., g5) verifies this condition, the orbit space, denoted
Bg is a smooth manifold called a Bazaikin space.

Bazaikin spaces were introduced by Bazaikin [2], where he showed an infinite
family of them admit Riemannian metrics of positive sectional curvature. Specifi-
cally, beginning with a bi-invariant Riemannian metric (-, -)o on SU(5), he Cheeger
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deformed it in the direction of U(4) C SU(5) obtaining a left SU(5)-invariant, right
U(4)-invariant metric (-,-)1. The above action is isometric with respect to (-, )1,
so there is an induced metric (-, -) on Bg. We will refer to this metric as the natural
metric on By.

With respect to the natural metric, much is already known. First, since bi-
invariant metrics have non-negative sectional curvature, and curvature is non-
decreasing along Riemannian submersions [12], it follows that every Bz has non-
negative sectional curvature. In addition, By has positive sectional curvature at
every point if and only if all sums g¢; + g; for every distinct 4,j are positive, or
they are all negative [2l4]. Apart from the 7-dimensional Eschenburg spaces [T16],
these form the only known infinite family of positively curved spaces in a fixed
dimension.

In addition, Kerin [I0] has shown that if four of the ¢; have the same sign, then
Bg is quasi-positively curved and that By for g = (1,1,1,1, —1) is almost positively
curved. Recall that a Riemannian manifold is called quasi-positively curved if it
has non-negative sectional curvature and it has a point for which the sectional
curvature of all two-planes at that point is positive. A Riemannian manifold is
called almost positively curved if the set of points with all two-planes positively
curved is open and dense.

Our main result characterizes the sectional curvature of all Bazaikin spaces
with respect to the natural metric.

Theorem 1.1 Suppose By is a Bazaikin space with metric (-,-) as described above.
Then

— Bg is quasi-positively curved if and only if the 5-tuple q is not a permutation
of £(1,1,1, -1, -3).

— Bg is almost positively curved if and only if it is strictly positively curved or
the 5-tuple G is a permutation of £(1,1,1,1, —1).

As shown in [7], the diffeomorphism type of By is unchanged by replacing any
one ¢q; with — 25:1 qe. Thus, we observe that the unique Bazaikin space whose
natural metric has zero-curvature planes everywhere is diffeomorphic to the unique
Bazaikin space whose natural metric is almost positively curved but not positively
curved.

Corollary 1.2 Up to diffeomorphism, every Bazaikin space admits a metric of
quasi-positive curvature.

The outline of this paper is as follows. Section [2| contains more detailed back-
ground on Bazaikin spaces, their geometry, and their topology. Section [3] begins
with a proof that, apart from § = (1,1,1, —1, —3), every Bazaikin space is quasi-
positively curved. The remainder of Section [3| is devoted to the construction of
an open subset of By with zero-curvature planes under the assumption that the
quantities g; 4+ ¢; can be both positive and negative. Having accomplished this,
the proof of Theorem is an easy consequence.
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2 Background
2.1 Cheeger deformations

We begin with the background information on Cheeger deformations of biquo-
tients. Biquotients are defined as follows: given a compact Lie group G, any closed
subgroup H C G x G naturally acts on G via (h1,h2) * g = hlghQ_I. When the
action is effectively free, the orbit space is denoted by G/ H and is called a biquo-
tient. For more detailed background on biquotients, see [G].

Cheeger deformations, introduced by Cheeger [3], are metric deformations
which tend to increase curvature at the expense of symmetry.

In more detail, suppose G is a compact Lie group and K C G is a closed
subgroup. If (-,-)o is a fixed bi-invariant metric on G, then one can consider the
Riemannian metric (-,-)o + ¢(-,-)o|x on G x K where t € (0,1) is some fixed
parameter. Then K acts isometrically on G x K via k * (g,k") = (gk~ ', kk’) and
hence the quotient (G x K)/K inherits a Riemannian metric. The G x K action
on (G x K)/K given by (g,k) * [(¢/, k)] = [(g¢’, K’k )] is isometric. The map
(9,k") — gk’ € G descends to a diffeomorphism (G x K)/K — G and under
this diffeomorphism the induced G x K action on G is simply by left and right
multiplication. Hence, we induce a metric (-, -)1 on G which is left G-invariant and
right K-invariant, the so-called Cheeger deformation of (-,-)o in the direction of
K. Asin, e.g., [10, Section 1], one can compute that (-,-)1 = (-,-)ols + 757 (-, -)ole
where £ C g denotes the Lie algebras of K and G and where p is the (-, -)g-orthgonal
complement to ¢ in g. From O’Neill’s formula for a Riemannian submersion [12]
together with the well-known fact that (-, -)o is non-negatively curved, it follows
that (-, -)1 is also non-negatively curved.

If H C Gx K, then H acts on (G, (-,-)1) isometrically via (h1, h2)*g = highy '
When this action is effectively free, the biquotient G/ H, inherits a Riemannian
metric (-,-) from (-,-)1. Again, via O'Neill’s formula [12], we see that G/ H is
non-negatively curved. Further, any zero-curvature plane o C T}, G/ H must lift
to horizontal zero-curvature plane in (G x K, {-,-)o + t{-,)0), and zero-curvature
planes in this latter space are well understood. We also note that while, in principle,
O’Neill’s formula allows a horizontal zero-curvature plane in G x K to project to
a positive curvature plane in G/ H, Wilking and Tapp [14][13] have shown that in
the special case considered above, this does not occur.

For the duration of the paper, we set
G=SU(),K =U(4), H=Sp(2) x S*
where K is embedded via
k — diag(k,det k),

and where H is embedded into G x K C G x G via
A 0
(A+ Bj, z) — [ diag(z?,...,2%), | -B A 0
0

o W

24

Here, each ¢; € Z, ged(q1,...,q5) =1, and ¢ = Y ¢;.
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As is well known, the induced biquotient action is effectively free (with kernel
generated by (—1,1)) iff all ¢; are odd and

gcd(qo(1) + 9o (2)s 9o (3) + do(a)) = 2

for all permutations o € Ss.

Setting § = (q1, g2, g3, 4, ¢5), when this condition is met, the quotient space is
naturally a smooth manifold, called a Bazaikin space, and denoted by Bg

It is clear that replacing § with —G determines an equivalent action. We there-
fore can and will always assume at least three g; are positive, motivating the
following definition.

Definition 2.1 An element § = (g1, ...,q5) € Z° is called admissible if

— All ¢; are odd,
— gcd(qo(1) + Go(2), 4o (3) + Qo(a)) = 2 for all o € S5, and
— at least three ¢; are positive.

We use the bi-invariant metric whose value at the identity I € G is (X,Y)o =
—ReTr(XY) with X, Y € T1G. We recall that the induced metric on By is referred
to as the natural metric.

We note that, strictly speaking, H is not a subgroup of SU(5) x SU(5), but
rather, is a subgroup of U(5) X Ny (5)(K) where Ny (5)(K) denotes the normalizer
of K in U(5). However, the biquotient action of H on U(5) preserves SU(5) and
acts isometrically. Hence, all of the above still applies in this slightly more general
case.

Given an admissible g, it is well known that one can modify the ¢; to obtain
diffeomorphic biquotients. We summarize these allowable modifications in the fol-
lowing proposition.

Proposition 2.2 Suppose q is admissible.

— The biquotients Bg and B_g are isometric when equipped with their natural
metrics.

— If7 is any permutation of q, then the biquotients Bg and By are isometric when
equipped with their natural metrics.

— If 7 is obtained from q by replacing one q; with —Z?zl qe, then Bz and By
are diffeomorphic, but, in general, are non-isometric when equipped with their
natural metrics.

Proof For the first claim, simply note that the corresponding actions of Sp(2) x S*
have the same orbits.

For the second claim, because the metric is left invariant, it follows from [5]
Proposition 2.2(2)] that it is sufficient to show that diag(z%, ..., 2%%) is conjugate
(in SU(5)) to diag(z™,...,2"). To that end, let 0 € S5 be the permutation with
4oy = ri- If P € U(5) denotes the permutation matrix whose action on the
standard basis is by o, then the element

0 P if detP =1
" | Pdiag(-1,1,1,1,1) if detP = —1

is in SU(5), and Q diag(z?", ..., 2%5)Q ™! = diag(z", ..., 2™).
For the last claim, see [8, Section 1].



Quasi-positive curvature on Bazaikin spaces 5

As mentioned previously, Bazaikin spaces have been extensively studied and, as
such, conditions controlling curvature are well understood. For example, based on
work by Dearicott and Eschenburg [4], Kerin [I0, Lemma 3.1, Lemma 3.2] proves
the following.

Proposition 2.3 Suppose § = (q1,...,q5) is admissible. For A = (A;;) € SU(5),
there is a zero-curvature plane at the point [A] € By if and only if at least one of
the following two conditions is satisfied:

5 5
S ae=> |Awia (2.1)
=1 =1
5
0="> (I(Ah)ea|* + [(Ah)eal*)qe (2:2)
=1

for some h € Sp(2) C SU(5).

This proposition will be key to proving Theorem [[.I] However, before proving
Theorem we take a brief digression on the topology of Bazaikin spaces.

2.2 The topology of Bazaikin spaces

In [8], Florit and Ziller compute the topology of Bz. In order to describe their
results, it is convenient to define g6 := —(q1 + g2 + g3 + g4 + g5). Note that, from
Proposition the Bazaikin spaces corresponding to a 5-tuple made by deleting
one entry of (qi,...,q6) are all diffecomorphic. Using the shorthand o; to denote
oi(q1,42,43,44,45,q6), the elementary symmetric polynomial of degree ¢ in the
variables g;, they prove:

Theorem 2.4 (Florit-Ziller) For a Bazaikin space Bz the cohomology ring is
determined up to isomorphism by H®(Bg) = Zs with s = 03/8. Further, there is
an isomorphism H*(Bg) = 7 which identifies the first Pontryagin class p1(Bg) of
By with —o2 € Z.

Florit and Ziller prove that 03/8 € Z and they also note that —o2 = % Z?zl ¢z,
so a given value of p; can only occur for finitely many Bazaikin spaces.

Below, we shall prove that all Bazaikin spaces admit quasi-positively curved
metrics. Previously, this was only known for the subset for which at least four of
(q1,..-,q5) are positive. We now show that new topological types appear among
this enlarged class of quasi-positively curved Bazaikin spaces.

Proposition 2.5 The Bazaikin space By with ¢ = (7,1,1,—3, —3) is not homeo-
morphic to any Bazaikin space B with four entries of 7 = (r1,...,75) positive.

Proof Suppose ¥ = (r1,...,r5) is admissible and set r¢ := — Z?:1 r¢. Assume that
Bg is homeomorphic to Br. We will first show that 7 must be related to g via the
operations in Proposition [2.2

Using Theorem one easily computes that p1(Bg) = 39. Novikov [II] has
shown that the rational Pontryagin classes are homeomorphism invariants, so we
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must have p1(Br) = 39 as well. We will show that there is precisely one other
diffeomorphism type of Bazaikin space with p; = 39: when (r1,...,7¢) is a permu-
tation of the 6-tuple (5,5, —3,—3,—3,—1). However, in this exceptional case, the
order of H® will distinguish them.

Since p1(Br) = 39, we find

6
8= ri. (2.3)
=1

Obviously each r; is bounded above by L\/%J = 8. Since each 7; is odd, we
have |r;| < 7. In addition, we must obviously have at least one |r;| > 5.

Thus, by reordering the r; and replacing 7 by —7 if necessary, we may assume
r1 € {5, 7} has the largest absolute value of all the r;. In addition, we assume that
|7‘1‘+1| S ‘Tz‘ fOI" all <.

Assume initially r1 = 7. Then, it follows from Equation that |r2| € {3,5}.
If |r2] = 5, it is easy to see (|ri]) = (7,5,1,1,1,1). The only choice of signs that
satisfies > r; = 0is (7,—5,1,1,—1,1). But then ged(rs + r5,71 +13) =8 > 2, so
this is not admissible. If |rz| = 3, then it is easy to see that (|r;]) = (7,3,3,3,1,1).
Here, the only choice of signs which satisfies > r; = 0 is (7,-3,—-3,-3,1,1).
Deleting a —3 gives Bg above. This concludes the case where r1 = 7.

So, next assume 71 = 5. Since 5 - 3% < 78 — 25, and |ra| < 71, it easily follows
that |r2| = 5. From here, it is easy to see that there are precisely two possibilities
for (|r;]) : (5,5,5,1,1,1) and (5,5,3,3,3,1). In the first case, there is no way to
assign signs to make the sum zero. In the second case, the unique way to do so
is as (5,5,—3,—3,—3,—1). One can check that —(5,5, -3, -3, —3,—1) is, in fact,
admissible.

Using Theorem [2.4] again, one easily computes that

lo3(7,—3,—3,-3,1,1)| = 88 #£ 56 = |03(5,5,—3,—3, -3, —1)|,

so these two examples cannot be homotopy equivalent.

From Proposition @ we therefore conclude that if Bg is homeomorphic to B,
then (r1,...,76) is, up to sign, a permutation of (7,—3,—3,—3,1,1). Since both
+(7,—-3,—3,—3,1,1) consists of three positive and three negative entries, no such
choice of 7 can have 4 r; of the same sign. O

Apart from Bazaikin spaces, the only known 13-dimensional simply connected
manifolds admitting quasi-positively curved metrics are diffeomorphic to S 18 a
circle quotient of S7 x S” [9], and TS, the unit tangent bundle of S° [14]. These
spaces have the rational cohomology groups of '3, CP3x S7, and S'? respectively.
Since every Bazaikin space has the rational cohomology groups of CP? x S every
Bazaikin space is homotopically distinct from these three examples. Thus, the
space Bz of Proposition[2.5is not homeomorphic to any previously known manifold
admitting a metric of quasi-positive curvature.

Lastly, we remark that Florit and Ziller [8] have written a computer program
which analyzed over a billion Bazaikin spaces. They found that the invariants of
Theorem rarely match for distinct Bazaikin spaces. This seems to suggest that
our enlarged class of quasi-positively curved Bazaikin spaces contains infinitely
many homeomorphism types distinct from those previously known to admit quasi-
positively curved metrics. However, we were unable to prove it.
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3 Metric properties of Bazaikin spaces

In this section, we begin by showing that the natural metric on all Bazaikin spaces
is quasi-positively curved, except for permutations of ¢ = (1,1,1,—1,—-3). We
then show that this exceptional Bazaikin space, in fact, has zero-curvature planes
at every point. The second subsection contains the proof that apart from the
previously known examples admitting strictly positive or almost positive sectional
curvature, none of the remaining examples are almost positively curved.

3.1 Quasi-positive curvature

The goal of this subsection is to show that the natural metric on Bz is quasi-
positively curved, except when g is a permutation of (1,1,1,—1,—3). We begin
with the key property which sets (1,1,1, —1, —3) apart from all other admissible
5-tuples.

Lemma 3.1 Suppose § = (q1,...,q5) is admissible. If § is not a permutation of
(1,1,1,—1,-3), then there are distinct a,b,c,d € {1,2,3,4,5} such that qqs + q»
and qc + qq are either both positive or both negative.

Proof 1If at least four of ¢ = (g1, ..., ¢g5) are positive, say g1, g2, q3, g4 > 0. Then one
can take (a,b,c,d) = (1,2,3,4).

Thus, we may assume q1, g2, and g3 are positive and g4 and g5 are negative. If
at least one of |gal,|gs| is less than at least one of q1, g2, g3, say |qa| < g1 without
loss of generality, then one can take (a,b,c,d) = (1,4,2,3).

Thus, we may assume both |qa|, |¢s| are greater than or equal to all ¢1, g2, ¢3.
If both |g4l,|gs| greater than each of ¢i,g2,q3, then one may take (a,b,c,d) =
(1,4,2,5).

So, we may assume that equality occurs; say |g4| = g1 without loss of generality.
Since g1 + qa = 0, 2 = ged(q2 + ¢3,q1 + q4) implies g2 + g3 = 2, that is, that
g2 = g3 = 1. Likewise, 2 = ged(q2 + g5,91 + g4), which then implies g5 = —3.
Recalling that |gs| > |q1], this implies ¢1 € {1, 3}, giving rise to (1,1,1,—1,—3)
and (3,1,1,—3,—3). In the latter case, one can take (a,b,c,d) = (2,4, 3,5).

O

We need one additional lemma on the structure of elements of Sp(2) C SU(5).

Lemma 3.2 For any h = (hi;) € Sp(2) C SU(5) with 1 < 4,j < 4, we have
|hia| = |hja| whenever |i—j| = 2. In addition, given any vector v € ST C C*, there
is an element h € Sp(2) C SU(5) for which v comprises the first four entries of
the second column of h.

Proof The first statement is obvious because the entries of A and A have the same
length, as do the entries of B and —B. The second statement is an immediate
consequence of the fact that the standard representation of Sp(2) on H? 2 C* acts
transitively on the unit sphere: because this action is transitive, there is an element
h € Sp(2) for which h(0,1,0,0)* = v. But h(0,1,0,0)" is the second column of h.

O
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We can now show that, apart from permutations of (1,1,1,—1,—3), that all
Bazaikin spaces are quasi-positively curved.

Theorem 3.3 Suppose § = (q1,...,q5) is admissible. If § is not a permutation of
(1,1,1,—1, =3), then the natural metric on By is quasi-positively curved.

Proof Suppose ¢ = (qi1,-..,q5) is admissible and that g is not a permutation of
(1,1,1,—-1,-3). Then by Lemma there is a four element subset {a, b, c,d} C
{1,2,3,4,5} for which ¢, + g» and gc + ¢4 have the same sign. Since permuting the
q; gives isometric Bazaikin spaces, we may reorder § = (q1, ..., ¢5) so that g1 + g3
and g2 + g4 have the same sign.

By Proposition we need only find A € SU(5) for which neither Equa-

tion (2.1)) nor Equation ([2.2)) is satisfied. In fact, we can take A = I, the identity
matrix. Then, Equation ([2.1]) becomes

Q1 +q2+93+ 94+ g5 = gs,

which is not satisfied since ¢1 + ¢3 and g2 + g4 have the same sign.
Now, suppose h € Sp(2) C SU(5) is arbitrary. As Ah = h, Equation (2.2)
becomes

5
0="> (lheal? + [heal*)ge.
=1
From Lemma [3.2) we know |hi2? = |haa|?, [h1a]? = |hs2|?, |ho2|® = |haal?,
|h24|? = |haz2|?, and |hs2| = |hsa| = 0. Therefore, Equation (2.2)) becomes
0= ([hz2|* + [P1a]*) (g1 + g3) + (|h22|* + [h2a]*) (g2 + ga).

Since ¢1 + g3 and g2 + g4 have the same sign, Equation [2.2] is not satisfied un-
less hi2, hi4, ha2, hos = 0, which implies h ¢ Sp(2) C SU(5). Thus By is quasi-
positively curved. m]

We now show the hypothesis that g is not a permutation of (1,1,1,—1,—3)
is essential by finding zero-curvature planes at every point of this exceptional
Bazaikin space.

Proposition 3.4 The natural metric on By for g = (1,1,1,—1,—3) has a zero-
curvature plane at every point.

Proof From Proposition it is sufficient to show that for every A € SU(5),
there is an h € Sp(2) for which

5
0=">"(1(AR)eal? + |(Ah)eal*)ae.

£=1

Given A € SU(5), we let ga : Sp(2) — R be defined by

5
ga(h) =" (1(Ah)e2]? + [(Ah)eal*)qe.

=1

Because Sp(2) is connected, in order to prove this proposition, it is sufficient to
show that for each A, g4 attains both non-positive and non-negative values.
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Since Ah € SU(5) implies 22:1 |(Ah)¢i|? = 1 for each fixed i, we may rewrite
ga as

ga(h) =2 = 2(|(AR)az|* + |(Ah)4al*) — 4(|(AR)s2|* + |(Ah)s4]).

Given A € Slj(S)7 we let s; = (Ail,AiQ,Ai37Ai4) for 7 = 4,5. That iS, S4
and ss consists of the first four entries of the fourth and fifth rows of A. Given
h € Sp(2) C SU(5), we let ha, ha € C* denote the first four entries of the 2nd and
4th columns of h, respectively. Note that from the form of the embedding of Sp(2)
in SU(5), ha completely determines h4. This notation allows us to express ga(h)
as

ga(h) =2 =2(/(sa - h2)]” +[(sa - ha)[*) = 4(|(s5 - h2)[* + [(s5 - ha)[?)

with v-w =", viw; for v,w € Cc.
We begin by finding an h for which g4 (h) > 0. To that end, consider the system

of equations
S5 h2 =0
s5-ha =0

By breaking into real and imaginary parts, we view this as a homogeneous linear
system of 4 equations in 8 unknowns (the real and imaginary parts of each entry
of h2) whose coefficients are the real and imaginary parts of the entries of ss.
As 8 > 4, we can always find a non-zero solution to this. Letting v denote any
non-zero solution, scaled to have unit length, Lemma [3.2] gives the existence of an
h € Sp(2) with ha = v. Thus, s5 - ha = s5 - ha = 0. It follows that

ga(h) =2 —2(|(Ah)az|* + |(Ah)a|*) > 0,

where the inequality follows because Ah € SU(5) implies the term in parenthesis
is at most 1.

We next turn attention to finding an h for which ga(h) < 0. Assume initially
that |s5|? > 1/2. Then, choosing h with he = ‘z—z“ which is possible via Lemma
we find that

ga(h) <2—4(|ss - ha|?) < 2—4(1/2) <0,

as desired.

Thus, we may assume |s5|? < 1. Since A € SU(5), this implies s4 # 0. Thus,
we may find an h € Sp(2) with ha = é—j‘

Then

2 2

s5- 2| =22
|sal

51
|4

Note that since A € SU(5),

|sal* + 2|s5 - 54]”

h)<2-2
gA()— |S4|2

S4 -

|55 - 54| = |Ass|*[Aas|* = (1 — [s5]*) (1 = [sa]*).
Because |s5]% < o2

2|55 - 54| = 2(1 — [s5]*)(1 — [sa]®) > 1 — |s4]?,
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and thus,
|sal* + 1 — [sa]?
ga(h) < 2= 25—t (3.1)
Since
0 < (Jsaf* = 1)% = [sa|* = 2[sa]* + 1,
it follows that
|sa]* < Jsal* = [sal® +1,
and hence, that
| < lsal" +1—|saf?
B |s4/?
Substituting this into Equation (3.1)), we see that
4 2
1—
ga(h) sz%% <2-2<0,
4
as desired. 0

3.2 Open sets with zero-curvature planes

The main goal of this section is to prove the following theorem:

Theorem 3.5 Suppose § = (q1,...,q5) € Z° is an admissible 5-tuple of integers.
If the set {qi + ¢q;} contains both positive and negative integers, then By is not
almost positively curved.

By permuting the ¢;, we can and will assume that ¢1 + g5 < 0 and that g5 < 0
while g2, ¢3,q4 > 0. We let gm denote max{q2,q3,q4}.

Let
cos@ 000 sind
0 100 O
Ag = 0 001 0 | €SU(®5)
—sinf 000 cosd
0 010 O
where 0 < @ < 7/2 is a fixed real number small enough that sin § < —=2—. We will

163/am
find a neighborhood V' C SU(5) of Ay with the property that for every B € V there

is an h € Sp(2) satisfying Equation of Proposition Assuming temporarily
that we can accomplish this, the projection « : SU(5) — Bg, a subermsion, maps
V to an open set w(V') C By, witnessing the fact that By is not almost positively
curved.

As in the proof of Proposition given B = (B);; € SU(5), we let s; =
s:(B) = (Bi1, Bi2, B;3, Bia) denote the first four entries in the i-th row of B. We
let V' C SU(5) consists of all B € SU(5) satisfying the following conditions:

. |BZJ| < ﬁ for (Za]) ¢ {(17 1)7 (272)7 (374)7 (4’ 5)? (5,3)}
. |S5|2 > 7/8

- |s1] < ss]

- Yozt (IBe2l® +1Beal®) e > 0

=W N
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Proposition 3.6 The matriz Ag € V, so V is a non-empty open set in SU(5).

Proof We verify the four conditions in order. If (i, j) # (1,5), (4, 1), then the first

condition becomes |0] < ﬁ, which is obviously true. In the two exceptional
cases, |A;;| = |sinf| < ﬁ by the choice of 6.

The second condition becomes 1 > 7/8, which is obviously true. The third
condition becomes | cosf| < 1, which is true since 0 < § < /2.
The last condition becomes g2 4+ g3 > 0, which is true since g2 and g3 are both
larger than zero by assumption.
O

Now, given B € V and viewing Sp(2) C SU(5), we define a function fp :
Sp(2) - R by

7)) =3 (1B el + [(BR)ul?) g
=1
From Proposition if fp has a zero for every B € V| we will have established
that every point in V' has at least one zero-curvature plane. As in the proof of
Proposition it is sufficient to show that fp achieves both positive and negative
values. The last condition defining V' asserts that fp(I) > 0, where I € Sp(2) C
SU(5) is the identity matrix. Thus, we need only find h € Sp(2) with fg(h) < 0.
As before, we let ho,hs € C* denote the first four entries of the 2nd and 4th
columns of h.
To that end, we let b’ € Sp(2) C SU(5) denote any fixed element with

wl

/ 5
hZ |S5| )
such an h' exists due to Lemma [3.2]

We claim that fg(h’) < 0. We will prove this via a series of lemmas which
estimate each of the terms (|(Bh')e2|? + [(Bh )ea|*)qe of f5. The idea behind the
choice of h’ is to make the £ = 5 term dominate this sum. Since g5 is negative by
assumption, this gives f(h') < 0 as desired.

We begin with a bound on |(Bh)e|? + |(Bh)es|?, which is valid for any h.

Lemma 3.7 For any h € Sp(2) C SU(5),
|(BR)ea|* + [(Bh)eal® < |sef.

Proof As mentioned before, (Bh)g2 = s¢ - ho and (Bh)es = S¢ - ha.

Because of the form of h € Sp(2) C SU(5), we see that the (complex linear)
dot product hs - ha = 0, i.e., that he and h4 are orthonormal with respect to the
usual complex Hermitian (sesquilinear) inner product. Extending {h2,h4} to an
orthonormal basis (with respect to the Hermitian inner product) of C*, we may
write s; = aha + bhq + cv for some a,b,c € C and some unit vector v having the
property that v-ho = v-hgs = 0. In this basis, the inequality we are trying to prove
takes the form |a|® + |b]? < |a|® + |b]? + |c|?, which is obviously true.

O

We now find bounds for the lengths of the entries ? of ho, when j € {1,2,4}.

[ss5]
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Lemma 3.8 For any B €V and any j € {1,2,4},

[Bssl 1
lss| — 14,/qm
Proof Since B € V, |(Bs1, Bs2, Bs3, Bsa)| = |s5] > |55|2 > 7/8 and |Bs;| < 16\/‘17
for j € {1,2,4}, we see
| Bs;| < 1/(16\/qm) _ 1
|ss5] 7/8 14\/§m’
as desired.
O

We can now bound the terms (|(Bh')ea|? + |(Bh')ea]?)qe of fz when £ €
{2,3,4}.

Lemma 3.9 For b’ as above and £ € {2,3,4}, we have
((BR)e2” + (B )ea*)qe < 2/9.

Proof Since |qe| < gm, it is enough to show that both |(BRh')e|\/gm < 3 and
|(BR')eal\/Gm < 3. We begin with the first inequality.
First observe that the triangle inequality and Lemma give

|(BR)e2|v/Gm = |S¢ - ha|\/Gm

B B
SO%MT+BJﬁ| fﬁ

1 1
< |Bu|— 4 |Bus|/@m + | Bea|—
_|Bel|14+\342|14—|—| 03]/ qm + | e4|14

| Bs4|
jss] ) V™

+ | Bes|

+ | Beal

Assume initially that ¢ = 2. Since B € V, all the coefficients |B2;| except for
| B22| are bounded above by 16#@’ while |B22| < 1. Substituting these in and
using the fact that gm > 1, we find that

11 1 1 11
Bh)a2|/qm < — 41 Gm -
|(Bh)22]V/a = 16,/q, 14 + 14/q 1 16y, V4 +16\/§m14
<Li+17+7+ii
=16 14 16 ' 16 14
_1
T
L
5
Analogously, we find
11 11 1 1 1 1
B — = — 4+ —1l4+1l—=Z<=
((BR)s2lVam < 3670t 5612 T 16 T lia =7 < 3

and that

11 1, 11 17 1

Kmhmwfﬁﬁ+ﬁﬂ+ﬁ+ﬁﬂ*ﬁrﬁ‘
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For (Bh')e4, we follow the same line of argument, noting that the lengths of
the entries of Al are permutations of the lengths of the entries of h%. Thus, we find

| Bsa

|55

| Bs1]

|s5]

| Bs2|

|s5]

B
[(BR)ea|/qm < (|Bel| | |SZ?|)| + | Bea| + | Bes| + | Bea| ) Vam

1 1 1
< |Be1lv/qm + |Bez|ﬁ + |Bz3|ﬂ + |Be4|ﬂ-

We then find that [(BRh')24|/Gm < 3 < %, [(Bh)3al\/Gm < % < 3, and
[(BR")aa| /G < 551 < 5-
as desired.
O

We are now ready to complete the proof that fz(h') < 0, which also completes
the proof of Theorem

Proposition 3.10 For k' as above, fg(h') < 0.

Proof From Lemma the total contribution from the g2, ¢3 and g4 terms of fp
is bounded above by 3 - % = 2/3. Thus, if we can show that the ¢1 and g5 terms
contribute less than —2/3, we will have shown fg(h') < 0.

By the definition of &', |(Bh')s2|? = |s5|? and it is easy to verify that (Bh')s4 =

0. Since B € V and g5 < —1, we find
(1B ysal” + (BRI )sal*) a5 < ~7/8.

Of course, if g1 < 0, it now follows easily that the contribution of the ¢1 and gs
terms is at most —7/8 < —2/3, completing the proof in this case.

Thus, we may assume g1 > 0. Then Lemma yields a bound of |s1]|%q1 for
the ¢1 term of fp.

We thus compute

> (1Bl +1(BR)ul?) a < IsilPa + [ss1as
re{1,5}
< Iss)*(q1 + g5)
< —2|s5/?
< —T7/4.
In the above displayed inequalities, the second inequality uses the fact that B € V
implies |s1]| < |s5], the third inequality is using the fact that g5 + ¢1 < 0 and that

both are odd integers, and the last inequality comes from the fact that B € V.
Since —7/4 < —2/3, it follows that f(h') < 0, as claimed.

We may now complete the proof of Theorem [I-]]

Proof (Proof of Theorem Suppose ¢ = (q1,...,¢5) is admissible. For the first
part of Theorem note that, from Theorem Bg is quasi-positively curved,
except when @ is a permutation of (1,1,1, —1, —3). In this exceptional case, Propo-
sition shows it has zero-curvature planes at every point.
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We now prove the second part of Theorem As Kerin [I0] has shown Bz
with g = (1,1,1,1,—1) is almost positively curved, the backwards implication is
clear. Now, suppose By is almost positively curved. If some ¢; + ¢; < 0 for distinct
1,7, then Theorem shows that Bz is not almost positively curved. Thus, we
must have ¢; + ¢; > 0 for all distinct 4, j.

If all ¢; + ¢; > 0, then it is well known Bg has positive curvature [2,4], so we
may assume ¢; + g; = 0 for some distinct 7, j.

Then, as shown by [10, Lemma 3.4], up to isometry, we must be in one of two
cases: (q1,...,¢5) = (1,1,1,n,—n) or (1,1, —-3,n,—n) with n > 1 odd. However, of
these, only the first with n =1 has all ¢; + g; > 0.

O
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