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We study two approaches for predicting an appropriate pose for a robot to take part in
group formations typical of social human conversations subject to the physical layout of the
surrounding environment. One method is model-based and explicitly encodes key
geometric aspects of conversational formations. The other method is data-driven. It
implicitly models key properties of spatial arrangements using graph neural networks
and an adversarial training regimen. We evaluate the proposed approaches through
quantitative metrics designed for this problem domain and via a human experiment. Our
results suggest that the proposed methods are effective at reasoning about the
environment layout and conversational group formations. They can also be used
repeatedly to simulate conversational spatial arrangements despite being designed to
output a single pose at a time. However, the methods showed different strengths. For
example, the geometric approach was more successful at avoiding poses generated in
nonfree areas of the environment, but the data-driven method was better at capturing the
variability of conversational spatial formations. We discuss ways to address open
challenges for the pose generation problem and other interesting avenues for future work.
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1 INTRODUCTION

In this work, we study how to generate appropriate poses for social robots to take part in
conversational group formations with users. This problem is important because people naturally
establish these spatial formations with social robots when conversing with them (Hüttenrauch et al.,
2006; Kuzuoka et al., 2010; Vázquez et al., 2015a; Karreman et al., 2015; Bohus et al., 2017). Further,
people expect robots to conform to these formations when adapting to changes to group members
(Vázquez et al., 2017; Yang et al., 2017).

Although it is common to model conversational spatial behavior with discriminative models of
group formations (Truong and Ngo, 2017; Vázquez et al., 2017; Hedayati et al., 2019; Barua et al.,
2020; Swofford et al., 2020), we approach the problem of predicting a pose for a robot in a group
conversation with generative models. These models can directly output poses for the robot based on
the social context of the interaction and spatial constraints imposed by the environment, for example,
due to small objects such as tables or bigger structures such as walls. An illustrative example is
provided in Figure 1.

In this work, we explore two approaches for generating spatial behavior: a model-based, geometric
approach that explicitly encodes important properties of conversational group formations as often
discussed in the social psychology literature (Kendon, 1990), and a data-driven adversarial approach
that, once trained, implicitly encodes these properties. While our geometric approach builds directly
in some cases on prior work, to the best of our knowledge, no prior effort has explored generating
suitable spatial behavior for conversations subject to spatial constraints due to the environment
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layout. By studying these two methods, this work contributes not
only novel approaches, but also better understanding of how
model-based and data-driven solutions for spatial reasoning in
Human–Robot Interaction (HRI) complement each other.

We evaluated the proposed approaches quantitatively and
qualitatively in relation to expected spatial behavior. Also, we
conducted an online evaluation to gather human opinions about
each method’s performance when applied to situated human-robot
interactions. Our results show that incorporating spatial constraints
into models for pose generation is beneficial. Further, we show that
the proposed methods can be used to effectively model a
nonparametric distribution of poses for conversational groups. In
practice, we find that considering this distribution when generating
an appropriate pose can lead to better results than predicting a single
pose directly. Interestingly, the human evaluation suggested that the
geometric approach wasmore effective than the data-drivenmethod
when applied to small groups such as dyadic interactions, but the
data-driven approach was better for groups with four to six
interactants. We discuss ways to address this disparity. Lastly, we
demonstrate the applicability of the proposed approaches for
simulating conversational spatial arrangements.

2 BACKGROUND

Before explaining how the proposed methods work, the next
sections provide a brief introduction to conversational group
formations from a social psychology perspective and introduce
Graph Neural Networks (GNNs) from amessage-passing point of
view. The former description is important for contextualizing the
proposed geometric approach for pose generation and for
understanding the rationale behind several of the metrics used
in our evaluation. The latter primer on GNNs aids in
understanding the proposed data-driven approach.

2.1 Conversational Group Formations
During human conversations, people often position and orient
themselves in special spatial patterns known as Face Formations
(F-Formations) (Kendon, 1990). F-Formations are characterized
by people being nearby one another such that they can
communicate easily. Also, interactants tend to direct their
lower bodies toward one another or toward a common focus
of attention for the conversation. These behaviors lead to spatial

arrangements where individuals typically have equal, direct, and
exclusive access to a common space. The formations keep groups
as separate units from other close interactions.

Figure 1A depicts an example F-Formation from the Cocktail
Party dataset (Zen et al., 2010), a computer vision dataset that is
often used for evaluating group detection approaches based on
human spatial behavior (Ricci et al., 2015; Setti et al., 2015). As
illustrated in Figure 1B, the interior region of an F-Formation is
known as its o-space. The area where people stand around the
o-space is the p-space. Later in this article, we refer to these terms
when formally describing geometric properties of F-Formations.

2.2 Graph Neural Networks
In this work, we use the message-passing framework for GNNs
proposed by Gilmer et al. (2017), Battaglia et al. (2018) to design
our data-driven pose generator method. In contrast to more
traditional algorithms for reasoning about graphs, GNNs allow
for learning representations, the structure of entities, and
relations from graph data. Consider a graph G � (u, V, E),
where the vector u is a global attribute (or feature) for the
graph, the set V � {vi}i�1: n corresponds to features for the
graph’s vertices, and E � {(ek, rk, sk)}k�1: m is the set of edge
features ek with (rk, sk) being the indices of the nodes
connected to the edge. Then, a Graph Network block (GN
block)—the basic element of a GNN—can be used to
transform a graph G into an updated graph G′ � (u′, V′, E′)
via three steps. First, the edge features are updated. Second,
the node features are updated, potentially using aggregated
edge information. Third, the global attribute for the graph is
updated, perhaps using node and edge information as well.
Because these operations are implemented via differentiable
functions, as further detailed below, the GN block can be
integrated as a module into more complex neural network
models.

In this work, we are concerned with using GNNs to compute
vector representations for fully connected social interaction
graphs that describe conversations. These graphs have a global
attribute u, corresponding to contextual information for the
interaction, such as the layout of the physical environment.
The graphs’ node features encode pose information for the
interactants, but they have no relevant edge features. Thus,
applying the GN block computation to them consists of two
main steps: updating the nodes features and then updating the

FIGURE 1 | Conversational spatial arrangement from the Cocktail Party dataset (A), spatial formation typical of group conversations (B), and problem setup (C).
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global graph attribute. The updated global graph attribute is used
to represent the graph in downstream tasks. Mathematically, we
can express the two key GN block operations as follows:

vi′ � ϕv(vi) (1)

�v′ � ρv→u({vi′}i�1: n) (2)

u′ � ϕu(�e′, �v′, u) (3)

where the update functions ϕv(·), ϕu(·) and the aggregate function
ρv→u(·) are differentiable functions. In general, the aggregate
function should take a variable number of arguments so that
the GN block is suitable for processing different graphs. In
addition, ρv→u(·) is often implemented as a symmetric
mathematical function (such as element-wise summations or
maximum) because it is common for graph nodes to lack a
natural order. Note that Equations 1–3 are similar to deep set
operations (Qi et al., 2017; Zaheer et al., 2017). Indeed, deep sets
are sometimes regarded as a specialization of GNNs (Battaglia
et al., 2018).

3 RELATED WORK

Experimental HRI work has validated the idea that spatial
formations typical of human–human conversations naturally
emerge in human-robot interactions (Hüttenrauch et al., 2006;
Kuzuoka et al., 2010; Karreman et al., 2015; Vázquez et al., 2015a,
2017). In turn, this research led to work on recognizing
F-Formations in robotics, such as methods geared toward
improving robot navigation (Rios-Martinez et al., 2011),
generating multimodal nonverbal robot behavior (Vázquez
et al., 2017), helping recognize the beginning and ending of
human-robot interactions (Gaschler et al., 2012), joining
groups (Barua et al., 2020), and other approaches for service
robots (Hedayati et al., 2019; Swofford et al., 2020). Oftentimes,
prior work on F-Formation detection in robotics builds on
mathematical models of human F-Formations from the
computer vision community, for example, (Cristani et al.,
2011; Setti et al., 2013; Setti et al., 2015; Vascon et al., 2014).
In a similar manner, mathematical models from computer vision
inspired the proposed geometric approach for generating poses
for a robot in a conversation andmotivated a variety of evaluation
metrics in this work.

Several methods for generating spatial behavior
representative of F-Formations have been proposed in HRI.
For example, Vázquez et al. (2016) explored reinforcement
learning for adapting the pose of a robot during
conversations. Morales et al. (2014) proposed a method for a
robot to walk side-by-side to a human. In addition, other work
has investigated methods for robots to approach F-Formations
(Shi et al., 2011; Truong and Ngo, 2017; Yang and Peters, 2019;
Yang et al., 2020a). Among these methods, that of Yang and
Peters (2019) is closest to our work because they explore
generative adversarial networks to predict appropriate robot
navigation behavior. Similar to this prior work, we are interested
in modeling spatial behavior during group conversations;
different to it, though, we make predictions without temporal

information and subject to environmental spatial constraints,
for example, nearby walls and objects.

Close to our work, Swofford et al. (2020) used a neural
network model to detect F-Formations. We build on this
effort because we use a similar network architecture to handle
variable group sizes. Interestingly, we make an explicit
connection between this prior work—which was inspired by
deep sets—and GNNs following (Gilmer et al., 2017; Battaglia
et al., 2018). It is worth nothing that the idea of representing
interactions with graphs (as described in Section 2.2) is inspired
by foundational work on detecting F-Formations (Hung and
Kröse, 2011; Vascon et al., 2014) and a long history of
applications of graph theory to social network analysis (Scott,
1988; Borgatti et al., 2009; Hamilton et al., 2017).

Among prior work that has used GNNs to reason about
situated social interactions, that of Yang et al. (2020b) is
perhaps the closest prior effort. While their work aimed to
classify human behavior in group social encounters, we instead
use GNNs to model properties of spatial formations and predict
an interactant’s pose within an adversarial neural network
framework. Battaglia et al. (2018) and Hamilton (2020) discuss
broader applications of GNNs, which are beyond the scope of this
paper.

Another important related work is that of Yang et al. (2017),
which proposed an approach for a robot to position itself
relative to humans during a group conversation. Because this
approach builds on geometric properties of F-Formations,
we consider it as a baseline for the proposed methods in our
evaluation.

There has also been interest in generating appropriate spatial
behavior for social agents within the virtual agent community.
For example, Jan and Traum (2007) considered the problem of
computing agents’ positions in order to create circular group
formations. We also consider circular groups in this work,
although these arrangements are often idealistic, as shown in
our experiments. In addition, Pedica and Högni Vilhjá lmsson
(2010) proposed an approach to generate human-like motion for
virtual characters based on the territorial organization of social
situations, including F-Formation systems. Their approach used a
combination of low-level reactive behaviors to control the pose of
social avatars as they move in virtual worlds. Similar to this work,
we consider social norms as a driving factor when generating
spatial behavior for robots and when evaluating the results of the
proposed methods. Different to this prior effort, we do not expect
a user to provide pose commands for the social agent of interest;
rather, we study the problem of automatically generating suitable
poses for a robot in a conversation.

4 GENERATING APPROPRIATE POSES
DURING CONVERSATIONS

We contribute two approaches to generate an appropriate pose
for a social robot in a group conversation. The key novelty of
these methods stems from considering environmental spatial
constraints along with the pose of other interactants upon
making a prediction. These methods are both generative
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models, capable of representing the distributions of suitable poses
via a discrete set of samples.

4.1 Problem Statement
Consider a social robot in a human environment in which there are
other people with whom the robot wants to establish a situated
conversation. We formulate the problem of generating an
appropriate pose for the robot to sustain the conversation as
follows: let C � { < xi, θi > | 1 ≤ i ≤ P} be the social context of
the interaction encoded by the poses of the P people with whom the
robot wants to converse, where xi � [xi yi]T is their position on the
ground, and θi is their body orientation. In addition, let M be a
metric two-dimensional (2D) map with semantic labels for the
physical environment surrounding the group. The labels encode
the probability of occupancy, such as occupied space by a “small or
movable object” or a “tall barrier” like a wall. Then, the goal is to
compute a pose �p � < x, θ > for the robot to take part in the
conversational group givenC andM, as illustrated in Figure 1C. The
generated pose should preserve the spatial structure of the group,
that is, their F-Formation. Also, the pose should be such that the
robot does not collide with objects according to the map, as well as
does not violate social norms such as personal space.

4.2 A Geometric Approach for Pose
Generation
One way to compute a viable pose for a robot to take part in a
conversational group is to explicitly formalize key geometric
properties of its expected spatial behavior. To this end, we first
consider the fact that F-Formations often have a circular shape
because of people’s tendency to position in a way such that they can
see and monitor one another during conversations (Kendon, 1990).
The circular shape not only defines an expected distribution for
people’s locations but also guides their body orientations toward the
center of their group’s o-space. Second, we consider the fact that the
agent should not be in an occupied location and should not violate
other people’s personal space.

Based on the above properties, we propose a three-step
algorithm for computing a pose �p � < x, θ > given the context
C and map M:

1) Fit circular shape to the context poses. We represent the
geometric shape of the group formation parametrically with a
2D circle or ellipse fitted to the context C (as illustrated in
Figures 1A,B). The edge of the shape represents the p-space of
the F-Formation, whereas its interior corresponds to the o-space.
Intuitively, fitting an ellipse should be preferable to fitting a
circle because of the variability of human spatial behavior.
However, we sometimes default to using circles because fitting
ellipses requires at least 5 points.
To fit a circle, we consider three cases. First, if the context has a
single individual, |C| � 1, then we assume that the center of the
circle is d units in front of the individual, in the direction of its
transactional segment. This means that the o-space of the
group is defined by the circle with a center at c � x1 +
d [cos(θ1) sin(θ1)]T and a radius of d. The distance d has
been defined in the literature as the stride parameter of

mathematical F-Formation models (Cristani et al., 2011).
Second, if the context has two individuals, |C| � 2, then we
assume that the center of their group’s o-space is in between them
because face-to-face spatial arrangements are common for dyads.
This means that the center of the circle is given by c � (x1 + x2)/2,
and its radius is ‖x1 − x2‖/2. Third, if the context has at least three
people, |C| > � 3, then we fit a circle to their locations using
orthogonal distance regression (Boggs and Rogers, 1990), which
tends to be more robust to potential errors in the location
measurements than ordinary least squares.
To fit an ellipse to the location of the interactants in C, we
follow the direct fitting approach by Halíř and Flusser (1998).
We found this approach to be fast in comparison to iterative
approaches and more robust than that of Fitzgibbon et al.
(1996) when |C| � 5.

2) Compute the robot’s location. We view the problem of
computing a suitable location for the robot given the fitted
circular shape, the context C, and map M as an optimization
problem. The key factor in this formulation is the loss function,
which we define as a weighted sum of three components that
penalize for deviations from the fitted circular shape (ℓc), close
proximity to other individuals (ℓp), and positioning in nonfree
areas of the environment (ℓf). Formally:

ℓ(x) � λcℓc(x) + λpℓp(x) + λfℓf(x) (4)

where λc, λp, λf ∈ R+ control the effect of each penalty. The
first component ℓc corresponds to the perpendicular distance
from x to the fitted circle or ellipse. The second component
ℓp penalizes violations to personal space:
ℓp(x) � ∑P

i�1N (x; xi, Iσ), where N denotes a normal
distribution with mean xi and variance σ. Lastly, ℓf in Eq. 4
is a penalty for the input location corresponding to a nonfree
cell of the map M. Figures 2A–E illustrate these different
components for the loss, where the map has been smoothed
to avoid positions too close to nonfree cells.
While one could use brute-force search to find a minima of
Eq. 4 around the contextC, we propose tominimize the loss using
Powell’s conjugate direction method (Powell, 1964), a
popular optimization algorithm. This method does not
require derivatives, which is convenient for this
optimization because computing the orthogonal distance
to an ellipse, as needed by the ℓc penalty, is a nontrivial
problem for which we use an iterative method. See Uteshev
and Yashina (2015) and Uteshev and Goncharova (2018) for
a discussion on the point-to-ellipse problem.

3) Compute the robot’s orientation. We finally set θ such that the
robot orients toward the center of the fitted circular shape,
corresponding to the expected center of the o-space.

4.3 A Data-Driven Adversarial Approach for
Pose Generation
Another way to approach the problem of generating a suitable
pose for a robot in a conversation is to leverage generative
data-driven methods. In particular, we explore using Wasserstein
Generative Adversarial Networks (WGAN), originally proposed by
Arjovsky et al. (2017), to produce poses that conform to measured
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characteristics of F-Formations. This type of data-driven model is
composed of two neural networks: a generator G, which we use to
predict the desired pose �p; and a discriminator D, which helps
discern generated poses from poses in the true data. Note that for
WGANs, D is often called the critic because the network is not
trained to classify, but outputs a real value; here, we use the terms
interchangeably to help readers familiar with adversarial networks
follow our explanation.

Without loss of generality, let us represent the pose of a social
agent < x, θ > as a 4D row vector p � [x y cos(θ) sin(θ)] so that we
do not have to worry about θ wrapping around the (−π, π]
interval. Also, assume that we have a dataset D �
{<Cj,Mj, pj > } with ideal poses p for a social robot given a
corresponding context C andmapM. Our goal with theWGAN is
to then train the generator and discriminator networks using D.
Formally, the WGAN objective can be expressed as a minimax
game:

min
G

max
D

Ep∼Pr[D(p|C,M)] − E�p∼Pg[D(�p|C,M)] (5)

where we have conditioned the discriminator D on the
corresponding context and map data for the sampled pose,
following the formulation for Conditional Generative
Adversarial Networks by Mirza and Osindero (2014). The
discriminator (or critic) in Eq. 5 should be in the set of 1-
Lipschitz functions, which we implement via a gradient penalty
added to the loss in Eq. 5 per (Gulrajani et al., 2017). Lastly, Pr in
Eq. 5 is the real data distribution induced by D, and Pg is the

distribution implicitly defined by the generator G:
�p � G(z|C,M), with the latent variable z ∼ p(z) coming from
a simple prior (e.g., a standard normal distribution in this work).

We propose a novel two-stream architecture for the generator
and discriminator networks (Figure 3). This architecture is
driven by our knowledge of the problem domain—we take
advantage of inductive biases (in terms of relational and
spatial structure) to facilitate learning. The next sections
provide more details.

4.3.1 The Generator Network
Figure 3A describes how the generator predicts a pose �p given a
social interaction graph G as input. The nodes of the graph
correspond to pose features vi � [xi yi cos(θi) sin(θi)]. The
graph’s global attribute u is a tensor with dimensions 3 × h × w.
The first two channels correspond to the mapM ∈ R2×h×w, which
represents occupancy by tall and short barriers in its first and
second channels, respectively. The last channel of u corresponds
to the latent variable z.

One processing stream of the generator reasons about the
graph G focusing on the spatial–orientational arrangement of
the interactants (i.e., the information in the node features)
using a GNN that operates in the same spirit as deep sets (Qi
et al., 2017; Zaheer et al., 2017)—similar to the “context
transform” proposed by Swofford et al. (2020). Another
parallel stream processes the graph focusing on proxemics,
that is, how interactants use space in relation to the

FIGURE 2 | Example losses for the Geometric approach on a sample from the Cocktail Party dataset. From left to right: (A) social context on an environment map
with free space (light gray color), short obstacles (medium gray), and tall obstacles (darker gray); (B) circular fit loss; (C) personal space loss; (D) penalty associated with
nonfree cells of the environment map; and (E) weighted sum of those three losses. The arrows indicate the pose of the interactants. Brighter values in the loss plots
correspond to lower cost.

FIGURE 3 | The generator (A) and the critic (B) process the information in the social interaction graph via two GNNs. One GNN reasons about the
spatial–orientational arrangement of the group (encoded in the vertex features vi). The other GNN reasons about proxemics based on the interactant’s positions
(encoded in the vertices) and themap (encoded in the global attribute u). Note that the global attribute for the graph input to the generator also includes the latent variable
z. The “mlp” blocks are multilayer perceptrons.
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environment (Hall, 1966). This stream is a GNN that uses 2D
convolutional layers to reason about two types of spatial
relationships: the shape of the formation based on the
location of interactants (encoded in the vertices of G) and
the location of nearby objects relative to the group (based on
the map in the graph’s global attribute).

The generator concatenates the vector representations that
result from the two computation streams and then transforms
the data through a two-layer perceptron (with ReLU
transformations) and one additional linear layer. This results
in a 4D output vector, whose first two elements correspond to the
position of the output pose �p. The last two elements are the cosine
and sine of the robot’s orientation, which are constrained to lie in
(−1, 1) through a final hyperbolic tangent transformation applied
to these elements.

The next sections explain how the parallel streams of the
generator network are implemented. More implementation
details are provided in the Supplementary Material.

4.3.1.1 Spatial–orientational GNN
Figure 4A illustrates the architecture of the spatial–orientational
component of the generator. The network is a GN block that
aggregates position and orientation information from the group:
u1′ � ρv→u

1 ({ϕv1(vi)}i�1: P), where the update function ϕv1
corresponds to a multilayer perceptron (with ReLU
activations) applied to the vertex features vi, and the aggregate
function ρv→u

1 is max pooling. Comparing these operations with
Eqs. 1–3, this GN block can be thought of as having a trivial ϕu

function in Eq. 3 that simply returns the aggregate feature for
the nodes.

4.3.1.2 Proxemics GNN
Figure 4B depicts the generator’s proxemics component, which is
also a GN block. First, the GN block updates the node features by
creating a 2D tensor vi′ � ϕv2(vi) ∈ Rh×w that represents the
personal space of the interactant i using a simple Gaussian
blob. That is, vi′ is a matrix of the same width and height as
the mapM, where each cell corresponds to a physical location in
the world and has a value equal to the probability density of a
normal distribution centered at the location of the interactant
[xi yi]. Second, the GN block aggregates the updated node features
�v′ � ∑i�1: Pvi′ using element-wise summation. Third, the global

attribute is updated by concatenating u (with the map and latent
variable z) with the aggregated personal space representation �v′,
resulting in a tensor inR4×h×w. The latter tensor is then processed
by a three-layered convolutional neural network with ReLU
activation, and the result is finally flattened into a vector
representation u2′ for this stream. Note that the node update
and aggregate functions used by this GNN lead to a
representation similar to the personal space loss used for the
Geometric approach (and illustrated in Figure 2C). However, the
network is not told explicitly how to reason about this data;
instead, it needs to figure this out through the adversarial training
regimen implemented with the critic.

4.3.2 The Critic Network
We implement the critic in a similar fashion to the generator,
with two data processing streams. The main difference is that
instead of getting an input graph whose global attribute
contains a latent variable z, the global graph attribute u �
M in this case. Also, the critic gets an additional input pose p,
which may come from the dataset D or from the output of the
generator. This pose is processed in a third parallel stream, as
illustrated in Figure 3B, using a two-layer perceptron with
ReLU activations. The three-vector-representations output by
the two GNNs and the pose streams are concatenated and
finally projected into a scalar value. The Supplementary
Material provides more details on the GNNs and this last
transformation.

4.4 Generating a Distribution of Poses
Both the geometric and WGAN approach described previously
can be used to generate a nonparametric distribution of poses for
conversational group formations. This is useful in two ways: (1) it
can help identify multiple poses that may be suitable for a given
conversational group, and (2) it can help overcome predictions
that are not optimal, perhaps because of local minima. The latter
is particularly important for the Geometric approach because its
output is subject to the initial location provided to its
optimization routine. Also, computing a distribution can be
useful for the WGAN because its generator is not guaranteed
to output an ideal pose given an arbitrary input latent vector z.
Indeed, the neural network is trained to model the distribution of
the real data, not a single pose.

FIGURE 4 | Graph neural networks used in the generator. The “mlp” component in (A) is a multi-layer perceptron and “CNN” in (B) is a convolutional neural
network.
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Generating a distribution of poses with both approaches is trivial.
For the Geometric approach, we can start its optimization step from
different initial locations around the context C, predicting various
locations for the agent. Then, we can compute suitable orientations
for each of the locations as explained in Section 4.2. For theWGAN,
we simply need to run the generator multiple times using different
latent variables as input. Once a nonparametric distribution of poses
is computed, we can choose a single pose as output if desired. For
example, in our evaluation in Sections 5–6, we do this by searching
for a mode of the predicted locations using the mean shift algorithm
(Comaniciu andMeer, 2002) and then simply outputting the pose in
the distribution that is closest to this mode. We also tried more
involved approaches such as computing a mode for the angle of the
pose as well using a von Mises kernel density estimator (Fisher,
1995). However, the former approach gave similar or better
performance in practice and reduced the number of
hyperparameters that we needed to consider in our
implementation, facilitating future reproducibility.

5 EVALUATION ON THE COCKTAIL PARTY
DATASET

This section first evaluates the proposed approaches
quantitatively with respect to different metrics that describe
key properties of F-Formations and desired output poses.
Then, we discuss the results qualitatively.

5.1 Datasets
We used the Cocktail Party dataset (Zen et al., 2010) to evaluate the
proposed approaches. The dataset consists of approximately 30 min
of interaction data. It includes 320 frames with conversational group
annotations and pose information for six individuals who took part
in a Cocktail Party event, as shown in Figure 1A. While the original
dataset provides head orientation for each of the individuals based
on automatic tracking methods, our evaluation used manually
annotated body orientations (Vázquez et al., 2015b) as θ for the
pose of interactants. Reasoning about body orientation instead of
head orientation preserves consistency with the theory of
F-Formations (Kendon, 1990). In addition to this data, we
manually created an environment map for the Cocktail Party
scene with labels for “free space,” space occupied by “tall objects”
(through which social interactions are unlikely), and space occupied
by “short objects” (like the table in the room). Areas outside of the
Cocktail Party room were labeled as having “unknown” occupancy
in the map and were treated as occupied space in practice.

We split the group annotations from the Cocktail Party dataset
into two sets: training (80%) and testing (20%). The test set included
31 frames with group annotations at the beginning of the Cocktail
Party sequence, 31 frames in the middle, and 31more at the end; the
training set was composed of the other frames with group
annotations.1 The latter groups were then used to create a dataset
DCP

train � {<C,M, p> } of 1,394 examples with corresponding

contexts C, map M, and example ground truth pose p for a
robot. The map for these examples had 24 × 24 cells and a
resolution of 0.25m per cell. They were a cropped section
(generated with subpixel accuracy) of the full environment layout,
covering an area of approximately 3-m radius around the context C.
The ground ruth pose in the examples corresponded to the position
and orientation of onemember of the group who was excluded from
the context. Using the test groups, we created a similar dataset DCP

test
for evaluating the proposed models, where |DCP

test| � 347.
We also created a dataset of simulated F-Formations using 15

environment layouts from the iGibson simulation environment
(Shen et al., 2020). For each environment, we first created a 2D
layout intersecting the 3D geometry of the world with planes parallel
to the ground, as illustrated in Figures 5A, B. Using the layout, we
thenmanually created an environmentmapwith the same labels and
resolution of the Cocktail Party environment map and automatically
generated circular groups with two to six people in free areas of the
environment following a simple rule-based procedure. This resulted
in 34,405 simulated examples, each with a corresponding
environment map, context and example ground truth pose for
the robot. Figure 5C shows one sample from this dataset.

Upon preliminary testing of the data-driven method, we
realized that the WGAN significantly benefited from many
diverse examples. Thus, we further augmented the dataset of
simulated groups by warping the data using a small amount of
horizontal and vertical stretch as well as random rotations. This
resulted in an expanded dataset of 60,365 simulated examples in
total, which we used to train some variations of the data-driven
model in this evaluation. The Supplementary Material provides
more details about the data generation process used to create
simulated F-Formations in iGibson environments.

5.2 Pose Generation Methods
The present evaluation considered variations of the proposed methods
and a recent baseline for robot pose generation in F-Formations, which
does not use information about the surrounding physical environment.
To the best of our knowledge, no prior work has considered variability
in the environment of F-Formationswhen generating suitable poses for
an interactant. All methods were implemented in Python.

Baseline method: We implemented the pose generation
method by Yang et al. (2017). As with our model-based
approach, this method seeks a circular spatial pattern but
without explicitly accounting for environment characteristics.
Instead, the existing social context alone determines the
generated pose, which is computed as follows: First, any pair
of individuals in the context is used to define a mutual circular
region. Second, all pairwise centers are averaged to compute the
center coordinate of the o-space, to which the new member faces.
The minimum and maximum distances of individuals to the
common center demarcate the p-space of the group, the annular
zone that interacting peers occupy (as in Figure 1B). Finally,
bisecting the largest gap between adjacent neighbors identifies the
new member’s position within the group.

Geometric methods: We evaluated the Geometric approach
proposed in Section 4.2 considering two cases. In one case, the
method generates a single pose using an initial location for its
optimization step that is within a 3× 3m region around the center of

1Splitting the dataset in this manner minimized overlap between the training and
testing data given the temporal correlation of the data.
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the given context C. In the other case, we run the method multiple
times to model a distribution of poses and then use mean shift to
choose an output pose (as described in Section 4.4). In the latter
case, we initialize the method with 36 different initial values for its
optimization, which are sampled uniformly in the same 3 × 3m
region considered in the former case. For both variations, we set the
loss parameters σ � 0.21, λp � 1.25, λc � 0.2 and λf � 0.5 based on
initial results on DCP

train.
Data-driven methods: We considered three variations of the

proposed WGAN. First, we considered a model trained on the
simulated dataset (with a small amount of angular noise applied to
the orientation of the context poses to make the group arrangements
more varied). Second, we evaluated a model trained on the Cocktail
Party train data only (with 10% used for validation). Third, we
considered a model trained like the first one and then fine-tuned on
the Cocktail Party train data. In addition, we considered generating
one sample pose from the generator, as well as generating a
distribution of 36 poses from which we output a solution guided
by mean shift (as in Section 4.4).

We implemented the WGAN using the PyTorch library and
trained models using an NVidia GeForce RTX 2080 Ti GPU.
More specifically, we used the Adam optimizer with a learning
rate of 0.00002, a batch size of 32, and a weight of 10 for the
WGAN gradient penalty (Gulrajani et al., 2017). During gradient
descent, we weighted the training samples based on the relative
distribution of group sizes in the dataset and updated the critic
five times for every generator update. We trained models for at
least 600 epochs and chose the best training weights through a
combination of manual inspection of the generated samples and
quantitative metrics on the Cocktail Party validation data.

The Supplementary Material provides more implementation
details for the WGAN. Also, it describes results for several other
variations of the WGAN that we explored in this work, but that
resulted in no major improvement. For example, we considered a
model that only had information about free space, instead of multiple
map labels.

5.3 Quantitative Metrics
We considered a range of metrics that describe F-Formations and
social norms in regard to spatial behavior:

– Deviations from fitted circle or ellipse (Circ. Fit). We measure
the perpendicular distance from a generated pose to a circle or

ellipse that has been fitted to the context C. The circle or ellipse
is fitted following the same considerations described in Section
4.2 for the proposed Geometric approach.

– Individual is not on free space (Not Free). We compute how
often the location of a generated pose falls within a nonfree cell
in the environment mapM. The values for this metric ranged in
[0, 1] because of subpixel cropping of the maps.

–Violations to personal space (Per. Space).We compute the number
of cases in which the distance between the generated pose �p �
< x, θ > and the pose of another member of the group < xj, θj > is
less than a personal space threshold, ‖x − xj‖ < δ. We use a
threshold of δ � 0.68 m based on real-world data of interpersonal
distances in Italy (Sorokowska et al., 2017), because the Cocktail
Party data were originally captured in that country.

– Violations to intimate space (Int. Space). Similar to personal
space, we compute the number of cases in which the distance
between the generated pose and another group member j is less
than an intimate space threshold, ‖x − pj‖ < ρ. We use ρ �
0.42 m based on Sorokowska et al. (2017).

– Distance to group’s o-space center (Center Dist.). Let xi and θi
be the location and body orientation of a social agent (human
or robot) in a conversational group. Prior work, such as those of
Cristani et al. (2011) and Setti et al. (2013, 2015), has proposed
to compute the o-space center of an F-Formation as follows:

�o � 1
P
∑P
i�1

oi � 1
P
∑P
i�1

xi + d
cos(θi)
sin(θi)[ ]( ) (6)

where P is the number of interactants in the group, and oi
is a proposed o-space center for member i. Thus, we
measure alignment with an ideal F-Formation model as
the average distance between the group’s o-space center
and the o-space center proposals for individual members:
CenterDist � 1

P∑P
i�1‖�o − oi‖. For the parameter d, needed to

compute �o in Eq. 6, we use d � 0.72 as it minimizes

∑K
g�1∑Pg

i�1‖�og − oi‖2, considering all K ground-truth

groups for the Cocktail Party dataset (see Vázquez

(2017) for the derivation).
– Individual occludes another interactant (Occ. Other).

Ideally, the generated poses should not be in front of
other interactants, as this would prevent them from
having direct access to the o-space and exclude them
from the group. To identify these situations, we check if

FIGURE 5 | (A) Example 3D environment from iGibson (Shen et al., 2020), (B) environment layout generated from the 3D environment, and (C) simulated sample on
a cropped section of the layout.
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the generated pose is in between another interactant in the
group and the o-space center �o. The center �o is computed as
in Eq. 6 while excluding the generated pose, because a bad
prediction could skew significantly �o.

– Individual is behind another interactant (Is Occ.). This metric
is similar to the prior metric, but we invert the roles of the
generated pose and an interactant’s pose for which we compute
the occlusion.

The first three metrics correspond to each of the losses
considered by the Geometric approach and thus serve to
validate that the method was working as expected. In addition,
these metrics are useful to evaluate whether the data-driven
method behaved in a similar manner. The occlusion metrics
are inspired by the visibility constraints from Vázquez et al.
(2015b) and Setti et al. (2015), and the personal and intimate
space metrics signal potential violations to social norms. Lastly,
the Center Dist. metric serves to evaluate the combined effect of
position and orientation prediction. The metrics are inspired by
ideal models of F-Formations, but real-world data may not
perfectly satisfy all assumptions set forth by the metrics. Thus,
we report values for ground truth test data in our results as a
reference for comparison.

5.4 Quantitative Results
Table 1 presents the results on the Cocktail Party test set. As a
reference, the first row shows the values for the metrics using
ground truth poses from the test set (which were removed to create
the context C input to the pose generation methods shown in
Table 1).

Unless noted otherwise, we analyzed the results for the
quantitative metrics using restricted maximum likelihood (REML)
analyses considering method (10 levels, each one corresponding to a
row of Table 1) as main effect and Example ID from the Cocktail
Party test set as random effect. The results for the Circ. Fit metric
indicated a significant effect of method (F[9, 3114] � 5.50, p <
0.0001). A Tukey honestly significant difference (HSD) post hoc test
showed that the baseline method by Yang et al. (2017) led to
significantly higher Circ. Fit values than the other methods. The
baseline performed poorly because its o-space representation is the

average of all circles fitted to pairs of group members. Thus, a single
pair can heavily bias the position of the generated interactant. For
example, we often observed this bias when the difference between the
orientations of a pair of individuals in the context was small, which
resulted in a circle with a disproportionately long radius. There were
no other significant pairwise differences for the Circ. Fit results,
suggesting that the proposed methods were able to effectively
capture the circularity of F-Formations.

An REML analysis on the Not Free metric indicated that there
were significant differences by Method (F[9, 3114] � 64.72, p <
0.0001). The post hoc test showed that the baseline method by
Yang et al. (2017) resulted in significantly more poses generated
in occupied cells of the environment map than all other methods.
This was expected because the baseline did not consider the
environment map in its calculations. The only other pairwise
differences for the Not Free metric were the results for rows 4 and
8 in Table 1, which were low but significantly higher than the
results for rows 1, 3, 5, 7, and 9. As a reference, rows 4 and 8
corresponding to the WGAN trained on iGibson-simulated data
led to 24/347 and 22/347 examples for which the Not Free metric
was greater than 0.5. Meanwhile, the ground truth values had
3/347 instances in this category, and the Geometric approach
led to only one such case in the Cocktail Party test set.

We also found significant differences for violations to personal
space (p < 0.0001) and intimate space (p < 0.0001) using REML
analyses, as well as using Poisson generalizedmixed linearmodelswith
a log link function. In terms of Per. Space, a Tukey HSD post hoc test
showed that the Geometric approach (rows 3 and 7 in Table 1) led to
significantly lower number of personal space violations than all
other methods, followed by the Yang baseline (row 2) and the
WGAN trained on simulated data using iGibson environments
(rows 4 and 8). Also, the WGAN trained or fine-tuned on
Cocktail Party train data led to significantly higher violations
to Per. Space than all other methods. In terms of Int. Space,
best results were obtained with the Ground Truth poses (row
1), the Yang baseline (row 2), and the Geometric approaches
(rows 3 and 7). These methods had significantly fewer intimate
space violations than all other methods. Further, the WGAN
trained on simulated data (rows 4 and 8) was significantly
better in terms of Int. Space than the other WGAN variations

TABLE 1 | Results on the Cocktail Party test set.

Method Circ. Fit Not Free Per. Space Int. Space Center Dist. Occ. Other Is Occ.

1 Ground Truth 0.35 ± 0.24 0.01 ± 0.09 0.48 ± 0.56 0.00 ± 0.00 0.27 ± 0.10 0.00 ± 0.00 0.00 ± 0.00

2 Yang 3.02 ± 21.51 0.26 ± 0.43 0.28 ± 0.62 0.00 ± 0.05 1.20 ± 9.44 0.00 ± 0.00 0.02 ± 0.14

3 Geometric 0.33 ± 0.29 0.00 ± 0.05 0.01 ± 0.13 0.00 ± 0.00 0.30 ± 0.24 0.01 ± 0.27 0.09 ± 0.28

4 WGAN (iG) 0.33 ± 0.29 0.07 ± 0.23 0.38 ± 0.61 0.11 ± 0.33 0.45 ± 0.15 0.03 ± 0.17 0.01 ± 0.12

5 WGAN (CP) 0.28 ± 0.23 0.02 ± 0.13 0.73 ± 0.71 0.31 ± 0.49 0.46 ± 0.12 0.10 ± 0.40 0.06 ± 0.23

6 WGAN (iG, CP) 0.31 ± 0.23 0.03 ± 0.16 0.68 ± 0.64 0.22 ± 0.41 0.45 ± 0.11 0.12 ± 0.32 0.01 ± 0.12

7 Geometric* 0.29 ± 0.28 0.00 ± 0.05 0.01 ± 0.13 0.00 ± 0.00 0.30 ± 0.24 0.00 ± 0.05 0.07 ± 0.26

8 WGAN* (iG) 0.33 ± 0.28 0.07 ± 0.23 0.36 ± 0.59 0.10 ± 0.29 0.45 ± 0.15 0.03 ± 0.18 0.01 ± 0.09

9 WGAN* (CP) 0.29 ± 0.23 0.02 ± 0.13 0.72 ± 0.68 0.32 ± 0.49 0.46 ± 0.12 0.12 ± 0.40 0.04 ± 0.20

10 WGAN* (iG, CP) 0.31 ± 0.22 0.03 ± 0.15 0.66 ± 0.65 0.21 ± 0.41 0.45 ± 0.11 0.11 ± 0.32 0.02 ± 0.13

Each row shows µ ± σ for each of the metrics described in Section 5.3 (lower is better). Models without * output a single pose, whereas those with * output a distribution of 36 poses from
which we chose a single pose (guided by the mode of the distribution) as final output. “(iG)” models were trained on simulated data using iGibson environment maps, “(CP)” indicates
training with Cocktail Party train data, and “(iG,CP)” corresponds to pretraining with simulated data and then fine-tuning on Cocktail Party train data. The best results (for which there are no
significant differences) are highlighted in gray per column—see the text for statistical analyses.
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(rows 5, 6, 9, and 10). TheWGAN fine-tuned on Cocktail Party
train data (rows 6 and 10) was also significantly better than the
WGAN trained on these data only (rows 5 and 9).

The results for the Center Dist. metric were similar to the Circ.
Fit metric: an REML analysis showed significant differences per
Method (F[9, 3114] � 2.75, p � 0.003), and the post hoc test
showed that the Yang baseline had significantly worse Center
Dist. results than all the other methods.

The values for the occlusion metrics were generally low, but
there were significant differences across Methods. For Occ. Other
(p < 0.0001), the methods in rows 1–4, 7, and 8 in Table 1 resulted
in poses that led to significantly fewer occlusions than the
methods in rows 5, 6, 9, and 10. For the Is Occ. metric (p <
0.0001), the Tukey HSD post hoc indicated that the Ground Truth
results (row 1 in Table 1) were significantly lower than those for
the Geometric approach (rows 3 and 7) and the WGAN trained
on the Cocktail Party train data (rows 5 and 9). However, there
were no significant pairwise differences between the Ground
Truth results, the Yang baseline (row 2), the WGAN trained
on iGibson data (rows 4 and 8), or the WGAN fine-tuned on
Cocktail Party train data (rows 6 and 10).

In summary, the results in Table 1 led to three key takeaways.
First, the proposed methods worked better than the baseline in
terms of the Circ. Fit, Not Free, and Center Dist. metrics. This
showed the value of considering environmental spatial
constraints when predicting poses for agents in conversational
groups and the superiority of the proposed methods at modeling
the shape of F-Formations. Second, training the WGAN on
simulated data using iGibson environments turned out to be
as good as or better than training on realistic Cocktail Party data
only, except for the Not Free metric for which the simulated data
led to slightly worse results. We attribute this result to the fact that
generative adversarial models are data-hungry, and the Cocktail
Party train set had only 1,394 examples (approximately 2% of the
simulated dataset). Effective fine-tuning of the WGAN model on
the small Cocktail Party train set proved difficult. Third,
computing a distribution of poses led to slight improvements
in some cases compared to predicting a single pose directly. For
instance, the distribution helped slightly the WGAN model in
terms of personal space violations and the Geometric approach in
terms of occlusions.

5.5 Qualitative Results
We further analyzed the results from Section 5.4 qualitatively for
the baseline by Yang et al. (2017), the Geometric approach and
the WGAN (trained on simulated data). Figures 6A–E shows
example results by these methods on different group sizes. The
columns are identified with the same naming convention as
Table 1, where * in the Figure corresponds to methods that
internally predicted a distribution of 36 poses.

In comparison to the baseline (Yang column), the proposed
Geometric approach resulted in similar predictions when the
context had one or two poses (Figures 6A,B). However, for bigger
groups, the Geometric approach tended to model circular spatial
arrangements more consistently than the baseline, resulting in
poses that were better positioned or oriented with respect to the
context.

In regard to the methods that computed pose distributions,
Figure 6 shows that these distributions captured different viable
solutions to the pose generation problem. Interestingly, while the
Geometric* approach tended to lead to more multimodal
distributions than the WGAN* (iG), the data-driven method led
to fewer occluded poses in these distributions. Occlusions were a
problem for the Geometric approach due to local minima in its
optimization step, but by predictingmultiple poses, this problemwas
alleviated.

Figure 7 shows more difficult prediction problems, where the
context poses are distributed in less circular form or are closer to
physical obstacles. These cases led to poor o-spacemodeling for both
the baseline and the Geometric approach. In particular, in
Figure 7A, the Geometric approach fit a circular shape to the
context that had a disproportionately big radius and was oriented
in the wrong direction. In Figure 7B, the baseline by Yang et al.
(2017) had trouble with pairs of poses in the context being oriented
very similar to one another, which led to a generated pose that was
very far away from the group. Also, in Figure 7C, the baseline output
a generated pose in nonfree space.

In terms of the WGAN, Figure 7B shows that the WGAN had
more trouble avoiding short obstacles than the other methods.
Furthermore, Figure 7C shows that another failure for theWGAN
was to place poses toward the center of a group. Predicting a
distribution of poses in this case was useful in comparison to
generating a single pose, as the distribution comprised poses in
more appropriate positions relative to the context.

Despite the challenges encountered in some cases by the
proposed approaches, they generally performed better than the
baseline by Yang et al. (2017) both in terms of considering
environmental constraints and dealing with the variability
inherent in human spatial behavior. However, it was hard to
evaluate the methods holistically: we did not know of a good way
to combine the quantitative metrics considered in this section
into a single success measure. Thus, to complement these results,
we conducted a complementary, human-driven evaluation of the
proposed approaches. This evaluation is presented in the
following section.

6 HUMAN EVALUATION

We evaluated generated poses by the proposed geometric and data-
driven approaches from a human perspective. For this evaluation, we
chose a diverse set of the groups from the Cocktail Party test data.
We then removed one human member of the groups, as in the prior
evaluations, and computed the pose for a robot to be part of the
interaction with the remaining members. The resulting spatial
arrangement was rendered in a virtual scene similar to the
environment of the Cocktail Party dataset. Human participants
then gave us their opinion of the pose of the robot relative to the
virtual humans rendered in the scenes.

This experiment followed a similar protocol to Connolly et al.
(2021). The main difference is that our focus was not on
evaluating the effect of different robot embodiments on
human perception of conversational groups; instead, we
wanted to compare the two proposed methods for pose
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generation. For this reason, we focused on using a single robot
embodiment for this study. The selected robot was a humanoid
Pepper robot, which has an easily discernible body orientation
and head. Its dimensions are similar to those of a young
person.

6.1 Participants
We used Prolific to recruit a total of 60 participants (32 females
and 28males) for this human evaluation. The participants resided
in the United States, were fluent or native English speakers, had
normal or corrected-to-normal vision, and had an average age of
32.15 years (standard deviation [STD] � 12.57). They indicated
sometimes playing video games (mean [M] � 4.32, STD � 2.14)
and rarely interacting or working with a robot (M � 2.23, STD �

1.59) on 7-point responding formats (1 being the lowest rating
and 7 being highest).

6.2 Experiment Design
We controlled for three main variables in this evaluation:

Method (two levels). We compared the Geometric approach
(Section 4.2) with the WGAN approach (Section 4.3). Both
methods computed a distribution of 36 samples from which we
chose a single output pose by searching for a mode across predicted
locations (as explained in Section 4.4). For both methods, we used
the best hyperparameters found in Section 5. For the WGAN, in
particular, we chose themodel that was trained on simulated iGibson
data (row 8 ofTable 1) because, except for the Not Freemetric, it led
to better or similar performance than alternatives.

FIGURE 6 | Successful predictions for several methods (one per column) on five different problems (rows) from the Cocktail Party test set. The orange arrows
correspond to the poses in the context C, and the purple arrows are predicted poses, except for the Ground Truth column in which the purple arrows correspond to a
true pose by a groupmember. Note that the darker purple arrows are the final output by eachmethod, and the lighter ones are additional predictions by the methods that
computed a distribution of poses. The colors of the environment map are the same as in Figure 5C: “free space” is light gray, “short obstacles” is medium-intensity
gray, and “tall obstacles” is darker gray. In addition, these plots show one more label for “unknown” occupancy (darkest gray color). The latter label was a result of
cropping the full environment map around context poses next to the edge of themap.When computing results, “unknown” occupancy was considered as nonfree space
by the Geometric approach and was aggregated with tall obstacles for the WGAN. This Figure is best viewed in color.
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Context (10 levels). We considered 10 contexts (i.e., interactants’
poses input to the methods) for each of the Group Sizes mentioned
below. The contexts were chosen to try to maximize the diversity of
scenarios considered in the evaluation and without looking at how
well the proposed methods performed on them.

Group Size (five levels). We considered group sizes of two to six
interactants (including the robot). This means that the proposed
methods had as input a Context with one to five interactants.

The study was run with a mixed design using a Qualtrics online
survey. The participants provided their opinion of the pose of the robot
for a single Group Size (between participants) in renderings generated
for all Context/Method combinations (within participants). In
particular, for each combination of Context and Method, we
generated two renderings that depicted the resulting interaction.2

One rendering corresponded to a top-down view of the group, and
the other was a frontal view so that the participants could easily
perceive the robot’s spatial positioning relative to the other interactants
(as shown in Figure 8A).

The participants were randomly assigned to each Group Size
category, resulting in all categories having at least four males or
females. Renderings made for Group Sizes of three, four, and six
interactants were evaluated by 12 participants each, whereas the
renderings for Group Sizes of two and five interactants were
evaluated by 13 and 11 participants, respectively.

6.3 Measures
The participants provided feedback about the pose of the Pepper
robot on each scene shown in their survey, each of which
corresponded to a given combination of Context and Method.
In particular, the survey first asked them to visually identify the
Pepper robot in the rendered scene. Then, it asked them to rate
four statements about the robot’s pose relative to the virtual
humans. Example images can be seen in Figure 8, along with the
statements that the participants had to rate using a 7-point Likert
responding format from “strongly disagree” (1) to “strongly

FIGURE 7 |Difficult predictions on three different problems (rows) from the Cocktail Party test set. As in Figure 6, the orange arrows correspond to the poses in the
contextC, the purple arrows are Ground Truth or predicted poses, and the lighter gray color in the maps corresponds to free space. White areas within a plot correspond
to regions of the space out of the cropped map (considered as “unknown” occupancy by the proposed methods). This Figure is best viewed in color.

2The renderings were generated as in Connolly et al. (2021), using the Unity game
engine (https://unity.com/), tools from the Social Environment for Autonomous
Navigation (Tsoi et al., 2020), the Microsoft Rocketbox avatar library (Gonzalez-
Franco et al., 2020), and an open-source version of Pepper’s Universal Robot
Description File (http://wiki.ros.org/pepper_description).
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agree” (7). Following Connolly et al. (2021), we reversed the scores
for negative statements and computed the correlation between
them, obtaining moderate positive pairwise correlations (see
Supplementary Table S8 in the supplementary material).
Cronbach α for these ratings was 0.83, above the nominal 0.7
threshold. Thus, we grouped responses into an “In Group”measure.

6.4 Procedure
Upon starting the survey, the participants completed a consent form
to take part in the evaluation and provided basic demographics data
(as described in Section 6.1). Then, the survey showed renderings of
two practice scenes and asked the participants to rate the pose of the
robot in them using the In Group statements from Figure 8B. The
practice scenes depicted different Contexts than those used for the
evaluation to avoid biasing participant’s opinion. In one practice
scene, the pose of the robot corresponded to the ground truth pose
for the individual that it replaced in the Cocktail Party dataset. In the
other practice scene, the robot’s pose was generated by taking the
ground truth pose and then reorienting the robot opposite to its
group. These examples served to familiarize participants with the
robot and the In Group statements used to rate its pose.

After the two practice scenes, the survey showed the real evaluation
scenes. For each scene, the survey asked the participants to evaluate the
pose of the Pepper robot using the In Group statements. Note that the
survey for the participants who provided feedback for groups of size 4
included only 19 evaluation scenes because the Geometric approach
led to positioning the robot outside of the Cocktail Party environment
in one case, which we removed from our evaluation. For all other
group sizes, the survey included 20 evaluation scenes as originally
planned (10 contexts× 2methods). The order of the evaluation scenes
was randomized for all the participants. That is, the renderings by
Method and Context were randomly interspersed with one another
within a participant’s survey to avoid potential ordering effects.

After rating all the scenes, the participants provided their
opinion about how hard it was to complete the survey. We used
these responses in pilots to improve the protocol design. The
survey typically took approximately 12 min to complete, for
which the participants were paid US $2.4. This protocol was
approved by our local Institutional Review Board.

The Supplementary Material provides more details on the
specific design of the online survey and shows all the renderings
used in this evaluation.

6.5 RESULTS

We conducted an REML analysis on the In Group measure. In
this analysis, we considered Method, Group Size, and their
interaction as main effects, and Context and Participant ID
as random effects. We found significant effects for Group Size (F
[4, 55.19] � 3.24, p � 0.019). A Tukey HSD post hoc test
suggested that the In Group ratings were significantly lower
on groups of size 4 (M � 4.44, STD � 1.67, N � 240) than on
groups of size 6 (M � 5.27, STD � 1.65, N � 240). No other
significant differences were obtained by Group Size. The ratings
for groups of size 2, 3, and 5 were M � 4.78 (STD � 1.37; N �
260), M � 5.14 (STD � 1.56; N � 240), andM � 4.91 (STD � 1.58;
N � 220), respectively.

The REML analysis indicated that Method had a significant effect
on the In Group ratings, F[1, 1115] � 10.06 (p � 0.002). A Student
t post hoc test suggested that the data-driven approach (M � 5.01,
STD � 1.44, N � 600) led to significantly higher ratings than the
Geometric approach (M � 4.81, STD � 1.73, N � 600), although this
difference was small (approximately 0.2 points on the 7-point scale).

There was also a significant interaction effect of Method and
Group Size on the In Group measure, F[4, 1114] � 61.43 (p <
0.0001). Interestingly, a Tukey HSD post hoc test indicated that the
In Group ratings were significantly higher for the WGAN than for
the Geometric approach on Group Sizes 4, 5, and 6. However, the
Geometric approach led to significantly higher ratings than the
data-driven method for the other Group Sizes, as illustrated in
Figure 9A. This difference in performance by Group Sizes was
observed on each of the individual components of the In Group
measure, as shown in Figure 9B.

We looked further into the generated renderings to better
understand why the methods led to different In Group values per
Group Size. We noticed two trends:

1. For a Group Size of 2 and 3, the WGAN tended to place the
robot farther away from the context individuals than the
Geometric approach. For example, this result can be seen
in Figure 8A. Also, additional examples can be found in
Supplementary Figures S4 and S5 in the supplementary
material. For instance, for groups of size 2 in
Supplementary Figure S4, the robot is farther away from
the groups with theWGAN than with the Geometric approach

FIGURE 8 | Example scene used for the human evaluation (A) and statements rated by the participants about the robot’s pose (B). (R) indicates that the ratings
were reversed before computing the “In Group” measure.
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in Contexts 2, 3, 5, 6, 7, 9, and 10. Likewise, this effect can be
seen in Contexts 1, 3, 5, 6, and 8 for groups of size 3 in
Supplementary Figure S5.

2. For Group Sizes bigger than 3, we observed in the renderings that
the Geometric approach tended to place the robot more often
behind individuals than theWGAN. For example, this can be seen
in Contexts 4, 6, 9, and 10 for Group Size 4 in Supplementary
Figure S6 in the supplementary material. Likewise, this result can
be seen in Contexts 1, 3, 4, 5, 9, and 10 for Group Size 5 in
Supplementary Figure S7, and on Contexts 1, 3, 6, 7, 8, and 9 for
Group Size 6 in Supplementary Figure S8. This result is a direct
consequence of the hyperparameters that we chose for the model-
based method. In particular, when looking at preliminary results
in the Cocktail Party train dataset (as described in Section 5), we
prioritized avoiding violations to personal and intimate space.
However, this impaired the capacity of the Geometric approach to
find suitable gaps for the robot in spatial arrangements that
already had at least three members.

The mixed results for the In Group ratings highlight different
properties of the proposed pose generationmethods. First, we attribute
the lower In Group ratings for the WGAN on Group Sizes 2 and 3 to
the method’s reliance on the training data distribution. As mentioned
before, we trained theWGAN using simulated iGibson data, based on
our earlier results on the Cocktail Party dataset (Section 5). However,
these data were generated without special consideration for group size.
All the groups were created by simply placing interactants along a
circular arrangement in free space; we should have instead created
smaller circular arrangements for smaller groups. Second, the
difficulties that the Geometric approach had with Group Sizes 4, 5,
and 6 speak to how challenging it is to choose suitable hyperparameters
for the Geometric approach given all the many factors that matter for
the pose generation problem, including proxemics, the shape of
F-Formations, occlusionswithin groups, and the physical environment.

7 GENERATING CONVERSATIONAL
GROUPS

Although we focused our work on predicting a suitable pose
for a social agent in a group conversation, the proposed

approaches could be reused to create entire conversational
groups. These groups are constructed by invoking the
proposed generative methods iteratively given a map M, the
pose of an initial individual < x0, θ0 > , and the desired number
of group members. After each iteration, the newest generated
pose is added to the social context, which the generator
subsequently takes as an input.

Figure 10 illustrates conversational groups generated by
both proposed approaches using the above iterative method
on two different environments: one map corresponds to the
single room of the Cocktail Party dataset (Figures 10A,B),
and the other one is drawn from the iGibson environments
(Figures 10C,D). At each iteration of the group generation
approach, the final pose output for a new interactant is
selected from a distribution of 36 samples computed by the
corresponding method. These samples are shown as light
purple arrows in Figure 10. The hyperparameters for the
Geometric and WGAN methods used in this section are the
same parameters used for computing the results in Sections 5
and 6.

In general, the results for the iterative group generation
task reflect prior findings. First, the Geometric approach
generates poses that better respect personal space, as can
be seen in the right-most column of Figure 10. Second, for
smaller group sizes, the Geometric approach outputs poses
that are more tightly positioned relative to existing group
members than the WGAN; however, for bigger group sizes,
the WGAN outputs poses in more circular group formations
than the Geometric approach. These circular formations are
prototypical of real conversational interactions, suggesting
that the WGAN better identifies proxemic constraints
introduced by additional interactants than the Geometric
approach.

From a computational perspective, iterative invocation of the
geometric method, without special care for parallelization,
requires more time to output a result than the WGAN due to
the inherent sequential nature of its optimization step. For
example, while the WGAN might take approximately 0.08 s to
make a prediction on a consumer-grade MacBook computer, the
Geometric approach might take approximately 0.5 s. Owing to
this higher runtime cost yet greater stability, the optimization

FIGURE 9 | Results from online human evaluation comparing the Geometric and data-driven approach (WGAN). In the left plot, the symbol * indicates p < 0.05 and
*** indicates p < 0.001, and error bars correspond to standard. error. The right plots only show averages to illustrate the similarity among ratings.
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approach may be used to simulate very large groups appropriate
for training data-driven models in the future.

Lastly, the results also show limitations of the Geometric
approach in reasoning holistically about social scenes. For
example, in Figure 10D, the Geometric approach proposes a
pose for |C| � 9 that is separated from the rest of the context by
a wall. In contrast, the WGAN avoids placing poses far from the
existing context (Figure 10C) without a physically based rule. This
result further highlights the difficulty of handcrafting solutions to the
pose generation problem, as these solutions need to effectively
balance proxemics, spatial environmental constraints, and
arbitrary conversational group sizes.

8 DISCUSSION

8.1 Summary of Contributions
Our work introduced two approaches for generating poses for
social robots in group conversations given spatial constraints and

the pose of other group members. One approach formalizes key
geometric properties of spatial behavior evident in conversational
groups. In this Geometric approach, generating the location of a
pose is formulated as an optimization problem, whose loss
function penalizes divergence from the circular shape of the
existing group formation, violations of personal space, and robot
placement in nonfree environmental areas. The other, data-driven
approach models expected spatial behavior with a WGAN. The
inputs to the generator and discriminator networks are a map of the
environment and a social interaction graph, where the graph nodes
correspond to the pose features of existing interactants. Our novel
architectures for the generator and discriminator rely on GNNs,
which reason about spatial–orientational arrangements and
proxemic relationships in a more implicit manner than our
Geometric approach.

We evaluated our proposed methods on the Cocktail Party
dataset withmetrics based on desirable properties of conversational
group formations. We chose for a baseline a pose generation
method that does not consider environmental characteristics.

FIGURE 10 | Group generation through iterative invocations of the geometric and data-driven approaches. The plots in rows (A) and (B) show results in the map
from the Cocktail Party dataset. Rows (C) and (D) demonstrate our two approaches in a map from the iGibson dataset. As in Figure 6, the orange arrows correspond to
the poses in the contextC, the purple arrows are Ground Truth or predicted poses, and the lighter gray color in the maps corresponds to free space. |C| indicates the size
of the context used to make a prediction per column. This Figure is best viewed in color.
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Both of our approaches significantly outperformed the baseline
method on metrics for maintaining the circular shape of the group
and accounting for obstacles in the environment. This evaluation
affirms the importance of considering environmental constraints in
addition to interactants’ poses when generating spatial behavior for
social agents.

The quantitative evaluation also informed model selection for a
second evaluation, which compared our two pose generation
approaches from a human perspective. Study participants assessed
poses generated by our two proposed approaches in virtual scenes.
With respect to an In Group measure, the Geometric approach
generated superior poses for groups of three or four interactants,
whereas the data-driven approach scored better for larger groups. The
contrasting strengths of our two approaches further reinforce the
complexity of pose generation in social applications: an optimal
solution must respect spatial constraints from both the environment
and other group members while also considering human
expectations for behavior in a variety of scenarios.

In addition to the above contributions, this work explored
using the proposed pose generation methods to simulate
conversational groups of different sizes. We are excited about
the potential of this application to enhance robotics simulations
for HRI, like SEAN (Tsoi et al., 2020), as the proposed methods
could be used as a practical mechanism to add human–robot
social interactions to virtual environments. This could allow the
community to further study social robot navigation
(Mavrogiannis et al., 2021) or advance our understanding of
proxemics and human perception of spatial patterns of behavior
in HRI (Li et al., 2019; Connolly et al., 2021).

8.2 Limitations and Future Work
Our work is limited in several ways, which we consider avenues for
future work. First, we did not find a clear winner between the
proposed pose generation methods. The Geometric approach led to
best quantitative metrics, but according to human ratings, it did not
perform as well as the data-drivenmethodwith bigger groups.While
we believe that in the long term the data-driven approach is more
likely to succeed than the Geometric approach because it has more
flexibility to reason about the intricacies of human spatial behavior, it
is heavily dependent on the availability of significant amounts of
realistic data. Thus, future work could explore creating better
datasets for pose generation subject to environmental spatial
constraints and reevaluate the WGAN on such datasets. One
interesting idea in this respect is leveraging the Geometric
approach to augment the training data used for the data-driven
method.

Second, we focused on predicting a suitable pose for a robot given
the location and orientation of interactants, but one could consider
additional input features for the context in the future, such as motion
data. Adding this information to the Geometric approachmay require
additional special considerations, but providingmore input features to
the data-driven method is easier. For example, we could adjust the
architecture of the spatial–orientational GNN used in the generator
and critic to take onmore input features per interactant and thus allow
the networks to reason about this additional information.

Third, our work is limited in that our evaluation of the proposed
approaches considered simulated interactions only. We have not yet

evaluated the methods on real-world human robot interactions. In
the future, we would like to study the effectiveness of the proposed
methods to enable robots to adapt their pose during situated group
conversations, as interactants move or come and go. We would also
like to explore using the proposed methods for enabling robots to
join nearby group conversations subject to physical environmental
constraints.

Fourth, we often assumed in this work that robots should behave
in similar ways to humans. However, prior work suggests that robot
embodiment may affect the way in which people interpret robot
spatial behavior in HRI (Connolly et al., 2021). Thus, future work
should investigate whether the proposed methods are suitable for
different types of robots, especially those that are less
anthropomorphic than Pepper.
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Supplementary Material

1 SIMULATING CONVERSATIONAL GROUP FORMATIONS
We created a large amount of training data for the WGAN using 3D environments from the iGibson
simulator (Shen et al., 2020). More specifically, this data was created in 3 main steps. First, we automatically
generated environment layouts with free and occupied space for 15 interactive environments from iGibson,
as illustrated in Fig. S1a. The layouts were created by intersecting planes parallel to the ground with the 3D
geometry of the environments. Second, we manually annotated the layouts to fill in occupied spaces and,
using the layouts, created 15 maps for pose estimation that had labeled “free space”, occupied space by
“short objects” and occupied space by “tall objects.” Third, we populated the maps with simulated groups
as explained in the next Section.

1.1 A Rule-Based Approach to Create Circular Spatial Arrangements

We implemented a simple rule-based approach for creating circular formations typically observed during
conversations. The algorithm took as input an environment map from iGibson. It output the poses for
members of a simulated group in the map and a cropped section of the map around the group. The algorithm
had six main steps:

1. Select a group size uniformly from the set {2, 3, 4, 5, 6} – which we chose to mimic the group sizes
observed in the Cocktail Party dataset (Zen et al., 2010).

2. Randomly chose a radius from 0.8-1.5 meters for the circular formation.

3. Choose a random unoccupied space in the environment as the center of the group’s circular formation.

4. Choose a random location for the group members along the circular formation such that interactants
would not be too close to one another.

5. Decide if the group’s placement is valid by checking if a number of relevant locations for the group
do not fall on occupied spaces of the map. The relevant locations included the midpoints between any
combination of 2 group members (so that group members could potentially see each other), midpoints
between any person and the center of their circular formation (so that all group members had access to
the F-Formation o-space), and locations within a meter around any person in the group (to avoid placing
interactants too close to objects).

6. If the group passed the above check, orient the members towards the center of their circular formation
and output their poses along with the section of the environment map that surrounds them; otherwise,
repeat the above steps until a successful group is created or a maximum number of attempts is reached.

Although the above approach could have been optimized in many ways, it was chosen for its simplicity
given that simulated data only needed to be generated once. Example groups generated through this
approach can be seen in Figure S1b (first column).

1.2 Simulated iGibson Dataset

We initially generated 34,405 simulated groups for training on the 15 iGibson environments. Group sizes
were distributed as follows: 8445 groups were dyads, 7240 groups were triads, 6611 groups had 4 members,
6063 groups had 5 members, and 6046 groups had 6 members. Because these groups were perfect circular
arrangments, we decided to slightly stretch them (horizontally or vertically) and rotate them (along with
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(a) iGibson environment layouts (b) Simulated conversational spatial arrangements

(c) Distribution of simulated groups by group size (including
transformed examples after data augmentation)

2000
4000
6000
8000

10000
12000
14000

0
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Figure S1. (a) The 15 iGibson environments from which we generated simulated groups. (b) Original
simulated groups (first column), transformed group via stretching and rotation (second column), and the
same original group after adding angular noise to the context (third column). (c) Final distribution of
simulated groups by group size after data augmentation (stretching and rotations).

the environment) to add more variability to the simulated dataset. In particular, we transformed groups
with 3 or more members, resulting in 25,960 additional training examples. Figure S1b (second column)
shows example transformations applied to simulated groups. The final distribution of simulated groups
(including those that were stretched and rotated) by group size is shown in Figure S1c.

As an additional type of data augmentation, we implemented a transformation for the iGibson data which
added angular noise to the orientation of the context poses during training of the WGAN. The noise was
sampled from a normal distribution with zero mean and a standard deviation corresponding to 20 degrees.
Example results from this transformation can be seen in Figure S1b (third column). This transformation was
not applied to Cocktail Party data during training because the latter data was already diverse in comparison
to the perfect circular arrangements generated on the iGibson environments.
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2 WGAN ARCHITECTURE
This section details the neural network architectures used for the generator G and discriminator (or critic)
D of the proposed WGAN model. Both networks received as input the poses of the people in the context C
and a cropped map of the environment around the context. The locations in the context poses were given
relative to a coordinate frame whose origin was the average location of the context poses, corresponding to
the center of the cropped map. This made the data translation invariant and facilitated training. Also, the
generator received as input a latent variable z, and the critic received an additional pose (from the true data
distribution or from the generator). The location of the pose input to the critic was in the same coordinate
frame as the context locations.

2.1 Generator Network

The generator network first processes its input graph with two GNNs, one in charge of reasoning about
spatial-orientational information in the group’s context and another one in charge of reasoning about
proxemics information. The output of these two GNNs is then processed by a final multi-layered perceptron,
as explained in Section 4.3 of the main paper. The sections below provide more implementation details for
the generator network.

Spatial-Orientational GNN. The update function φv1() described in the main paper is a multi-layer
perceptron (MLP) and is implemented as outlined in Table S1 (left). The aggregate function ρv→u

1 ()
is element-wise maximum.

Table S1. Architecture for the node update function of the Spatial-Orientational GNN. Left: Parameters for the generator. Right: Parameters for the critic. BN
corresponds to batch norm.

Layer Output dim. Activation BN

fc1 32 ReLU Yes

fc2 64 ReLU Yes

fc3 128 ReLU Yes

Layer Output dim Activation BN

fc1 32 ReLU No

fc2 64 ReLU No

fc3 128 ReLU No

Proxemics GNN. This GNN first updates a node’s features vi = [xi yi cos(θ) sin(θ)] with the function
v′i = φv2(vi), which outputs a 2D tensor with a gaussian blob on the interactants location. The blob
is generated using a normal distribution N (·;µ, Iσ) with µ = [xi yi]

T and σ = 0.21 (as used for the
personal space loss of the geometric approach). Then, the updated node features are aggregated into a
feature v̄′ using element-wise summation. Finally, the global attribute of the input graph is updated using
u′ = φu2(v̄′,u). The function φu2() is implemented as a convolutional neural network (CNN) with zero
padding, as detailed in Table S2, and with a final flatten layer.

Table S2. Architecture for the global feature update function of the Proxemics GNN used in the generator. BN corresponds to batch norm.

Layer Channels Out Kernel Stride Padding Activation BN

conv1 8 3× 3 1 1 ReLU True

maxpool1 8 2× 2 2 0 – –

conv2 32 3× 3 1 1 ReLU True

maxpool2 32 2× 2 2 0 – –

conv3 64 3× 3 1 1 ReLU True

Frontiers 3



Supplementary Material

Final Multi-Layer Perceptron. The final multi-layer perceptron of the generator is composed of three fully
connected layers, as detailed in Table S3 (left). The last two elements of the 4D output of the MLP are
finally applied a hyperbolic tangent transformation to constraint them to (−1, 1) because they represent the
cos(θ) and sin(θ) of the output pose.

Table S3. Architecture for the final MLP of the WGAN networks. Left: Parameters for the generator. Right: Parameters for the critic. BN is batch norm.

Layer Output dim. Activation BN

fc1 1024 ReLU No

fc2 512 ReLU No

fc3 4 – No

Layer Output dim Activation BN

fc1 1024 ReLU No

fc2 512 ReLU No

fc3 1 – No

2.2 Critic Network

The critic network is similar to the generator network described previously, except that its input graph has
as global attribute the environment map only (without information about a latent variable z) and the critic
receives an additional input: a pose from the true data distribution or output by the generator, which is
processed in a third parallel stream to the GNNs. The sections below provide more implementation details
for each component of the critic network.

Spatial-Orientational GNN. The critic’s Spatial-Orientational GNN is the same as for the generator, except
that its node update function does not use batch normalization (BN) because BN can make it harder for the
critic to converge, as discussed in (Gulrajani et al., 2017). Table S1 (right) details the parameters of the
critic’s node update function.

Proxemics GNN. The critic’s Proxemics GNN is also the same as for the generator, except that the global
attribute update function, which is implemented as a CNN, does not use batch norm.

Pose Multi-Layer Perceptron. The pose input to the critic is transformed with a series of fully collected
layers, as detailed in Table S4.

Table S4. Architecture of the multi-layer perceptron that transforms poses input to the critic network. BN corresponds to batch norm.

Layer Output dim. Activation BN

fc1 32 ReLU No

fc2 64 ReLU No

Final Multi-Layer Perceptron. The critic concatenates the outputs of its GNNs and the pose MLP and
then transforms the resulting feature vector through another MLP, outlined in Table S3 (right).

3 ADDITIONAL QUANTITATIVE RESULTS FOR THE DATA-DRIVEN METHOD
In addition to the results presented in the main paper for the WGAN (Section 5), we also studied the
performance of other variations for the data-driven model using the proposed quantitative metrics. These
variations are described below:
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WGAN with increased distribution size. We chose 36 samples for the models that computed distributions
in the main paper because this number of samples reasonably covered the area around the context for the
geometric approach. Howevever, we were curious about whether more samples could benefit the WGAN
and, thus, we evaluated it when running the generator 576 times. The results are presented in Table S5. In
comparison to Table 1 in the main paper, the increased distribution size had minimal effect on performance.

Table S5. Results on the Cocktail Party test set with a distribution of 576 samples from which we chose the biggest mode as final output. Each row shows
µ± σ for the metrics described in the main paper (lower is better). “(iG)” models were trained on simulated data using iGibson environment maps, “(CP)”
indicates training with Cocktail Party train data, and “(iG,CP)” corresponds to pretraining with simulated data and then finetuning on Cocktail Party train data.

Method Circ. Fit Not Free Per. Space Int. Space Center Dist. Occ. Other Is Occ.
1 WGAN (iG) 0.34± 0.28 0.06± 0.22 0.37± 0.64 0.10± 0.31 0.45± 0.14 0.05± 0.28 0.00± 0.05
2 WGAN (CP) 0.29± 0.23 0.02± 0.13 0.71± 0.71 0.30± 0.48 0.46± 0.12 0.11± 0.39 0.05± 0.21
3 WGAN (iG, CP) 0.31± 0.23 0.03± 0.14 0.66± 0.63 0.22± 0.41 0.45± 0.11 0.11± 0.31 0.02± 0.13

WGAN with combined map for tall and short obstacles. Because the geometric approach only has
information about free and occupied space, we tested training the WGAN with a similar configuration.
That is, we merged the two channels of the map input to the WGAN, which represented occupancy by tall
and short objects, into a single map with occupied and free space information. The results for this test are
presented in Table S6. In general, the performance was similar to the WGAN that used a two-channel map,
as described in the main paper. Thus, we primarily evaluated the WGAN with two-channel maps in this
work, which more explicitly described obstacles in the environment. Worth noting, though, in some cases
the model trained with combined maps and only on simulated groups generated poses outside the input
map, resulting in a higher Circ. Fit metric than the results in Table 1.

Table S6. Results on the Cocktail Party test set with combined environment channels. Each row shows µ± σ for the metrics described in the main paper (lower
is better). Models without ∗ output a single pose, whereas those with ∗ output a distribution of 36 poses from which we chose the biggest mode as final output.
“(iG‡)” models were trained on simulated data using iGibson environment maps (without data augmentation), “(CP)” indicates training with Cocktail Party train
data, and “(iG‡,CP)” corresponds to pretraining with simulated data and then finetuning on Cocktail Party train data.

Method Circ. Fit Not Free Per. Space Int. Space Center Dist. Occ. Other Is Occ.

1 WGAN (iG‡) 0.52± 1.24 0.05± 0.21 0.47± 0.60 0.14± 0.35 0.47± 0.45 0.09± 0.37 0.03± 0.16
2 WGAN (CP) 0.30± 0.25 0.01± 0.10 0.67± 0.70 0.27± 0.48 0.45± 0.12 0.10± 0.35 0.04± 0.20
3 WGAN (iG‡,CP) 0.29± 0.23 0.01± 0.09 0.72± 0.68 0.29± 0.48 0.40± 0.13 0.09± 0.39 0.06± 0.23
4 WGAN∗ (iG‡) 0.51± 1.24 0.06± 0.22 0.49± 0.60 0.14± 0.36 0.47± 0.45 0.07± 0.31 0.02± 0.15
5 WGAN∗ (CP) 0.31± 0.25 0.02± 0.13 0.68± 0.70 0.28± 0.50 0.45± 0.12 0.09± 0.28 0.03± 0.16
6 WGAN∗ (iG‡,CP) 0.30± 0.23 0.01± 0.09 0.71± 0.67 0.29± 0.46 0.40± 0.12 0.11± 0.42 0.05± 0.22

WGAN with personal space loss. In initial experiments, we also considered a modified version of the
WGAN in which the generator was trained with an additional component for its loss which penalized for
output poses that violated personal space. This component was implemented in the same manner as `p in
eq. (4) in the main paper. This means that the loss for the WGAN was:

min
G

max
D

Ep∼Pr [D(p|C,M)]− Ep̄∼Pg [D(p̄|C,M)] + λEp̄∼Pg`p(p̄) (S1)

We set λ = 0.1 based on validation performance, and obtained the results shown in Table S7 using the
original iGibson simulated groups (without data augmentation in the form of stretching, rotations, nor angle
noise). We found that the addition of the personal loss to the generator reduced in some cases violations to
intimate spaces in comparison to not adding the loss and training the model on the iGibson data without
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Table S7. Results on the Cocktail Party test set. Each row shows µ± σ for the metrics described in the main paper (lower is better). Models without ∗ output a
single pose, whereas those with ∗ output a distribution of 36 poses. The +`p marker indicates that the WGAN generator was trained with a penalty for violating
personal space (i.e., with personal loss). “(iG‡)” models were trained on simulated data using iGibson environment maps (without data augmentation), “(CP)”
indicates training with Cocktail Party train data, and “(iG‡,CP)” corresponds to pretraining with simulated data and then finetuning on Cocktail Party train data.

Method Circ. Fit Not Free Per. Space Int. Space Center Dist. Occ. Other Is Occ.

1 WGAN+`p (iG‡) 0.34± 0.28 0.03± 0.16 0.41± 0.63 0.12± 0.34 0.42± 0.13 0.05± 0.41 0.01± 0.11
2 WGAN+`p (CP) 0.32± 0.23 0.02± 0.13 0.70± 0.68 0.29± 0.48 0.44± 0.12 0.11± 0.31 0.05± 0.21
3 WGAN+`p (iG‡,CP) 0.31± 0.23 0.04± 0.17 0.66± 0.64 0.24± 0.45 0.44± 0.12 0.08± 0.27 0.03± 0.16
4 WGAN∗+`p (iG‡) 0.35± 0.29 0.03± 0.16 0.42± 0.62 0.13± 0.34 0.42± 0.13 0.05± 0.33 0.02± 0.13
5 WGAN∗+`p (CP) 0.31± 0.23 0.02± 0.13 0.71± 0.66 0.31± 0.49 0.44± 0.12 0.14± 0.43 0.03± 0.18
6 WGAN∗+`p (iG‡,CP) 0.31± 0.23 0.04± 0.16 0.65± 0.62 0.22± 0.43 0.43± 0.12 0.05± 0.22 0.03± 0.18

data augmentation. However, the data augmentation allowed us to obtain similar or better performance
without the personal space loss, as can be seen by comparing the results in Table S7 with those in the main
paper. We are excited about this result because the WGAN encoded important properties of F-Formations
without a hand-crafted loss specifically designed for our problem domain. This flexibility means that
the WGAN could be applied to other related problems in the future without major modifications, e.g.,
predicting poses for robots in other interactions like queues or side-by-side walking.

4 SURVEY USED FOR THE HUMAN EVALUATION
The human evaluation was carried out using Qualtrics online survey software. We organized the survey
into 4 main sections:

1. Demographics section, e.g., with questions about age, gender, “how often do you play video games?”,
and “how often do you interact or work with a robot”.

2. Practice section, which showed a robot in two scenes to familiarize them with the task of providing In
Group ratings. First, the robot was shown using a ground truth pose from the Cocktail Party dataset. Second,
it was shown having a bad orientation, as described in the main paper. Figure S2 shows the top-down
renderings used for this section of the study. The presentation of the practice scenes within the survey was
the same as for the evaluation scenes that followed.

(a) Ground truth poses from the Cocktail Party data

(b) Bad poses (the robot was oriented away from the group)

Figure S2. Practice top-down renderings used as practice in the survey. From left to right, the images
show Group Sizes of 2, 3, 4, 5, and 6 interactants (including the robot).
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3. Evaluation section, where the participants were asked to rate the pose of the robot in twenty scenes. Half
of the scenes had the robot positioned as directed by the model-based approach; the other half used poses
output by the data-driven method. The participants did not know which method was used in each rendering.
Also, the order of the 20 scenes was randomized per participant to avoid potential ordering effects. An
example page of this section of the survey is shown in Figure S3. All the top-down view renderings used in
the evaluation are shown in Figures S4, S5, S6, S7 and S8.

Instructions

Photos of the Pepper robot

Rendered scenes
(the participants could click on
the images to display them on 
the full browser window)

In Group Measure questions
(the order of the questions was
randomized in each scene)

Figure S3. Example evaluation page from the survey.

4. Final feedback section, which asked the participants to answer the question: “If you thought that the survey
was difficult to complete for any particular reason, please explain below in detail what kind of difficulties
you encountered with the survey.” This question helped clarify the presentation of the instructions in pilots.

5 DETAILED STATISTICS FOR IN GROUP RATINGS
For every scene in the survey used for the human evaluation, the participants provided their agreement with
the four statements shown in Figure S3. The statements were: (1) Pepper is too far from the human(s) in
the scene to engage naturally in a group conversation with them; (2) Pepper is in a location that makes it
look like it is in a group conversation with everybody else in the scene; (3) Pepper is positioned to socially
engage with the human(s) in the scene; and (4) Pepper is orienting in an unusual way to be having a
conversation with everybody else in the scene. These statements composed the In Group measure described
in the main paper. Their means, standard deviations, and correlations are shown in Table S8.
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Table S8. Descriptive statistics and correlations for the In Group statements. Ratings for each statement were obtained using a 7-point responding format from
“strongly disagree” (1) to “strongly agree” (7). (R) indicates that the ratings were reversed before computing the descriptive statistics and correlations. Also, ∗∗∗

indicates that the pair-wise correlation was statistically significant with p < 0.001.

Statement N M STD 1 2 3 4
1. Pepper is too far from the human(s) in the scene to engage
naturally in a group conversation with them (R)

1, 188 5.37 1.86 –

2. Pepper is in a location that makes it look like it is in a group
conversation with everybody else in the scene

1, 188 4.75 1.95 0.48∗∗∗ –

3. Pepper is positioned to socially engage with the human(s) in
the scene

1, 188 4.88 1.93 0.48∗∗∗ 0.84∗∗∗ –

4. Pepper is orienting in an unusual way to be having a
conversation with everybody else in the scene (R)

1, 188 4.64 2.07 0.39∗∗∗ 0.55∗∗∗ 0.56∗∗∗ –
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(a) Renderings for the Geometric* approach 

(b) Renderings for the WGAN* approach

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Figure S4. Top-down renderings for a Group Size of 2. The renderings were used in our human evaluation.
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(a) Renderings for the Geometric* approach 

(b) Renderings for the WGAN* approach

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Figure S5. Top-down renderings for a Group Size of 3. The renderings were used in our human evaluation.

(a) Renderings for the Geometric* approach 

(b) Renderings for the WGAN* approach

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Figure S6. Top-down renderings for a Group Size of 4. They were used in our human evaluation, except
for the Context #2 prediction by the Geometric∗ approach (which placed the robot outside of the room).
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Supplementary Material

(a) Renderings for the Geometric* approach 

(b) Renderings for the WGAN* approach

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Figure S7. Top-down renderings for a Group Size of 5. The renderings were used in our human evaluation.

(a) Renderings for the Geometric* approach 

(b) Renderings for the WGAN* approach

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Context #1 Context #2 Context #3 Context #4 Context #5

Context #6 Context #7 Context #8 Context #9 Context #10

Figure S8. Top-down renderings for a Group Size of 6. The renderings were used in our human evaluation.

10


	frobt-08-703807
	Pose Generation for Social Robots in Conversational Group Formations
	1 Introduction
	2 Background
	2.1 Conversational Group Formations
	2.2 Graph Neural Networks

	3 Related Work
	4 Generating Appropriate Poses During Conversations
	4.1 Problem Statement
	4.2 A Geometric Approach for Pose Generation
	4.3 A Data-Driven Adversarial Approach for Pose Generation
	4.3.1 The Generator Network
	4.3.1.1 Spatial–orientational GNN
	4.3.2 The Critic Network

	4.4 Generating a Distribution of Poses

	5 Evaluation on the Cocktail Party Dataset
	5.1 Datasets
	5.2 Pose Generation Methods
	5.3 Quantitative Metrics
	5.4 Quantitative Results
	5.5 Qualitative Results

	6 Human Evaluation
	6.1 Participants
	6.2 Experiment Design
	6.3 Measures
	6.4 Procedure

	6.5 Results
	7 Generating Conversational Groups
	8 Discussion
	8.1 Summary of Contributions
	8.2 Limitations and Future Work

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


	DataSheet1_PoseGenerationforSocialRobotsinConversationalGroupFormations
	Simulating Conversational Group Formations
	A Rule-Based Approach to Create Circular Spatial Arrangements
	Simulated iGibson Dataset

	WGAN Architecture
	Generator Network
	Critic Network

	Additional Quantitative Results for the Data-Driven Method
	Survey Used for the Human Evaluation
	Detailed Statistics for In Group Ratings


