
Coloring the Vertices of 9-pt and 27-pt Stencils

with Intervals

Dante Durrman

Dept. Mathematics

UNC Charlotte

Charlotte, NC

ddurrman@uncc.edu

Erik Saule

Dept. Computer Science

UNC Charlotte

Charlotte, NC

esaule@uncc.edu

Abstract—Graph coloring is commonly used to schedule com-
putations on parallel systems. Given a good estimation of the
computational requirement for each task, one can refine the
model by adding a weight to each vertex. Instead of coloring
each vertex with a single color, the problem is to color each
vertex with an interval of colors.

In this paper, we are interested in studying this problem for
particular classes of graphs, namely stencil graphs. Stencil graphs
appear naturally in the parallelisation of applications where the
location of an object in a space affects the state of neighboring
objects. Rectilinear decompositions of a space generate conflict
graphs that are 9-pt stencils for 2D problems and 27-pt stencils
for 3D problems.

We show that the 5-pt stencil and 7-pt stencil relaxations
of the problem can be solved in polynomial time. We prove
that the decision problem on 27-pt stencil is NP-Complete. We
discuss approximation algorithms with a ratio of 2 for the 9-pt
stencil case, and 4 for the 27-pt stencil case. We identify two
lower bounds for the problem that are used to design heuristics.
We evaluate the effectiveness of several different algorithms
experimentally on a set of real instances. Furthermore, these
algorithms are integrated into a real application to demonstrate
the soundness of the approach.

Index Terms—interval vertex coloring, stencils, np complete-
ness, approximation algorithms, heuristics

I. INTRODUCTION

In parallel computing, a central question is to decide when

each task should be run. There are two fundamental models to

reason with this problem. The first is the Parallel Task Graph

model which encodes what the tasks are and the precedence

dependences between tasks. Though, in some applications, the

order in which the tasks are run can be changed, as long as

some sets of tasks do not run concurrently. To model this type

of application, the tasks and their conflicts are represented as

an undirected graph in which vertices are tasks, and edges

represent the non-concurrency between two tasks. The classic

optimization problem to make the execution more efficient is

a graph coloring problem, which is NP-Hard in the general

case [1].

In the classic graph coloring problem, each vertex of the

graph needs to be allocated one color (an integer) so that each

pair of neighboring vertices have different colors. This model

is appropriate when one does not have a good idea of the

runtime for each individual task, which happens frequently.

Though in some applications we have a precise idea of how

much work is required by a particular task. In these cases, the

problem of scheduling the tasks is better modeled by giving

each task not a single color, but an interval of colors with

length proportional to the length of the task. This problem is

to color the vertices of a graph with intervals. In the general

case, this problem is harder than the classic graph coloring

problem and is also NP-Hard even though it provides a more

accurate model.

While the problem is NP-Hard on general graphs, certain

types of applications are only concerned about particular

categories of graph. In this paper, we study the problem

of coloring with intervals the vertices of stencil graphs. In

particular, we are interested in 9-pt 2D stencils and in 27-pt

3D stencils.

These problems appear in applications where objects are

located in space and can impact the state of nearby objects.

Imagine an application in 2D space where the impact of

objects within a given radius follow the behavior of complex

equations. When making this application parallel, one may

want to partition the space and have each region of the space

be a particular task. See Figure 1 for reference. The figure

depicts a grid of 5× 4 tasks. The blue object will impact the

three objects within the radius of the blue circle. So when

processing the region that contain the blue object, one can not

process any other region that may impact the same objects.

If the partition of the region is made to be rectilinear [2] and

no partition is smaller than twice the radius of impact, then

a region can not be processed at the same time as any of its

8 neighbors. The underlying graph of conflict is a 9-pt 2D

stencil. The nodes can be weighted with an estimation of the

processing time of the region. In the figure, the nodes are

weighted by the number of objects in the region. This type

of structure can appear in various scientific codes, including

n-body solvers, bird flocking simulations [3], or visualization

of spatio-temporal data [4].

In this paper, we study the formal problem of coloring

with interval graphs which are 9-pt 2D stencils and 27-pt

3D stencils. We formally define the combinatorial problem

in Section II. We study special cases in Section III where

we show how to color important particular graphs such as

cliques, bipartite graphs, and odd cycles. This analysis gives us

lower bounds useful to analyse the stencil problem. We prove

1 2 2 1

2432

1 4 1 0

1110

0 1 0 1

Fig. 1: Application leading to a 5× 4 9-pt stencil graph

in Section IV that the problem of interval coloring of 27-pt

3D stencil with a small number of colors is NP-Complete.

Section V provides various greedy heuristics based on the

analysis of the problem. It also provides an approximation

algorithm for the problem with a ratio of 2 for the 9-pt

stencil problem and of 4 for the 27-pt stencil problem; and

greedy post optimizations. All the methods are evaluated on

some instances from spatio-temporal analysis in Section VI.

In Section VII, we integrate our heuristics in a Space-Time

Kernel Density Estimation application [4] and show that the

number of colors derived by the heuristics correlates with the

runtime of the application.

II. INTERVAL COLORING PROBLEM OF STENCILS

A. Problem Definition

We define first the general problem of graph coloring

vertices with intervals.

Definition 1 (Interval Vertex Coloring (IVC)). Let G = (V,E)
be an undirected graph and w : V → Z

+ be a weight

function that associates vertices of the graph to positive (or

null) weights.

An interval coloring of the vertices of G is a function

start : V → Z
+. We say that vertex v is colored with the open

interval [start(v), start(v) + w(v)). For the coloring to be

valid, neighboring vertices must have disjoint color intervals

∀(a, b) ∈ E, [start(a), start(a)+w(a))∩[start(b), start(b)+
w(b)) = ∅. A particular coloring start of vertices is said to

use maxcolor = maxv∈V start(v) + w(v) colors.

The optimization problem is to find a coloring start that

minimizes maxcolor. We will denote the optimal value of

maxcolor as maxcolor∗.

We will slightly abuse the w notation to extend it to sets of

vertices: for instance, w(x, y, z) = w(x) + w(y) + w(z).
We are particularly interested in restrictions of the problems

where the graph is a 9-pt 2D stencil or a 27-pt 3D stencil.

Definition 2 (2DS-IVC). An IVC problem where graph G is

a 9-pt 2D stencil, that is to say it is composed of X × Y

vertices laid on a 2D grid such that two vertices (i, j) and

(i′, j′) are connected by an edge if and only if |i − i′| ≤ 1
and |j − j′| ≤ 1.

Definition 3 (3DS-IVC). An IVC problem where graph G is

a 27-pt 3D stencil, that is to say it is composed of X×Y ×Z

vertices laid on a 3D grid such that two vertices (i, j, k) and

(i′, j′, k′) are connected by an edge if and only if |i− i′| ≤ 1
and |j − j′| ≤ 1 and |k − k′| ≤ 1.

Without loss of generality, we will assume that X > 1,

Y > 1, and Z > 1 for both 2DS-IVC and 3DS-IVC instances.

If one of the dimensions was equal to 1 in 3DS-IVC, the

instance can be thought as an instance of 2DS-IVC. And if

one of the dimension was equal to 1 in 2DS-IVC, the graph

would be a chain which, as we will see, is a polynomial case.

In general, vertices are indexed from 1; so the first task of

2DS-IVC is (1, 1) and the last task is (X,Y).

B. Related Works

The interval coloring problem has a long-established history

with multiple variants and classical applications. Bandwidth

problems [5], [6], scheduling problems [7], and timetabling

problems [8] are just a few applications.

Since the complexity of the interval coloring problem for

general graphs is known to be NP-Hard [1], several authors

have provided bounds on the generalized chromatic num-

ber [9]. However, these bounds are not useful in practical ap-

plications; therefore, polynomial algorithms for special classes

of graphs become desirable. Bipartite graphs, complete graphs,

chordal graphs, interval graphs, stars, and trees have already

been investigated. However, 9-pt 2D stencil graph and 27-pt

3D stencil were previously unexplored, as far as the authors

know.

Greedy algorithms are a staple of heuristics to provide

solutions to graph coloring problems since graph coloring is

NP-Complete [10]. For classic graph coloring problems greedy

algorithms pick vertices of the graph in an arbitrary order

and allocate the lowest color that does not conflict with the

neighbors that have already been colored. A classic guarantee

of greedy coloring is that they use at most ∆+1 colors where

∆ is the maximum degree in the graph.

Some classic greedy algorithms use a particular ordering of

the vertices which hopefully provide better colorings than arbi-

trary orders [11]. Popular orderings are Largest First [12], and

Smallest Last [13]. Some post optimization techniques have

proven to be particularly effective, such as recoloring [14].

III. SPECIAL CASE ANALYSIS

Since we are in particular interested in solving the 2DS-

IVC and 3DS-IVC problems, it is important to analyze graphs

structures that can be embedded in a 9-pt or a 27-pt stencil.

Indeed, for any instance of IVC (and therefore of 2DS-IVC

or 3DS-IVC), the optimal coloring of any subgraph contained

in the graph G (obtained for instance by removing vertices

or edges from G) is a lower bound of the optimal number of

color of G.

A. Cliques

Cliques are some of the easiest graphs to color. Because all

vertices are connected to all the other vertices, no vertices can

share any color with any other vertices in the graph. Therefore,

if G = Kn is a clique of size n, it is optimal to color the

graph with maxcolor∗ =
∑

v∈V w(v) colors. One can easily

We will once again assume without loss of generality that

w(0, 1, 2) = minchain3. So we have w(0, 1, 2) ≤ w(x, x +
1, x+ 2) for all x ∈ V .

We have i(0)∩ i(2) 6= ∅ because the Pidgeonhole Principle:

there are only w(0, 1, 2) − 1 = K − 1 colors available; and,

because i is valid, we have i(0)∩i(1) = ∅ and i(2)∩i(1) = ∅.

Since i(0) and i(2) intersect, but do not intersect with i(1),
i(0) and i(2) must be on the same side of i(1). Without loss

of generality, we can assume that i(1) is before i(0) and i(2).
If it is not true, we can transform the coloring so that color c

becomes color k− 1− c. And since 1 is only neighbor with 0
and 2, we can assume that i(1) = [0, w(1)). We say that 1’s

coloring is 0-aligned.

w(3) ≥ w(0) because w(1, 2, 3) ≥ w(0, 1, 2) since (0, 1, 2)
is the minimum chain of length 3. Hence, i(3)∩i(1) 6= ∅ since

i(3) ∩ i(2) = ∅ and i(1) ∩ i(2) = ∅. Therefore, i(1) and i(3)
are on the same side of i(2) since i(1) is 0-aligned, we can

assume WLOG that i(2) = [K − 1 − w(2),K − 1). we say

that 2’s coloring is K − 1-aligned.

This argument is true for any chain of three vertices:

∀x, i(x) ∩ i(x + 2) 6= ∅. The same argument holds by

induction. For all odd x, we have i(x) = [0, w(x)). And for

all even x we have i(x) = [K − 1− w(x),K − 1). We have

i(n− 1) = [K − 1−w(n− 1),K − 1) because n− 1 is even.

The Pidgeonhole Principle implies that n − 1, 0, 1 has their

interval intersect. But since i(n − 1) and 1 do not intersect,

and i(0) and i(1), then i(n−1) and i(0) must intersect. Hence,

the solution is not valid.

Odd cycles provide a new lower bound on the optimal color-

ing of the 2DS-IVC and 3DS-IVC: the maximum minchain3
of any odd cycle embedded in the stencil. However, it does

not appear to be easy to identify the odd cycle of maximum

minchain3 in an instance of 2DS-IVC. There are an expo-

nential number of odd cycles; so one would need something

of lower complexity than simply listing them.

D. Lower bounds are not tight

We now have two separate lower bounds applicable to our

stencil graphs. Cliques provide one lower bound and odd

cycles provide the other one. We exhibit now (in Figure 3)

an instance whose optimal coloring uses stricly more color

than either lower bounds.

The instance features two odd cycles that have two of their

respective vertices neighbor each other. The maximum clique

is 14 while the minchain3 of either of the cycle is 14. Yet,

the optimal coloring is 17. (We confirmed the optimal coloring

with an integer linear program.)

IV. NP-COMPLETENESS

We will prove in this section that the decision version of the

3DS-IVC problem is NP-Complete. The core of the proof is

to show that the problem is harder than Not-All-Equal 3-SAT.

An instance of Not-All-Equal 3-SAT (NAE-3SAT) is qual-

ified by n binary variables used in m groups of 3 variables.

The instance is positive if there is an assignment of true or

false to each variable so that in each of the m groups at least

Fig. 3: Optimal Coloring of 2 Neighboring Cycles

one variable is true and at least one is false. This variant of

3SAT is known to be NP-Complete [15]. NAE-3SAT has two

of properties which makes it easier to use in many reductions:

1) there is no need for negation of a variable in the instance

of NAE-3SAT like we have in 3SAT; and 2) if an assignment

solves the instance, then the negation of that assignment also

solves the instance.

Lemma 4. 3DS-IVC ∈ NP

Proof. A solution for 3DS-IVC is an interval of colors for

each vertex. This can be encoded as 2 integers, and they are

easily bounded between 0 and
∑n

i=0 w(i), where w(i) is the

weight of the vertex i in 3DS-IVC. This sum can be encoded

in a polynomial number of bits. This is a trivial bound, but it

does show the solution is in polynomial space.

Given a solution for 3DS-IVC we can check to see if it

is correct in polynomial time. We just need to verify that

no adjacent edges have overlapping scheduled intervals. More

precisely, we are checking, ∀(u, v) ∈ E, [start(u), start(u)+

w(u))∩ [start(v), start(v)+w(v)) = ∅. Since |E| ≤ n(n−1)
2

is polynomial for arbitrary graphs. Checking if two intervals

intersect is in O(1). Hence, any solution for 3DS-IVC can be

verified in O(n2).

Therefore, 3DS-IVC ∈ NP.

Lemma 5. NAE-3SAT ∝ 3DS-IVC

Proof. Constructing an instance 3DS-IVC from an instance

of NAE-3SAT in polynomial time. Let v1, v2, ..., vn be vari-

ables that appear in the m clauses of the NAE-3SAT problem,

so that for each clause uj = (vj1 , vj2 , vj3), 1 ≤ j ≤ m at least

one variable is true and at least one variable is false. Without

loss of generality, assume the variables are ordered within the

clauses 1 ≤ j1 < j2 < j3 ≤ n.

We construct now the corresponding instance of the 3DS-

IVC problem to color with maxcolor = 14 colors.

We generate a 3D cube of width 2n + 10, height 9, and

depth 2m. We use (x, y, z) to denote our coordinate system

in Z
3. The weight of each vertex in the 3D cube is either

a 0, 3, or 7. In other words, ∀(x, y, z), w(x, y, z) ∈ {0, 3, 7}.

Any value not specified in our construction is set to 0.

We call the following construction a tube generated by

variable vi: ∀(x ≤ n, z ≤ 2m),

w(2i− 1, 1, z) =

{

0, if z ≡ 1 (mod 2)

7, if z ≡ 0 (mod 2)

}

w(2i− 1, 2, z) =

{

7, if z ≡ 1 (mod 2)

0, if z ≡ 0 (mod 2)

}

We call layer 2j+1 “the layer of clause j”. For each layer

of clause j, we construct the wire generated by variable xj1 .

w(2j1 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 7)

w(x, 8, 2j + 1) = 7(∀x, j1 + 1 ≤ x ≤ 2n+ 1)

Similarly, we construct the wire generated by variable xj2 .

w(2j2 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 5)

w(x, 6, 2j + 1) = 7(∀x, j2 + 1 ≤ x ≤ 2n+ 1)

Lastly, we construct the wire generated by variable xj2 .

w(2j3 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 3)

w(x, 4, 2j + 1) = 7(∀x, j3 + 1 ≤ x ≤ 2n+ 1)

Furthermore, in each odd layer, we explicity describe right

hand side of the xy-plane (that is to say for 2n + 1 ≤ x ≤
2n+ 10, for 1 ≤ y ≤ 9, and for z = 2j + 1):

W2j+1 =





























0 7 7 0 0 0 0 0 0 0
7 0 0 7 0 0 0 7 7 0
0 0 0 7 0 0 3 0 0 7
7 7 0 0 7 3 3 0 0 7
0 0 7 0 0 0 0 7 0 7
7 0 0 7 0 0 7 0 0 7
0 7 0 0 7 7 0 0 0 7
0 0 7 0 0 0 0 0 7 0
0 0 0 7 7 7 7 7 0 0





























(1)

Several desirable properties come from the careful construc-

tion of these tubes, wires, and clauses.

The wires connect the tubes to the appropriate “3s” on the

right hand side of the clause’s layers. All wires have the same

parity of length. Meaning, for every variable, the path from

the variable to the terminating 3 is congruent to 0 mod 2. All

wires have even length in our construction.

Because we are trying to solve the decision problem with

maxcolor = 14 and each 7 is connected to another 7, each

7 must be scheduled from either [0, 7) or [7, 14). In a chain

of 7s, every other 7 must be scheduled to the same [0, 7)
or [7, 14) because adjacent 7s cannot overlap in scheduled

intervals. In other words, all even 7s in a chain must share the

same “polarity” by construction. We call the color of (2i −
1, 2, 1) the polarity of variable vi. (If vi is true, (2i−1, 2, 1) is

colored with interval [0, 7), and the 7s in the tube and wires of

vi have positive polarity. If vi is false, (2i−1, 2, 1) is colored

with interval [7, 14), and the 7s in the tube and wires of vi
have negative polarity.)

In the triangle of 3s from the W2j+1, the 7s connected to the

3s cannot all share the same polarity and be colorable in 14.

Suppose without loss of generality that all of the 7s directly

adjacent to the 3s share the same polarity on the low-end of

the interval, namely [0, 7). All 7s are blocking [0, 7) and there

are 9 different colors required for all 3s, but we only have 7
colors left in the interval from [7, 14).

A positive instance of NAE-3SAT results in a positive

instance of 3DS-IVC.

If the instance of NAE-3SAT is positive, then there is a

variable assignment that is valid. We construct a solution of the

created instance of 3DS-IVC out of the variable assignments

of a solution of NAE-3SAT.

If v1 is true, color the wire of v1 to give it positive polarity.

If v1 is false, give the wire of v1 negative polarity. This forces

the coloring of all 7s in instance.

The only question left is “can we color the 3s?”. That

answer has to be true because we know the instance of NAE-

3SAT is positive instance. Hence, for any clause that clause is

valid and the 3 variables in that clause are not all equal. So at

least one is true and at least one is false. Therefore all 7s in

the clause object cannot have the same polarity. Two of the 7s

share same polarity, and one has opposite polarity. Assume 2

positive and 1 negative (without loss of generality). The 3 that

is connected to the negative we will color [0, 2). And the other

two 3s we color with [7, 9) and [10, 12). That coloring is valid

for that clause. we can color all 3s with a similar process.

If the created instance of 3DS-IVC is positive, then the

instance of NAE3-SAT is also positive.

Since the instance of 3DS-IVC is positive, there is a valid

coloring of the vertices of the 27-pt stencil. We infer the values

for NAE-3SAT by looking at the polarity of the wire. If (2i−
1, 2, 1) is colored with interval [7, 14) then we set vi to false.

If it is colored with interval [0, 7) then we set vi to true.

If we were able to color the graph, then the triangle of 3s

were colorable in 14 colors. And therefore for each clause, one

of the three variables has a different value than the other two.

This makes the NAE-3SAT instance a positive instance.

Since the 3DS-IVC problem is in NP and is harder than

NAE-3SAT which is an NP-Complete problem, we have the

following result.

Theorem 6. Deciding whether a 27-pt stencil can be colored

with less than K colors is NP-Complete.

Note that at this point, we do not know whether coloring a

9-pt stencil is an NP-Complete problem or not. Fundamentally,

the reduction for 3DS-IVC works because the tube, wire, and

triangle graph can be embedded in a 27-pt stencil. But that

tube, wire, and triangle graph is not planar, so it can not be

embedded in a 9-pt stencil. As such, the complexity of coloring

the vertices of 9-pt stencil graphs with intervals remains open.

V. HEURISTICS

A. Greedy Algorithms

For the problem of coloring with intervals, we design greedy

algorithms. We pick vertices one by one; When we pick vertex

v, we give it the lowest color interval of width w(v) that does

not intersect with the color interval of one of the neighbors.

To find such an interval, we first sort the color interval of

neighbors by the lower end of the intervals. This enables to

find the lowest color interval of length w(v) that is available in

a single pass over the neighbor colors intervals. This process

has a complexity of O(Γ(v) log Γ(v)) for vertex v. For the

whole graph, the complexity of greedy coloring is O(E logE).
This greedy coloring has some upper bound on the number

of colors used, even though it is higher than one would hope.

Lemma 7. Any greedy coloring will color vertex v with an

interval that ends at most with color
∑

j∈Γ(v) w(j)+ (Γ(v)+
1)w(v)− Γ(v)

Proof. In the worst case, each neighbor uses different color

intervals from one another, preventing
∑

j∈Γ(v) w(j) colors

from being used. When sorted, each of these color interval

could be separated from the previous one (or from color 0) by

exactly w(v) − 1 colors. This forces the greedy algorithm to

color v with an interval which starts after the one of all the

neighbors at color
∑

j∈Γ(v)(w(j) + w(v)− 1).

By this analysis, we know that the worst case is achieved

when the algorithm colors the vertex of high weight after

its neighbors have been colored with unfortunately spaced

intervals. This leads us to design two broad categories of

order in which to color vertices. Either you color early

vertices/structures with high weights, or you color vertices in

an order where vertices are not colored after all its neighbors

(usually).

We describe first coloring in geometric patterns. The first

one is to color vertices line by line (and then plane by plane in

3DS-IVC): we call this algorithm Greedy Line-by-Line (GLL).

The second one does not favor a particular dimension and

orders the vertices using the recursive order Z-Order: we call

this algorithm Greedy Z-Order (GZO).

To color vertices based on the weight, the simplest ordering

is simply to sort vertices in the order of non-increasing

weights. We call this algorithm Greedy Largest First (GLF).

From the analysis of the problem, we know that some

structure of the instances are important, namely cliques and

odd cycles. Since the clique of largest weight will be the

structure which is likely to set the total number of colors, we

designed an algorithm to color cliques first in non-increasing

order of weight. Of course, there are multiple vertices in a

clique and they are colored in an arbitrary order. It is also

possible that some vertices of a clique have already been

colored as part of a different clique; in this case, we follow

the greedy principle and leave them untouched. We call this

algorithm Greedy Largest Clique First (GKF).

Note that we could pick the vertices in the clique in a

particular, smarter, order. Since all the cliques in 2DS-IVC

and 3DS-IVC are of constant size, we opt to try all the

permutations of the vertices in the clique and only retains the

permutation that leads to the best number of colors for that

clique. This adds a 4! = 24 overhead in the case of 2DS-IVC

and a 8! = 40320 overhead for 3DS-IVC. Since checking

all 8! permutations per clique was too time consuming in

our experiments, the algorithm implemented in the 3D cases

was slightly modified from its 2D counterpart. Instead of

examining all possible orders of a clique, we sorted the vertices

inside the clique by non-increasing weights. We call these

algorithms Smart Greedy Largest Clique First (SGK).

B. Bipartite Decomposition

The 9-pt 2D Stencil and 27-pt 3D Stencil graphs we are

interested in are very similar to bipartite graphs. We can use

that property to design approximation algorithms for the 2DS-

IVC and 3DS-IVC problem. We will explain the construction

on 2DS-IVC and explain how the construction extends to other

graph, including 3DS-IVC.

Here is how Bipartite Decomposition works. Consider in-

dividually each of the Y rows the 2DS-IVC instance. Each

row is a chain of vertices, which is a bipartite graph and

can be colored optimally using the algorithm presented in

Section III-B in Θ(XY). Let c(x, y) be the lower end of the

color interval associated with vertex (x, y) in that coloring.

And let RC = max c(x, y) + w(x, y) be the maximum color

used by any of the rows. RC ≤ maxcolor∗ is a lower bound

of the optimal number of colors of the instance since it is the

optimal coloring of a subgraph of the original instance.

Note that if we were to color vertex (x, y) with

start(x, y) = c(x, y) then the coloring would possibly be

invalid since a vertex could share a color with one of its

neighbors in the row above or the row below. Bipartite

Decomposition colors vertex (x, y) with

start(x, y) = c(x, y), ∀x, y, y ≡ 0[mod2]

start(x, y) = RC + c(x, y), ∀x, y, y ≡ 1[mod2]

This can be done in Θ(XY) which makes Bipartite Decom-

position an algorithm in Θ(XY).
That coloring is feasible since even rows are being colored

using colors from [0, RC) and odd rows are being colored

using colors from [RC, 2RC). Furthermore, the coloring uses

at most 2RC colors. So, we have maxcolor ≤ 2RC ≤
2maxcolor∗. In other words, we obtain the following theorem.

Theorem 8. Bipartite Decomposition is a 2-approximation

algorithm for 2DS-IVC.

The construction of Bipartite Decomposition works because

once each row r has been colored, the row can be contracted

into a single vertex of r of weight w(r) = max c(x, r) +
w(x, r), and the resulting graph of the rows is a chain, which

is bipartite itself. If one can decompose a graph G into p

parts so that the contraction of G into p vertices is bipartite,

and if the each part can be colored using a ρ-approximation

algorithm, then Bipartite Decomposition can color G using at

most (2ρ)(maxcolor∗) colors.

