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MARS: mmWave-based Assistive Rehabilitation System for
Smart Healthcare
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UMIT Y. OGRAS, University of Wisconsin-Madison, USA

Rehabilitation is a crucial process for patients suffering frommotor disorders. The current practice is performing
rehabilitation exercises under clinical expert supervision. New approaches are needed to allow patients to
perform prescribed exercises at their homes and alleviate commuting requirements, expert shortages, and
healthcare costs. Human joint estimation is a substantial component of these programs since it offers valuable
visualization and feedback based on body movements. Camera-based systems have been popular for capturing
joint motion. However, they have high-cost, raise serious privacy concerns, and require strict lighting and
placement settings. We propose a millimeter-wave (mmWave)-based assistive rehabilitation system (MARS)
for motor disorders to address these challenges. MARS provides a low-cost solution with a competitive object
localization and detection accuracy. It first maps the 5D time-series point cloud from mmWave to a lower
dimension. Then, it uses a convolution neural network (CNN) to estimate the accurate location of human
joints. MARS can reconstruct 19 human joints and their skeleton from the point cloud generated by mmWave
radar. We evaluate MARS using ten specific rehabilitation movements performed by four human subjects
involving all body parts and obtain an average mean absolute error of 5.87 cm for all joint positions. To the
best of our knowledge, this is the first rehabilitation movements dataset using mmWave point cloud. MARS is
evaluated on the Nvidia Jetson Xavier-NX board. Model inference takes only 64𝜇s and consumes 442𝜇J energy.
These results demonstrate the practicality of MARS on low-power edge devices.

CCS Concepts: •Networks→Cyber-physical networks; •Human-centered computing→Ubiquitous
and mobile computing; • Computing methodologies → Reconstruction.
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1 INTRODUCTION
Rehabilitation is the process of recovering a patient’s health condition to its normal state after a
period of illness. The sequelae of central nervous system disorders, such as Parkinson’s disease (PD)
and cerebrovascular diseases (e.g., stroke), afflict more than 10 million people worldwide. According
to recent studies, patients can recover up to 91% functional ability if they start the rehabilitation
within three months of the stroke [24]. Similarly, PD patients must follow regular rehabilitation
treatments to maximize their functional ability and minimize secondary complications [3]. There is
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also a strong interplay between mental well-being and maintaining physical activity [16]. These
examples demonstrate the importance of rehabilitation treatment to regain patients’ quality of life.
The current mainstream rehabilitation treatment involves a physical therapist who supervises

the patients in person. The supervision aims to guide the patients to perform specific movement
exercises and give feedback to ensure their correctness. Individualized attention from an expert is
certainly favorable, but it also incurs a high cost due to critical dependence on experts, dedicated
infrastructure, and patients’ commute. Indeed, the Covid-19 pandemic experience has further demon-
strated the growing importance of developing alternatives to in-person care. Home-based rehabilitation
systems are needed to address this urgent need. These systems must allow patients to perform
prescribed movement exercises at home while receiving feedback. In this way, they can complement
the therapists by enabling daily practices between clinic visits, which can be weeks apart. During
these practices, they can monitor whether the patients perform the movements correctly and adjust
the intensity. For example, when a patient lifts the arm or the thigh, the system must tell if it is
high enough and guide patients to improve the movements.

Home-based patient monitoring systems use predominantly two approaches: wearable sensors-
and video-based systems [6, 12, 33, 49]. One of the main advantages of wearable systems is their
independence from environmental factors. For instance, it does not matter whether the patients
perform the rehabilitation exercise indoors or outdoors as long as they wear the sensors. Also, sensor
measurements can be very accurate when appropriately placed. However, recent studies show that
frequent charging requirements and discomfort hinder the users from using the wearables [10, 38].
Moreover, multiple sensors are required to capture full-bodymotion, e.g., account for wrist, arm, and
legs simultaneously. The video-based systems tackle some of the drawbacks of wearable systems.
They usually use an RGB video camera, depth camera, or other motion capture systems, such
as Microsoft Kinect [30] and Intel RealSense sensors [22]. The user only needs to perform some
actions in front of a camera instead of wearing multiple sensors. Besides, video-based methods
can reconstruct multiple essential body parts, such as the neck, wrist, shoulder, and ankle [14].
Then, they can model real-time skeleton movement by connecting these points [14, 37]. However,
video-based systems also face critical challenges that limit their practicality. First, they require
a strict environment setting, such as lighting and camera placement, which significantly affects
accuracy. Second, privacy is a more complex issue since many users do not want to share their
camera access and videos. Consequently, the challenges discussed in this paragraph limit the use of
video-based rehabilitation assistive systems at home.

With the recent advances in mmWave technology, Radio Frequency (RF) imaging has emerged
as a promising technique that can address the limitations of wearable and video-based rehabilita-
tion systems [51]. Small form-factor and low-power mmWave radars have become commercially
available [44]. These devices provide a high-resolution 3D point cloud representation, which can
be processed locally using edge artificial intelligence (AI) algorithms to reconstruct human mo-
tion. Since they generate and transmit RF signals towards the target, they can maintain a robust
operation under poor lighting and weather conditions. They also address privacy concerns since
mmWave radar signals do not involve any video images or facial information. However, existing
mmWave radar techniques have primarily been limited to object detection and target localization since
it represents the scene with a reflection point cloud instead of the true color image [26, 29].

This paper proposes a novel real-time mmWave-based Assistive Rehabilitation System (MARS)
to monitor patient movements in home environments accurately and provide real-time feedback.
MARS tracks the patient movement using a low-cost mmWave radar [44]. Unlike prior work that
uses the point cloud for activity recognition and localization [26, 27, 29, 39], our novel pre-processing
algorithms and convolutional neural network (CNN) design convert the radar point cloud to 3D joint
coordinates. This unique capability enables MARS to produce real-time skeleton movements without
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using any video images or facial information. Hence, its output is compatible with more expensive
and complex video-based systems. Furthermore, MARS supports angle and speed estimations of
limbs as well as posture correction. We evaluated MARS empirically by performing experiments
with 70 minutes of exercise data (40,083 frames) from ten popular rehabilitation movements. We
also collected reference data using Microsoft Kinect V2 sensor [30] during these experiments.
Experimental results show that MARS accurately estimates the 3D coordinates of 19 joints with
only 5.87 cm mean absolute error (MAE). For more details about comparative results, please refer to
Section 5.2. MARS also offers joint angle and velocity estimation as the feedback of the rehabilitation
movements. The average MAE of MARS in the knee and the elbow angle estimation is 6◦ and
12◦, respectively. Finally, we implement the proposed approach on the Nvidia Jetson Xavier-NX
board [32]. Our experiments show that MARS can process well over 9,000 frames per second with
less than 500 𝜇J energy consumption per frame. Hence, it can be used reliably for home-based
rehabilitation systems.

In summary, the major contributions of this paper are as follows:

• A low-cost and low-power mmWave-based assistive rehabilitation system that accurately
reconstructs 19 human joints and skeleton movements using mmWave point cloud data,

• A novel pre-processing method that transforms the raw 5D time-series point cloud with irreg-
ular length and random order to a 3D 5-channel stacked feature map; a CNN for processing
the proposed feature map to 3D spatial coordinates of human joints,

• A first-of-its-kind rehabilitation movement dataset using mmWave point cloud, including 70
minutes of ten distinct rehabilitation movements performed by four human subjects with 19
human joints data and 40,083 labeled frames and their video demonstrations to the public [40],

• Experimental evaluations show, on average, about 5 cm localization error in 3D space, and 6◦
error for the knee angle, and 12◦ error for the elbow angle.

2 RELATEDWORK
This section discusses the related work systematically under assistive healthcare systems, human
pose tracking, and mmWave imaging categories.

2.1 Healthcare Assistive System using Internet of Things (IoT)
Successful rehabilitation is a crucial step for the patients to improve their self-care ability, re-
participate in social life, and raise their quality of life. The IoT technology has become a promising
solution to offer long-term, holistic, and accurate health monitoring owing to its rapid development.
This technology can alleviate the caregiver burden and provide valuable information to the clinical
experts to support their decision-making for rehabilitation suggestions.

Wearable devices dominate earlier research in healthcare assistive systems due to their increas-
ing affordability and popularity. Weiss et al. [50] analyze PD patients’ movements using a triaxial
accelerometer and a triaxial gyroscope. Specifically, the transition between turning and sitting in
patients with Parkinson’s disease is the focus of this study. Abbate et al. [2] aim for long-term
monitoring and fall detection in nursing homes by using accelerometers and electroencephalo-
graph (EEG). The paper also involves ergonomics for designing the health monitoring system. A
garment-based system using a strain-sensor to facilitate rehabilitation was presented in 2009 [18, 19].
This system provides the patients with real-time feedback based on wearable sensors embedded in
the garment. In [42], Bhomer et al. developed a sound assistive rehabilitation system. The sound
reflects the movement of the subject as the pitch or volume of a tune, manipulated by a stretch
fabric sensor. However, these two systems focus only on the upper limb and trunk. Besides, they do
not provide any joint and skeleton information of a body and lack quantitative results. In summary,
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wearable-based assistive healthcare systems usually consist of multiple sensors. They mainly target
one part of the body since broader coverage requires more sensors. Lack of interpretation ability
is also a significant shortcoming of these systems since they rarely give human joint or skeleton
information.
Another mainstream technique used in healthcare assistive system research is computer vi-

sion (CV). CV offers an accurate representation of the real world using true-color images or videos.
The primary goal of using vision-based approaches in rehabilitation systems is to help patients
improve motor functions and overcome challenges by monitoring their daily actions and activities
instructed by the doctors. RGB video camera [8, 9], depth camera [7, 25, 48], and motion capture
system [9, 48] are the major devices have been used in this area. In [8], Ar et al. present Home-based
Physical Therapy Exercises (HPTE) dataset which targets therapy actions. The Kinect camera is
used in this study to provide video and depth streams to the user. One of the outputs of this approach
is the binary image that indicates the body shape. They give eight shoulder and exercise movements
but without any joint or skeleton information. In 2015, researchers developed a system and released
a dataset named EmoPain that has both body joint information and face videos [9]. The object
of EmoPain is to relate the pain to the emotion in the rehabilitation systems. These systems use
RGB cameras often has limitation due to environmental noise, and lens distortion [37]. A dataset
named AHA-3D was released in 2018 [7]. This dataset contains 79 skeleton videos, each consisting
of one exercise repeated 1-3 runs. It is recorded with both young and elderly subjects using a Kinect
v2 sensor. Similarly, a more recent study [48] in 2018 presents a dataset called UI-PRMD with 10
subjects doing the common physical rehabilitation exercises using the Vicon and Kinect systems.
It has advantages over others because of its performance metrics for the rehabilitation exercises
instructed by clinical experts.

In the computer vision area, researchers have focused on human pose estimation since 2005 [34].
This study proposes a framework that can detect ten distinct body parts using rectangular templates
from RGB images. In [21], He et al. present Mask R-CNN, which can reconstruct skeleton from
RGB images using K masks by leveraging ResNet architecture. It first detects K different key points
then connects them. Mask R-CNN has become popular due to its fast processing time and accurate
estimation. At almost the same time, Cao et al. proposed OpenPose [14], a real-time human pose
estimation techniques that can detect human body, face, and foot key points together for the first
time. OpenPose also has become one of the popular benchmarks due to its decent performance and
the easy-to-use open-source package. Besides the RGB video-based approach, Microsoft Kinect
and Kinect V2 [37] provide depth cameras to extract the human joints information. Kinect uses
an RGB and infra-red camera, while Kinect V2 uses a Time of Flight (ToF) camera to capture the
information. The Kinect family has become one of the popular ways to obtain the ground truth
label for training due to its convenience, low cost, and accurate performance [7, 36, 52].

2.2 mmWave Radar Imaging
Localization [26] and multiple kinds of classification tasks [27, 29, 39] are the fundamental appli-
cations of mmWave radar. The work in [26] assumes an environment with many static mmWave
devices referred to as anchor points placed in known locations (four corners of a room) and a mobile
node surrounded by these anchor points. Using the flight time and arrival angles derived by the
transmitted and received signals, the system can determine the mobile node’s localization. Relying
on multiple devices degrades the practicality of this approach. Singh et al. [39] present a human
activity recognition approach using a 77 GHz TI IWR1443 mmWave radar. They achieve above
90% accuracy with deep learning classifiers recognize five different activities: boxing, jumping,
jumping jacks, squats, and walking. Similarly, Liu et al. [27], and Meng et al. [29] perform gesture
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recognition and gait recognition using the point cloud data generated by IWR1443. However, these
tasks only focus on classification tasks with up to ten classes.
Human skeleton reconstruction, a more challenging task, is first considered in RF-Capture[5].

RF-Capture first outputs the coarse human body parts using FMCW signals from 5.4 to 7.2 GHz. It
paves the way for further study using mmWave, but it does not provide accurate human joint points
all over the body. In 2018, researchers from the same group proposed RF-Pose3D [52], a technique
that reconstructs up to 14 body parts, including head, neck, shoulders, elbows, wrists, hip, knees,
and feet. This work first uses 12 camera nodes to record RGB-based video then obtain label key
points from OpenPose. At the same time, FMCW signals at a few GHz are used to generate the RF
heatmap. They then train a region proposal network (RPN) zooms in on RF data and a CNN with
ResNet architecture to extract the 3D skeleton from the region of interest. For key point localization,
the average errors in 𝑥,𝑦, 𝑧 axes are 4.2, 4.0, and 4.9cm, respectively. Besides being limited to
14 joints, this work does not leverage the mmWave radar’s ability to obtaining a high-quality
point cloud. Thus, it requires a much more complex NN architecture with high computation cost.
Moreover, multiple cameras and bulky FMCW signal generating systems hinder the practicality
of the approach. Most recently, Sengupta et al. propose mmPose [36], an approach that predicts
over 15 joints. mmPose constructs the skeleton from point clouds by using two IWR1443 radar
devices and a forked-CNN architecture. It reports 3.2, 2.7, and 7.5cm localization errors in 𝑥,𝑦, 𝑧

axes, respectively. Besides requiring two radars, mmPose uses a large CNN model (with twice as
many parameters as MARS) and incurs a high computation cost since it first projects the point
cloud data into two different planes instead of using the 3D representation.
In contrast to the previous studies, we propose MARS: a low-cost, low-power mmWave based

assistive rehabilitation system for motor disorders. We leverage high-quality point clouds generated
by only one TI IWR1443 76-81GHz radar device to reconstruct 19 critical human joints. Our novel pre-
processing and feature map generation algorithms enable robust estimation with low computational
overhead. More importantly, MARS targets ten complex rehabilitation movements instead of relying on
simple activities, such as walking. We will release the first labeled dataset that includes both mmWave
and Kinect V2 data and video demonstrations for these movements [40].

3 BACKGROUND ON MMWAVE RADAR AND OVERVIEW
Frequency Modulated Continuous Wave (FMCW) mmWave radar has recently attracted significant
attention, especially in automotive and industrial applications. The fundamental component of
FMCW is a chirp signal, which is a sinusoid wave whose frequency increases linearly with time [35,
45, 47]. Due to this characterization, a chirp signal is typically displayed by a linear frequency
versus time plot, as illustrated in the top left part of Figure 1. The chirp signal is uniquely defined
by its start frequency (𝑓𝑐 ), duration (𝑇𝑐 ), and bandwidth (𝐵). The bandwidth to duration ratio gives
the chirp slope (𝑆), i.e., the rate at which the signal frequency increases (𝑆 = 𝐵/𝑇𝑐 ).

The FMCW radar synthesizes a sequence of chirp signals to form a frame. For instance, Figure 1
illustrates a frame with𝑁 back-to-back chirp signals. It transmits the chirp frame using a transmitter
(TX) antenna. If any object is in the vicinity, it reflects off the chirp frame. Then, the FMCW radar
receives the reflected signals at the receiver (RX) antennas. Note that both TX- and RX-signals are
chirps with different instantaneous frequencies and phases. A mixer module in the radar processes
these signals to produce an intermediate frequency (IF ) signal [47], which is another sinusoid with
the following instantaneous frequency (𝑓𝐼𝐹 ) and phase (𝜙𝐼𝐹 ):

𝑓𝐼𝐹 = 𝑓𝑇𝑋 − 𝑓𝑅𝑋 , 𝜙𝐼𝐹 = 𝜙𝑇𝑋 − 𝜙𝑅𝑋 (1)

Suppose only one object reflects the chirp frame with distance 𝑑 from the radar. The round-trip
delay of the received signal can be found as 𝜏 = 2𝑑/𝑐 , where 𝑐 is the speed of light. Since the
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Fig. 1. Overview of the mmWave imaging system. The radar transmits chirp frames. Then, it mixes the
reflected and transmitted frames to produce 5D point cloud data, which is then processed by MARS.

received signal is a replica of the transmitted frames delayed by 𝜏 , the frequency of the IF signal will
be 𝑆𝑡 − 𝑆 (𝑡 − 𝜏) = 𝑆𝜏 . That is, the IF signal has a single tone when only one object reflects the chirp
signal. We can find the frequency of this tone as 𝑆𝜏 = 2𝑑𝑆/𝑐 . When the chirp frame is reflected from
multiple objects or different parts of the body, the mixer will produce an IF signal with multiple
tones, a.k.a., beat frequencies. FMCW radar chips extract the IF signal tones by computing frequency
spectrum using the fast Fourier transform (FFT), as depicted in Figure 1. As in the single object
case, the frequency of each tone is proportional to the distance of the corresponding object. The
IF signal is processed in the digital domain to map the tones into range bins using a range FFT
process [35]. Note that the range resolution is inversely proportional to the chirp bandwidth:

𝑑𝑟𝑒𝑠 =
𝑐

2𝐵
(2)

where 𝑐 is the speed of light and 𝐵 is the chirp bandwidth.
Another essential metric besides the range is the velocity of the detected objects. FMCW radars

compute the velocity using the phase changes in the IF signal across multiple chirps. This process
converts small displacements of the object to a phase difference in the IF signal. As in the range
detection case, there may be multiple objects with equal distance from the radar but with different
relative velocities. The chirps in the transmitted and received frames (𝑁 chirps in Figure 1) are
processed by a second FFT, called Doppler-FFT [35], to resolve the velocity of different objects.
After this step, the radar can produce a range-Doppler heat map to detect object velocities. The
velocity resolution of the radar is inversely proportional to the frame time as:

𝑣𝑟𝑒𝑠 =
𝜆

2𝑁𝑇𝑐
(3)

where 𝜆 is the wavelength, 𝑁 is the number of chirps, and 𝑇𝑐 is the time between two chirps. For
instance, 𝑣𝑚𝑎𝑥 is 39 m/s given 𝑇𝑐 is 25 𝜇s, which is significantly faster than human motion. Finally,
the FMCW radar filters out the noise interference using a noise elimination algorithm, such as the
built-in constant false alarm rate (CFAR) [31], used in this work.

The last metric estimated by the radar is the angle of arrival (AoA). AoA is defined as the angle of
a reflected signal with the horizontal plane [13]. Angle estimation requires at least two RX antennas
and it is calculated by 𝜃𝑟𝑒𝑠 = 𝜆/𝑁𝑅𝑋𝑁𝑇𝑋𝑑𝑐𝑜𝑠 (𝜃 ), where 𝜆 is the wavelength, 𝑁𝑅𝑋 is the number
of receiver antennas, 𝑁𝑇𝑋 is the number of transmitter antennas, 𝑑 is the distance between two
consecutive receiver antenna, and 𝑐𝑜𝑠 (𝜃 ) is the cosine of the angle between two receivers. Note that
the resolution is often quoted assuming that𝑑 = 𝜆

2 and 𝜃 = 0, such that 𝜃𝑟𝑒𝑠 = 2
𝑁𝑅𝑋𝑁𝑇𝑋

(radians) [17].
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Table 1. List of major parameters and variables related to mmWave and their values in this work. “NA” means
that the corresponding is not a fixed parameter but a variable for each point.

Symbol Description Values Symbol Description Values

𝑓𝑐 Starting frequency 77 GHz 𝜃𝑟𝑒𝑠 Angle resolution 9.55◦

𝑇𝑐 Chirp duration 32 𝜇s 𝑁𝑅𝑋 No. of RX antennas 4
𝐵 Bandwidth 3.20 GHz 𝑁𝑃 Maximum points detectable per frame 64
𝑆 Slope of chirp 100 MHz/𝜇s 𝑓𝐼𝐹 Frequency of IF signal NA
𝑁 No. of chirps per frame 96 𝜙𝐼𝐹 Phase of IF signal NA
𝑑𝑟𝑒𝑠 Range resolution 4.69 cm 𝜏 RX signals time difference NA
𝑣𝑚𝑎𝑥 Maximum Velocity 5.69 m/s 𝐷𝑖 the 𝑖𝑡ℎ point’s Doppler velocity NA
𝑣𝑟𝑒𝑠 Velocity resolution 0.35 m/s 𝐼𝑖 the 𝑖𝑡ℎ point’s reflection intensity NA

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖
3D coordinates of
the 𝑖𝑡ℎ point

NA 𝑝𝑖
Point representation of
the 𝑖𝑡ℎ point

NA

𝑁𝑇𝑋 No. of TX antennas 3

The radar chip estimates the angle of arrival by using the phase change in the 2D-FFT peak caused
by the different distances from the object to each antenna. This FFT is referred to as the angle FFT,
which outputs the azimuth angle divided by elevation angle.

Finally, the radar receives multiple RX signals back for all the chirps the TX antennas sends.
Each object (or body part) that reflects an RX signal is referred to as a point. For each point 𝑝𝑖 in
the frame, the radar chip calculates its 3D coordinates by using the result of range FFT after the
noise elimination algorithm. Moreover, it computes the Doppler velocity and reflection intensity.
Multiple points within each frame form the point cloud, which is formatted as follows:

𝑝𝑖 = {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝐷𝑖 , 𝐼𝑖 }, 𝑖 ∈ [0, 𝑁𝑃 ] (4)
where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 represents the spatial coordinates of the point, 𝐷𝑖 denotes the Doppler velocity, 𝐼𝑖
denotes the signal intensity, and 𝑁𝑃 denotes the total number of points in this frame. Note that
𝑁𝑃 will be zero, i.e., there will not be any points when no object is detected. On the contrary, the
number of detected points can exceed the radar chip’s capacity if too many signals are reflected.
Therefore, radar chips limit the maximum value 𝑁𝑃 can take.

The radar parameters used in this study are shown in Table 1. In our work, the first 64 reflected
points are processed, i.e., 𝑁𝑃 = 64. The IWR1443 radar sensor is configured with three TX antennas
and four RX antennas. The frame duration and sampling rate are set to 100 ms and 2.49 Msps,
respectively. With these parameters, the radar has a maximum detection range of 3.37 m, maximum
detection velocity of 5.69 m/s, a range resolution of 4.69 cm, and velocity resolution of 0.35 m/s.
For more mmWave radar details, we refer the readers to recent tutorials [17, 35, 45].

4 MARS: MMWAVE-BASED ASSISTIVE REHABILITATION SYSTEM
This section presents the proposed MARS framework that processes the raw mmWave point cloud
data to provide rehabilitation feedback to the user. To provide accurate and relevant feedback,
MARS tracks the following fundamental attributes in real-time: The 3D position (𝑥,𝑦, 𝑧 coordinates)
and velocity (along 𝑥,𝑦, 𝑧 dimensions) of 19 joints, four key angles, as listed in Table 2. Furthermore,
it provides correction feedback on ten commonly used postures shown in the last row of Table 2.
MARS accomplishes these tasks by following the following steps outlined in Figure 2:
(1) Use an FMCW radar to collect point cloud data, as described in Section 3,
(2) Pre-process the point cloud to construct robust and delay-invariant features (Section 4.1),
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Fig. 2. Overview of proposed MARS framework and its interaction with radar and Kinect V2.

(3) Infer 3D joint positions using the new features and a CNN architecture (Section 4.2),
(4) Produce user feedback by converting the 3D joint positions to joint velocity and angle

estimations (Section 4.3).

Table 2. MARS provides 3D joint positions and the velocity of 19 joints listed in the first row. It also estimates
the angles in the second row and provides posture correction feedback for ten movements in the last row.

3D joint position estimation SpineBase, SpineMid, Neck, Head, SpineShoulder,
ShoulderLeft, ElbowLeft, WristLeft,
ShoulderRight, ElbowRight, WristRight,
HipLeft, KneeLeft, AnkleLeft, FootLeft,
HipRight, KneeRight, AnkleRight, FootRight

3D joint velocity estimation

Angle estimation Left elbow, Right elbow, Left knee, Right knee

Posture correction feedback

Left upper limb extension, Right upper limb extension,
Both upper limbs extension,
Left front lunge, Right front lunge, Squat,
Left side lunge, Right side lunge,
Left limb extension, Right limb extension.

4.1 Point Cloud Pre-Processing
4.1.1 Input data: Challenges and reformatting. The primary input to MARS is a point cloud arranged
as five-dimensional (5D) time-series data. Each point consists of the 𝑥,𝑦, 𝑧 coordinates of the points
that reflected the TX-signal (𝑥,𝑦, 𝑧), Doppler velocity 𝐷 , and the reflection intensity 𝐼 , as described
in Section 3. The FMCW radar stores the first 𝑁𝑃 points to form a data frame (in this work 𝑁𝑃=64,
as shown in Table 1). If fewer than 𝑁𝑃 body parts reflect the chirp signals, fewer than 64 points
will be received. In these cases, the rest of the frame is padded with zeros to obtain a uniform size
(𝑁𝑃 × 5) input frames.

Figure 3 depicts a sample input frame from different perspectives. The triangle marker represents
the radar location, which is also set at the origin (0, 0, 0). Figure 3(a) shows that point positions in
3D, while the other plots show their projections to 2D coordinates. Similarly, Figure 3(a) illustrates
the Doppler velocity, which indicates the relative velocity from the detected point to the radar.
Finally, the colors in the figures represent the energy intensity of the reflected signals.
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4.1.2 Feature generation for CNN. Note that the reflected chirp signals arrive at the radar in random
order due to slight variations in the body posture and round-trip delay, as illustrated in Figure 4(a).
Therefore, the order of the points in a frame is random, i.e., the same point may be in different
positions across consecutive frames. Although CNNs have a decent shift, scaling, and rotation
invariance, random data ordering poses a challenge to CNN design. Furthermore, the input data
must have a fixed shape. To address these issues, we propose a pre-processing algorithm that
consists of sorting and matrix transformation. We sort the points in each frame in ascending order
of x, y, and z coordinates. The points are sorted first based on their x coordinates in ascending
order. At the second level, the points with the same x coordinate are sorted by their y coordinates.
Finally, for the data points with the same x and y coordinates, we sort them by z coordinates in
ascending order, as illustrated in Figure 4(b). Note that this sorting does not change the distances
between the points since we only change the order of the inputs to the CNN.

After the sorting phase, the dimension of the input features is 64×5, i.e., the input data is arranged
as a column vector with 64 rows each with 5 features. The transformation converts 64 rows into
an 8x8 square matrix in the row-major order, similar to images commonly used in CNNs. Thus,
the transformation reshapes the same data while preserving the values from the 64×5 matrix to
an 8×8×5 data structure. Since there are five dimensions (x, y, z coordinates, Doppler velocity,
reflection intensity), we end up with five channels, each with an 8×8 feature map.

Fig. 3. mmWave point cloud representation for one frame. (a), (b), (c), and (d) shows the 3D view, front view,
side view, and top view, respectively.
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Fig. 4. Input data (a) before and (b) after sorting.

4.1.3 Handling out-of-range “ghost images”. mmWave radar imaging can sometimes generate
a point called “ghost image” that is outside the range of interest [4]. In assistive rehabilitation
systems, the user is standing within a fixed distance away from the radar sensor. Hence, we divide
the generated point cloud into two classes: in-range and out-of-range. The in-range point cloud
is defined by lower and upper bounds on each dimension. In our implementation, we use the
following ranges: 𝑥 ∈ {−1𝑚, 1𝑚} (horizontal width), 𝑦 ∈ {0, 3𝑚} (depth), and 𝑧 ∈ {−1𝑚, 1𝑚}
(vertical height). The points within these boundaries are considered in-range, while others are
marked as out-of-range points. The out-of-range points are highlighted by rectangles in Figure 3 for
illustration. The out-of-range points (i.e., ghost images) are inevitable in real application scenarios
due to scattering. Therefore, MARSmarks and includes out-of-range points in training and inference.
Section 5.3.2 presents quantitative results and discusses the implications of this choice.

4.2 CNN Architecture Design
The next step is converting the feature maps depicted in Figure 3 into actual 3D joint positions. This
challenging task is accomplished using a CNN architecture that outputs the 𝑥 , 𝑦, and 𝑧 coordinates
of 19 joints, as illustrated in Figure 5. The input layer of the CNN takes the stacked 5-channel
feature map as the input. Two consecutive convolution layers follow the input layer with 16 and 32
channels, respectively. After performing the convolutions, the data is passed to a flattening layer
that generates the input vector for the fully connected (FC) layers. The first FC layer is with 512
neurons. The final output of CNN contains 57 neurons, which stand for 3D coordinates for the 19
joints. All activation functions are Relu except for the final FC layer, where we use linear activation.
Finally, four dropout layers with probabilities of 0.3 and 0.4 are employed after the convolution
layers and the fully connected layers to avoid excessive dependency on specific neurons.

The design choice of including Batch Normalization (BN) and max-pooling or leaving them out
is vital in developing a CNN. The BN layer is commonly used to avoid significant data distribution
changes after each mini-batch called “internal covariate shift.” The max-pooling layer is used
to maintain the feature invariance after image translation, rotation, and scaling by taking the
maximum of a particular region. It also reduces model parameters while avoiding overfitting and
improving the generalization ability of the model. MARS implements BN layers after the second
convolution layer and the fully connected layers. We choose not to have a max-pooling layer since
it loses local information, which is essential for the spatial coordinates regression task. We discuss
these choices and present a comprehensive quantitative evaluation in Section 5.3.3.
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Fig. 5. Point cloud pre-processing and CNN architecture

4.2.1 Ground truth and loss function. Training the proposed CNN architecture requires the ground
truth, i.e., the reference positions of the target joint positions. In this work, we use a Kinect V2
sensor [30] to capture the reference coordinates. The Kinect sensor and the mmWave radar are
placed on the same table, next to each other. This placement does not lead to spatial offsets in the 𝑦
and 𝑧-axis between two sensors since their 𝑦 and 𝑧 coordinates are identical. However, there is a
spatial offset. Firstly, the x-axis in the Kinect sensor’s reference frame is inverted with respect to
the mmWave radars 𝑥-axis. Thus, we take the additive inverse of all 𝑥-axis values during the pre-
processing stage. Secondly, there is still a 3 cm offset in the 𝑥-axis since the sensors are placed next
to each other. We do not manually calibrate this offset since the CNNs have decent shift-invariance.
CNN itself can learn the spatial offset between the mmWave sensor and the Kinect sensor. The
Kinect sensor’s sampling rate is fixed at 30Hz, while the radar’s frame duration is 100ms. Hence,
we align the radar and the Kinect sensor data frame by frame. The frame alignment is achieved by
connecting both devices to the same laptop and timestamping the data frames from each device.
We find the closest timestamp in the Kinect sensor for each radar data frame and pair it with the
radar data as its label1.

For a given data frame, let 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 be the reference coordinates of joint 𝑖 , 1 ≤ 𝑖 ≤ 𝑁 𝐽 from the
Kinect sensor, where 𝑁 𝐽 is the number of tracked joints. Similarly, let the corresponding estimates
from MARS be 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 , respectively. We define the loss function as the mean squared error
(MSE) between the reference positions and the estimations as follows:

𝐿𝑜𝑠𝑠𝑐𝑜𝑜𝑟 =

∑𝑁 𝐽

𝑖=1 (𝑥𝑖 − 𝑥𝑖 )2 +
∑𝑁 𝐽

𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2 +
∑𝑁 𝐽

𝑖=1 (𝑧𝑖 − 𝑧𝑖 )2

3𝑁 𝐽

(5)

An illustration of MARS estimating 19 human joints from the mmWave radar is shown in Figure 6.
From left to right, the subfigure represents the point cloud generated by radar, estimation from
MARS, and the ground truth from the Kinect V2 sensor. We observe that MARS reconstructs 19
human joints accurately. We show only five of the ten rehabilitation movements due to space
limitation. The remaining five movements look very similar since they are mirrored versions of the
same movements. A live demo can be found on our GitHub page, where the dataset is released [40].

1The time difference between a data-label pair is less than 5ms by using the proposed time alignment method.
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Fig. 6. Demo of MARS reconstructing human joints from point cloud for both upper limb extension, right
front lunge, squat, left side lunge, and left limb extension. From left to right, it shows radar point cloud, MARS
estimation, and ground truth, respectively. The accuracy of the estimations are analyzed in Section 5.
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4.3 Rehabilitation Movement Feedback to User
4.3.1 Velocity estimation. The CNN presented in Section 4.2 produces the 3D coordinates of 19
joints listed in Table 2. The next step is deriving the velocity of these joints. We find each joint’s
velocity by dividing its distance between two consecutive frames by the frame duration. One
example is shown in Figure 7(d) for the squat movement. We first find the complete squatting
frame (shown in solid line in Figure 7 (d)). Then, the corresponding positions in the previous frame
are found. Finally, the ratio of the distance between two consecutive frames and frame duration
gives the joint velocities. The ground truth velocity is derived using consecutive ground truth 3D
coordinates reported by the Kinect sensor and their sampling times. For the squat example, the
spinebase joint’s velocity is used for evaluating the squat speed. In general, users can observe every
joint’s velocity when they perform different movements and adjust their pace accordingly.

4.3.2 Joint angle estimation. The joint coordinates found by the CNN are also used to find the
angles between critical joints. This work focuses on the four most commonly used joint angles:
right and left elbow angles, right and left knee angles, as listed in Table 2. The elbow angle is found
using the shoulder, elbow, and wrist positions, as illustrated in Figure 7. We first calculate the
skeleton length between the shoulder and elbow and the length between the elbow and wrist using
their 3D coordinates. Then, the angle is obtained by using triangulation from the law of cosines.
We follow the same procedures to calculate the knee angle using the hip, knee, and ankle positions.
The ground truth angle is computed using the ground truth 3D coordinates reported by the Kinect
sensor. As an example, Figure 7(d) illustrates a squat movement. We observe that the elbow and
knee angles are 98◦ and 62◦, respectively, for the complete squat.

Fig. 7. Angle estimation by MARS during squat movements. (a), (b), (c), (d) shows the 3D view, front view,
side view, and a zoomed in version with the estimated angles and speed
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4.3.3 Posture correction. Therapists can define specific rehabilitation movements for a given user,
such as the squat movement illustrated in Figure 7. Then, the correctness of a movement can easily
be defined by setting acceptable ranges for relevant joints’ velocities and angles. For example, the
knee angles are essential for the squat movement. Thus, the user can set acceptable ranges for the
knee angles, such as 55◦–65◦ when the legs are stretched the most.
While the user performs the movements, MARS tracks the knee angles, as described in Sec-

tion 4.3.2. Then, it compares the joint positions and angles to the acceptable ranges specified by the
user (e.g., +/- 10% around ideal positions). The reconstructed skeleton is shown to the user with a
transparent dash-line before the user’s movement satisfies the acceptable range target, as shown
in Figure 7 (d). The skeleton visualization becomes a solid line after the joint coordinates, angle,
and velocities reach the set goals. The system can also support a sound played or a visual cue as
feedback that indicates successful completion of the exercise.

5 EXPERIMENTAL EVALUATIONS

5.1 Experimental Setup and Dataset

mmWave radar: The radar processing is performed on Texas Instruments (TI) IWR1443 Boost
mmWave radar [44]. We use a Matlab Runtime implementation from TI [46] for the data acquisition.
The detailed configuration and radar parameters are summarized in Table 1. The device is connected
to a laptop through the UART interface. It starts acquiring the data from the Matlab Runtime using
a frame duration of 100 ms. Note that the frame duration can be set to different values for different
applications. Due to the bandwidth limitation, the least frame duration we can set is 33.3 ms,
equivalent to the 30 Hz sampling rate. We chose 100 ms (i.e., 10 Hz sampling rate) since it is enough
for measuring human movement (the frequency of most voluntary human movements spans from
0.6 to 8 Hz [20]). The average power consumption of IWR1443 mmWave radar tested at power
terminals is 2.1 W [43]

Kinect V2 sensor [30]: The ground truth reference is obtained using Microsoft Kinect V2. Both
Kinect and radar are placed on a 1 m tall table while the subjects perform the instructed movements
two meters away from the table. The Kinect V2 sensor is connected to a laptop through the USB
port using an adaptor. It captures images with a 30 Hz sampling rate. Then, the images are processed
using Matlab to identify the 3D coordinates of 19 human joints listed in Table 2. These positions
are used as the labels during training and reference points for testing, as described in Section 4.2.
The Kinect reference system requires a 12V 2.67A power adapter to work.

Hardware measurements:We implemented the proposed MARS framework, including all the
pre-processing steps and the proposed CNN, on the Nvidia Jetson Xavier NX Development Kit [32].
The execution time and power measurements are presented in Section 5.5.

Open-source training and test datasets: We collected training and test data through user-
subject studies, following an official protocol approved by our institution’s IRB board. Each subject
performed the ten movements listed in Table 2 (five of them are illustrated in Figure 6). This set of
movements enables us to evaluate both the upper and lower body joints and associated angles. Each
user performed each movement for two minutes, i.e., approximately 20 minutes of data is collected
in total. As a result, we obtained close to 10,000 data frames per user. Each frame contains data
for 19 joints. Furthermore, the Kinect V2 reference data points have three dimensions, while the
data points from the radar have five dimensions (3D coordinates, Doppler velocity, and reflection
intensity). Hence, our reference data set from Kinect and radar contain close to 570K (10,000×19×3)
and 950K (10,000×19×5) points for each subject, respectively. We emphasize that this is a large-scale
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dataset with a comparable size to other similar studies. More importantly, it is the first rehabilitation
movement dataset using mmWave point cloud with well-labeled joints. Since home-based assistive
rehabilitation systems, like MARS, are user-specific, evaluations even on one user are representative.
Regardless, we repeated the evaluations with four different users to obtain a total of 2.28 million
reference data points from Kinect V2 and 3.81 million data points from mmWave data. We plan to
release this dataset to the public through Github [40] together with the existing demo.

CNN training details: We implemented the proposed CNN using Tensorflow 2.2.0 [1] with Keras
2.3.4 [15]. We use the Adam [23] as the optimizer with an initial learning rate of 0.001. The CNN is
trained with a batch size of 128 for 150 epochs, where the validation loss converges at 0.01. Aiming
for a personalized model, we split the data time-wise for training, validation, and testing. First, each
movement data is divided into 60% (24,066 frames)-20% (8,033 frames)-20% (7,984 frames). Then,
we take the first 60% of it for training, the next 20% for validation, and the last 20% for testing. We
choose to use the 60%-20%-20% ratio instead of the fixed-length since some data is not exactly two
minutes. These frames add up to 2.28 million data points from Kinect V2 and 3.81 million data
points from radar, as described under the dataset. The training is performed on AMD RyzenTM 7
3800X 8-Core 3.9 GHz and Nvidia RTX2080 with 8GB of graphics memory.

5.2 Accuracy of 3D Joint Position Estimation
Table 3 shows the detailed localization error for the 19 human joint points, illustrated in Figure 6.
We use the mean absolute error (MAE), and root mean squared error (RMSE) metrics to evaluate
MARS. To eliminate the system errors, we train ten different models and take the average. This
methodology is applied to all quantitative results reported in this paper. The average MAE for all

Table 3. Average localization error for 19 human joints position. The results in this table are for 20% test data.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

SpineBase 5.67 8.22 3.55 4.96 5.96 7.83 5.06 7.00
SpineMid 6.16 8.90 3.07 3.97 6.80 8.94 5.34 7.27
Neck 6.78 9.80 3.39 4.32 7.58 9.97 5.92 8.03
Head 7.37 10.57 3.69 4.69 8.20 10.68 6.42 8.65
ShoulderLeft 6.92 9.91 3.39 4.39 6.88 9.00 5.73 7.77
ElbowLeft 7.52 10.23 4.37 6.00 8.19 10.74 6.69 8.99
WristLeft 10.34 13.76 5.07 6.80 13.57 18.14 9.66 12.90
ShoulderRight 6.75 9.69 3.78 5.05 7.04 9.21 5.86 7.98
ElbowRight 7.96 10.71 4.73 6.74 8.41 10.93 7.03 9.46
WristRight 10.74 14.18 5.22 7.26 14.14 18.68 10.03 13.37
HipLeft 5.63 8.13 3.56 4.99 5.84 7.67 5.01 6.93
KneeLeft 5.56 8.10 4.09 5.63 3.25 4.53 4.30 6.09
AnkleLeft 6.27 8.83 4.29 6.18 2.47 4.49 4.34 6.50
FootLeft 6.59 9.36 4.84 7.01 3.04 5.14 4.82 7.17
HipRight 5.55 8.04 3.66 5.06 5.91 7.77 5.04 6.96
KneeRight 6.11 8.53 4.38 5.83 3.60 5.33 4.70 6.57
AnkleRight 6.92 9.42 4.43 6.10 2.74 5.37 4.69 6.96
FootRight 7.38 9.99 4.57 6.51 3.22 5.81 5.05 7.44
SpineShoulder 6.62 9.57 3.22 4.10 7.40 9.72 5.75 7.80
MARS 19 points Avg. 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10
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19 joints is 6.99, 4.07, 6.54 cm for 𝑥-, 𝑦-, and 𝑧-axes, respectively. Similarly, the average RMSE of 𝑥-,
𝑦-, and 𝑧-axes are 9.79, 5.56, and 8.94 cm, respectively. In general, the 𝑥- and 𝑧-axes have larger
errors than the 𝑦-axis since our movements involve intensive horizontal and vertical displacement
of all body parts. In contrast, the error along the 𝑦- axis is minimal (3.07 cm–5.22 cm) due to the
smaller displacement in depth.

The mean average absolute error of most joints is smaller than 8 cm. The most notable exceptions
are the right and left wrist joints. An intuitive explanation is that joints related to hands need a
higher resolution to localize. Since the mmWave radar’s range resolution is 4.69 cm@3.20 GHz as
mentioned in Section 3, it is challenging for the model to reconstruct these points. Since estimating
human pose from mmWave point cloud is a relatively new research area, there are only a few
studies to compare with [36]. MARS achieves 5% lower error with only half model parameters than
the method proposed in [36], as explained in Section 5.3.2. By searching similar research areas, we
note that the accuracy of MARS is competitive with the human pose estimation techniques [41].
Hence, MARS can provide reliable user feedback in home-based rehabilitation systems.

5.3 Ablation Study
We performed extensive ablation studies to demonstrate the necessity of each component in MARS
and justify the design choice adopted by MARS.

5.3.1 Using out-of-range point clouds during training. As described in Section 4.1.3, some radar
data frames may contain out-of-range points, also referred to as ghost images. It is possible to train
MARS by including or excluding the out-of-range points, which constitute about 2% of all frames.
To evaluate each choice’s effectiveness, we first train the model with the frames that only contain
the in-range point clouds (i.e., out-of-range points are excluded). Then, we obtain a different CNN
model by using all frames. We observe that the model trained with all point clouds performs slightly
better than the one trained with only in-range point clouds, as shown in Table 4. The out-of-range
point clouds add noise to the inputs, making the CNN more robust. Furthermore, out-of-range
points are inevitable during real use cases. Therefore, we conclude that they should be included in
the training data.

Table 4. Comparison of average localization error for 19 human joints position between models trained with
different point cloud range. The results in this table are for 20% test data.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

With "in-range" point cloud 7.75 10.73 4.18 5.79 7.11 9.63 6.35 8.72
With all point cloud 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10

5.3.2 Different feature channels and projection for CNN. As discussed in Section 4.1.2, we have an
8 × 8 feature map for each channel, including 𝑥,𝑦, 𝑧 coordinates, Doppler velocity, and reflection
intensity. We can combine and stack these feature maps in different ways to obtain a stacked
feature map for the CNN. To find out the best option, we train different CNNs with four different
stacked feature maps and refer to the CNNs as Configuration-1, Configuration-2, Configuration-3,
and Configuration-4. Configuration-1 represents the CNN trained with feature maps only stacked
with 𝑥,𝑦, 𝑧 three channels. Configuration-2 represents the CNN trained with feature maps stacked
with 𝑥,𝑦, 𝑧, and Doppler velocity, four channels. Configuration-3 represents the CNN trained with
feature maps stacked with 𝑥,𝑦, 𝑧, and reflection intensity, four channels. Finally, Configuration-4
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Table 5. Comparison of average localization error for 19 human joints position across models trained with
different feature channels. The results in this table are for 20% test data.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE No. of
parameters

Configuration-1 7.37 10.37 4.64 6.48 7.06 9.77 6.36 8.87 1,094,827
Configuration-2 7.33 10.20 4.37 6.02 7.00 9.52 6.23 8.58 1,094,971
Configuration-3 6.94 9.80 4.46 6.08 6.62 9.10 6.01 8.33 1,094,971
Configuration-4 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10 1,095,115
mmPose[36] 6.80 10.21 4.79 6.67 6.94 9.86 6.18 8.91 2,281,739

represents the CNN trained with feature maps stacked with 𝑥,𝑦, 𝑧, Doppler velocity, and reflection
intensity, five channels.

We observe that the Configuration-1 model has the worst performance due to a lack of Doppler
velocity and reflection intensity information, as shown in Table 5.Configuration-2 andConfiguration-
3 has slightly better performance since Doppler velocity or intensity information is introduced.
Configuration-4 performs the best since the 5-channel feature maps contain all the information,
including 𝑥,𝑦, 𝑧 with both Doppler and intensity. Note that because of weight sharing in CNN,
adding channels in input only increases negligible parameters in the model, as shown in Table 5.
We then apply Configuration-4 in MARS.

A recent prior study, mmPose [36], projects the point cloud to two different planes as features and
then concatenates them. However, the projection step increases the number of parameters hence
increases the computation cost. Decomposing features into different projections increases the model
parameters linearly since we need to perform the convolution multiple times for each decomposed
feature map and then concatenate them. To analyze the effect of projections, we implement the
mmPose model [36] and compare it with MARS. To make a fair comparison, we reduce mmPose’s
feature map size from 16×16 to 8×8 since the maximum number of points per frame 𝑁 𝐽 is 64 in
our dataset. As shown in Table 5, the CNN used in MARS has 1,095,115 parameters, which is half
of 2,281,739 in mmPose. Moreover, the MAE of the 3-axis localization error of MARS is 5.87 cm,
lower than 6.18 cm of mmPose. The result shows that MARS feature generation reduces the model
complexity while obtaining higher performance. We also emphasize that mmPose requires two
radars, while MARS uses only one radar, making it more practical and easier to use. Furthermore,
MARS handles complex rehabilitation movements, whereas mmPose is developed to analyze joint
movements during walking.

5.3.3 CNN architecture design. Section 4.2 presented the use of BN and max-pooling concepts
in CNN architectures. This section justifies incorporating or excluding BN and max-pooling by
training different models with or without them. We first train the model without BN and max-
pooling as the baseline. Then, we train another model called “Baseline with BN”, which adds a BN
layer after each convolution layer and fully connected layer. Similarly, we train another model
called “Baseline with max-pooling”, which adds a max-pooling after the convolution layers. Finally,
we train a model called “Baseline with both”, which adds a max-pooling layer after each BN layer
except the final BN layer after the fully connected layer. We observe that the “Baseline with BN”
gives the best result and “Baseline with both” gives the worst, similar to the baseline, as shown
in Table 6. BN successfully avoids the internal covariate shift. Max-pooling is not a good option
because our model maps mmWave points to the joints point such that this task is essentially
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a mapping regression problem. Max-pooling introduces information loss when taking the local
maximum of the features such that the model cannot leverage every joint’s coordinates accurately.
We then decide to keep only BN in MARS.

Table 6. Comparison of average localization error for 19 human joints positions position across models trained
using CNN architecture with different components (batch normalization and max-pooling). The results in
this table are for 20% test data.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Baseline 7.52 10.55 4.84 6.65 7.36 10.05 6.57 9.08
Baseline with BN 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10
Baseline with max-pooling 7.63 10.38 4.65 6.64 7.15 9.57 6.48 8.86
Baseline with both 7.44 10.20 4.45 6.09 7.22 9.81 6.37 8.70

5.3.4 Training with user-specific or aggregate data. Our dataset contains close to 10,000 frames per
user, which alone is sufficient to train custom user-specific models. This section moves one step
forward to analyze the ability of MARS to generalize to multiple users, considering that several
people in the same household can use a shared setup.
To this end, we investigate the performance between the model trained with individual users

and all users. Using the same CNN architecture, we first train the models with individual user data
then train a model with all users. The first four rows in Table 7 summarize the MAE and RMSE
for the test data when the CNN is trained for a single user. We observe that the maximum MAEs
for the 𝑥-, 𝑦-, 𝑧-axes are 8.25 cm, 5.23 cm, and 6.56 cm, respectively. The fifth row shows that the
MAE and RMSE average across all subjects. The corresponding average MAE and RMSE across all
subjects and dimensions are 6.29 cm and 8.40 cm, respectively.
The last row in Table 7 shows the MAE and RMSE when a single model is trained using data

from all users. The resulting modeling errors are very similar to the performances of user-specific
models for each subject. We also note that the model trained for all users has a slightly higher
MAE of 6.54 cm along the 𝑧-axis than 𝑥-axes. This behavior is attributed to the height differences
between all our subjects (160 cm-192 cm) since the 𝑧-axis represents the vertical dimension. Overall,
these results show that multiple people in the same household can easily use a shared MARS profile.
We also note that multiple user profiles can also be used depending on the user preference.

Table 7. Comparison of average localization error for 19 human joints position between models trained with
individual user and all users. The results in this table are for 20% test data.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Subject 1 (M) 8.01 10.78 5.23 6.70 6.56 9.08 6.60 8.85
Subject 2 (M) 7.80 10.31 4.95 6.57 5.37 7.41 6.04 8.10
Subject 3 (M) 8.25 10.80 4.82 6.42 6.13 8.07 6.40 8.43
Subject 4 (F) 7.58 10.34 5.08 6.89 5.70 7.45 6.12 8.23
Avg. of all subjects 7.91 10.56 5.02 6.65 5.94 8.00 6.29 8.40
All subjects 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10
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5.4 Joint Angle Estimation
The angle estimation is essentially a nonlinear transformation of the coordinate estimations.
Therefore, the estimation error in the joint angle is related to the localization error trend. The
average MAE of MARS in estimating left elbow angle, right elbow angle, left knee angle, and right
knee angles are 12◦, 13◦, 7◦, 6◦, respectively. We observe that the elbow angles have a higher error
than the knee angles, as summarized in Table 8. The higher error stems from using the WristLeft
and WristRight joint positions to calculate the elbow angles. Since these two joints have higher
estimation errors, as discussed in Section 5.2, they increase the error in the elbow angle estimates.
Moving the users closer to the radar might reduce this error since the radar can detect more
hands-related points, but the system may also lose the entire body’s aspect. Further improvement
of elbow angle estimates will be considered in our future work.

Table 8. MAE of MARS joint angle estimation. The results in this table are for 20% test data.

MAE of Left Elbow MAE of Right Elbow MAE of Left Knee MAE of Right Knee
12◦ 13◦ 7◦ 6◦

5.5 Power and Execution Time Analysis
MARS’s ability to run on hardware within acceptable power and execution time is crucial for its
practicality on low-power edge devices [11, 28]. To evaluate this ability, we implemented MARS
on Nvidia Jetson Xavier NX Development Kit [32]. The board has a 6-core ARM CPU, 384 Nvidia
CUDA cores, and 48 tensor processing units.
We focus on real-time model inference since the training is usually done using more power-

ful computing resources, and inference is more meaningful during rehabilitation exercises. The
computing power of edge devices varies widely. To do a comprehensive study considering most
use-cases, we set five different hardware configurations with different numbers of active CPU cores
and maximum CPU/GPU operating frequencies, as shown in the upper part of Table 9. We sort five
configurations in descending order of computation power. For different configurations, the total
inference time for all 40,083 frames ranges from 2.5 s to 4.1 s, as shown in Table 9. The total CPU
and GPU power consumption decreases from 3921.4 mW to 1950.6 mW as we move from Config. 1

Table 9. Power and latency results for model inference of MARS on Jetson Xavier NX. The upper part is the
hardware configurations.

Config. 1 Config. 2 Config. 3 Config. 4 Config. 5

Online CPU 2 2 4 4 6
Max CPU frequency (MHz) 1900 1500 1400 1200 1400
Max GPU frequency (MHz) 1100 800 1100 800 1100

Total time (second) 2.5 3.2 3.7 3.9 4.1
CPU-GPU power (mW) 3921.4 2366.8 2075.7 1968.1 1950.6
Total power (mW) 6865.2 5211.4 4854.4 4723.1 4700.2
Total energy (J) 17.3 16.5 17.9 18.2 19.4

Time per frame (𝜇s) 64.4 81.1 94.4 98.9 105.6
Energy per frame (𝜇J) 442.3 422.9 458.3 467.5 496.4
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to Config. 5. The corresponding total power consumption decreases from 6865.2 mW to 4700.2 mW.
We find the average inference time and energy consumption by dividing these measurements into
the total number of frames (40,083). The average frame processing time ranges from 64.4 𝜇s to
105.6 𝜇s, which shows that MARS can process well over 9,000 frames per second with less than
500 𝜇J energy consumption per frame. These results show that MARS provides a high-performance
and energy-efficient solution for reliable and privacy-preserving home-based rehabilitation.

6 CONCLUSIONS AND FUTURE WORK
This paper presented a mmWave-based assistive rehabilitation system, called MARS, for smart

healthcare. MARS can reconstruct up to 19 human joints and human skeleton in 3D space using
mmWave radar without raising privacy concerns and requiring strict lighting settings. Moreover,
MARS provides the users with 19 joints velocity estimations, four critical angle estimations, and
ten commonly used rehabilitation posture correction feedback. It incorporates point cloud pre-
processing, a CNN that outputs joint positions, and rehabilitation movement feedback to the user. It
first maps the 5D time-series mmWave point cloud to a 5-channel feature map, then outputs 3D joint
positions. It finally provides joint velocity, angle estimations, and posture correction feedback. We
evaluate MARS extensively using a newly produced dataset with 2.28 million reference data points
from Kinect V2 and 3.81 million data points from mmWave radar. Our experimental evaluations
show an average MAE of 5.87 cm for the 3D joints position estimation of MARS. Extensive ablation
studies demonstrate the necessity of each component of MARS. Model inference takes only 64 𝜇s and
consumes 442 𝜇J energy on the Nvidia Jetson Xavier-NX board. These results show the practicality
of the proposed technique running real-time on low-power edge devices. MARS paves the way for
the assistive rehabilitation system based on mmWave. A demo of MARS and training/validation/test
datasets are released on our GitHub page [40].
This work is one of the first steps towards a practical home-based rehabilitation system. We

envision a scenario where MARS will be first trained before deployment for different target groups
(e.g., age, height, and gender) with available users. Then, it can be further calibrated for new users
using a mechanism similar to the existing feedback system. The proposed framework and released
dataset aim at stimulating research in this area and contribute to an eventual practical solution.
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