
We Need Community Effort to Achieve PDC

Adoption!

Erik Saule, Kalpathi Subramanian

Computer Science

UNC Charlotte

Charlotte, NC, USA

Email: {esaule,krs}@uncc.edu

Jamie Payton

Computer and Information Sciences

Temple University

Philadelphia, PA, USA

Email: payton@temple.edu

Abstract—The Center for Parallel and Distributed Computing
Curriculum Development and Educational Resources (CDER)
released a PDC guideline in 2012 and soon after IEEE/ACM
included PDC topics in their CS curriculum guidelines in 2013.
CDER is currently working to update the PDC guidelines. The
primary strategy to achieve adoption of PDC in early CS course
is the courseware approach where pedagogical materials are
developed and made available for instructors to integrate PDC
content into their courses. content.

Despite the creation of many new materials, adoption of PDC
content has been fairly slow. In this position paper, we present
a framework to classify the marks one need to hit to develop
courseware that is adoptable, portable, engaging, and easy to
find. We review some of the efforts to improve PDC adoption in
the US and we hypothesize that these efforts have not consistently
exhibited the attributes necessary for wide adoption.

Our position is that while the courseware that have been
developed by the community are essential stepping stones, we
will not see PDC adoption until a larger community can be
brought to bear on the problem. We need to enable composing
and remixing the existing materials and develop new materials
to cover the needs of a diverse range of institutions.

Index Terms—PDC curriculum; courseware; adoption of PDC
in early CS courses; student engagement;

I. INTRODUCTION

Parallel and Distributed Computing (PDC) has become a

more important topic since internet became ubiquitous and

multicore systems became the defacto standard. Single core

system are essentially only found nowadays in highly special-

ized environments. And most software are developped out of

asynchronous distributed components such as databses, front-

end back-end systems, webservices, and cloud components.

Yet PDC has remained an advanced topic in most curricula.

The Center for Parallel and Distributed Computing Curriculum

Development and Educational Resources (CDER) released

NSF/IEEE-TCPP curriculum guidelines in 2012 [1], and a new

iteration of these guidelines is currently under beta [2]. Adding

a PDC course in a computing curriculum will likely not bring

PDC education to all of computer science: a more promising

strategy is to integrate PDC topics all across the undergraduate

curriculum, from early CS courses such as programming and

data structures, to more advanced courses such as operating

systems, or data mining. Further, the importance of PDC in

Computer Science curriculum was recognized by ACM and

IEEE who integrated PDC topics in their 2013 Computer

Science curriculum guidelines [3] as a dedicated area, but also

spread them in multiple places in the guidelines.

The development and adoption of these guidelines at a

national level indicates that there is an understanding that PDC

topics are important. But at the local levels in US universities

(and we suppose over the world) of all kinds, the integration of

these topics in courses has been slow. This slow adoption does

not come from a lack of effort. The PDC education community

has produced books [4], [5], assignments [6], unplugged

activities [7], and course modules [8]. The community has

also produced self-paced educational materials [9]. All these

efforts are good efforts, however, we argue that they are too

small in scope.

This approach to PDC adoption is the courseware approach.

The core idea is that instructors need materials in their classes

and will only adopt PDC in their classes if there are ready-to-

teach materials for it. In this position paper, we argue that the

courseware approach is the only approach that can work; but

we will need a much larger community effort to make it viable.

II. WHAT MAKES GOOD COURSEWARE?

We first need to understand what attributes contribute to

good and open courseware. Courseware can be anything used

in a class, from a single activity to a complete module with

lecture materials, demonstrations, textbook reference, activ-

ity, assignment, and assessment questions. Good courseware,

however, do not exist in the absolute. Courseware get adopted

by a particular instructor, for a particular class in a particular

program, to impact a particular set of students. A courseware

that may not be effective in a particular class could be perfect

for another class. We cannot ignore the dynamics of the

adoption of courseware, the diversity of instructors, programs,

courses, and students where that adoption happens.

Let’s review some of the properties we want out of good

courseware:

a) Cover some technical topics accurately at a particular

level of depth: This is what we usually think of when we

think of good courseware: how well does it explain a particular

topic to reach a particular level of understanding. But we can

not decouple that property from who the students are. Some

students may be more mathematically inclined; some students

may have transferred from a different program; some may not



have scored particularly well on a previous class, not having

developed some key intuition. A courseware will not matter to

an instructor if they do not believe their students can benefit

from it using their current knowledge of the topics.

b) Engage students.: There is only so long students are

willing to do the hard work believing that “it will be useful

eventually”, “trust me, this is good for you”. Courseware

should take every opportunity to engage the students with

its content. There are frames of thoughts on engagement

such as the MUSIC model [10]. Some students may want to

engage with content because it is challenging and they like

a challenge. Maybe they engage with content because it is

hands-on and they like being practical, which is the strategy

of unplugged activities [7]. Maybe the content connects with

a form of entertainment that they enjoy, which is a strategy

for game based courses [11], [12]. Maybe the content makes

them work on a social problem that they care about [13], [14].

Not every courseware can hit all these marks for all students,

but instructors should attempt to hit some of them[10], and

try to connect to students in their class by carefully mixing

engagement strategies.

c) Justify why the techniques are needed: Expressing

convincingly why a particular technique is needed is often

harder than we expect. In a sense parallel computing topics

have issues similar to topics in algorithms. The purpose of

techniques is often to reduce the time it takes to perform some

computation. But for students to find the content relevant,

they need to perceive that the time it takes to execute the

computation to be a real problem. This can be generally hard to

do in practice, because we would need to ideally present a real

computational problem that students can understand with their

level of understanding of computing, that they can execute

with their level of access to computational resources, and they

can meaningfully work on.

d) Address the level of expertise of the instructor:

Instructors may not have been properly trained themselves

in PDC. The instructors need to be confident that they

can meaningfully teach that content; that they can answer

questions of students when they come. A courseware that is

self-explanatory or that come with well-designed instructor

packages will be more likely to be adopted.

e) Seemlesly integrate in a class: If you are trying to

bring in content it needs to integrate in the class with minimal

effort. There is a technical aspect to that the materials should

be language agnostic or be available in the language of the

class. The material should be compatible with the operating

system normally used in the class. This is particularly a

problem for PDC courseware since packages may assume

the availability of a particular software environment, or a

specific batch scheduler, or a given amount of memory or

computational power. A similar effect is centered on instructor

and instruction time. If using a topic forces a significant

amount of side notes then it will take more time to cover,

in preparation and instruction time.

f) Enable to build a curriculum: Individual courseware

that covers a particular topic can be useful. But it is really the

case when one enables an instructor to make a comprehensive

class that is internally coherent and consistent with previous

and follow-on courses that adoption will happen.

g) Be discoverable: Finally courseware is not useful if it

can not reach the instructors and the students that need them.

We need courseware to express clearly what they do and do

not do.

Simply by looking at the list of properties, we can see

that building good and useful courseware is a tall order. It is

difficult to make courseware that will have all the properties

that are desirable. Or at least it will be hard if they are products

of a single person or a small group. We need a community

large enough for courseware to be refined by different teams,

and composed and remixed. Then we should be able to

produce collectively the courseware for each instructor to find

the materials that will make a difference in their class.

III. EXISTING EFFORTS

A. Peachy Parallel Assignments

Peachy Parallel Assignments [6] are an effort that is taking

place at PDC education workshops such as EduPar, EduHPC.

Patterned after the Nifty Assignments [15] that are presented

at SIGCSE, Peachy Parallel Assignments are meant to be good

parallel computing assignments that are tested, adoptable, cool,

and inspirational. There are currently 22 assignments in the

Peachy collection.

The assignments are designed to be engaging and to tackle

a particular point of the curriculum. They can be a very good

starting point to justify why parallel computing is important.

On the other hand, they all tend to tackle the same point

of the curriculum: basic parallelisation of loops, usually with

OpenMP. The assignments assume that the instructor can pick

up the materials without additional context; and in some cases

the assignments are about solving a PDE or executing a

complex algorithm that will need to be explained to students.

And Peachy Parallel assignments tend to be technology

bound (like most parallel computing assignments). They are

essentially C programming assignments for CS1; but most CS1

courses are taught in Java or Python. So the assignments will

need to be adapted by instructors to be useful.

Finally the assignments are hardly discoverable. One need

to read the description of an assignment to understand what

the assignment does and whether or where it could be used.

Peachy parallel assignments can be very useful resources.

But they will need to be remixed and indexed to reach a

broader audience.

B. PDC Unplugged

PDC Unplugged [7] is inspired from CS Unplugged which

curates a set of activities that bring (without computers) a

physicality to teaching computer science concepts [16]. There

are currently 38 activities in the PDC Unplugged repository

covering a wide range of topics, including scheduling, race

conditions, latency, and many others.

PDC Unplugged activities hit many of the marks of good

materials. They are really good at engaging students and give



them an experience that they will remember in the long run.

Because the activities are physical, they can easily be done

by instructors even with little training and are independent

of computing environment which helps integrating them. The

PDC Unplugged repository classifies the activities based on

the CS2013 knowledge units and the NSF-IEEE TCPP PDC

curriculum guidelines which helps figuring out which activities

can be relevant to you.

By nature unplugged activities tend to be not technically

very deep because they are designed to give a physical under-

standing of an underlying technical concept. They also often

do not connect very well to particular applications because

the activity is not a technical activity. So while these activities

can be very useful and impactful in a curriculum they can only

extend a module rather be a module in itself.

C. CSinParallel

CSinParallel [8] is a collection of modules, currently 26, to

teach parallel computing at various levels.

CSinParallel takes the courseware approach seriously. The

system enables to search for modules using a particular lan-

guage or technology and for particular courses. Each module

comes with an intro page that provides summaries, learning

goals, and context for use. The modules come with a descrip-

tion in a consistent format for ease of crawling through the

documents.

Some modules come with instructor notes, but most do

not. Also the modules are usually technically competent but

provide very little motivation for students in term of interesting

application, social contextualisation, or broader engagement

strategies. Some of the modules refer to local files or local

systems.

This collection hits some good marks and gets the strategy

right. Though the effort lacks in offering a panel of engaging

materials for different populations. And searching for most

combination of language and course lead to a mostly empty

module offerings in CSinParallel.

D. iPDC

iPDC [17] is an effort from Tennessee Tech to improve PDC

education. The project published 7 unplugged and 9 plugged

modules, mostly targetted at CS1 and CS2. The materials

explain well concepts like data races, parallel loops, and syn-

chronization. The plugged acitvities contain code snippets for

C++ and Java relying on OpenMP (and for Java, Pyjama [18]).

The modules do not have an instructor package, but the iPDC

project runs training workshops for instructors who want to

adopt the modules. The modules are annotated with covered

PDC Concept and Bloom levels to help instructors identify

which module may apply.

The modules are meant to be short, introductory, technical.

As such, they typically do not attempt to be particularly engage

or justify why the parallel techniques are necessary. Certainly,

an instructor using these modules would have justify the need

for techniques externally. Though their brevity is also an

advantage as they can be inserted in a class without taking

a significant amount of time.

E. EduWrench

EduWRENCH [9] is a set of self-paced modules to teach

some of the concepts of parallel computing. The main strategy

is to have textual description with activities which are based on

simulation thanks to the SimGrid simulation framework [19].

The simulation can run large systems from the student laptop.

And the activities are deployed on the student’s machine

thanks to Docker containers, which enable running activities

in a portable way across operating systems. EduWRENCH

provides mappings between the pedagogical modules and the

NSF/IEEE-TCPP curriculum guideline for PDC.

By design the modules require no programming which

helps with adoption as they rely on running, observing, and

interacting pre-programed demos. This also means that by

design the modules focus on teaching PDC concepts but lacks

in teaching how to use them in practice.

The modules focus on delivering quality content without

trying to contextualize the techniques and information to

engage the students. As such eduWRENCH relies on external

motivation for the student to complete the modules. The

modules also do not contain additional information for in-

structors assuming that the instructors are already confortable

teaching that material, contextualizing, and making practical

programming assignments for it.

F. Full Course

The community also publishes courses in a format akin to

the dump of the course generated by a Learning Management

System (such as Canvas or Blackboard). One of the authors

of this paper published a parallel computing course for under-

graduate students [20], ITCS 3145, which we will take as an

example.

It is good to have a complete course. The materials have

been used and as such they have been tested and cover content

at some depth. Hopefully the content has some engagement

strategies and are paired with activities in ways that justify

the need for the techniques. ITCS 3145 presented in [20] does

some of that but not consistently and to the benefits of a varied

group of students.

A course dump usually does very little to be adoptable by

other instructors. ITCS 3145 does not contain instructor notes

on how an instructor should approach the course structure and

strategies. The course also assumes a particular programming

language (C++) and a particular hardware environment (a

MOAB-based computing cluster with particular implementa-

tions of MPI available). As such the dump of the course can

be helpful for inspiration; it could be picked apart for parts,

or adapted for local environment. But it is in no sense directly

reusable. A course dump is also not particularly discoverable.

IV. BRIDGES

BRIDGES [21] is toolkit that has been developed by the

authors of this paper to improve the engagement and motiva-

tion of CS majors in freshmen and sophomore level courses.

BRIDGES does not focus on PDC topics or their adoption,

but it focuses on data structures and algorithms topics, which







the same time motivating the need for parallel computing. But

what we can do is to enable a compose and remix approach

to the problem. It would be much easier to compose a module

from smaller pieces that include 1) a contextualization doc-

ument that present convingcingly why a particular technique

is technically and socially important (which could be a well

crafted YouTube video), 2) an activity that helps students

develop understanding at a conceptual level (for instance,

from PDC unplugged or from eduWRENCH), 3) technical

description of how that concept applies in a context that is

localized (maybe to the language or execution environment),

4) and a reinforcing practical activity, such as using a Nifty,

Peachy, or BRIDGES approach.

This would reduce the load on instructors significantly;

materials for contextualization and conceptual understanding

could be reused directly from different sources. Localized

technical descriptions may need some light adaptation from

existing material. Reinforcing practical activities are usually

the ones that require the most careful attention and de-

velopment effort; but that can be provided by a medium

size community strike force. Decomposing the problem into

multiple types and goals are needed to leverage expertise in

the community from multiple sources, broadening the scope

of potential contributors.

B. Connecting instructors with courseware

Multiple efforts have gone into developing materials for

PDC education. The challenge is to connect the instructors

with these materials. Collections of materials like PDCUn-

plugged, CSinParallel, or Peachy assignments are useful, but

they are narrowly scoped.

To be able to quickly identify materials, we need to curate

PDC educational content and index them, so as to be able to

easily find materials that can be integrated within a particular

class, accounting for goals (engagement, explanations, prac-

tice), topics, technologies, instructor knowledge, and student

population. Systems like CS Materials that offer the combina-

tion of search and analyses capabilities to facilitate curation

will be key. There may need to be community discussion

to identify what dimensions need to go in such an index

to be most helpful. For this to be succesful, this would

require a significant effort from the community to contribute

and classify their learning materials. But notice that such an

effort requires a different type of skill than content creation.

It enables a different type of expert to make meaningful

contributions toward PDC adoption.

C. Addressing instructor gaps

Instructors can be wary of teaching content on which they

are not experts. And not many CS instructors have receieved

formal training in parallel computing, the majority having

taken at most a single related class in graduate school. Ac-

knowledging and addressing that issue upfront will be critical.

One approach that is centered around courseware lies in

developing instructor packages that explain how to teach the

content and give more context and more complex information.

The idea is to bring the instructor to a higher level of

understanding of the content. This is done in many US K-12

schools where teachers use well crafted packages on topics

they lack deep or foundational understanding. Some of the

chapters in the CDER books [4], [5] are designed for the

benefit of instructors. A second approach is to directly train

instructors through workshops. This is an approach that has

been used in efforts like iPDC, CSinParallel, and CDER who

organize instructor training workshops. While this approach

has trained hundreds of instructors, scaling to 30,000 CS

professors (as per US Bureau of Labor Statistics) will require

the trained instructors train other instructors themselves.

Both instructor packages and workshop approaches will

require coordinated efforts and commitments from the commu-

nity, to make sure the efforts synergize and are communicated

widely for maximum impact.

D. Convincing local programs

All these strategies assume that instructors are convinced of

the importance of integrating PDC in their courses, have the

will and time to perform this integration, and are allowed to

perform the change. But in many cases, radical changes like

this only happen once the degree programs change.

To enable such a change, we will need to engage with a

different set of actors: program and department administra-

tors, program educational committees, certification agencies

(SACS, ABET). The community will need to gather the evi-

dence to make the case from technical, social, and economical

perspectives, so as to convince these actors.

VII. CONCLUSION

The courseware approach to PDC adoption has delivered

slower than expected outcomes. We presented in this position

paper the factors that we believe contribute to the slow

adoption. While this paper certainly has a US bias, we believe

that the core issues and solutions apply globally.

We will not succeed as disjoint small groups of experts.

We need to pull efforts together and form a concerted front to

address the PDC adoption challenge as content developers,

content remixers, content curators, PDC course designers,

instructor trainers, and public advocators.

ACKNOWLEDGMENTS

This work is supported by grants from the National Sci-

ence Foundation (CCF-1652442, DUE-1726809, and OAC-

1924057).

REFERENCES

[1] NSF/IEEE-TCPP Curriculum Working Group, “NSF/IEEE-TCPP
curriculum initiative on parallel and distributed computing :
Core topics for undergraduates,” CDER, Tech. Rep., 2012,
available at http://www.cs.gsu.edu/∼tcpp/curriculum/sites/default/
files/NSF-TCPP-curriculum-version1.pdf.



[2] S. K. Prasad, T. Estrada, S. Ghafoor, A. Gupta, S. C. Kant, K.,
A. Sussman, R. Vaidyanathan, C. Weems, K. Agrawal, M. Barnas, D. W.
Brown, R. Bryant, D. Bunde, C. Busch, D. Deb, E. Freudenthal, J. Jaja,
M. Parashar, C. Phillips, B. Robey, A. Rosenberg, E. Saule, and C. Shen,
“NSF/IEEE-TCPP curriculum initiative on parallel and distributed com-
puting -core topics for undergraduates, Version II-beta,” CDER, Tech.
Rep., 2020, available at https://tcpp.cs.gsu.edu/curriculum/?q=system/
files/TCPP%20PDC%20Curriculum%20V2.0beta-Nov12.2020.pdf.

[3] Joint Taskforce on ACM Curricula, Computer Science

Curricula 2013: Curriculum Guidelines for Undergraduate Degree

Programs in Computer Science. ACM/IEEE Computer Society,
2013. [Online]. Available: https://www.acm.org/binaries/content/assets/
education/cs2013 web final.pdf

[4] S. Prasad, A. Gupta, A. Rosenberg, A. Sussman, and C. Weems, Eds.,
Topics in Parallel and Distributed Computing: Introducing Concurrency

in Undergraduate Courses. Morgan Kaufmann,, 2015.

[5] ——, Topics in Parallel and Distributed Computing: Enhancing the Un-

dergraduate Curriculum: Performance, Concurrency, and Programming

on Modern Platforms. Springer International Publishing, 2018.

[6] “Peachy parallel assignments,” https://grid.cs.gsu.edu/∼tcpp/curriculum/
?q=peachy.

[7] S. J. Matthews, “PDCunplugged: A free repository of unplugged parallel
distributed computing activities,” in 2020 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), 2020, pp.
284–291.

[8] R. Brown, L. Shoop, and J. Adams, “CS in parallel,”
https://csinparallel.org/.

[9] H. Casanova, R. Tanaka, W. Koch, and R. Ferreira da Silva, “Teaching
parallel and distributed computing concepts in simulation with wrench,”
Journal of Parallel and Distributed Computing, vol. 156, pp. 53–63,
2021.

[10] B. Jones, “Motivating students to engage in learning: The music model
of academic motivation,” International Journal of Teaching and Learn-

ing in Higher Education, vol. 21, no. 2, pp. 272–285, 2009.

[11] P. Drake and K. Sung, “Teaching introductory programming with
popular board games,” in Proc. of ACM SIGCSE, ser. SIGCSE ’11,
2011, pp. 619–624.

[12] K. Sung, R. Rosenberg, M. Panitz, and R. Anderson, “Assessing game-
themed programming assignments for CS1/2 courses,” in Proc. of

GDCSE, ser. GDCSE ’08, 2008, pp. 51–55.

[13] M. Buckley, H. Kershner, K. Schindler, C. Alphonce, and J. Braswell,
“Benefits of using socially-relevant projects in computer science and
engineering education,” in Proceedings of the 35th SIGCSE Technical

Symposium on Computer Science Education, 2004, pp. 482–486.

[14] M. Goldweber, J. Barr, T. Clear, R. Davoli, S. Mann, E. Patitsas, and
S. Portnoff, “A framework for enhancing the social good in computing
education: a val ues approach,” ACM Inroads.

[15] N. Parlante, “Nifty assignments,” 2018. [Online]. Available: http:
//nifty.stanford.edu/

[16] Computer Science Education Research Group ,
https://csunplugged.org/en/.

[17] S. Ghafoor, M. Rogers, D. Brown, and A. Haynes, “Integrating par-
allel and distributed computing in introductory programming classes,”
https://www.csc.tntech.edu/pdcincs/.

[18] Vikas, N. Giacaman, and O. Sinnen, “Pyjama: Openmp-like
implementation for java, with gui extensions,” in Proceedings of

the 2013 International Workshop on Programming Models and

Applications for Multicores and Manycores, ser. PMAM ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p.
43–52. [Online]. Available: https://doi.org/10.1145/2442992.2442997

[19] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Simgrid: a sustained effort for the versatile simulation of large scale
distributed systems,” arXiv, Tech. Rep. 1309.1630, 2013.

[20] E. Saule, “Experiences on teaching parallel and distributed computing
for undergraduates,” in Proc of IPDPSW 2018, May 2018.

[21] K. Subramanian, E. Saule, and J. Payton, “BRIDGES (Bridging Real-
world Infrastructure Designed to Goal-align, Engage, and Stimulate),,”
2021. [Online]. Available: http://bridgesuncc.github.io/

[22] ——, “BRIDGES Assignment Repository,” 2021. [Online]. Available:
http://bridgesuncc.github.io/newassignments.html

[23] A. Beckman, M. Mcquaigue, A. Goncharow, D. Burlinson, K. Subra-
manian, E. Saule, and J. Payton, “Engaging early programming students
with modern assignments using bridges,” in Proc. CCSC CP, 2020.

[24] J. Strahler, M. Mcquaigue, A. Goncharow, D. Burlinson, K. Subra-
manian, E. Saule, and J. Payton, “Real-world assignments at scale to
reinforce the importance of algorithms and complexity,” in Proc. CCSC

NE, 2020, conference.
[25] A. Goncharow, M. Mcquaigue, E. Saule, K. Subramanian, P. Goolkasian,

and J. Payton, “CS-Materials: A system for classifying and analyzing
pedagogical materials to improve adoption of parallel and distributed
computing topics in early cs courses,” Journal of Parallel and Dis-

tributed Computing, vol. 157, pp. 316–330, 2021.
[26] E. Saule, K. Subramanian, and J. Payton, “CS Materials,” 2021.

[Online]. Available: https://cs-materials.herokuapp.com/


