We Need Community Effort to Achieve PDC
Adoption!

Erik Saule, Kalpathi Subramanian
Computer Science
UNC Charlotte
Charlotte, NC, USA
Email: {esaule krs} @uncc.edu

Abstract—The Center for Parallel and Distributed Computing
Curriculum Development and Educational Resources (CDER)
released a PDC guideline in 2012 and soon after IEEE/ACM
included PDC topics in their CS curriculum guidelines in 2013.
CDER is currently working to update the PDC guidelines. The
primary strategy to achieve adoption of PDC in early CS course
is the courseware approach where pedagogical materials are
developed and made available for instructors to integrate PDC
content into their courses. content.

Despite the creation of many new materials, adoption of PDC
content has been fairly slow. In this position paper, we present
a framework to classify the marks one need to hit to develop
courseware that is adoptable, portable, engaging, and easy to
find. We review some of the efforts to improve PDC adoption in
the US and we hypothesize that these efforts have not consistently
exhibited the attributes necessary for wide adoption.

Our position is that while the courseware that have been
developed by the community are essential stepping stones, we
will not see PDC adoption until a larger community can be
brought to bear on the problem. We need to enable composing
and remixing the existing materials and develop new materials
to cover the needs of a diverse range of institutions.

Index Terms—PDC curriculum; courseware; adoption of PDC
in early CS courses; student engagement;

I. INTRODUCTION

Parallel and Distributed Computing (PDC) has become a
more important topic since internet became ubiquitous and
multicore systems became the defacto standard. Single core
system are essentially only found nowadays in highly special-
ized environments. And most software are developped out of
asynchronous distributed components such as databses, front-
end back-end systems, webservices, and cloud components.

Yet PDC has remained an advanced topic in most curricula.
The Center for Parallel and Distributed Computing Curriculum
Development and Educational Resources (CDER) released
NSF/IEEE-TCPP curriculum guidelines in 2012 [1], and a new
iteration of these guidelines is currently under beta [2]. Adding
a PDC course in a computing curriculum will likely not bring
PDC education to all of computer science: a more promising
strategy is to integrate PDC topics all across the undergraduate
curriculum, from early CS courses such as programming and
data structures, to more advanced courses such as operating
systems, or data mining. Further, the importance of PDC in
Computer Science curriculum was recognized by ACM and
IEEE who integrated PDC topics in their 2013 Computer

Jamie Payton
Computer and Information Sciences
Temple University
Philadelphia, PA, USA
Email: payton@temple.edu

Science curriculum guidelines [3] as a dedicated area, but also
spread them in multiple places in the guidelines.

The development and adoption of these guidelines at a
national level indicates that there is an understanding that PDC
topics are important. But at the local levels in US universities
(and we suppose over the world) of all kinds, the integration of
these topics in courses has been slow. This slow adoption does
not come from a lack of effort. The PDC education community
has produced books [4], [5], assignments [6], unplugged
activities [7], and course modules [8]. The community has
also produced self-paced educational materials [9]. All these
efforts are good efforts, however, we argue that they are too
small in scope.

This approach to PDC adoption is the courseware approach.
The core idea is that instructors need materials in their classes
and will only adopt PDC in their classes if there are ready-to-
teach materials for it. In this position paper, we argue that the
courseware approach is the only approach that can work; but
we will need a much larger community effort to make it viable.

II. WHAT MAKES GOOD COURSEWARE?

We first need to understand what attributes contribute to
good and open courseware. Courseware can be anything used
in a class, from a single activity to a complete module with
lecture materials, demonstrations, textbook reference, activ-
ity, assignment, and assessment questions. Good courseware,
however, do not exist in the absolute. Courseware get adopted
by a particular instructor, for a particular class in a particular
program, to impact a particular set of students. A courseware
that may not be effective in a particular class could be perfect
for another class. We cannot ignore the dynamics of the
adoption of courseware, the diversity of instructors, programs,
courses, and students where that adoption happens.

Let’s review some of the properties we want out of good
courseware:

a) Cover some technical topics accurately at a particular
level of depth: This is what we usually think of when we
think of good courseware: how well does it explain a particular
topic to reach a particular level of understanding. But we can
not decouple that property from who the students are. Some
students may be more mathematically inclined; some students
may have transferred from a different program; some may not

have scored particularly well on a previous class, not having
developed some key intuition. A courseware will not matter to
an instructor if they do not believe their students can benefit
from it using their current knowledge of the topics.

b) Engage students.: There is only so long students are
willing to do the hard work believing that “it will be useful
eventually”, “trust me, this is good for you”. Courseware
should take every opportunity to engage the students with
its content. There are frames of thoughts on engagement
such as the MUSIC model [10]. Some students may want to
engage with content because it is challenging and they like
a challenge. Maybe they engage with content because it is
hands-on and they like being practical, which is the strategy
of unplugged activities [7]. Maybe the content connects with
a form of entertainment that they enjoy, which is a strategy
for game based courses [11], [12]. Maybe the content makes
them work on a social problem that they care about [13], [14].
Not every courseware can hit all these marks for all students,
but instructors should attempt to hit some of them[10], and
try to connect to students in their class by carefully mixing
engagement strategies.

c) Justify why the techniques are needed: Expressing
convincingly why a particular technique is needed is often
harder than we expect. In a sense parallel computing topics
have issues similar to topics in algorithms. The purpose of
techniques is often to reduce the time it takes to perform some
computation. But for students to find the content relevant,
they need to perceive that the time it takes to execute the
computation to be a real problem. This can be generally hard to
do in practice, because we would need to ideally present a real
computational problem that students can understand with their
level of understanding of computing, that they can execute
with their level of access to computational resources, and they
can meaningfully work on.

d) Address the level of expertise of the instructor:
Instructors may not have been properly trained themselves
in PDC. The instructors need to be confident that they
can meaningfully teach that content; that they can answer
questions of students when they come. A courseware that is
self-explanatory or that come with well-designed instructor
packages will be more likely to be adopted.

e) Seemlesly integrate in a class: If you are trying to
bring in content it needs to integrate in the class with minimal
effort. There is a technical aspect to that the materials should
be language agnostic or be available in the language of the
class. The material should be compatible with the operating
system normally used in the class. This is particularly a
problem for PDC courseware since packages may assume
the availability of a particular software environment, or a
specific batch scheduler, or a given amount of memory or
computational power. A similar effect is centered on instructor
and instruction time. If using a topic forces a significant
amount of side notes then it will take more time to cover,
in preparation and instruction time.

f) Enable to build a curriculum: Individual courseware
that covers a particular topic can be useful. But it is really the

case when one enables an instructor to make a comprehensive
class that is internally coherent and consistent with previous
and follow-on courses that adoption will happen.

g) Be discoverable: Finally courseware is not useful if it
can not reach the instructors and the students that need them.
We need courseware to express clearly what they do and do
not do.

Simply by looking at the list of properties, we can see
that building good and useful courseware is a tall order. It is
difficult to make courseware that will have all the properties
that are desirable. Or at least it will be hard if they are products
of a single person or a small group. We need a community
large enough for courseware to be refined by different teams,
and composed and remixed. Then we should be able to
produce collectively the courseware for each instructor to find
the materials that will make a difference in their class.

ITI. EXISTING EFFORTS
A. Peachy Parallel Assignments

Peachy Parallel Assignments [6] are an effort that is taking
place at PDC education workshops such as EduPar, EduHPC.
Patterned after the Nifty Assignments [15] that are presented
at SIGCSE, Peachy Parallel Assignments are meant to be good
parallel computing assignments that are tested, adoptable, cool,
and inspirational. There are currently 22 assignments in the
Peachy collection.

The assignments are designed to be engaging and to tackle
a particular point of the curriculum. They can be a very good
starting point to justify why parallel computing is important.
On the other hand, they all tend to tackle the same point
of the curriculum: basic parallelisation of loops, usually with
OpenMP. The assignments assume that the instructor can pick
up the materials without additional context; and in some cases
the assignments are about solving a PDE or executing a
complex algorithm that will need to be explained to students.

And Peachy Parallel assignments tend to be technology
bound (like most parallel computing assignments). They are
essentially C programming assignments for CS1; but most CS1
courses are taught in Java or Python. So the assignments will
need to be adapted by instructors to be useful.

Finally the assignments are hardly discoverable. One need
to read the description of an assignment to understand what
the assignment does and whether or where it could be used.

Peachy parallel assignments can be very useful resources.
But they will need to be remixed and indexed to reach a
broader audience.

B. PDC Unplugged

PDC Unplugged [7] is inspired from CS Unplugged which
curates a set of activities that bring (without computers) a
physicality to teaching computer science concepts [16]. There
are currently 38 activities in the PDC Unplugged repository
covering a wide range of topics, including scheduling, race
conditions, latency, and many others.

PDC Unplugged activities hit many of the marks of good
materials. They are really good at engaging students and give

them an experience that they will remember in the long run.
Because the activities are physical, they can easily be done
by instructors even with little training and are independent
of computing environment which helps integrating them. The
PDC Unplugged repository classifies the activities based on
the CS2013 knowledge units and the NSF-IEEE TCPP PDC
curriculum guidelines which helps figuring out which activities
can be relevant to you.

By nature unplugged activities tend to be not technically
very deep because they are designed to give a physical under-
standing of an underlying technical concept. They also often
do not connect very well to particular applications because
the activity is not a technical activity. So while these activities
can be very useful and impactful in a curriculum they can only
extend a module rather be a module in itself.

C. CSinParallel

CSinParallel [8] is a collection of modules, currently 26, to
teach parallel computing at various levels.

CSinParallel takes the courseware approach seriously. The
system enables to search for modules using a particular lan-
guage or technology and for particular courses. Each module
comes with an intro page that provides summaries, learning
goals, and context for use. The modules come with a descrip-
tion in a consistent format for ease of crawling through the
documents.

Some modules come with instructor notes, but most do
not. Also the modules are usually technically competent but
provide very little motivation for students in term of interesting
application, social contextualisation, or broader engagement
strategies. Some of the modules refer to local files or local
systems.

This collection hits some good marks and gets the strategy
right. Though the effort lacks in offering a panel of engaging
materials for different populations. And searching for most
combination of language and course lead to a mostly empty
module offerings in CSinParallel.

D. iPDC

iPDC [17] is an effort from Tennessee Tech to improve PDC
education. The project published 7 unplugged and 9 plugged
modules, mostly targetted at CS1 and CS2. The materials
explain well concepts like data races, parallel loops, and syn-
chronization. The plugged acitvities contain code snippets for
C++ and Java relying on OpenMP (and for Java, Pyjama [18]).
The modules do not have an instructor package, but the iPDC
project runs training workshops for instructors who want to
adopt the modules. The modules are annotated with covered
PDC Concept and Bloom levels to help instructors identify
which module may apply.

The modules are meant to be short, introductory, technical.
As such, they typically do not attempt to be particularly engage
or justify why the parallel techniques are necessary. Certainly,
an instructor using these modules would have justify the need
for techniques externally. Though their brevity is also an
advantage as they can be inserted in a class without taking
a significant amount of time.

E. EduWrench

EduWRENCH [9] is a set of self-paced modules to teach
some of the concepts of parallel computing. The main strategy
is to have textual description with activities which are based on
simulation thanks to the SimGrid simulation framework [19].
The simulation can run large systems from the student laptop.
And the activities are deployed on the student’s machine
thanks to Docker containers, which enable running activities
in a portable way across operating systems. EQuWRENCH
provides mappings between the pedagogical modules and the
NSF/IEEE-TCPP curriculum guideline for PDC.

By design the modules require no programming which
helps with adoption as they rely on running, observing, and
interacting pre-programed demos. This also means that by
design the modules focus on teaching PDC concepts but lacks
in teaching how to use them in practice.

The modules focus on delivering quality content without
trying to contextualize the techniques and information to
engage the students. As such eduWRENCH relies on external
motivation for the student to complete the modules. The
modules also do not contain additional information for in-
structors assuming that the instructors are already confortable
teaching that material, contextualizing, and making practical
programming assignments for it.

F. Full Course

The community also publishes courses in a format akin to
the dump of the course generated by a Learning Management
System (such as Canvas or Blackboard). One of the authors
of this paper published a parallel computing course for under-
graduate students [20], ITCS 3145, which we will take as an
example.

It is good to have a complete course. The materials have
been used and as such they have been tested and cover content
at some depth. Hopefully the content has some engagement
strategies and are paired with activities in ways that justify
the need for the techniques. ITCS 3145 presented in [20] does
some of that but not consistently and to the benefits of a varied
group of students.

A course dump usually does very little to be adoptable by
other instructors. ITCS 3145 does not contain instructor notes
on how an instructor should approach the course structure and
strategies. The course also assumes a particular programming
language (C++) and a particular hardware environment (a
MOAB-based computing cluster with particular implementa-
tions of MPI available). As such the dump of the course can
be helpful for inspiration; it could be picked apart for parts,
or adapted for local environment. But it is in no sense directly
reusable. A course dump is also not particularly discoverable.

IV. BRIDGES

BRIDGES [21] is toolkit that has been developed by the
authors of this paper to improve the engagement and motiva-
tion of CS majors in freshmen and sophomore level courses.
BRIDGES does not focus on PDC topics or their adoption,
but it focuses on data structures and algorithms topics, which

has similar difficulties: both are only used to solve large scale
problems. The strategies deployed by BRIDGES apply to PDC
education directly. We present them next.

BRIDGES provides engagement mechanisms through pro-
gramming assignments that connect students to real-world
datasets through an easy-to-use API and also supports visu-
alizations of student generated data structures or algorithmic
outputs. Visualization of graphs and quad-trees can be seen
in Fig. 1. BRIDGES gives access to a variety of real-world
datasets including book collections, maps, lyrics of songs,
earthquakes, elevation maps, actor-movie relations, etc.

To be more widely accessible, the BRIDGES API is sup-
ported in 3 languages: C++, Java and Python, with full
documentation, tutorials and support by its authors. To date,
BRIDGES has impacted over 2000 students across roughly
20 colleges and universities in the United States through
its adoption strategies. Feedback from extensive surveys and
reflections of students and instructors have pointed towards a
largely positive experience.

eaumont California-->
anta_Barbara_California, Dist:4125

Fig. 1. BRIDGES Examples. (Top) Illustrates a data set of 1000 US cities
with latitude/longitude data represented in a quadtree representation, (Bottom)
Dijkstra’s single source shortest paths algorithm applied to a subset of the
same dataset with limited paths between states. The visualization shows the
shortest path from Charlotte, North Carolina (big red circle) to all other cities
with the labeled path to Santa Barbara, CA.

In order to better support CS instructors in early CS courses
(CS1, CS2, Data Structures and Algorithm Analysis), the
BRIDGES site also has an assignment repository [22] with
a collection of assignments that can be used by students in

any of these courses. Assignments have a description, goals
(or learning outcomes), scaffolds or starter code in all three
languages and expected outputs. Solutions are also available
to adopters on request. Assignments are organized by topic as
well as by course level. Additionally, assignments are carefully
designed (some are adapted from Nifty assignments) to em-
phasize core CS concepts in data structures and algorithms,
as well as concepts in CS1/CS2 using the Game Grid APL
Finally, BRIDGES clearly provides context or application with
each assignment, by using real-world data that helps students
see the value of learning core CS concepts and algorithms. One
can design courses using BRIDGES for most programming
assignments in CS1 [23] or Algorithms [24].

While the BRIDGES assignment repository helps adopters
to using them, it still leaves adopters facing challenges to-
wards adoption. BRIDGES does provide good and technically
strong programming assignments, but not complete modules
(containing lectures, quiz questions, demonstrations, etc.) or
full courses at this time.

BRIDGES assignments have not been designed yet to be
customizable to a particular student population by ethnicity
or gender. Though the BRIDGES framework is naturally
constructed to be able to swap datasets in and out, enabling
to potentially offer multiple equivalent assignments for each
topic/learning outcome that would be of interest to different
populations.

Finally, BRIDGES requires a bit of a learning curve (as
can be expected from any new tool used in a class) to

| use it as part of an assignment; though the overhead of

adopting BRIDGES is amortized for classes adopting multiple

I BRIDGES assignments as the setup can directly be reused.

V. CS MATERIALS

Many of the PDC efforts listed in Section III suffer from
a lack of discoverability. Though it does not seem that each
module developer should reinvent strategies to be discovered.
The problem is fundamentally that we need to make sure
courseware get indexed properly so as to be easily identifiable.
We present one of our efforts toward building such an index
and explore the benefits of having such an index.

CS Materials [25], [26] is a system under development
by the authors that allows educators to map their course
materials to nationally accepted curriculum guidelines. The
overall goal of CS Materials is to facilitate adoption of PDC
materials in early CS courses (CS1, CS2, Data Structures,
Algorithm Analysis), and in particular, find equivalent mate-
rials/algorithms that can be substituted with PDC content. In
order to accomplish this goal, the system provides the means
for CS instructors to assess their learning materials (lectures,
quizzes, exams, assignments, videos, etc.) against topics and
learning outcomes defined by accepted national guidelines. CS
Materials currently uses the ACM 2013 Curriculum Guide-
lines [3] and the NSF/IEEE-TCPP 2012 PDC curriculum
guidelines [1], however it is designed to be extended or
updated as the guidelines change.

CS Materials allows sophisticated search and analysis by
tags defined by the ACM 2013 guidelines, that are either
knowledge units, topics or learning outcomes; this permits
courses to be compared against each other, assess differences
between two sections of the same course or ensure proper
sequencing of topics within a program. An interactive inter-
face for entering course materials and visualizations to see
alignment and differences between materials (from individual
material, modules or full courses) facilitate the analyses.
Learning materials can also hosted by the system, ensuring
that materials consistently stay within the system, avoiding
the issues of broken links to materials, that are common in
similar repositories.

Fig. 2. Similarity between a data structure course and a parallel computing
course. orange and purple nodes denote topics which are completely different
while light blue nodes denote common topics.

Figure 2 present the common topics between two set of
materials: the materials of a data structure course and the
materials of a parallel computing course. The highlighted node
is the ACM/IEEE topic for queues. We can see the data
structure course covers queues in a lecture about Stacks and
Queues and in an exam. The parallel computing class also
covers queue in a lecture about concurrent data structure. This
type of view can help an instructor identify from a set of vetted
materials (for instance Peachy Parallel Assignments) which
materials could be deployed in their class.

Once we have multiple definition of what a particular
course is, one can build models of that course using CS
Materials [25]. This can enable us, the PDC experts to think
abstractly about data structures courses rather than think about
one particular instance of a Data Structure course. Figure 3
shows how the PDC materials in CS Materials currently map to
an abstract model of Data Structure extracted from DS courses
currently in the system.

The strengths of the CS materials system lie in terms of
search and analyses of existing course materials, identifying
possible locations for adding PDC materials, and assessing
gaps in coverage, which are all quite useful; however, CS
Materials depends on the community’s robust contribution of
materials of all elements that make up a course or module.
Similar to other systems, it is not a magic bullet for building

e © o °
°
o e e O ¢
Qoo °
0 © o ©
- 00 o5 ©
00
o
OOO o .. OO
8 ™ %
o® ® o ©
°Qeo ® ® Ooo ©
o000 . ©
°
0%~ o O o
0® OO O o 04
0° O o o
o
o

Fig. 3. Coverage of modeled data structure classification item by all PDC
materials in CS Materials. Gray nodes are topics/learning outcomes that
currently have no PDC materials mapped to them. The system has hover
features to discover what these topics are.

full modules or courses; instructors will still require some
effort to integrate the material into their course, and in some
cases, more effort due to differences in programming language,
conformance to their program’s learning outcomes, etc.

Yet we believe that a system like CS Materials can help
index the existing courseware that we produce as a community.
More than simply indexing and mapping between materials
and topics and learning outcomes, the system should probably
also index across the dimensions presented in Section II. It will
allow to account for engagement strategies (such as application
domains) and adoption critical information (such as language
and operating system).

V1. DISCUSSION: WHAT SHOULD THE PDC COMMUNITY
DO?

A. Better courseware covering more bases

The courseware approach to the adoption of PDC in Com-
puter Science curriculum relies on materials being available
for instructor to import them into their courses. For materials
to be integrated in courses across a wide range of universities,
the materials need to hit many marks, delivering accurate
information, engage students, be adoptable by instructors to
form a coherent class, and are easily discoverable. Current
efforts in the community do not hit all the marks needed
for widespread adoption. But they are stepping stones and
models for validated approaches to develop materials that can
be adopted. We showed through the BRIDGES project that
one can reuse lots of the core effort to engage a wide variety
of students and institutions.

It is unlikely that we can develop materials that are techni-
cally excellent, applicable across dozens of contexts, require
no instructor training or adoption effort, and engage students
through different pedagogical styles, while also choosing prob-
lems that demonstrate social relevance to their lives; and at

the same time motivating the need for parallel computing. But
what we can do is to enable a compose and remix approach
to the problem. It would be much easier to compose a module
from smaller pieces that include 1) a contextualization doc-
ument that present convingcingly why a particular technique
is technically and socially important (which could be a well
crafted YouTube video), 2) an activity that helps students
develop understanding at a conceptual level (for instance,
from PDC unplugged or from eduWRENCH), 3) technical
description of how that concept applies in a context that is
localized (maybe to the language or execution environment),
4) and a reinforcing practical activity, such as using a Nifty,
Peachy, or BRIDGES approach.

This would reduce the load on instructors significantly;
materials for contextualization and conceptual understanding
could be reused directly from different sources. Localized
technical descriptions may need some light adaptation from
existing material. Reinforcing practical activities are usually
the ones that require the most careful attention and de-
velopment effort; but that can be provided by a medium
size community strike force. Decomposing the problem into
multiple types and goals are needed to leverage expertise in
the community from multiple sources, broadening the scope
of potential contributors.

B. Connecting instructors with courseware

Multiple efforts have gone into developing materials for
PDC education. The challenge is to connect the instructors
with these materials. Collections of materials like PDCUn-
plugged, CSinParallel, or Peachy assignments are useful, but
they are narrowly scoped.

To be able to quickly identify materials, we need to curate
PDC educational content and index them, so as to be able to
easily find materials that can be integrated within a particular
class, accounting for goals (engagement, explanations, prac-
tice), topics, technologies, instructor knowledge, and student
population. Systems like CS Materials that offer the combina-
tion of search and analyses capabilities to facilitate curation
will be key. There may need to be community discussion
to identify what dimensions need to go in such an index
to be most helpful. For this to be succesful, this would
require a significant effort from the community to contribute
and classify their learning materials. But notice that such an
effort requires a different type of skill than content creation.
It enables a different type of expert to make meaningful
contributions toward PDC adoption.

C. Addressing instructor gaps

Instructors can be wary of teaching content on which they
are not experts. And not many CS instructors have receieved
formal training in parallel computing, the majority having
taken at most a single related class in graduate school. Ac-
knowledging and addressing that issue upfront will be critical.

One approach that is centered around courseware lies in
developing instructor packages that explain how to teach the
content and give more context and more complex information.

The idea is to bring the instructor to a higher level of
understanding of the content. This is done in many US K-12
schools where teachers use well crafted packages on topics
they lack deep or foundational understanding. Some of the
chapters in the CDER books [4], [5] are designed for the
benefit of instructors. A second approach is to directly train
instructors through workshops. This is an approach that has
been used in efforts like iPDC, CSinParallel, and CDER who
organize instructor training workshops. While this approach
has trained hundreds of instructors, scaling to 30,000 CS
professors (as per US Bureau of Labor Statistics) will require
the trained instructors train other instructors themselves.

Both instructor packages and workshop approaches will
require coordinated efforts and commitments from the commu-
nity, to make sure the efforts synergize and are communicated
widely for maximum impact.

D. Convincing local programs

All these strategies assume that instructors are convinced of
the importance of integrating PDC in their courses, have the
will and time to perform this integration, and are allowed to
perform the change. But in many cases, radical changes like
this only happen once the degree programs change.

To enable such a change, we will need to engage with a
different set of actors: program and department administra-
tors, program educational committees, certification agencies
(SACS, ABET). The community will need to gather the evi-
dence to make the case from technical, social, and economical
perspectives, so as to convince these actors.

VII. CONCLUSION

The courseware approach to PDC adoption has delivered
slower than expected outcomes. We presented in this position
paper the factors that we believe contribute to the slow
adoption. While this paper certainly has a US bias, we believe
that the core issues and solutions apply globally.

We will not succeed as disjoint small groups of experts.
We need to pull efforts together and form a concerted front to
address the PDC adoption challenge as content developers,
content remixers, content curators, PDC course designers,
instructor trainers, and public advocators.

ACKNOWLEDGMENTS

This work is supported by grants from the National Sci-
ence Foundation (CCF-1652442, DUE-1726809, and OAC-
1924057).

REFERENCES

[1] NSF/IEEE-TCPP Curriculum Working Group, “NSF/IEEE-TCPP
curriculum initiative on parallel and distributed computing :
Core topics for wundergraduates,” CDER, Tech. Rep., 2012,
available at http://www.cs.gsu.edu/~tcpp/curriculum/sites/default/
files/NSF-TCPP-curriculum-version1.pdf.

[2]

[3]

[4]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23]

S. K. Prasad, T. Estrada, S. Ghafoor, A. Gupta, S. C. Kant, K,
A. Sussman, R. Vaidyanathan, C. Weems, K. Agrawal, M. Barnas, D. W.
Brown, R. Bryant, D. Bunde, C. Busch, D. Deb, E. Freudenthal, J. Jaja,
M. Parashar, C. Phillips, B. Robey, A. Rosenberg, E. Saule, and C. Shen,
“NSF/IEEE-TCPP curriculum initiative on parallel and distributed com-
puting -core topics for undergraduates, Version II-beta,” CDER, Tech.
Rep., 2020, available at https://tcpp.cs.gsu.edu/curriculum/?q=system/
files/TCPP%20PDC%20Curriculum%20V2.0beta-Nov12.2020.pdf.
Joint Taskforce on ACM Curricula, Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. ~ACM/IEEE Computer Society,
2013. [Online]. Available: https://www.acm.org/binaries/content/assets/
education/cs2013_web_final.pdf

S. Prasad, A. Gupta, A. Rosenberg, A. Sussman, and C. Weems, Eds.,
Topics in Parallel and Distributed Computing: Introducing Concurrency
in Undergraduate Courses. Morgan Kaufmann,, 2015.

——, Topics in Parallel and Distributed Computing: Enhancing the Un-
dergraduate Curriculum: Performance, Concurrency, and Programming
on Modern Platforms. Springer International Publishing, 2018.
“Peachy parallel assignments,” https://grid.cs.gsu.edu/~tcpp/curriculum/
?q=peachy.

S. J. Matthews, “PDCunplugged: A free repository of unplugged parallel
distributed computing activities,” in 2020 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2020, pp.
284-291.

R. Brown, L. Shoop,
https://csinparallel.org/.

H. Casanova, R. Tanaka, W. Koch, and R. Ferreira da Silva, “Teaching
parallel and distributed computing concepts in simulation with wrench,”
Journal of Parallel and Distributed Computing, vol. 156, pp. 53-63,
2021.

B. Jones, “Motivating students to engage in learning: The music model
of academic motivation,” International Journal of Teaching and Learn-
ing in Higher Education, vol. 21, no. 2, pp. 272-285, 2009.

P. Drake and K. Sung, “Teaching introductory programming with
popular board games,” in Proc. of ACM SIGCSE, ser. SIGCSE 11,
2011, pp. 619-624.

K. Sung, R. Rosenberg, M. Panitz, and R. Anderson, “Assessing game-
themed programming assignments for CS1/2 courses,” in Proc. of
GDCSE, ser. GDCSE ’08, 2008, pp. 51-55.

M. Buckley, H. Kershner, K. Schindler, C. Alphonce, and J. Braswell,
“Benefits of using socially-relevant projects in computer science and
engineering education,” in Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, 2004, pp. 482-486.

M. Goldweber, J. Barr, T. Clear, R. Davoli, S. Mann, E. Patitsas, and
S. Portnoff, “A framework for enhancing the social good in computing
education: a val ues approach,” ACM Inroads.

N. Parlante, “Nifty assignments,” 2018. [Online]. Available: http:
/Mifty.stanford.edu/
Computer Science
https://csunplugged.org/en/.
S. Ghafoor, M. Rogers, D. Brown, and A. Haynes, “Integrating par-
allel and distributed computing in introductory programming classes,”
https://www.csc.tntech.edu/pdcincs/.

Vikas, N. Giacaman, and O. Sinnen, ‘“Pyjama: Openmp-like
implementation for java, with gui extensions,” in Proceedings of
the 2013 International Workshop on Programming Models and
Applications for Multicores and Manycores, ser. PMAM ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p.
43-52. [Online]. Available: https://doi.org/10.1145/2442992.2442997
H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Simgrid: a sustained effort for the versatile simulation of large scale
distributed systems,” arXiv, Tech. Rep. 1309.1630, 2013.

E. Saule, “Experiences on teaching parallel and distributed computing
for undergraduates,” in Proc of IPDPSW 2018, May 2018.

K. Subramanian, E. Saule, and J. Payton, “BRIDGES (Bridging Real-
world Infrastructure Designed to Goal-align, Engage, and Stimulate),,”
2021. [Online]. Available: http://bridgesuncc.github.io/

——, “BRIDGES Assignment Repository,” 2021. [Online]. Available:
http://bridgesuncc.github.io/newassignments.html

A. Beckman, M. Mcquaigue, A. Goncharow, D. Burlinson, K. Subra-
manian, E. Saule, and J. Payton, “Engaging early programming students
with modern assignments using bridges,” in Proc. CCSC CP, 2020.

and J. Adams, “CS in parallel,”

Education Research Group ,

[24]

[25]

[26]

J. Strahler, M. Mcquaigue, A. Goncharow, D. Burlinson, K. Subra-
manian, E. Saule, and J. Payton, “Real-world assignments at scale to
reinforce the importance of algorithms and complexity,” in Proc. CCSC
NE, 2020, conference.

A. Goncharow, M. Mcquaigue, E. Saule, K. Subramanian, P. Goolkasian,
and J. Payton, “CS-Materials: A system for classifying and analyzing
pedagogical materials to improve adoption of parallel and distributed
computing topics in early cs courses,” Journal of Parallel and Dis-
tributed Computing, vol. 157, pp. 316-330, 2021.

E. Saule, K. Subramanian, and J. Payton, “CS Materials,” 2021.
[Online]. Available: https://cs-materials.herokuapp.com/

