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Abstract—Freezing of gait (FoG), which implies a brief absence
or reduction of ability to walk, is one of the most common
symptoms of Parkinson’s Disease (PD). Predicting FoG episodes
in time can prevent their onset by providing specific cues to
the patients. This paper presents a deep learning approach to
predict FoG episodes using a Long Short-Term Memory network
(LSTM). It also identifies key issues and concepts which have
not been dwelled upon before in the existing literature, paving
the way to a more systematic methodology for future work. We
evaluate our approach using a publicly available dataset that
includes accelerometer readings from 10 PD patients. We achieve
up to 89% prediction accuracy with an average prediction time
of 1.42 s using a subject-independent model.

I. INTRODUCTION

Parkinson’s Disease (PD) is one of the most common
age-related neurodegenerative diseases. It results in muscular
rigidity, tremor, bradykinesia, slowness in movement, and
postural instability [1-4]. Over 80% of PD patients develop
freezing of gait (FoG) [5], a brief absence of the ability to walk
despite the intention of moving the feet [6]. Consequences
of FoG include anxiety, loss of mobility, and fall, which
significantly deteriorate patients’ quality of life.

Clinical studies suggest that auditory, visual, or tactile cues
synchronized with the gait help patients to exit the FoG state
and resume walking [6]. Therefore, FoG-related problems can
be avoided by systems that can predict FoG episodes and
activate an appropriate cueing mechanism. FoG prediction is a
challenging preposition since FoG episodes are rare events that
are closely intertwined with daily life activities. For example,
FoG episodes occur during turning, walking through doorways,

or dual-tasking, and 90% of them last less than 20 seconds [5].

Specific experimental sessions are designed to simulate the
daily life activities in clinical settings and collect data from
PD patients. However, the duration of the sessions and the
frequency of FoG occurrence are limited.

FoG detection, which implies classifying FoG episodes
after patients experience them, is heavily studied for over
a decade. Over 50 studies related to FoG detection have been
published by late 2019 [7]. However, there is a strong need for
techniques to predict potential FoG episodes and prevent their
onset by providing preemptive cueing. These approaches can

prevent FoG episodes and increase the patients’ quality of life.

Despite this potential, only a handful of studies related to FoG
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prediction have been published before 2020 [7]. The number of
studies that address FoG prediction has doubled in recent years,
thanks to the evolving sensor technology. However, there is
still a lack of a clear consensus on the definition of prediction
of FoG episodes. This problem arises because the methodology
to identify the samples used to evaluate the prediction accuracy
and time differs substantially for different studies. There is
an ambiguity regarding the proper prediction performance
of these studies. There are two main underlying reasons: i)
Overestimation of the performance of the classifier due to the
partial overlap between training and test set, ii) Inclusion of the
segments/samples right before the actual onset to the evaluation
process although correctly classifying those segments does not
facilitate prediction since it cannot enable preemptive cueing.
Furthermore, most studies focus on subject-specific modeling
using methods that employ costly feature extraction techniques.
However, the frequency of FoG occurrence is low and the
classifier cannot learn the general characteristics of pre-FoG
and FoG samples with limited data.

This paper presents a subject-independent deep learning
approach using only time-series data from wearable sensors.
Since raw sensor data has strong temporal dependency between
samples, we employ Long-Short Term Memory (LSTM)
network and evaluate our approach on a publicly available
dataset (Daphnet Freezing of Gait Dataset [8]). We identify
key points that are missed by the existing literature regarding
the methodology of FoG prediction. Using this insight, we
refine the prediction accuracy and average prediction time to
facilitate a more intuitive and systematic methodology for future
work. The major contributions of this work are as follows:

« Achieve up to 89% prediction accuracy with average predic-
tion time of 1.42 s using a subject-independent model.

« Identify the key issues regarding the definition of prediction
and propose a simpler and intuitive alternative.

o Provide a comprehensive analysis of the effects of the
percentage overlap between each consecutive segment, pre-
FoG duration, segment size, and prediction horizon on the
prediction accuracy and time.

II. RELATED WORK

Prior studies showed that the sensor data preceding the actual
FoG onset has distinct characteristics [3, 4, 6, 9]. Thus, it is
crucial to identify pre-FoG samples correctly. The pre-FoG
period is still a debate topic. A single value may not be correct



for every patient and FoG instance since the pre-FoG duration
varies similar to FoG episode durations [5]. Therefore, the
methodology for processing and labeling sensor samples is
critical for achieving accurate FoG prediction.

The conventional methodology followed by most of the
studies begins with data pre-processing (e.g., filtering, outlier
detection, and correction). Then, data is segmented into
windows of t-seconds for further processing. These segments
are generally obtained by sliding window approach with ¢,
seconds of step size or overlap of w-percent of the previous
window. Since the goal is to predict FoG episodes, segments
preceding the actual FoG onset are labeled as “FoG” (2-
class problem [1-3, 10]) or as “pre-FoG/transition” (3-class
problem [9-11]). Once the segments are identified and labeled,
the raw data is used as time series [2, 12] or transformed into
features using feature extraction algorithms [1, 9, 11]. Then, the
data is classified as “FoG”, “pre-FoG”, and “no-FoG” segments
using either a conventional machine learning algorithm (e.g.,
support vector machine, linear discriminant analysis [10, 13])
or neural-network/autoregressive modeling approach [1-3, 13].

Recent studies that use the Daphnet dataset mainly focus
on subject-specific modeling since gait characteristics, sensor
placements, and cognitive tasks during sessions are user-
specific. However, FoG occurrence is rare, and data collected
from one subject may not represent the general characteristics
of pre-FoG and FoG episodes. It even may not be sufficient
to train a reliable classifier for the same subject. One idea to
remedy this problem is using transfer learning between the
trained models for different subjects. Two recent studies [2, 12]
employ the transfer learning approach by first training the neural
network with data from all subjects but one and add a final layer
for the target subject’s data. In [2], an overall accuracy, which
is over 90%), is reported for all samples instead of prediction
accuracy for transition samples, and in [12], the definition of
correct prediction of an FoG episode may overestimate the
performance of the proposed approach. Despite the transfer
learning approach, both studies show that their approach is not
generalizable among all subjects. Recent work by Kleanthous
et al. [9] proposes subject-independent modeling using the data
from all subjects to train and test multiple machine learning
models using different feature sets. It introduces the “transition”
class and investigates the effect of three different segment
sizes without overlap. Transition segments include only the
samples right before the onset. Hence, correctly classifying
those segments should not be considered as prediction. A more
detailed comparison is presented in Section IV-B.

The definition of the prediction needs to be precise. In
addition, the methodology should consider the total energy
consumption since FoG prediction targets wearable systems
with stringent energy budgets considering the need to collect
data in the home environment. In contrast to prior work, this
paper focuses on a precise definition of the prediction of FoG
episodes. We employ subject-independent modeling using time-
series data to predict FoG episodes and investigate the effects
of the overlap between segments, pre-FoG duration, segment
size, and prediction horizon on the prediction accuracy.

III. SUBJECT-INDEPENDENT FOG PREDICTION
A. Preliminaries

The input to the proposed technique is data streaming
from wearable sensors, such as inertial measurement units.
For example, our study employs the Daphnet Freezing of
Gait Dataset [8], designed to benchmark the algorithms to
detect FoG in real-time using wearable accelerometers. 3D
accelerometers are placed above the ankle, above the knee,
and on the lower back of 10 PD patients, all with FoG history
(mean age of 66.5+4.8 s.d). The sampling rate for the sensors
is 64 Hz. Subjects performed two sessions, each consisting
of three basic walking tasks, more specifically, (i) walking
back and forth in a straight line, including several 180 degrees
turn; (ii) random walking with a series of initiated stops and
several 360 degrees turn and (iii) walking tasks simulating
the activities of daily living which includes getting something
to drink, entering and leaving rooms, walking to kitchen or
restrooms. Physiotherapists annotated the FoG occurrences
both during and after the experiments by analyzing the video
recordings. Each sample from accelerometers is labeled as “0”
for “not part of the experiment”, “1” for “no-FoG”, and “2”
for “FoG”. Eight out of ten patients exhibited FoG during the
experiments, and in total, 237 FoG (29 minutes) instances were
recorded out of 500 minutes of data.

B. Data Pre-processing and Preparation

We first remove all the samples labeled as “0” since they
are not part of the experiments. The dataset also has “no
activity/stop” samples for each subject, as shown in Figure 1.
Since these samples have similar characteristics to the “FoG”
samples (highlighted in light red in Figure 1), they can create
false positives for the “FoG” class. To reduce this risk, we
remove these samples from the dataset by manually inspecting
the data for each subject. Upon inspection of data, we identify
artifacts/outliers (e.g., abnormal spikes). These outliers are
detected using a Hampel identifier with a window length of 32
and a threshold of 10 times the median absolute deviation. Then,
they are replaced using a 2"¢ order polynomial interpolation of
neighboring values. The data is then filtered using a 4** order
Butterworth band-pass filter with cutoff frequencies of 0.5 Hz
and 20 Hz. We choose 20 Hz as the high cutoff frequency since
the human walking motion and the information for FoG event
detection is in the low-frequency range. Once the filtering is
done, the data is normalized in the [—1, 1] interval using the
values only from the training set.

Since the dataset is heavily imbalanced with “no-FoG”
samples being the majority class, we follow the 2-class problem
by labeling the samples preceding the actual FoG onset by
pre-FoG duration (7,5) as “2” (FoG). In Figure 1, the actual
FoG samples are highlighted with light red, while the preceding
samples 7,y seconds before the actual onset are highlighted
with gray for illustration. Next, we segment the data into ¢-
second windows with w-percent overlap between consecutive
segments. For example, Figure 1 shows two consecutive 3-
second segments. Since the overlap is w = 25%, Segment
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Fig. 1: Visualization of our data preparation approach. Accelerometer data from SS5.

2 includes last 0.75 s of Segment 1. If more than half of
the samples in a segment are labeled as “FoG”, it is labeled TP + TN
as “FoG”. In summary, each segment has 64 x t timesteps Overall Accuracy = TP+ TN + FP + FN (D
and 9 channels (three 3D accelerometer is used in the dataset). o P o TN
Apart from “no-FoG” and “FoG” segments, we define transition Sensitivity = TP + FN’ Specificity = TN + FP 2

segments as the segments which have any samples within the
pre-Fog duration, 7,¢. We identify each transition segment and
its distance in time to the FoG onset.

All the steps above are applied to each subject’s data
separately. Then, we combine the segments from all subjects
and randomly choose 80% of segments as the training and
20% as the test set while keeping the ratio of number of
segments from each class the same in both sets and propose a
generalizable subject-independent model to predict FoG.

C. Proposed Deep Learning Approach for FoG Prediction

Since the real-time sensor data has a strong temporal
dependency between samples, we implement an LSTM network
to model this dependency. Our network consists of two
bidirectional LSTM layers with timesteps of size 64 x ¢
with nine features, where each timestep has 32 hidden states.
Hyperbolic tangent and sigmoid are used as the state and gate
activation functions, respectively. Two fully connected layers
with ReLU activation follow the LSTM layers. The first one
consists of 32 neurons, while the second one consists of 16
neurons. We employ a dropout layer with a rate of 0.5 between
the LSTM and fully connected layers to prevent overfitting.
We also perform a batch normalization layer after each hidden
layer in the network to improve the learning performance.
Finally, a softmax layer is used at the output layer. The dataset
is heavily skewed towards the “no-FoG” class, where the ratio
between class samples is approximately 0.2. Therefore, we use
sample weighting in the loss function. We set the learning rate
as 5 x 107* and the loss function as categorical cross-entropy.
We also define early stopping criteria based on validation loss.
The training batch size and the maximum number of epochs
are set to 64 and 1000, respectively. The proposed network is
implemented in Python using Keras API.

D. Performance Metrics

To evaluate the overall performance of the proposed ap-
proach, we use accuracy, sensitivity, and specificity metrics
defined as follows:

where TP, FP, TN, and FN represent the true positives, false
positives, true negatives, and false negatives, respectively. Also,
“no-FoG” is the positive class, “FoG” is the negative class.
We define the prediction accuracy and time in their simplest
form. Recall that we identify the transition segments in the
test set and their distance in time to the actual FoG onset.
We define a period of time called the prediction horizon as
shown in Figure 1 to choose which transition segments should
be considered to calculate prediction accuracy and time. We
identify the transition segments that are closest to the prediction
horizon. Since the dataset is segmented to ¢-second windows,
these transition segments may end before or after the prediction
horizon. We define prediction accuracy as the ratio of the
transition segments identified as “FoG” to the overall number
of transition segments. We also calculate the average prediction
time by taking the average time difference between correctly
identified transition segments and the corresponding FoG onset.

IV. EXPERIMENTAL RESULTS

This work investigates the effects of the percentage overlap
(w) between each consecutive segment, pre-FoG duration (7, ),
the segment size (t-seconds), and the prediction horizon on
the prediction accuracy using the sets [0%, 25%, 50%)], [1, 3, 5],
[0.5,1,2,3],and [0, 1, ..., 7, ¢] respectively. We also provide the
number of transition segments included in calculating prediction
accuracy and time. This information has a major impact on
the evaluation, which is overlooked in the existing literature.
The results given in this section are averages of five runs with
different random seeds.

A. FoG Prediction Evaluation

This section evaluates the performance of the proposed
approach using the performance metrics described in Sec-
tion III-D.

1) Impact of Percentage Overlap: The main objective of
this work is to predict the FoG episodes. To this end, for
each parameter setting, we identify the transition segments
and calculate their classification accuracy, which is defined
as prediction accuracy in Section III-D. Figure 2 shows the
prediction accuracy of the proposed approach for 7,y =1 s



using various segment sizes, overlap percentages, and prediction
horizons. The prediction accuracy increases with the overlap
duration, which goes up to 91.17% using 3-second segment
size as shown in Figure 2. A similar behavior is observed
for other parameter settings, as illustrated in Figure 3 and
Figure 4. The dataset is highly skewed to the “no-FoG” class.
Overlap provides additional temporal dependent segments,
which improve the learning performance of the model for
the under-represented class. However, it may also introduce
partial data leakage between training and test set and cause an
overestimation of the model’s performance, which is neglected
by most studies in the literature.

The overall accuracy, sensitivity, and specificity of the model
increase as the percentage overlap changes from 0% to 50%
for all 7,7 values and segment sizes, as shown in Table 1. For
instance, for 7,y = 3 s and 2-second segment size, the accuracy,
sensitivity, and specificity values goes from 82.04%, 82.27%,
and 81.51% to 93.05%, 92.76%, and 93.71% for w = 0%,

= 25%, and w = 50% respectively. Similar results are
obtained for other parameter settings suggesting that there is
no overfitting towards one class, which are given in Table I.
Note that the overall accuracy in this table does not represent
the prediction accuracy.

2) Impact of pre-FoG Duration (Tps): The increase in 7,
results in a more balanced dataset since the number of “no
FoG” segments decreases as the number of “FoG” segments
increases. Larger 7,y does not mean the model improves with
a balanced dataset since sample weighting is used in the loss
function. On the contrary, it may result in false positives, which
degrades the overall performance. However, we cannot observe
any significant performance differences between models using
different 7,7 values as the pre-FoG gait characteristics depend
on the subjects [12] while our model is subject-independent.

3) Impact of Prediction Horizon and Segment Size: As the
prediction horizon increases, the prediction accuracy decreases
or remains similar (see Figures 2, 3, and 4). This pattern is

100% @ 0.5-second Segment Size ; b)

1-second Segment Size

B O0verlap =25%

observed by other studies in the literature as well [9]. There
is a clear trend in Figure 2, Figure 3, and Figure 4 except
for one salient case. For 7,y = 5 s, our model achieves up
to 69.03%, 70.56%, 76.73%, 84.24%, 77.92%, and 97.62%
prediction accuracy with average prediction time of 4.56, 4.16,
3.17, 2.16, 1.27, and 0.17 seconds before the actual onset
respectively using 0.5-second segment size and w = 50%.
Although the overall prediction accuracy decreases as the
prediction horizon increases in this setting, the accuracy for the
2-second prediction horizon is much larger than the accuracy for
the 1-second prediction horizon. This shows that the transition
segments for these two cases have different characteristics,
suggesting that the split of training and test set may have
a major impact on the obtained results. We deduct that the
methodology for FoG prediction should follow a random split
technique with a large number of runs (> 10) to be averaged.

Segment size being larger than or equal to the 7,y mainly
results in the same transition segments to be evaluated for
different prediction horizons. Hence, the prediction horizon
parameter loses its importance and the prediction accuracy
and time for those configurations become very similar. As it
is shown in Figure 2, different prediction horizons yield the
same prediction accuracy for the 7,5 =1 s and for ¢ > 1s. It
may also result in negative prediction time values since the
transition segments may include samples after the actual FoG
onset. For example, 3-second segment size yields an average
prediction time of —1.5 s for 7,y = 1 s (see Table I).

4) Best Parameter Setting: We suggest that the FoG should
be predicted at least 1 second before the actual FoG onset
to enable preemptive cueing or fall preventive mechanism.
Considering this, we identify the best parameter configuration
for each 7,y values. The best parameter pairs for 7,y = 1 s,
Tpf = 3 8, and 7,y = 5 s are (0.5-second segment size,
w = 50%), (2-second segment size, w = 50%), and (1-second
segment size, w = 50%) respectively. Using these pairs, our
model achieves up to 89.42%, 88.34%, and 88.52% prediction
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Fig. 2: Prediction Accuracy for 7,y = 1 s. *PH: Prediction Horizon
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TABLE I: Additional results for 7,y =1 s, 7,y = 3 s, and 7,y = 5 s. *PH: Prediction Horizon

Tpr=1s
0.5-second Segment Size | 1-second Segment Size | 2-second Segment Size | 3-second Segment Size
w=0% w=2% w=50% | w=0% w=2% w=50% | w=0% w=2% w=50% |w=0% w=2% w=>50%
Overall Accuracy  82% 85% 91% 83% 85% 90% 84% 85% 92% 82% 87% 92%
Sensitivity ~ 84% 86% 91% 84% 86% 91% 86% 86% 92% 85% 88% 92%
Specificity  78% 82% 92% 78% 83% 88% 79% 81% 92% 72% 85% 92%
Avg. Pred. Time (s) (PH=0) 0.06 0.19 0.15 0.09 0.09 0.08 -0.73 -0.73 -0.71 -1.52 -1.42 -1.46
# of Transition Segments (P.H=0) 39 39 49 47 49 45 37 44 38 42 45 41
Avg. Pred. Time (s) (PH=1) 0.57 0.57 0.57 0.09 0.09 0.08 -0.73 -0.73 -0.71 -1.52 -1.42 -1.46
# of Transition Segments (P.H=1) 43 46 52 47 49 45 37 44 38 42 45 41
Tpf =38
Overall Accuracy  82% 84% 88% 82% 87% 93% 82% 87% 93% 81% 87% 92%
Sensitivity ~ 84% 86% 88% 84% 88% 95% 82% 89% 93% 84% 89% 94%
Specificity ~ 76% 80% 88% 76% 84% 89% 82% 82% 94% 76% 83% 88%
Avg. Pred. Time (s) (PH=0) 0.24 0.25 0.16 0.63 0.47 0.37 0.27 0.10 0.26 0.45 0.41 0.43
# of Transition Segments (P.H=0) 34 33 37 33 35 42 35 41 35 38 30 39
Avg. Pred. Time (s) (PH=1) 124 1.21 1.16 1.10 1.36 1.37 1.27 1.22 1.26 0.60 0.54 0.60
# of Transition Segments (P.H=1) 37 42 38 36 38 43 35 39 34 38 30 39
Avg. Pred. Time (s) (PH=2) 2.08 2.19 2.16 2.08 2.07 2.09 1.27 1.22 1.26 0.45 0.41 0.43
# of Transition Segments (P.H=2) 39 40 34 36 35 36 35 39 34 38 30 39
Avg. Pred. Time (s) (PH=3) 255 2.56 2.56 2.06 2.06 2.10 1.23 1.20 1.26 0.43 0.44 0.45
# of Transition Segments (P.H=3) 33 41 39 36 35 36 35 39 34 38 30 39
Tpf =58
Overall Accuracy 81% 83% 89% 81% 85% 92% 80% 86% 90% 80% 83% 91%
Sensitivity ~ 82% 84% 90% 83% 86% 92% 81% 86% 92% 80% 84% 92%
Specificity  78% 80% 87% 79% 84% 92% 80% 85% 88% 81% 81% 90%
Avg. Pred. Time (s) (PH=0) 0.26 0.22 0.17 0.75 0.33 0.39 1.26 0.89 0.72 0.11 0.19 0.54
# of Transition Segments (P.H=0) 34 34 43 35 32 37 36 33 31 34 34 30
Avg. Pred. Time (s) (PH=1) 128 1.20 1.17 1.69 1.56 1.42 1.30 1.77 1.70 1.18 1.14 1.15
# of Transition Segments (P.H=1) 36 33 37 34 30 30 36 32 32 29 33 28
Avg. Pred. Time (s) (PH=2) 229 2.25 2.16 2.74 2.46 242 2.27 2.11 2.31 2.18 2.21 2.30
# of Transition Segments (P.H=2) 31 39 39 33 35 30 28 29 30 29 31 30
Avg. Pred. Time (s) (P.H=3) 3.28 3.23 3.17 3.11 332 3.40 3.27 3.26 3.34 2.24 2.30 247
# of Transition Segments (P.H=3) 33 35 34 33 35 36 28 30 29 29 31 30
Avg. Pred. Time (s) (PH=4) 4.06 4.18 4.16 4.10 4.11 4.08 3.27 3.26 3.34 2.18 221 2.30
# of Transition Segments (P.H=4) 29 31 40 33 34 37 28 30 29 29 31 30
Avg. Pred. Time (s) (PH=5) 4.54 4.55 4.56 4.10 4.11 4.08 3.27 3.26 3.34 2.18 2.21 2.30
# of Transition Segments (P.H=5) 30 38 31 33 34 37 28 30 29 29 31 30

accuracy with an average prediction time of 0.57, 1.26, and 1.42
seconds for 7,y =1 s, 7,y = 3 s, and 7,y = 5 s, respectively.
In summary, our approach achieves satisfactory prediction
accuracy and time values using subject-independent modeling.
The obtained results for various parameter configurations are in
line with the literature with the addition of a precise definition
of prediction and metrics related to transition segments.

B. Comparison to the State-of-the-Art Approaches

This section compares our results against recent studies on
FoG prediction using the Daphnet dataset. It also discusses key
issues regarding their approach and the definition of prediction.

Kleanthous et al. [9] propose a 3-class problem by in-
troducing the “fransition” class as the period between “no-
FoG” and “FoG” labels. They investigate 2, 3, and 4-second
windows using different feature sets and classifiers. Since
the “transition” class is formed from the “no-FoG” class and
no overlap is applied between segments, the total number of
segments from each class becomes around 200 segments, which

is significantly small for most machine learning algorithms.
They use subject-independent modeling and an SVM classifier
with radial basis kernel function. Their approach achieves
a sensitivity of 72.34%, 91.49%, 75.00% and specificity of
87.36%, 88.51%, and 93.62% for “FoG”, “transition”, and “no-
FoG” classes respectively, with 3-second windows. Sensitivity
values of the best performing classifier show that it favors the
transition class the most while performing poorly on the other
two classes. Moreover, their prediction horizon is effectively
zero seconds since the classifier uses the transition segments,
which are adjacent to the actual FoG onset.

Arami et al. [11] choose a distinctive subject-specific
approach where they first predict the features ahead of time
and classify the predicted features as “no-FoG” and “FoG”.
First, 75 different features are extracted using 4-second sliding
windows with a step size of 0.5 seconds (leading to 87.5%
overlap). Then, they train autoregressive models using the
autocorrelation information of all features for each subject.



Finally, the predicted features are classified using SVM with
radial basis function and a simple neural network. Their study
achieves up to 94% correctly predicted FoG onsets with
an expected prediction horizon of 1.72 seconds. However,
considering that there is considerable overlap between windows
(87.5%), there is a significant probability of data leakage
between training and test set, which may artificially increase
the performance of the proposed approach.

Yuan and Chakraborty [12] define the classes as “WALK”
and “ALARM”, where the alarm state indicates that the subject
is either in pre-FoG or FoG state. Their model predicts every
accelerometer sample. However, they aggregate the prediction
of 30 samples (~0.5 s) into one prediction and call it a time unit.
If more than half of the samples are classified as “ALARM”,
then the time unit is identified as “ALARM”. The authors also
state that once a patient is to be predicted in the “ALARM”
state, their method requires two “WALK” predictions to switch
back to the “WALK” state. Considering that their study is
subject-specific, averaging across the best configurations from
all patients, the reported prediction accuracies for 1, 3, and 5
seconds of prediction horizon are 94.7%, 82.9%, and 68.1%
respectively. However, they define the correct prediction of
an FoG episode as the first correct “ALARM” time unit that
leads to the FoG onset. This may overestimate the performance
of their approach considering that their method requires two
“WALK” predictions to switch back to the “WALK” state. They
also do not report the number of FoG events in the test set for
each patient, which is important since some patients have only
a few FoG instances (<5) in their test set.

The existing literature on FoG prediction uses varying
definitions for prediction, predicted segments, accuracy, and
prediction horizon. In this work, we propose a subject-
independent approach with a precise definition of prediction
accuracy and time. Overall, we achieve 89.42%, 88.34%, and
88.52% prediction accuracy with an average prediction time
of 0.57, 1.26, and 1.42 seconds for 7,y =1 s, 7,y = 3 s, and
Tpf = O s respectively.

The Daphnet dataset [8], which is the only publicly available
dataset for FoG analysis until the year 2021, has several
limitations. The dataset is small, especially for analysis of rare
events such as FoG. Besides, the dataset has many cases where
there is no activity recorded. We attribute this to the laboratory
environment in which the patients felt exhausted and over-
whelmed during the experiments. In addition, although there
are different types of FoG [10], the labeling in the dataset does
not differentiate between these different types (i.e., labeling is
done only according to the FoG presence). These limitations
may degrade the learning process and overall performance of
any proposed approach using this dataset. Therefore, there is
a critical need for an FoG dataset which i) has a high number
of FoG occurrences (obtained experimentally or generated
synthetically using Generative Adversarial Networks [14]),
ii) employs a long-term experimental procedure in a home
environment, and iii) has detailed labeling both for the types
of FoG and for different types of normal activities.

V. CONCLUSION

FoG affects the quality of life of PD patients, causing anxiety,
loss of mobility, and falls. Studies show that external cues help
patients to overcome the freezing state and resume walking.
Hence, predicting an FoG episode can enable preemptive
cueing and avoids the FoG episodes. This paper presented
a subject-independent, generalizable deep learning approach,
which can achieve up to 89% prediction accuracy with an
average prediction time of 1.42 s using a publicly available
dataset. As future work, we plan to design a long-term
experimental procedure that uses our own low-power wearable
device prototype [15], and collect reliable and goal-oriented
data for freezing of gait from Parkinson’s Disease patients.
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