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ARTICLE INFO ABSTRACT
Editor: Ouyang Wei Improving food systems to address food insecurity and minimize environmental impacts is still a challenge in the 21st
century. Ecohydrological models are a key tool for accurate system representation and impact measurement. We used a
Keywords: multi-phase testing approach to represent baseline hydrologic conditions across three agricultural basins that drain

Real system data parts of north central and central Iowa, U.S.: the Des Moines River Basin (DMRB), the South Skunk River Basin

”i?lfet :2; . (SSRB), and the North Skunk River Basin (NSRB). The Soil and Water Assessment Tool (SWAT) ecohydrological
Nitrate 8 model was applied using a framework consisting of the Hydrologic and Water Quality System (HAWQS) online plat-

Multi-site observed streamflow data form, 40 streamflow gauges, the alternative runoff curve number method, additional tile drainage and fertilizer appli-
Baseflow cation. In addition, ten SWAT baselines were created to analyze both the HAWQS parameters (baseline 1) and nine
alternative baseline configurations (considering the framework). Most of the models achieved acceptable statistical
replication of measured (close to the outlet) streamflows, with Nash-Sutcliffe (NS) values ranging up to 0.80 for base-
line 9 in the DMRB and SSRB, and 0.78 for baseline 7 in the NSRB. However, water balance and other hydrologic
indicators revealed that careful selection of management data and other inputs are essential for obtaining the most
accurate representation of baseline conditions for the simulated stream systems. Using cumulative distribution curves
as a criterion, baselines 7 to 10 showed the best fit for the SSRB and NSRB, but none of the baselines accurately
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represented 20% of low flows for the DMRB. Analysis of snowmelt and growing season periods showed that baselines
3 and 4 resulted in poor simulations across all three basins using four common statistical measures (NS, KGE,
Pbias, and R?), and that baseline 9 was characterized by the most satisfactory statistical results, followed by baselines

5,7 and 1.

1. Introduction

One of the critically important challenges of the 21st century is the
improvement of food systems, which is essential for mitigating climate
change pressures, achieving sustainability, and fostering human develop-
ment. Deforestation, reduction of biodiversity, degradation of soils and
water, and depletion of freshwater through the use of irrigation are some
of the environmental costs linked to food system activities (Béné et al.,
2019; Hunt et al., 2019; Prokopy et al., 2020; Stone et al., 2021). The
“Corn Belt” region is an important agricultural area in the central United
States and contains some of the most productive agricultural lands in the
world (Schilling et al., 2019). However, extensive land alterations have
generated well-known environmental problems in the region. For example,
as much as 95-99% of the original natural landscape composed of wetlands
concentrated in specific western Corn Belt subregions has been lost due to
surface and subsurface tile drainage (Miller et al., 2009). This transforma-
tion has enhanced crop production but has also exacerbated excess loss of
nitrate (Sprague et al., 2011; Gassman et al., 2017a; Jones et al., 2018)
and phosphorus (Kleinman et al., 2015), resulting in high in-stream nutri-
ent concentrations and contributing to the seasonal oxygen-depleted hyp-
oxic zone in the northern Gulf of Mexico (Gassman et al., 2017a; Wright
and Wimberly, 2013; Jones et al., 2018). Dense urban areas in the Corn
Belt region are also noted for their negative environmental impacts, due
to intensive energy use, increased global greenhouse gas emissions, ele-
vated temperatures, high levels of water consumption and wastewater pro-
duction, and pollution of air, land and water (Stone et al., 2021; Thompson
etal., 2021). However, urban and peri-urban agriculture can play an essen-
tial role in environmental sustainability. Urban farms, for example, can help
reduce urban heat island effects, mitigate urban stormwater impacts, and
lower the energy embodied in food transportation (Ackerman et al.,
2014). Therefore, there has been an increasing interest in research focused
on developing sustainable urban food production systems; e.g., the Iowa
urban food, energy and water systems (“lowa UrbanFEWS”) nexus
described by Thompson et al. (2021).

Ecohydrological models are core components within FEWS modeling
efforts (Thompson et al., 2021; Kling et al., 2017; Dai et al., 2018; Schull
et al., 2020; McCallum et al., 2020), and are essential for simulating
water circulation and pollutant transport in dynamic landscapes. Determin-
ing optimal configuration strategies for such models is important to evalu-
ate the hydrologic and water quality impacts of changes in land use.
However, establishing reliable configurations can be approached in multi-
ple distinct ways and there is no single procedure universally accepted in
the literature (Arnold et al., 2015; Moriasi and Wilson, 2012). According
to Andréassian et al. (2012); Arnold et al. (2015), Beven (2019) and
Seibert and McDonnell (2002), an important initial component of applying
ecohydrological models (which is sometimes ignored by modelers) is the
evaluation of known infrastructure (e.g., tile drain locations), agreement
with known hydrologic balance, reasonability of parameters values based
on physical characteristics of the simulated system, and other ‘real system
data’ (sometimes referred to as “soft data”; e.g., see Arnold et al., 2015,
Seibert and McDonnell, 2002). This process knowledge can be incorporated
into the model by manual calibration procedures, which combine expert
knowledge, literature information or other reliable sources of information
(e.g., detailed management operations for crops, detailed spatial represen-
tation of best management practices) with the intention of increasing the
efficacy and accuracy of parameter estimations for initial watershed simu-
lations and subsequent automatic calibration.

The Soil and Water Assessment Tool (SWAT) ecohydrological model
(Arnold et al., 1998, 2012) incorporates over three decades of development

that is represented by several major versions (Bieger et al., 2017; Gassman
and Wang, 2015). SWAT has been used worldwide to evaluate an extensive
suite of climatic, hydrologic and/or environmental problems across a
wide range of watershed scales and conditions as documented in a variety
of reviews (e.g., Akoko et al., 2021; Bressiani et al., 2015; Brighenti et al.,
2019; Gassman et al., 2007, 2022; Tan et al., 2019, 2020). The Corn Belt
region has been targeted by dozens of SWAT studies, that have encom-
passed a wide range of topics (CARD, 2022). However, little attention has
been paid to date to the role of determining optimal initial SWAT setup
strategies within the context of Corn Belt region applications. Thus, this
study seeks to inform that gap in support of hydrologic and water quality
assessments for the lowa UrbanFEWS project (Thompson et al., 2021).
The simulated stream systems represented in this study, as part of the
UrbanFEWS integrated modeling project, are composed of the Des Moines
River Basin (DMRB), the North Skunk River Basin (NSRB) and the South
Skunk River Basin (SSRB), which drain to and through the Des Moines-
West Des Moines, IA Metropolitan Statistical Area (DMMSA; US OMB,
2018), Iowa, USA (Fig. 1). The SWAT model applications have been imple-
mented using a framework consisting of the Hydrologic and Water Quality
System (HAWQS) on-line platform (HAWQS, 2020). The HAWQS platform
supports rapid construction of SWAT models for watersheds in the contigu-
ous USA using subwatersheds based on 12-, 10- or 8-digit hydrologic unit
watersheds (as described by USGS, 2013, 2022) and pre-loaded climate,
land use, management and other data. The use of HAWQS represents the
first phase of SWAT model development within the larger project, which
was implemented using a 12-digit discretization (Chen et al., 2021).
Portions of the simulated watersheds for this study were originally dom-
inated by wet prairies and wetlands characterized by poorly drained soils;
agricultural production would be problematic for these areas without
changes in drainage (Ikenberry et al., 2017; Schilling et al., 2019). A com-
mon drainage practice is the implementation of subsurface tile drains
(Moriasi et al., 2012; Gassman et al., 2017a, 2017b; Schilling et al.,
2019), which allow crop production and improve crop yields in poorly
drained soils by increasing the time available for planting and harvesting
operations. Tile drains result in significant impacts on both watershed
hydrology (by altering baseflow proportion) and water quality (by carrying
excess nutrients directly to waterways). Therefore, detailed geographical
information and accurate model parameters are crucial to produce reliable
tile drain effects within ecohydrological model simulation (Moriasi et al.,
2013; Valayamkunnath et al., 2020). Accurate accounting of nitrogen
(N) fertilizer application rates is equally important for model simulations
because N is one of the most important nutrients used to enhance corn pro-
ductivity (Gassman et al., 2017a; Yang et al., 2016) and contributes to seri-
ous water quality impairment across the study area (Schilling and Wolter,
2009; Gassman et al., 2017a). Corn growth and yield could be negatively
affected by inadequate N fertilizer amounts in model development, causing
misleading water balance simulations. Spatially distributed models such as
SWAT have the advantage of providing detailed ecohydrological informa-
tion across a simulated watershed. However, the use of distributed models
is justified only if their results can be used with some confidence (Moussa
et al., 2007). The most common way to measure model efficacy is against
measured streamflow data, and this is associated with the fact that these
data are often available and the process itself is the driving force for other
processes, for example, suspended sediment and nutrient transport. This
is usually done based on comparisons with one monitoring gauge at the
basin outlet. However, this level of testing may not provide a completely
accurate hydrologic assessment, especially for large basins, and thus the
calibration process ends up focusing on refining the performance indices
rather than improving the representation of actual processes in these
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Fig. 1. Study area location in Minnesota (MN) and Iowa (IA), USA, and streamflow monitoring gauge distribution for the Des Moines, South Skunk, and North Skunk River
Basins. The DMRB drainage to Keosauqua and monitoring station (Table 3) are also shown (bottom left).

models (Acero Triana et al., 2019). Therefore, the use of multi-site observed
data is crucial to obtaining the best representation of processes and overall
simulation results.

This study offers important insights for representation of individual
processes that can influence the water cycle at a watershed scale. This
was accomplished via a multi-phase testing approach for SWAT model sim-
ulations, which were performed as a function of different baseline configu-
rations. The baselines were not calibrated or validated, incorporated either
HAWQS defaults for management and/or alternative management, and
also reflect alternative runoff curve number (RCN) methods (Neitsch
et al., 2011; Williams et al., 2012). The specific objectives of this study
were to: (1) identify the importance of accurate representation of
tile drain locations, density and model input parameters, (2) quantify the
effects of different amounts of N fertilizer applications on corn biomass
production and grain yields, (3) analyze the impacts of different RCN
surface runoff methods on the water balance, (4) identify accurate baseflow
performance, and (5) evaluate the spatial efficiency of SWAT model simu-
lations based on statistical and graphical measures.

2. Materials and methods
2.1. Study area

The DMRB (31,892.4 km?), SSRB (4593.5 km?®) and NSRB (2259.6 km?)
are the three basins that comprise the DMMSA drainage system, which
collectively drain a small portion of southern Minnesota and much of
north central and central Iowa (Fig. 1). Land use in the study area
(Table 1) is predominantly agricultural, with soybean and corn fields repre-
senting together 70%, 71%, and 61% of land use in the DMRB, SSRB, and
NSRB, respectively. The major soil types are: Udolls - more or less freely
drained soils classified as Mollisols, as well as Aquolls - wet Mollisols, and
Udalfs - freely drained soils classified as Alfisols (USDA-NRCS, 2021; see
Supplementary Material for detailed soil type and percentages for each
basin). The climate is Dfa following the Koppen classification (Peel et al.,
2007), represented by a humid continental climate with hot summers and
cold winters. Subsurface tile drains are distributed across portions of all

watersheds, with especially intensive use in the middle-to-northern
portions of the three basins (see Section 2.5). Landscapes managed with
tile drainage represent 54%, 51% and 44% of the DMRB, SSRB and
NSRB, respectively.

Long-term streamflow data are available for the entire watershed via
the U.S. Geological Survey (USGS) data repository (<https://waterdata.
usgs.gov/nwis>). A total of 40 monitoring gauges were selected for the
study area with time series of 5 years or more of streamflow data (Fig. 1),
within a simulation time-span from 2001 to 2018; 31, 4, and 3 stations
have 18, 4 and 3 years of monitoring data available, respectively, and
two other stations have either 16 or 10 years of monitoring data. Data
were downloaded at a daily time step and subsequently aggregated to a
monthly time step. The gauges are distributed across the three basins,
with a concentration of stations in the DMMSA. A total of 32, 7, and 1
station are located in the DMRB, SSRB, and NSRB, respectively.

2.1.1. Multi-site studies

Evaluations of SWAT applications using multiple gauges are relatively
uncommon among the thousands of studies in the existing literature
(CARD, 2022). A succinct literature review was conducted to identify stud-
ies that used a multi-site approach. A total of 26 articles were identified in
the SWAT literature database (CARD, 2022) searching for the word “multi-
site”; 16 were relevant for this review. A second round of literature

Table 1
Land use distribution (%) across the DMRB, SSRB and NSRB study areas.

Land use Des Moines River ~ South Skunk River ~North Skunk River
basin (%) basin (%) basin (%)
Rotation corn-soybean 56 53 51
Continuous corn 13 17 9
Continuous soybean 1 0.8 1
Hay 8 7 14
Range-grasses 5 7 12
Urban 8 9 7
Forest 5 0.02 5
Wetlands 2 1 1
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investigation was performed using Google Scholar with the same “multi-
site” word search, resulting in 23 additional studies. Fig. 2a shows how
the total number of gauges used in this study for the DMRB and SSRB com-
pared with the 39 previous SWAT studies that reported multi-gauge evalu-
ations of SWAT streamflow output (see Supplementary material regarding
those studies). The density of gauges per km? was also assessed for each
study (Fig. 2b). A total of 47 data points is shown in both figures because
two or more simulated basins were reported in some studies.

The seven gauges incorporated for the SSRB evaluations represent
>81% of the total number of gauges reported in the previous 39 studies
(Fig. 2a). The SSRB gauge density is >56% of the basins within a similar
range of areas (900 to 9999 km?) and 68% of the total basins (Fig. 2b).
The 32 gauges used for the DMRB evaluations exceed the cumulative
total gauges reported in all of the previous 39 studies (Fig. 2a). On a density
basis, the total DMRB gauges is higher than all basins of a similar areal
extent (10,000 to 99,999 km?) and >66% of the total basins (Fig. 2b).
There are additional studies that used larger sets of gauges, including hun-
dreds of gauges for the European continent (Abbaspour et al., 2015) and
dozens of gauges for the Missouri River Basin (Daggupati et al., 2016)
and Mekong River Basin (Rossi et al., 2009). Chen et al. (2020) also
reviewed 41 Upper Mississippi River Basin SWAT studies, of which 15
used a multi-site approach (with a maximum number of 13 gauges). Over-
all, the number of gauges used in this study is relatively novel compared to
previous SWAT applications.

2.2. Modeling system

Key data flows and simulation steps constructed for the modeling sys-
tem are shown in Fig. 3. The HAWQS platform served as the primary source
of land use, soil, topographic, hydrography (subwatershed boundaries and
streams) and weather data for the modeling system. Importantly, HAWQS
was used in this study to provide an initial repository of required data layers
for the DMRB, SSRB and NSRB SWAT models. Some of the current HAWQS
data layers will ultimately be replaced by enhanced and/or refined counter-
part data layers (e.g., the soil layer data as discussed in Section 2.4) in
future Iowa UrbanFEWS research efforts.

Ten different baseline configurations (described in Section 2.7) were
simulated to provide a basis for evaluating different combinations of key
input data and RCN methods (Fig. 3). These baseline configurations
included alternative representations of the areal extent of subsurface tile
drainage, the distribution of nitrogen fertilizer rates, and the effects of
two different RCN equations described in Section 2.3. The alternative
tile drainage and nitrogen fertilizer rates were explored due to anomalies
encountered in the HAWQS management data assumptions (discussed in
Section 2.6).

Each baseline was executed in SWAT independently for the DMRB,
SSRB and NSRB systems (Fig. 3). Outputs generated by the model include
streamflow, water quality (i.e., nutrients and sediment) and crop yields.
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Pollutant losses were not incorporated in this study but will be investigated
in future research. Statistical and hydrograph evaluations of the predicted
streamflow outputs were conducted using streamflows measured at the
40 gauges (Fig. 1). Predicted DMRB streamflows were analyzed using
32 gauges, the SSRB using eight gauges, and the NSRB using one gauge
(Fig. 1).

Several hydrologic indicators were considered to analyze the differ-
ences between the ten baselines including total water balance, relative con-
tributions of baseflow versus surface flow to streamflow, and comparisons
between observed and simulated streamflow data. The Web-based
Hydrograph Analysis Tool (WHAT) software (Lim et al., 2005) was used
to separate estimated baseflow from surface runoff (via digital filter appli-
cation) at the streamflow monitoring gauges closest to the DMRB, SSRB
and NSRB outlets (Fig. 1). These WHAT-derived estimates were used to rep-
resent the observed baseflow and surface runoff values for this study. The
accuracy of simulated streamflow was determined by statistical evaluations
and graphical representations relative to measured streamflows. This com-
bined approach - using graphical results, absolute value errors and normal-
ized goodness-of-fit statistics - avoids the use of a single indicator which
could lead to incorrect verification of the model.

2.3. SWAT model

SWAT is a continuous and physically-based ecohydrological model
developed to explore the effects of climate and land management practices
on water, sediment, and pollution (Arnold et al., 2012; Gassman et al.,
2007, 2014). The SWAT hydrologic component is based on a soil profile
water balance equation that accounts for several processes including pre-
cipitation, surface runoff, infiltration, evapotranspiration (ET), lateral
flow, percolation and groundwater flow. The model simulation unit is the
Hydrological Response Unity (HRU) which is defined as an area comprised
of unique land cover, soil type, and management practices within a given
subbasin (Neitsch et al., 2011). The Penman-Monteith equation was used
to calculate potential ET and the Variable Storage method was used to sim-
ulate channel processes (Neitsch et al., 2011). Two different approaches
were used to calculate surface runoff: the traditional runoff curve number
(CN) method (Neitsch et al., 2011) and an alternative runoff curve number
(RCN) approach (Kannan et al., 2008; Neitsch et al., 2011; Williams et al.,
2012). The latter is calculated as a function of ET using a CN coefficient
(CNCOEPF).

The traditional CN runoff method is calculated as follows:

Sw
§ = S ([SW + exp(w —wy * SW)]> ;

alternative runoff curve number (RCN) approach (USDA-NRCS, 2004)
computed as a function of evapotranspiration (ET).where S is the retention
parameter for a given day (mm), S, is the maximum value the retention

b)1es0
oo
k5 o
T 1E1 | ©
& 0
?D 1E2 O o® 090 4
e
8 163 ? % %o i
> .Q'“ s DMET ®
2 164 t %0 o
o (90 0 0o Q)O
1E-5 1 N 1 1

Basin area (km?)
Q0-899 @900-9,999 @ 10,000-99,999 O = 100,000

Fig. 2. a) Comparisons of total gauges and basin areas used for the DMRB and SSRB SWAT applications versus 47 cumulative gauge sites and basin areas used in 39 previous
SWAT studies (Supplementary material), and b) Density of gauges for each of the 47 basins presented in Fig. 2a.
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parameter can reach on any given day (mm), SWis the soil water content of
the entire profile excluding the amount of water held in the profile at
wilting point (mm H20), and w; and ws are shape coefficients.

The alternative CN method is computed with the following equation:

—CNCOEF = S0,

S = Sprev + Eo * exp( > — Raay = Qi 2

Sma.x

where S, is the retention parameter for the previous day (mm), Ej is the
potential ET for the day (mm/day), CNCOEF is the weighting coefficient
used to calculate the retention coefficient for daily CN calculations depen-
dent on plant ET, Ry is the rainfall depth for the day (mm H20), and
Qg is the surface runoff (mm H20).

SWAT can also simulate water movement through tile drains in the soil
profile. Tile drainage is simulated at the HRU level and can be estimated
using two different methods in SWAT: (1) an original method that accounts
for tile drain depth and selected drainage parameters, and (2) a modified
option that is based on the approach used in the DRAINMOD model
(Skaggs et al., 2012) that incorporates drain tile spacing and other parame-
ters (Moriasi et al., 2012, 2013). The original method was used for this
study was parametrized for: tile drain depth (DDRAIN; mm), the time
required to drain the soil to field capacity (TDRAIN; h), tile drain lag time
(GDRAIN; h) and an impervious layer depth (DEP_IMP, mm) as described
by Neitsch et al. (2011). Tile drainage occurs when the water table rises
above the depth of the drains. It is important to recognize that the model
will activate the tile drain equation if a positive value is entered for
DDRAIN; in this case, default values of 96 h and 24 h will be activated for

GDRAIN and TDRAIN, respectively. The amount of water that enters a
tile drain on a given day is calculated by Eq. (3) (Neitsch et al., 2011):

hw —h, rain -
tile,y, = Dbl  Rdrain. (SW—=FC) = <l - exp{
vt

:|> lf hwrbl > hdmin (3)

drain

where, tile,, is the amount of water removed from the layer on a given day
by the tile drain (mm H20), h,,4,; is the height of the water table above the
impervious zone (mm), hgqin is the height of the tile-drain above the imper-
vious zone (mm), SW is the water content of the profile on a given day (mm
H20), FC is the field capacity water content of the profile (mm H20), and
train 1S the time required to drain the soil to the field capacity (h).

2.4. HAWQS platform and inputs

The HAWQS platform allows selection of different sources of
weather data, time step of simulation (daily, monthly, or yearly), and previ-
ously described watershed spatial discretization (e.g. 8-digit, 10-digit and
12-digit). However, the topographic model, and land use and soil maps
are pre-determined in current HAWQS versions 1.1 and 1.2 (Texas A&M,
2019; https://hawgs.tamu.edu/#/help) per details and sources of the
datasets (Table 2). There are limitations regarding currently available
data layers; for example, the coarse resolution of the Digital General
Soil Map of the United States (STATSGO) (Table 2). The STATSGO map
will be replaced by the more refined Soil Survey Geographic Database
(SSURGO) (USDA-NRCS, 2022a, 2022b, 2022c¢) in future applications
of the DMRB, SSRB and NSRB SWAT models. This refinement (along
with other data layer revisions, e.g., climate products such as Iowa
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Table 2
Description of the nature and source of datasets employed in this study.
Data Description Source
DEM 30 m resolution map US Geological Survey (USGS) National
Elevation Dataset
Land use map  Vector database USGS National Land Cover Database (NLCD);

Cropland Data Layers (CDL) (USGS, 2018;
USDA-NASS, 2022)

Soil map 1:250,000-scale Digital General Soil Map of the United States
(STATSGO) (USDA-NRCS, 2022a, 2022b)
Weather data  Rainfall, temperature, Parameter-elevation Relationships on
humidity, wind speed, Independent Slopes Model (PRISM) (PRISM
solar radiation Climate Group, 2022; Daly et al., 2008)
Table 3

Streamflow station used in HAWQS calibration process, USGS station ID, Nash-
Sutcliffe and Pbias monthly statistical results, and years used in the HAWQS
calibration.

Name Des Moines River at Keosauqua, IA
USGS station ID 05490500

NS 0.70

Pbias 8.97

Calibration years 1983-2001

Environmental Mesonet <https://mesonet.agron.iastate.edu/>) can be
accomplished by shifting to the forthcoming HAWQS version 2.0
(R. Srinivasan. 2022. Personal communication. Spatial Sciences Laboratory,
Texas A&M Agrilife Research. College Station, TX) and/or by accessing
other data sources (e.g., lowa Geospatial Data <https://geodata.iowa.gov/>).

SWAT is presented as a partially monthly calibrated model in the
HAWQS platform, in which calibration has been performed for 30% of
the 8-digit watersheds (Texas A&M, 2019). The calibration is performed
on the basis of both the primary default data layers (Table 2) and manage-
ment inputs configured for agricultural land use. The latter includes subsur-
face tile drainage and nutrient application rates that are described in more
detail below. In reference to our study area, HAWQS calibration was per-
formed for the DMRB for a single USGS gauge located near Keosauqua,
Iowa, which is downstream of the study area outlet (Fig. 1). The model
was calibrated based on a monthly time step via the split-sample calibra-
tion/validation procedure, where calibration was performed by comparing
simulated results to a minimum of five years of observed flow data. The
USGS station used for streamflow calibration, final Nash-Sutcliffe (NS)
and Percent Bias (Pbias) statistical coefficients, and years of calibration
reported for the HAWQS calibration at Keosauqua (Fig. 1) are listed in
Table 3. The calibrated parameters used for the default HAWQS simulation
are presented in Appendix A. The North and South Skunk River basins are
not part of the calibrated basin and have their own parameter sets (also in
Appendix A; see USEPA, 2019 for more information regarding HAWQS
parameters).

2.5. Tile drainage inputs

The configuration of the default HAWQS baseline models (baseline 1;
Section 2.7) incorporated tile drain structures at the HRU level. However,
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the distribution of tile drains varied considerably between the DMRB
default SWAT model and the two Skunk River SWAT models. The DMRB
SWAT model included the following tile drain related parameter values:
DDRAIN was set at a depth of 1420 mm for all HRUs (100% of the water-
shed area), while the TDRAIN (78 h) and GDRAIN (48 h) inputs were set
for just 2.9% of the total area (Table 4). However, the previously described
default TDRAIN and GDRAIN values of 24 h and 96 h were automatically
inserted by the SWAT code for the other 97.1% of the simulated area. In
contrast, tile drains were configured in the default HAWQS NSRB and
SSRB SWAT models for only 0.61% and 0.1% of the total respective areas
(Table 4). The same tile drain values were set by HAWQS for the two
default Skunk River SWAT models: DDRAIN = 1200 mm; TDRAIN =
72 h; GDRAIN = 48 h.

Inconsistencies in the HAWQS tile drain distributions and parameter
selections in the DMRB, SSRB and NSRB default SWAT models,
underscored the need to develop improved tile drain inputs for all
three models. Thus, an alternative tile drain distribution map was con-
structed for the three basins (Fig. 4) to assess the impacts of improved
tile drain representation in the baseline SWAT models. The alternative
tile drain layer was based on the map compiled by Valayamkunnath
et al. (2020), who reported that their methodology attained 86% accu-
racy based on comparisons with 16,000 ground truth points across the
contiguous U.S. (Fig. 4).

Insertion of the tile drain map into the SWAT models was driven by
transforming map pixels (Fig. 4) into subbasin percentages. Three steps
were followed to achieve the final tile drain distribution: (1) the percentage
of the tile drained area for each subbasin was determined by overlapping
the 12-digit subbasin shapefile and the tile drain raster file, (2) the tile
drained area was then distributed among agricultural land uses in a given
12-digit subbasin, giving priority to cropland planted in soybean and
corn, and (3) the DDRAIN, GDRAIN and TDRAIN parameters were set in
the three SWAT models with values of 1200 mm, 48 and 24 h, respectively,
based on Gassman et al. (2017b). Following creation of the maps, the per-
centages of cropland estimated to be managed with tile drains were
55.6% for the DMRB, 57.7% for the SSRB and 45.7% for the NSRB
(Table 4).

2.6. Nitrogen fertilizer application rates

Configuration of different management operations for a simulated basin
in SWAT is performed via operation management (.mgt) input files. These
files contain inputs for planting, harvest, irrigation, and tillage operations,
and for nutrient and pesticide applications. SWAT also computes nitrogen
stress days for the associated crop, which is quantified by comparing actual
and optimal plant nitrogen levels (Neitsch et al., 2011). HAWQS generates
a default distribution of nitrogen fertilizer rates, on the basis of applied
elemental nitrate (Table 5). The exact distribution of nitrogen application
rates is impossible to determine for the study area as well as for the entire
Corn Belt region. However, the lower two ranges of the HAWQS default
application rates (Table 5) are well below optimal nitrogen application
rates used in corn-soybean and continuous corn rotations in Iowa (ISU,
2018). Thus, an alternative distribution of nitrogen application rates was
configured (Table 6), based on previous rates reported by Gassman et al.
(2017a) for the Boone River Watershed (a subwatershed of the DMRB),
which reflect more typical rates in the region and provide baseline compar-
isons with the HAWQS default rates.

Table 4
Tile drain area and percentages for each watershed before/after tile drain map implementation.
SWAT parameters Des Moines River basin South Skunk River basin North Skunk River basin
Default HAWQS Tile drain map Default HAWQS Tile drain map Default HAWQS Tile drain map
km? % km? % km? % km? % km? % km? %
DDRAIN 31,892 100 17,727 55.6 28 0.61 2649 57.7 0.3 0.01 1033 45.7
TDRAIN 939 2.9 17,727 55.6 28 0.61 2649 57.7 0.3 0.01 1033 45.7
GDRAIN 939 29 17,727 55.6 28 0.61 2649 57.7 0.3 0.01 1033 45.7
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Fig. 4. Spatial distribution of tile drainage across the U.S. and for the 12-digit subbasins in the study area.
Source: Valayamkunnath et al., 2020.

2.7. Baseline simulations

Ten baseline simulations were created to analyze both the default
HAWQS input parameters (baseline 1) and nine alternative baseline config-
urations (Table 7). The suite of ten baseline simulations were organized
into two distinct subsets: (1) six baseline simulations (1 to 6) that incorpo-
rated the HAWQS default inputs and various modifications as described
below, and (2) four baseline simulations (7 to 10) that were executed
on the basis of an uncalibrated “reset of the initial input parameters” (not
based on the HAWQS default input parameters). The return to a non-
calibrated SWAT (7 to 10) was performed by re-writing the model input
tables (instead of using HAWQS to generate those), which set the input
parameters back to the default values described in the SWAT Theoretical
Manual (Neitsch et al., 2011). These additional four baseline simulations
provided further rigorous testing of SWAT due to the fact that calibration
was not performed prior to the model testing phase.

The alternative baseline simulations (2 to 9) were also parameterized as
a function of one or more of the following factors: (1) the addition of the
previously described improved areal representation of tile drains (Fig. 4
and Table 4), (2) the revised distribution of nitrogen fertilizer application
rates for corn production (Table 6), and (3) use of the previously described
alternative RCN method (Eq. (2)) to calculate partitioning between surface
runoff and infiltration. The change between the standard RCN method and
alternative RCN method is made in the Surface Runoff component of the
SWAT BASIN module (.bsn input file), where a user can choose different
RCN methods. For this study, the CNCOEF (RCN) value (Eq. (2)) was
fixed at 0.75 based on previous sensitivity testing reported by Schilling
et al. (2019) and Gassman et al. (2017b). The period for all ten baseline

Table 5
Default HAWQS annual average (2001-2018) elemental nitrogen application rates
for corn land use.

Kg/ha of elemental nitrogen applied % of area

DMRB SSRB NSRB
64-79 15.0 7.1 20.9
80-99 27.1 39.2 37.0
100-159 13.5 2.6 11.4
160-176 44.4 51.1 30.8

simulations ranged from 2001 to 2018, each of which was preceded by a
two-year warm-up period.

2.8. Statistical coefficients

Four statistical coefficients were used to assess the SWAT baseline sim-
ulation results: Coefficient of determination (R?), Nash-Sutcliffe modeling
efficiency (NS), Percent Bias (Pbias) and Kling-Gupta Efficiency (KGE).
The R? is a statistical measure for a regression model that explains the pro-
portion of variance in the dependent variable that is predictable from the
independent variable (Moriasi et al., 2015). The NS is the most widely
used objective function in hydrological modeling including SWAT model
applications (e.g., Gassman et al., 2007, 2014; Tan et al., 2019). It is a
normalized statistic that determines the relative magnitude of residual var-
iance compared to measured data variance, where 1 is a perfect simulation,
zero represents balance accuracy, and observations below zero represent
unacceptable model performance (Moriasi et al., 2007). The Pbias evalu-
ates the trend for an average of the simulated values in relation to observed
values, and can be linked to how well the model simulates water volume
(Moriasi et al., 2007).The KGE (Gupta et al., 2009) is a decomposition of
NS into three components: alpha (measure of relative variability in the
simulated and observed values), beta (bias normalized by the standard
deviation in the observed values), and r (correlation coefficient). This
allows unequal weighting of the three components to emphasize certain
areas of the aggregated function tradeoff space. Ideal values, ranges and sat-
isfactory simulation values have been determined for each of the statistical
coefficients (Table 8).

3. Results and discussion

Results are first reported for crop yields, and related biomass and nitro-
gen stress days, because of the impact that crop production has on the

Table 6
Annual elemental nitrogen application rates on corn land use after the management
operation update.

Time of the year Crop rotation Application rate (Kg/ha)

Fall Corn-soybean 183
Spring Corn-soybean 172
Spring Continuous corn 196
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Table 7
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Description of model components for the ten baseline simulations with graphical representation of the

process logic.

Baseline | Description
1 No changes are made, simulation
performed with default HAWQS model " .
values : . % [1] | [2] :E;
[2] Same as baseline [1] plus the alternative T 2
RCN method (with CNCOEF) l
[3] Same as baseline [1] with improved tile 2 z 7
drain map E E [3] T [4] 5 §
[4] Same as baseline [3] with alternative RCN " l
method (with CNCOEF) = o § 2
[5] Same as baseline [3] with updated £ g % [5] —> [6] g :é: ==
fertilizer application rates g T2 ok
[6] Same as baseline [5] with alternative RCN
method (with CNCOEF) il o = =
[71 Parameters reset to a non-calibrated E & [7] K [8] % §
model with improved tile drain map l
[8] Same as baseline [7] with alternative RCN = B - % e
method (with CNCOEF) $ i [9] N []_O] ¥
[9] Same as baseline [7] with updated B = =
fertilizer application rates
[10] Same as baseline [9] with alternative RCN
method (with CNCOEF)

hydrology of the three basins. Water balance and streamflow results are
then reported in different graphical and statistical formats to present a com-
prehensive assessment of the hydrologic impacts of the ten different base-
line simulations.

3.1. Crop yield results

The SWAT plant growth component is highly interactive with the
hydrological cycle, and crop growth and yield are negatively affected in
response to inadequate nitrate fertilizer amounts. The biomass generated
by the crop growth model component influences simulated evapotranspira-
tion, soil water content, nutrient uptake, surface runoff and subsurface
hydrologic flows that are relevant to hydrological and water quality pro-
cesses (Arnold et al., 2015). According to Daggupati et al. (2015) and
Nair et al. (2011), unsatisfactory streamflow prediction could be caused
by a lack of reliable crop growth simulation. They further emphasize that
the relationships of biomass and yields in agricultural watersheds are as
important as rainfall-runoff processes for water balance estimation. Thus,
an assessment of the plant biomass and annual nutrient budgets should be
performed to ensure a proper model configuration.

SWAT estimates yields on a dry-weight basis. Therefore, grain yields
values were updated on a wet-weight basis of 15.5% moisture for compar-
ison with the U.S. Department of Agriculture (USDA) survey yields
(<https://www.nass.usda.gov/AgCensus/index.php>). SWAT was used to
predict annual average corn biomass and yields (Table 9) based on the
HAWQS default nitrogen application rates (Table 5) and the updated nitro-
gen application rates (Table 6). The predicted crop yields are compared to
the crop yield average for 2016-2020 (Table 9) reported by the USDA in
survey data collected for counties located in the study region. Simulated
nitrate stress days are also reported (Table 9). Corn yields predicted with

Table 9

Annual average biomass, grain yield (15.5% moisturex), and nitrate stress days for
corn crop land use as a function of the HAWQS default nitrogen application rates
(Table 5) and updated nitrogen application rates (Table 6).

Basin Annual average HAWQS default Updated USDA survey
Des Moines River Biomass (t/ha) 229 26.5 X
Grain yield (t/ha) 10.8 12.5 12.6
N stress days 20.9 16.8 X
South Skunk River ~ Biomass (t/ha) 26.0 28.1 X
Grain yield (t/ha) 12.2 13.4 12.8
N stress days 16.2 11.6 X
North Skunk River Biomass (t/ha) 25.4 24.6 X
Grain yield (t/ha) 12.1 11.7 13.5
N stress days 15.8 11.42 X

* The SWAT yields were first converted to bu./ac (15.5%) and then both the SWAT
and NASS yields were converted back to t/ha. The conversion equation is given
by: 15.5%GrainYield (bu/ac) = SimulatedGrainYield(t/ha) * 0.4461 x 2000 =
1.155/56. See Ag Decision Maker (2022) for Metric Conversions.

the updated N application rates result in values closer to USDA survey-
based yields for the DMRB, with a 0.1 t/ha difference for grain yields.
The prediction for the SSRB had the same absolute difference (0.6 t/ha)
between the non-updated and updated models; however, the non-updated
models underestimate and the updated models overestimate the grain
yield amounts (Table 9). For the NSRB, both fertilizer application distribu-
tions underestimate the total grain yields with the non-updated models
resulting in values closer to the survey yields. The updated nitrogen appli-
cation rates resulted in fewer nitrate stress days for all three basins, versus
the nitrate stress days computed using the HAWQS default application rates
(Table 9). The highest number of nitrogen stress days was estimated to be

Table 8

Ideal value, range, and satisfactory simulation of the selected statistical coefficients used for evaluating the performance of the SWAT baselines.
Statistical coefficient Ideal value Range Satisfactory simulation Reference
Coefficient of determination (R%) 1 Otol =0.60 Moriasi et al. (2015)
Nash-Sutcliffe (NS) 1 —otol >0.50 Moriasi et al. (2007 and 2015)
Percent Bias (Pbias) 0 —100% to 100% +25% Moriasi et al. (2007 and 2015)
King-Gupta Efficiency (KGE) 1 —otol =0.60 Patil and Stieglitz (2015)
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20.9 for the HAWQS default application rates when used for the SWAT
DMRB simulations. The nitrogen stress day results further indicate that
some of the HAWQS default nitrogen application rates were too low rela-
tive to current agronomic requirements for corn.

3.2. Water balance and streamflow results

Overall annual water balance calculations initially determined for the
ten baseline simulations included estimates of surface runoff, lateral subsur-
face flow, tile flow, groundwater (shallow aquifer) flow, water yield and ET
(Appendix B). Average annual streamflows were also estimated at the basin
outlets (Appendix C). Water balance results were generated as a function of
precipitation that varied across the study area from 873 mm/year for the
DMRB to 941 and 950 mm/year for the SSRB and NSRB, respectively. Cor-
responding annual average ET levels varied from 672 to 523 mm/year
across the three watersheds. Water balance results reflect the influence of
tile drains (Tables B.1 to B.3), with considerably higher tile flows predicted
for the DMRB relative to the SSRB and NSRB.

The basin “outlet monitoring gauges” were chosen as those gauges clos-
est to the basin outlets with the most available data, meaning: 05487500
(Runnells) with 9 years of data, 05471500 (Oskaloosa), and 05472500
(Sigourney) with 18 years of data each for the DMRB, SSRB, and NSRB, re-
spectively. Predicted SSRB and NSRB average annual baseline streamflows
were similar in magnitude to corresponding observed streamflows. How-
ever, predicted DMRB average annual baseline streamflows were below
observed streamflows by 52.2 to 98.4 m®/s except for baseline 3
(Table C.1). Observed streamflow levels were accurately replicated by
SWAT for the majority of baseline and gauge combinations (Supplementary
material). However, less accurate upstream streamflow predictions for the
outlets of the Raccoon River and Middle Des Moines Rivers (gauges
05484900 and 05482000; Supplementary material), coupled with inaccu-
racies in streamflow predictions in the southern part of the basin, led to
large underpredictions near the DRMB outlet. These results underscore
the need for calibration in the next phase of research.
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The WHAT filter resulted in annual average baseflow values of 229.7
mm, 214.4 mm, and 158.9 mm for the DMRB, SSRB and NSRB, respec-
tively. Corresponding annual average surface runoff levels calculated by
the WHAT filter were 81.6 mm, 101.3 mm, and 105.3 mm for the DMRB,
SSRB and NSRB. Observed baseflow proportions of overall flow, based on
the WHAT calculations, were 72.8%, 67.9% and 60.1% for the DMRB,
SSRB and NSRB (Fig. 5). Similar values were also reported by Schilling
et al. (2021) for the same region. The dominant effect of baseflow on the
hydrographs can be expected in heavily tile drained areas (Schilling et al.,
2019, 2021).

Simulated baseflow and surface runoff values were compared for the
ten different baselines (Fig. 5). The left axis shows total annual averages
in mm and the right axis presents the percentages compared to streamflow.
Simulated baseflows represent the composite lateral flow, tile drainage,
and groundwater recharge (shallow aquifer) flows estimated by SWAT.
Predicted baseflow and surface runoff water balance outputs were com-
pared to observed data (WHAT filter) for the ten baseline cases.

Different model inputs (Table 7) led to marked variation in annual
water balance averages estimated for these watersheds (Fig. 5). Generally,
use of the CNCOEF in the alternative RCN method resulted in higher esti-
mates of baseflow for the five baseline simulations in which it was applied
(2, 4, 6, 8 and 10) for all three basins. The simulated baseflow values for the
DMRB ranged from 43.2 mm/year (baseline 9) to 203.5 mm/year (baseline
2). Baseline 2 resulted in value closest to observed DMRB baseflow; how-
ever, this represents 95.8% of total streamflow for the current simulation,
which is an unrealistic fraction for the region (Schilling et al., 2021). The
DMRB baseline 8 produced a value closest to the observed data for annual
surface runoff (70.2 mm/year), and also resulted in reasonable ratios of
73.1% for baseflow and 26.9% for surface runoff. The North and South
Skunk basins present the same changing behavior between the baselines,
where (1) the predicted annual contribution of surface runoff ranged
from 65.1 mm (SSRB baseline 10) to 217.3 mm (NSRB baseline 3), and
(2) the baseflow varied from 102.6 mm (SSRB baseline 7) to 283.6 mm
(NSRB baseline 4). The SSRB baseline 8 resulted in the smallest difference
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Fig. 5. Simulated annual average baseflow and surface runoff, for (a) Des Moines River Basin, (b) South Skunk River Basin, and (c) North Skunk River Basin, where the left
axis show total annual averages in mm and the right axis indicates the percentage compared to water yield.
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(in mm) between observed and simulated baseflow and surface runoff. The
resulting baseflow and surface runoff percentages were 71.2% and 28.8%
for streamflow, respectively, which is consistent with observed WHAT
proportions of 67.9% and 32.1% for SSRB baseflow and surface runoff.
The NSRB baseline 5 provides the best estimate of baseflow magnitude
(158.8 mm); however, the proportions of 40.7% for baseflow and 59.3%
for surface runoff are not realistic for intensively tile drained areas. The
NSRB baseline 8 again resulted in the best estimates for surface runoff
(87.9 mm) and baseflow (197.7 mm) and in more realistic proportions of
70.3% for baseflow and 29.7% for surface runoff of total streamflow.

3.3. Spatial representation of streamflows

Spatial comparisons were created for all ten baselines (Table 7) between
observed and simulated streamflows for the subbasins draining to the dif-
ferent gauge locations (Fig. 6). Statistical results of the spatial representa-
tions are shown in two ways: (1) six levels of shading for the NS statistics
that range from red to green, where red denotes the weakest simulation
results, and (2) Pbias levels, which are represented by light blue triangles
if the model underpredicted the measured streamflows or dark blue
triangles if the model overpredicted the corresponding streamflows.
Besides providing analyses of subbasin outlets, the results for all streamflow
stations provide valuable spatial information about model dynamics
for the different baselines. For example, the simulations for baselines
3 and 6 would be equally poor (NS < 0) if only the DMRB outlet were
analyzed, which is not accurate if results for upstream monitoring gauges
are considered.

This spatially explicit assessment also reveals simulation problems
at the subbasin level. For example, the subbasin in the northern part of
the SSRB (that drains to USGS gauge 05470000; Supplementary material)
is red in all ten baselines (Fig. 6), reflecting weak simulation results. Accu-
rate streamflows were difficult to achieve for this gauge, resulting in
baseline model simulations consistently overpredicting streamflow (Pbias
dark blue triangles). This is likely due to subsurface geology in the flood-
plain of the basin where recent alluvium overlies an unusually thick
(20-30 m) deposit of medium to pebbly sand outwash (Quade et al.,

[6]

[7]

Pbias
A Qverpredict
v Underpredict

0.49 - 0.65
0-0.24 0.65-0.81
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2001). Groundwater monitoring in the Skunk River floodplain has indi-
cated that surface water infiltrates into the alluvium as a losing stream in
this area, contributing herbicides to the alluvial aquifer (Burkart et al.,
1999). Model simulations do not account for loss of surface water into the
alluvial aquifer as river discharge infiltrates into the layers of thick
outwash. Hence, streamflows were consistently overpredicted for this por-
tion of the Skunk River due to this stream segment effectively functioning
as a continuous “losing stream”. Future calibration and validation phases
will incorporate methods to address this characteristic of the Skunk River
segment, including possible adaptation of karst geology modeling methods
(e.g., see Eini et al. (2020)).

The default HAWQS model was not improved by the addition of the
improved tile drain map (Fig. 4 and Table 4), as evidenced by baseline 3
and 4 producing the most poorly simulated subbasins (Fig. 6). However,
the incorporation of improved nitrogen fertilizer application rates in base-
lines 5 and 6 considerably improved results (NS > 0.49) as shown by the
corresponding maps (Fig. 6). In contrast, implementation of the improved
tile drain map for the four “reset baselines” (baselines 7-10, Table 7)
produced consistent improvement in general model performance (Fig. 6).
Baselines 5 and 7 produced the best performance for the DMRB, and both
SSRB and NSRB respectively, based on median NS values. In general, over-
all model performance was stronger for the DMRB relative to the combined
SSRB and NSRB.

Considering the NS criterion of 0.50 (Table 8) the SWAT modeling
results were always satisfactory regardless of baseline (Table 7) for 10
gauge stations (Fig. 1). However, unsatisfactory NS results (NS < 0.50)
were always found for 9 of the other stations. Based on averages, the NS
varied from 0.60 (baselines 5 and 10) to —0.16 (baseline 3) for the
DMRB, 0.78 (baseline 7) to 0.42 (baseline 4) for the NSRB, and —0.23
(baseline 4) to 0.54 (baseline 7) for the SSRB. It is important to mention
that two outlier stations that manifested NS values consistently below
zero (USGS gauges 05470000 and 05487540; Supplementary Material)
were removed from the average calculations. In analysis of the three
basin outlets, the NS values ranged from 0.52 (baseline 8) to 0.80 (baseline
9) for the DMRB; 0.33 (baseline 4) to 0.80 (baseline 9) for the SSRB, and
0.42 (baseline 4) to 0.78 (baseline 7) for the NSRB. Acceptable Pbias results

Fig. 6. Spatial representation of Nash-Sutcliffe and Pbias values for the simulated DMBR, SSBR and NSBR subbasins.
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(*25%; Table 8) were reported for almost all predicted streamflow and
gauge combinations, except for USGS gauge 05470000 in the northern
part of the SSRB (shown in red for NS values for all ten baselines; Fig. 6).
For the three basin outlets Pbias ranged from: (1) +46.4% (baseline 6) to
+1.6% (baseline 3) for the DMRB, (2) —23.8% (baseline 3) and +11.5%
(baseline 8) to for the SSRB, and (3) —54% (baseline 3) to —13% (baseline
8) for the NSRB.

R? statistics were generated for all 40 monitoring stations (Supplemen-
tary material). Computed R? averages ranged from: 0.79 (baseline 5) to
0.54 (baseline 8) for the DMRB, 0.76 (baseline 9) to 0.24 (baseline 4) for
the SSRB, and 0.81 (baselines 1 and 7) to 0.64 (baseline 4) for the NSRB.
Considering all monitoring gauges, baselines 5 and 7 produced the best
results with an R? average of 0.77; baseline 8 performed at an unsatisfac-
tory average (R? = 0.55) considering the criterion of 0.60 (Table 8).
Most R? values were above this criterion level and in the absence of any
specific calibration the baselines and observed data indicated a good
correlation.
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3.4. Further analysis of outlet streamflows

Scatter plot and histogram comparisons were developed between
observed and simulated SWAT streamflow data for all ten baselines, for
the gauge sites nearest the DMRB (years compared: 2001 to 2009), SSRB
(years compared: 2001 to 2018) and NSRB (years compared: 2001 to
2018) outlets (Fig. 5). Average annual streamflow levels were also deter-
mined for the three outlets (Appendix C, Table C.1). Correlation graphs
together with R values and histograms for all 40 monitoring streamflow
stations were also analyzed (Supplementary material).

R? values were satisfactory (R? > 0.60; Table 8) for all of the DMRB
baselines except baseline 6, indicating that the majority of baselines could
replicate the streamflow trends. Baseline 9 (R? = 0.80) resulted in the
best agreement on the basis of both the R* and histogram (Fig. 7), indicat-
ing a robust linear relationship between observed and simulated data. The
SSRB streamflow was most accurately reproduced by baselines 9, 5,7, 1, 10
and 6; however, predicted streamflows for baselines 2, 3, 4, and 8 resulted
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Fig. 7. Observed versus simulated streamflow for each baseline applied to the three basins.
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in weaker R? values that were <0.60. The highest SSRB R* was found
for baseline 9 (0.80) which also manifested a histogram that accurately
reflected observed streamflow characteristics. For the NSRB, baseline 5 re-
sulted in the best R? (0.78) and histogram simulation results followed by
baselines 1, 7, 6, 9 and 8, which all produced R? values >0.60. In contrast,
predicted streamflows for baselines 2, 3, 4, and 10 all resulted in R? values
<0.60. Respective top performances of baseline 9 (DMRB and SSRB) and
baseline 5 (NSRB) underscore the more accurate hydrologic replication
that resulted from implementation of the improved tile drain map (Fig. 4
and Table 4), and improved crop yield (and implicitly crop biomass)
estimation due to the updated nitrogen fertilizer applications (Table 6).
Flow Duration Curves (FDCs; Fig. 8) were calculated using the entire
time series for the same gauges shown in Fig. 7. Our analysis of these is
based on visual similarity between observed and simulated streamflow,
and the nonparametric Two-Sample Kolmogorov-Smirnov test (two-sample
K-S test) statistic (Feller, 1948). The FDCs can also be used to analyze repro-
duction of streamflow volume. The baseline simulations performed best
during very high flow conditions (95%) for all three basins. The mid
streamflow segment (50%) was underestimated by all of the baselines for
the DMRB and overestimated for all of the simulated NSRB baselines. For
the SSRB, the mean streamflow was underestimated by baselines 7 and 8,
and overestimated by the other baselines. The 20% of lowest flows were
underestimated for all baselines for the DMRB, and by SSRB baselines 7
and 8. The NSRB streamflow was overestimated by all baselines for the
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lowest 20% segment; baselines 7 and 8 resulted in the best curve fit. Flow
duration curves graphs were also produced for all 40 monitoring stream-
flow stations (Supplementary material).

The two-sample K-S test evaluates the difference between the probabil-
ity distributions of two samples; smaller test values indicate more similarity
between flow duration curves. The test was applied to the entire time series,
and the DMRB baseline 7 produced the closest curve to the observed
data, followed by DMRB baselines 8 and 9. For the SSRB, baseline 8 has
better K-S test representation followed by baselines 10 and 7, and the
NSRB FDC was also better expressed by baseline 8, followed by baselines
7 and 2 (Appendix D).

3.5. Evaluation of seasonal simulation results

In addition to total time series analyses, it is essential to investigate
specific time periods within the SWAT simulations, including snowmelt
(February, through April) and the growing season (May through Septem-
ber). The entire time series, and snowmelt and growing season time
periods, were evaluated as a function of all four statistical coefficients
(NS, R?, KGE and Pbias, Section 2.8) (Fig. 9). Baseline simulations with
the strongest results (blue coloration) were compared to the weakest (red
coloration) for all streamflow monitoring stations, to rank the baselines.
For example, baseline 7 produced the strongest NS results for SSRB for 5
out of 7 stations.
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Fig. 8. Flow duration curves for the ten baseline simulations and observed data for a) Des Moines River Basin, b) South Skunk River Basin and c¢) North Skunk River Basin (the

log format of the FDC is shown at the bottom right corner of the graphs).
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d) sum of all three systems (40 stations). Baselines that produced better simulations are indicated in blue.
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When we evaluate the four statistical coefficients together (NS, R% KGE,
and Pbias), the three basins (DMRB, SSRB, and NSRB), and all the time
series division (total, snowmelt, and growing season), the SWAT simula-
tions that generate the best overall results are for baselines 9 and 5. The
snowmelt season showed similar ranking behavior for NS, R? and KGE,
with baselines 9 and 10 performing better. However, better Pbias results
occurred for baselines 1 and 2 (Fig. 9(d)). Rankings computed for the four
statistical criteria are similar for the growing season, although only base-
lines 1 and 5 resulted in consistently high trends (Fig. 9(d)).

For the DMRB total time series (Fig. 9), baseline 5 produced the highest
rankings for NS and R?; baseline 9 ranked first for KGE, and baseline 7 had
the strongest Pbias results. However, for the DMRB snowmelt period,
baselines 10 and 9 exhibited the strongest NS, R? and KGE statistics, and
Baseline 1 the most accurate Pbias values. Individual baselines produced
best results for each of the four statistics during the growing season for
DMRB: baselines 5, 7, 1 and 9 for NS, Pbias, R* and KGE, respectively.
Regarding the SSRB total time series (Fig. 9), baselines 7 and 9 resulted
in the strongest respective NS, KGE, and R? statistics; the Pbias was more
accurate for baseline 1. The SSRB snowmelt season was ranked as: baseline
9 for the NS and R?, baseline 2 for the Pbias, and baseline 8 for the KGE. The
SSRB growing season is better represented by baselines 1 and 5; however,
baseline 9 produced the strongest R value. For the NSRB total time series
and considering the four statistics, the baselines 7, 8, and 1 were most
highly ranked; the snowmelt season resulted in one highly ranked baseline
per each statistical coefficient: baselines 5, 1, 7, and 8, respectively, for
the NS, Pbias, R? and KGE. The growing season was better ranked by
the baseline 7 for the NS, R?, and KGE; regarding the NSRB Pbias, baseline
8 resulted in the strongest simulation. In general, baselines 3 and 4 resulted
in the most inaccurate SWAT simulations on the basis of the four statistics
across the different time periods and the three basins (Fig. 9).

3.6. Discussion

The tests of the 10 baselines (Table 7) present an intriguing and in some
ways conflicting set of results. Analyses of the suite of four statistics (Fig. 9)
revealed that SWAT baselines 1, 5, 7 and 9 generated the most consistently
accurate streamflows on the basis of those statistical evaluations. However,
the same four baselines also resulted in inaccurate partitioning of baseflow
versus surface runoff (Fig. 5) with the exception of the DMRB baseline 1
simulation. As noted previously, baseline 8 produced the most accurate
partitioning between baseflow and surface runoff but was characterized
by relatively weak statistics, especially for the DMRB (Fig. 9). The weak
statistical performance for baseline 8 may be due in part to underprediction
of total streamflow at the gauge used to assess “outlet streamflow” as previ-
ously discussed. Similar dichotomies in the results can be discerned for the
streamflow partitioning results (Fig. 5) versus aggregated statistical evalua-
tion (Fig. 9).

The particularly weak statistical results for baselines 3 and 4 (Fig. 5) are
reinforced by spatial statistical analyses (Fig. 6). The spatial maps also
reveal that the baseline 8 simulation was relatively weak compared with
the majority of other simulated baselines. Stronger spatial statistical results
were found when the improved nitrogen fertilizer application rates were
incorporated in baselines 9 and 10, which generally resulted in more
accurate crop yields, probable improved biomass estimates and in turn
more accurate hydrologic results. Notably, baseline 9 also resulted in the
strongest R? and hydrologic histogram results for the DMRB and SSRB
(Fig. 7). However, the NSRB was best represented by baseline 5 in terms
of the strongest R? and replication of the observed hydrologic histogram
(Fig. 7). In general, the NSRB baseline simulations were the least
affected by incorporation of the improved tile drain map and/or fertilizer
applications.

Overall, these results clearly point to the need to consider the most
accurate input data available and logical hydrologic results, in combination
with graphical and statistical analyses, to determine the most accurate rep-
lication of the hydrological characteristics of a basin simulated in SWAT.
The application of the alternative RCN method, calculated on the basis of

Science of the Total Environment 839 (2022) 156302

ET and the curve number coefficient (CNCOEF), was the only way that
the dominant baseflow fraction was accounted for (Fig. 5; baselines 2, 4,
6, 8 and 10). However, weak statistical results were only overcome with
incorporation of both the improved tile drain map and nitrogen fertilizer
application rates (e.g., baseline 10). These results also underscore the
need for comprehensive calibration and validation of the DMRB, SSRB
and NSRB, taking into account ‘real system data’ and other factors discussed
here. Baseline 5 (Table 7) represents a partial step in that direction based on
the initial HAWQS calibration and improved input data. Overall, the
baseline analyses performed in this study provide a strong foundation to
conduct the next phase of calibration and validation for the DMRB, SSRB
and NSRB.

4. Conclusion

The continuous and physically-based ecohydrological model, SWAT,
was used to investigate hydrologic representations for the Des Moines
River Basin (DMRB), South Skunk River Basin (SSRB), and North Skunk
River Basin (NSRB) using a variety of ‘real system data’. Ten baseline simu-
lations were built starting with a default SWAT model offered by the
HAWQS platform (baseline 1) and replacing input data (Table 7) to address
the following goals: (1) identifying the importance of accurate representa-
tion of tile drain locations, density and model input parameters, (2) quanti-
fying the effects of different amounts of N fertilizer applications on corn
biomass production and grain yields, (3) analyzing the impacts of different
surface runoff methods on water balance calculation, (4) identifying accu-
rate baseflow performance, and (5) evaluating the spatial efficiency of
SWAT model simulations based on statistical and graphical measures. Base-
line responses were analyzed using simulated streamflows and compared
with observed records at 40 monitoring gauges. The main outcomes were:

Baseflow estimation was higher for the five baselines in which the alter-
native RCN method (CNCOEF) was applied. Baseline 8 (Fig. 5 and
Table 7) produced the closest surface runoff and baseflow values com-
pared to annual observed data, as a function of the alternative RCN
method and tile drain map.

Baselines with N fertilizer application updates presented values closer to
the USDA Census Survey (corn yields) for the DMRB, and fewer nitrate
stress days for all three basins.

According to median NS values, baseline 9 (Fig. 6 and Table 7) resulted in
the best performance for DMRB and baseline 7 (Fig. 6 and Table 7) for the
SSRB and NSRB. Baseline 9 produced the most consistent set of strong
statistical results (NS, KGE, R? and Pbias), followed by baselines 5, 7
and 1, respectively.

The spatial variability of monitoring gauges across the study area
improved SWAT model performance, and helped identify simulation
problems at the subbasin level.

The top performances of baseline simulations 5, 7, 8, and 9 underscore
that more accurate hydrological replication resulted due to the improved
tile drain map and enhanced crop yield estimation (using updated nitro-
gen fertilizer application inputs).

The HAWQS platform proved to be useful in generating SWAT models
from a time and computational memory perspective, since all projects
can be managed/modified online. However, several improvements are
suggested for the platform, such as incorporating a more refined soil
mabp (e.g., Soil Survey Geographic Database - SSURGO), implementing a
detailed tile drain map for model default simulations based on the
approach described in this study (Fig. 4 and Table 4), and reviewing man-
agement operations including revised nitrogen fertilizers applications for
specific crops; e.g., corn production (The HAWQS input data documenta-
tion (Texas A&M, 2017) cites White et al. (2016) as the source of the man-
agement data; revisions to these data are likely needed).

Overall, this study indicates the importance of carefully selected input
data that accurately represents the hydrological processes of a simulated
watershed. The results also underscore the benefits of model testing using
multiple stream monitoring gauges, if such data are available. Additionally,
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use of multiple statistical criteria and multi-site applications are required to
accurately represent and identify the ecohydrological behavior in a target
study area. The relevance of ‘real system data’ was reaffirmed by the fact
that we can obtain good statistical results based on default data. However,
that ignores problems in the model structure that can lead to greater prob-
lems in subsequent scenario applications (especially errors in simulated
pollutant transport). For example, the North Skunk River basin baseline 1
presented satisfactory statistics (NS = 0.70); however, it has a relationship
between surface runoff (60%) and baseflow (40%) that does not represent
the reality expected in heavily tile drained areas (dominant baseflow). Fur-
ther work will focus on additional testing of specific baselines (5, 7, 8, 9),
including essential characteristics identified in this research: tile drain
map, updated N applications, and alternative RCN method. Additional
steps are needed to improve the SWAT baseline configuration including
the implementation of the more refined Soil Survey Geographic Database
(SSURGO) data (USDA-NRCS, 2022a, 2022b, 2022c), review and possible
revisions of various management operations, comparison of the model's
performance for different output data (i.e. suspended sediments, nitrate
load, and phosphorus load), automatic calibration strategy, and accounting
for sources of uncertainty (i.e. model configuration, observed data, episte-
mic errors) involved in model evaluation.

CRediT authorship contribution statement

Téssia Mattos Brighenti: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Writing - Original

Science of the Total Environment 839 (2022) 156302

Draft, Writing - Review & Editing, Visualization, Supervision, Project
administration.

Philip W. Gassman: Conceptualization, Methodology, Validation,
Formal analysis, Investigation, Writing - Original Draft, Writing -
Review & Editing, Supervision, Project administration, Funding acquisi-
tion.

Keith E. Schilling: Conceptualization, Formal analysis, Investigation,
Writing - Review & Editing.

Raghavan Srinivasan: Formal analysis, Investigation, Writing - Review
& Editing.

Matt Liebman: Conceptualization, Formal analysis, Investigation,
Writing - Review & Editing, Funding acquisition.

Jan R. Thompson: Conceptualization, Formal analysis, Investigation,
Writing - Review & Editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The authors acknowledge the National Science Foundation (NSF)
Award # 1855902 - for financial support of this work.

Appendix A

Table A.1

SWAT parameters for HAWQS configuration and for the reset SWAT model.
Definition of adjusted SWAT parameter SWAT parameter name HAWQS DMRB HAWQS SSRB HAWQS NSRB Reset
Curve number calculation method (0 versus 1) ICN 0 0 0 0/1
Plant ET curve number coefficient CNCOEF X X X x/0.75
Soil evaporation compensation factor ESCO 0.801 0.95 0.95 0.95
Depth to subsurface drain (mm) DDRAIN 1420 1200 1200 1200
Depth to impervious layer in soil profile (mm) DEP_IMP 1827 4000 0 6000
Time to drain soil to field capacity (hours) TDRAIN 72 72 72 24
Drain tile lag time (hours) GDRAIN 48 48 48 48
Surface runoff lag SURLAG 4 2 4 4
Delay time for aquifer recharge (days) GW_DELAY 73.95 102 30 31
Baseflow recession constant ALPHA BF 0.6717 0.023 0.077 0.048
Threshold water level in shallow aquifer for base flow (mm) GWQMN 3912 900 900 1000
Revap coefficient GW_REVAP 0.1197 0.02 0.02 0.02
Threshold water level in shallow aquifer for revap (mm) REVAPMIN 377.5 500 500 750
Aquifer percolation coefficient RCHRG_DP 0.0525 0.05 0.05 0.05

Appendix B

Table B.1

Water balance values (mm).
Des Moines River basin (DMRB)
Baseline Surface runoff Lateral flow Tile Groundwater (shal aq) Water yield ET
[11 47.49 4.91 164.19 0 216.57 651.1
[2] 10.76 5.63 197.83 0 214.65 651.7
[3] 132.50 19.32 113.60 0 264.62 604.9
[41 21.58 31.85 147.36 0 200.58 630.8
[5] 107.87 16.90 86.12 0 210.26 656.4
[6] 19.37 29.15 107.99 0 156.32 672.1
[71 136.28 2.68 0.21 74.75 217.76 629.6
[8] 70.15 3.27 1.17 132.75 214.54 632.4
[9] 173.92 12.21 30.94 0.04 216.03 650.8
[10] 69.27 25.68 74.94 0.15 169.47 673.1
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Table B.2
Water balance values (mm).

South Skunk River basin (SSRB)

Baseline Surface runoff Lateral flow Tile Groundwater (shal aq) Water yield ET

[1] 202.02 1.94 0.03 123.78 325.21 582.8
[2] 72.09 2.65 0.16 236.14 309.91 589.2
[3] 235.46 1.91 2.23 147.31 384.07 524.7
[4] 48.12 2.93 15.58 297.30 363.06 533.7
[5] 202.53 1.95 1.86 124.20 327.98 580.3
[6] 70.16 2.67 10.28 231.56 313.57 586.1
[71 170.89 2.12 1.91 98.59 278.37 634.5
[8] 78.88 2.69 8.12 177.02 276.09 637.1
[91 189.88 2.24 2.25 131.84 332.62 583.7
[10] 65.13 2.96 10.57 232.03 322.96 593.1

Table B.3

Water balance values (mm).

North Skunk River basin (NSRB)

Baseline Surface runoff Lateral flow Tile Groundwater (shal aq) Water yield ET
[1] 210.53 0.60 0 142.66 351.45 571.6
[2] 78.52 0.84 0.01 260.55 338.82 577.5
[3] 238.51 0.71 5.22 158.04 400.01 523.7
[4] 51.77 1.10 35.18 296.82 383.96 531.4
[5] 213.93 0.72 4.71 142.96 360.01 563.7
[6] 71.75 1.02 24.52 252.31 348.55 568.6
[7] 183.52 0.68 5.05 103.48 297.01 628.8
[8] 87.27 0.89 19.30 177.65 294.07 631.8
[9] 203.48 0.73 5.69 139.08 354.90 573.3
[10] 66.80 1.01 26.03 243.67 350.09 577.1

Appendix C

Table C.1

Observed and simulated streamflows at the basin outlets.
Baseline Streamflow (m>/s)

DMRB* SSRB* NSRB*

Observed 212.2 42.6 18.6
[1] 157.9 44.4 25.2
[2] 156.3 42.2 24.3
[3] 208.7 52.7 28.7
[4] 159.9 49.8 27.5
[5] 151.2 44.7 25.9
[6] 113.8 42.7 25.0
[7] 154.2 38.0 21.3
[8] 150.8 37.7 21.1
[9] 154.9 45.3 25.5
[10] 120.8 43.9 25.1

2 Qutlet USGS gauges: 05487500 (Runnells) (DMRB) — drainage area: 30186.3 km?; 05471500 (Oskaloosa) (SSRB) - drainage area: 4234.6 km?; and 05472500 (Sigourney)
(NSRB) - drainage area: 1890.7 km>.

Appendix D

Table D.1

Two-sample Kolmogorov-Smirnov test values at the basin outlets.

DMRB? SSRB? NSRB?*

[1] 0.4000 0.2037 0.2222
[2] 0.4000 0.2361 0.2037
[3] 0.2762 0.2824 0.2963
[4] 0.3238 0.3056 0.287
[5] 0.3714 0.2037 0.2269
[6] 0.4190 0.2454 0.2176
[7] 0.2000 0.0880 0.1343
[8] 0.2190 0.0787 0.1157
[9] 0.2381 0.1157 0.2222
[10] 0.3238 0.0833 0.2222

@ Outlet USGS gauges: 05487500 (Runnells) (DMRB); 05471500 (Oskaloosa) (SSRB); and 05472500 (Sigourney) (NSRB).

Appendix E. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2022.156302.
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