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Figure 1: Proposed approach for conversational group detection ((a) includes an example frame from MatchNMingle [5]).

ABSTRACT
We study conversational group detection in varied social scenes
using a message-passing Graph Neural Network (GNN) in combi-
nation with the Dominant Sets clustering algorithm. Our approach
first describes a scene as an interaction graph, where nodes en-
code individual features and edges encode pairwise relationship
data. Then, it uses a GNN to predict pairwise affinity values that
represent the likelihood of two people interacting together, and
computes non-overlapping group assignments based on these affini-
ties. We evaluate the proposed approach on the Cocktail Party and
MatchNMingle datasets. Our results suggest that using GNNs to
leverage both individual and relationship features when computing
groups is beneficial, especially when more features are available
for each individual.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding.

KEYWORDS
F-formation; clustering; graph neural network

ACM Reference Format:
Sydney Thompson, Abhijit Gupta, AnjaliW. Gupta, Austin Chen, andMarynel
Vázquez. 2021. Conversational Group Detection with Graph Neural Net-
works. In Proceedings of the 2021 International Conference on Multimodal
Interaction (ICMI ’21), October 18–22, 2021, Montréal, QC, Canada. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3462244.3479963

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICMI ’21, October 18–22, 2021, Montréal, QC, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8481-0/21/10. . . $15.00
https://doi.org/10.1145/3462244.3479963

1 INTRODUCTION
Conversational group detection has a wide range of applications, in-
cluding video surveillance [8, 15, 29], displays and exhibits [10, 16],
co-located collaboration [21], and interactive playgrounds [17, 22].
Group detection can also enable better spoken language interaction
with situated agents [4], non-verbal robot behavior generation [34],
and socially aware robot navigation in human environments [26].

Similar to prior work, we approach the problem of conversational
group detection by reasoning about human proxemics [12] and con-
versational formations. During free-standing conversations, people
tend to form certain spatial patterns with each other, known as Face
Formations or F-Formations in short [18]. F-Formations are varied,
adapting to factors such as density and physical environmental
constraints. They characterize conversational groups.

We describe a social scene as an interaction graph and explore
using a Graph Neural Network (GNN) [2] for conversational group
detection. Inspired by Swofford and colleagues [30], we use the
GNN to predict pairwise affinities for the graph, which encode the
likelihood that two people are part of an F-Formation. Then, we
use the affinities to cluster people into conversational groups, as
shown in Figure 1. While Swofford and colleagues [30] used a Deep
Set [25, 40] architecture to aggregate context from graph nodes
when predicting an affinity value, this work advocates in favor of
a more general message-passing architecture for reasoning about
information in both the nodes and edges. This allows us to reduce
feature engineering and more explicitly leverage relational features.

In summary, our main contributions are threefold. First, we
propose a novel approach for group detection which relies on a
GNN. Second, we conduct experiments on two datasets with varied
input features such as position, orientation, and top-down images
of participants to demonstrate the efficacy of the proposed model.
Third, we open-source our code to facilitate future reproducibility.1

2 RELATEDWORK
The problem of conversational group detection has traditionally
been approached by hand-crafted heuristics and mathematical mod-
els [15, 29, 32]. However, advancements in machine learning have

1http://gitlab.com/interactive-machines/perception/group_gnn
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enabled improved social awareness with greater generalization
[11, 14, 30]. In particular, the approach by Swofford et al. [30], called
DANTE, outperformed several traditional approaches. DANTE re-
ceives spatial features for people in a scene and constructs a fully-
connected interaction graph, using the input data as node features.
It then computes pairwise affinities by combining the dyad node
features with context aggregated using a Deep Set architecture
[25, 40]. These affinities are used to partition the graph with the
Dominant Sets algorithm [15, 23]. Because DANTE computes con-
text in tandem with a dyad, it relies heavily on hand-crafted feature
transformations to preserve rotation and translation invariance.

While DANTE [30] mainly reasons about information encoded
in the nodes of a graph, we propose to use a more general message-
passing GNN architecture [2] for affinity prediction. The GNN
consists of a collection of update and aggregate functions that
allow for node and edge information consolidation in a graph. This
GNN architecture is a superset of Deep Sets, as discussed in [2].

While GNNs have previously been used for node clustering
[3, 19, 31, 38], our problem differs in several keyways. Methods such
as [19, 31] require an input affinity matrix, while our GNN must
calculate the affinities itself. Also, several priormodels for clustering
with deep learning require information about the number of clusters
[3, 38]; however, we do not know the number of conversational
groups in a scene in advance. Lastly, many models (e.g. [6, 13])
for social interaction analysis are designed and evaluated on large
graphs (see [36] for five such datasets with an average number of
nodes ranging from 13 to 500). In our case, we make predictions
over smaller graphs (2-16 nodes) as there is a physical limit to how
many people can interact simultaneously in a given place [18].

Three reasons motivate us to predict an affinity matrix with a
message-passing GNN. First, the values in an affinity matrix can be
thought of as unidimensional edge features and, by design, GNNs
are well suited to predict this type of data. Second, a single GNNs
can work on graphs with numbers of nodes, which is important
when reasoning about varied environments. Third, strategic choices
about what features are encoded in the nodes and edges of a graph
can make GNNs invariant to spatial rotations and translations. This
reduces the amount of pre-processing transformations needed to
analyze a scene in comparison to DANTE.

Prior benchmarks in conversational group detection from still
images [28–30] commonly consider datasets with a limited number
of people, e.g., the Cocktail Party dataset [41] considers six people.
Given the relative simplicity of these datasets, we study group de-
tection performance using the recent MatchNMingle dataset [5]
made available by the Delft University of Technology. MatchNMin-
gle is a multi-sensor dataset of in-the-wild conversations for the
analysis of social interactions. It contains 4446 images of a scene
with up to 15 people per frame, as shown in Figure 1.

3 METHOD
This paper studies conversational group detection: partitioning a
set of people in a scene into non-overlapping clusters representing
interacting groups. Formally, assume that there are 𝑛 people in the
scene and let 𝑃 be a set of individual feature vectors, 𝑃 = {𝒇𝑘 |
1 ≤ 𝑘 ≤ 𝑛}. Then, the groups can be expressed via a clustering
schema 𝐶 : 𝑃 → {1, . . . , 𝑛𝑐 }, with 𝑛𝑐 the number of clusters.

Given a datasetD of 𝑁 examples,D = {(𝑃1,𝐶1), . . . , (𝑃𝑁 ,𝐶𝑁 )},
we frame the group detection problem from a supervised learning
perspective as computing a function ℎ(𝑃𝑖 ) = 𝐶𝑖 that estimates
cluster assignments. Each predicted𝐶𝑖 should be as close as possible
to the true𝐶𝑖 for all the examples 𝑖 in D. Note that in this problem
the number of clusters and people may differ across examples.

3.1 Clustering Conversational Interactants
We propose to construct the function ℎ(𝑃𝑖 ) = 𝐶𝑖 using a Graph
Neural Network (GNN), followed by the application of the Domi-
nant Sets (DS) algorithm [23]. To this end, we first create a fully-
connected interaction graph that describes the scene,𝐺0

𝑖
= (𝑁 0

𝑖
, 𝐸0

𝑖
),

as illustrated in Figure 1. We assign each feature vector 𝒇𝑘 to node
features 𝒏0

𝑘
and edge features 𝒆0

𝑗𝑘
in the graph, such that:

𝑁 0
𝑖 =

{
𝒏0
𝑘
| 1 ≤ 𝑘 ≤ |𝑃𝑖 |

}
, 𝐸0

𝑖 =
{
𝒆0
𝑗𝑘

| 1 ≤ 𝑗, 𝑘 ≤ |𝑃𝑖 |, 𝑗 ≠ 𝑘
}

The proposed GNN is composed of two graph computation layers,
𝑔(·) = 𝑔2 (𝑔1 (·)). Each layer transforms an input graph 𝐺𝑙−1

𝑖
into

another graph 𝐺𝑙
𝑖
, with 𝑙 indicating the 𝑙-th layer without loss of

generality. At the last layer of the GNN, 𝒆2
𝑗𝑘

∈ 𝐸2
𝑖
represents the

pairwise affinity from node 𝑗 to node 𝑘 in the graph.
Based on the pairwise affinities output by the GNN, we construct

an affinity matrix𝐴𝑖 for the graph corresponding to the set 𝑃𝑖 .𝐴𝑖 is
then passed through the DS algorithm [23], which iteratively groups
graph nodes into clusters by maximizing the quadratic program
max𝒙∈𝑆 |𝑃𝑖 | 𝒙

𝑇𝐴𝑖𝒙 , where 𝑆 |𝑃𝑖 | is the standard simplex inR |𝑃𝑖 | . Here,
solutions to the quadratic program represent a group of people, the
dominant set in the input𝐴𝑖 . Note that every iteration of DS reduces
the size of the affinity matrix by removing the data corresponding
to the last group that was predicted by the algorithm.

Oftentimes, there will be individuals in a scene that are not in a
group conversation. However, the peeling-off strategy employed
by DS tends to group together these individuals. To combat this
problem, we use the DS stopping criteria from [15] to consider the
global context of the complete graph when grouping people.

3.1.1 Graph Neural Network. Each computation layer of the pro-
posed GNN is a graph network block comprised of two updates: one
for the edges and one for the nodes, following the message-passing
architecture described in [2]. If we define the node and edge fea-
tures for layer 𝑙 as 𝒏𝑙

𝑘
and 𝒆𝑙

𝑗𝑘
, respectively, then the graph network

block operates as follows:

𝒆𝑙+1
𝑗𝑘

= edge_update
(
𝒆𝑙
𝑗𝑘
,𝒏𝑙𝑗 ,𝒏

𝑙
𝑘

)
(1)

𝒏𝑙+1
𝑘

= node_update
(
𝒏𝑙
𝑘
, agg

(
{𝒆𝑙+1

𝑗𝑘
| 𝑗 ≠ 𝑘 }

))
(2)

The edge_update(·) and node_update(·) functions are neural
networks that reason about edge or node features in relation to the
information in their neighborhood in the graph, as shown in Figure
2. The agg(·) function is a symmetric function that summarizes
information in the edge features connected to a given node.

Our motivation for designing our GNN with two graph network
blocks stems from the fact that we consider fully-connected in-
teraction graphs with no self loops in this work. Thus, two graph
network blocks suffice to make the output affinity values dependent
on the information encoded in all the nodes and edges in the graph.
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Figure 2: Edge update (left) and node update (right).

3.1.2 Implementation Details. When creating an interaction graph
𝐺0, each person in the scene is associated to a node and edges are
created between all individuals. The edge features 𝒆0 are derived
from a subset of the person features 𝒇 in order to describe pairwise
relationships. For example, if the person features include position
information, then we compute an edge feature that corresponds to
the distance between people. The remaining individual features are
used as node features 𝒏0 in the interaction graph.

Our model uses averaging for agg(·) in eq. (2), and multi-layer
perceptrons (MLPs) for the edge_update(·) and node_update(·)
functions in eq. (1) and (2), respectively. We also apply MLPs to
both the initial node and edge features in 𝐺0, before the update
functions, in order to balance their relative number of features.
For example, if the nodes include image-derived features and the
edges contain only distance, these MLPs can embed the image into
a smaller feature and the distance into a bigger feature to increase
their relative importance. The final edge embeddings in the GNN
have a size of 1, corresponding to pairwise affinities. We train the
GNN using binary cross-entropy on these affinities, as in [30].

Finally, we aggregate the pairwise affinities output by the GNN
into a matrix, 𝐴𝑖 , and then compute a symmetric affinity matrix
𝐴𝑖 =

1
2 (𝐴𝑖+𝐴𝑇𝑖 ). The latter matrix is used by DS to compute groups.

4 EVALUATION
We compare the proposed approach for group detection against
baselines on two datasets with different person-level features.

4.1 Datasets
Cocktail Party Dataset [41]. The dataset contains 30 minutes of
interactions among six people in a lab environment. The dataset
provides position and head orientation information for each in-
dividual, and we also consider their body orientation from [35].
Conversational groups are labeled for 320 frames. We use the first
64 frames for testing, the next 64 for validation, and the rest for
training. We chose this dataset for our evaluation because of its
relative simplicity, high quality features, and popularity [29, 30, 32].

MatchNMingleDataset [5]. The dataset was recorded over 3 days
with a total of 92 participants. We used the “mingle” data, a subset of
MatchNMingle where participants engaged in a cocktail party. For
each day of recording, this subset includes 10/30 minutes of video
from 3 cameras with annotated bounding boxes and ”social actions”
in 9 categories for each participant. Triaxial acceleration and binary
proximity data is provided for 71/92 participants, all labeled at 20Hz.
Also, manually-annotated conversational groups are given at 1 Hz.
We aggregate these annotations into 600 frames per camera per
day. Because there was high variability in group sizes, spacing,
and environment obstacles between recordings, we partition each
recording individually. The first and last 10% of frames from each

recording were used for test, the next 10% of frames from beginning
and end were used for validation, and the middle 60% were used
for training.

We consider 4 types of features for individuals in MatchNMingle:
– Position features (pos) include 𝑥,𝑦 coordinates for the correspond-
ing person on a video recording.

– Acceleration features (accel) are the last 10 accelerometer readings
for a person, covering a time window of 0.5 seconds.

– Image features (img) are visual embeddings for the person. We
compute the embedding by passing a 32 × 32 cropped section
of the recorded image around the person to ResNet [20] and ex-
tracting the 512 features in the penultimate layer of the network.

– Semantic features (label) encode person actions. The features are
computed by aggregating the actions into a 9-dimensional vector
that indicates their occurrence per type over the last 0.5 seconds.

4.2 Group Detection Methods
We consider three methods in our evaluation:
(1) Dist. Hand-crafted baseline inspired by [15, 39]. The method
computes an affinity matrix as 𝐴𝑖 𝑗 = exp

(
− 𝑑𝑖 𝑗/2𝜎2

)
, where 𝑑𝑖 𝑗 is

the distance between two participants and 𝜎 = 2 meters, following
[15]. DS is then applied to obtain groupings, as in [15].

(2) DANTE. We implement the DANTE neural network [30] in
PyTorch and use DS for clustering, as in [15]. The dyad and context
MLPs of DANTE had two layers with 32 and 64 units. The final MLP
had 64 and 32 units. All but the last layer used a ReLU activation
followed by batch normalization.

For Cocktail Party, DANTE uses position and the orientations as
node features, transforming each feature into a coordinate frame
centered between each dyad, as in [30]. For MatchNMingle, it uses
the position, transformed by the dyadic coordinate frame, and ap-
plies the rest of the features without additional transformations.

(3) GNN. Our proposed combination of a GNN with DS for group
detection. We implement the GNN using PyTorch Geometric to
leverage sparse tensor computations. For the edge updates, we use
two MLPs of dimensions 128, 64 and 32, 16 for each graph network
block. The node updates use MLPs of dimensions 32, 16 and 16, 16.
As in DANTE, we use ReLU activations and batch norm. These
dimensions were chosen to produce a similar number of parameters
to the DANTE models for all input feature combinations.

For Cocktail Party, the GNN uses distance and both angles, trans-
formed into point pair features [9], as edge features. For MatchN-
Mingle, it uses distance for edge features and all other features as
node features. When considering position-only features, however,
we do not use any node features.

Both DANTE and the GNN were trained using a learning rate of
1e-4 that decays to 1e-6 over 1000 epochs, a batch size of 512, and
the Adam optimizer. Early stopping halted training if there was no
decrease in the cross-entropy loss after 50 epochs.

4.3 Results
Our main evaluation metric is the Group F1 metric [32]. For a
threshold 𝑇 , the Group F1 metric considers a ground truth cluster
with 𝑛𝑔 people to be correctly identified if at least ⌈𝑇 ·𝑛𝑔⌉ members
are grouped together by the algorithm and nomore than ⌈(1−𝑇 )·𝑛𝑔⌉
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Table 1: Results on Cocktail Party, including average results
and std. deviation (𝜇 ± 𝜎) over the test examples. Results in
bold are significantly better than those with regular font.

Metric Dist DANTE GNN

F1T1 0.24 ± 0.34 0.58 ± 0.43 0.62 ± 0.41

F1T2/3 0.53 ± 0.32 0.71 ± 0.35 0.70 ± 0.37

Table 2: Results onMatchNMingle, including average results
and std. deviation (𝜇 ± 𝜎) over the test examples. Results in
bold are significantly better than those with regular font.

Features Metric Dist DANTE GNN

pos F1T1 0.28 ± 0.26 0.32 ± 0.28 0.30 ± 0.26
F1T2/3 0.38 ± 0.29 0.43 ± 0.30 0.40 ± 0.28

pos+accel F1T1 - 0.24 ± 0.25 0.34 ± 0.27
F1T2/3 - 0.30 ± 0.28 0.43 ± 0.28

pos+img F1T1 - 0.28 ± 0.29 0.31 ± 0.28
F1T2/3 - 0.34 ± 0.29 0.40 ± 0.29

pos+accel F1T1 - 0.23 ± 0.24 0.32 ± 0.28
+img F1T2/3 - 0.28 ± 0.26 0.42 ± 0.29

pos+accel F1T1 - 0.27 ± 0.26 0.36 ± 0.29
+img+label F1T2/3 - 0.35 ± 0.28 0.46 ± 0.29

false subjects are identified. We consider two values for 𝑇 : 2/3 and
1. For example, let the true group be 𝑔 = {1, 2, 4} and the predicted
group 𝑔 = {1, 2, 5}. Here, 𝑛𝑔 = 3. For T=1, ⌈𝑇 · 𝑛𝑔⌉ = ⌈1 · 3⌉ =

3 > |𝑔 ∩ 𝑔 |, so the group is not correctly identified. For 𝑇 = 2
3 ,

⌈𝑇 ·𝑛𝑔⌉ = ⌈ 23 ·3⌉ = 2 ≤ |𝑔∩𝑔| and ⌈(1−𝑇 ) ·𝑛𝑔⌉ = ⌈ 13 ·3⌉ = 1 ≤ |𝑔\𝑔|,
so the group is correctly identified.

Cocktail Party. Table 1 displays the F1T1 and F1T2/3 scores on
the Cocktail Party dataset. For both metrics, a Kruskall-Wallis non-
parametric test indicated that there was a significant difference be-
tween scores by method, with p < 0.0001 for F1T1 and p = 0.0003
for F1T2/3. Further, Steel-Dwass post-hoc tests showed that in
both cases DANTE and the proposed GNN method led to signifi-
cantly higher performance than the Dist baseline, but the scores for
DANTE and the GNN were not significantly different. Given the
high F1T2/3 scores for the data-driven methods, we proceeded to
evaluate performance on the more complex MatchNMingle dataset,
which contains almost 14 times as many frames as Cocktail Party,
2.5 times the maximum number of people per frame, and, unlike
Cocktail Party, a variable number of people per frame.

MatchNMingle. Table 2 shows the results based on the features
available for group detection. When only position was available,
a Kruskal-Wallis test resulted in significant differences for F1T1
(p = 0.02) and a Steel-Dwass post-hoc test indicated that DANTE
had significantly higher results than the Dist baseline. No other sig-
nificant pairwise differences were found. For T1T2/3, the Kruskall-
Wallis test also showed significant differences (p = 0.0003). In this
case, DANTE was significantly better than the other two methods.

Wilcoxon tests showed significant differences by method for the
combinations of pos, accel, img, and label features in Table 2. The

proposed GNN outperformed DANTE in all these cases. Interest-
ingly, the GNN shows increased performance the more features
were provided to it, especially including accel and label. However,
DANTE is not as effective at incorporating additional features. For
example, the F1T1 score for DANTE using all MatchNMingle fea-
tures is about 5% lower than the score for using only position data,
where the proposed GNN results in a 6% increase in performance.

5 LIMITATIONS & FUTUREWORK
We demonstrated the successful application of GNNs to group de-
tection. In principle, the inductive nature of the proposed approach
allows our method to run in an online fashion, processing streams
of data. However, more tests are needed to verify this in practice.
Future work could also evaluate the GNN on other group detection
datasets, like CoffeeBreak [7] or Salsa [1].

Unexpectedly, DANTE and the proposed GNN did not benefit
from the added image features in the MatchNMingle dataset. Fur-
ther, in the case of DANTE, performance tended to decrease with
more features. There are several possible explanations for this phe-
nomenon. First, the image features from the ResNet [20] model
could have been too deep in the network. Low-level features from
earlier in the network could be used to fix this issue. Second, the
MatchNMingle cameras have visible radial distortion, which we
did not correct for because the intrinsic camera parameters are not
public. Lastly, the performance drop could be due to challenges com-
bining feature modalities. In this respect, future work could explore
using attention mechanisms to fuse data, e.g., as in [24, 33, 37].

We processed the data from different cameras in the MatchN-
Mingle dataset as independent samples, although some of them
contained information captured at the same time from different
views. Likewise, we did not consider the temporal correlation of
data across dataset samples, but this information could improve
model prediction [32, 35]. Thus, future work could explore detecting
groups across multiple camera views to understand more holisti-
cally the environment, and combining GNNs with recurrent neural
networks to take advantage of temporal correlations, e.g., as in [27].

6 CONCLUSION
We presented an approach to predict conversational clusters in
social scenes, where the number of clusters is unknown a priori. Our
results indicate that GNNs can better take advantage of multi-modal
data for group detection in comparison to baselines. In particular,
the proposed GNN-based model outperformed the previous state-
of-the-art approach [30] on the complex MatchNMingle dataset
with all types of data except position-only, while requiring less data
pre-processing. This suggests that leveraging relational inductive
biases in data-driven methods for group detection is beneficial.
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