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Abstract

Newborn screening (NBS) is a state-level initiative that detects life-threatening genetic dis-

orders for which early treatment can substantially improve health outcomes. Cystic fibrosis

(CF) is among the most prevalent disorders in NBS. CF can be caused by a large number of

mutation variants to the CFTR gene. Most states use a multi-test CF screening process that

includes a genetic test (DNA). However, due to cost concerns, DNA is used only on a small

subset of newborns (based on a low-cost biomarker test with low classification accuracy), and

only for a small subset of CF-causing variants.

To overcome the cost barriers of expanded genetic testing, we explore a novel approach, of

multi-panel pooled DNA testing. This approach leads not only to a novel optimization problem

(variant selection for screening, variant partition into multi-panels, and pool size determination

for each panel), but also to novel CF NBS processes. We establish key structural properties

of optimal multi-panel pooled DNA designs; develop a methodology that generates a family of

optimal designs at different costs; and characterize the conditions under which a 1-panel versus a

multi-panel design is optimal. This methodology can assist decision-makers to design a screening

process, considering the cost versus accuracy trade-off. Our case study, based on published CF

NBS data from the state of New York, indicates that the multi-panel and pooling aspects

of genetic testing work synergistically, and the proposed NBS processes have the potential to

substantially improve both the efficiency and accuracy of current practices.
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1 Introduction and Motivation

Newborn screening (NBS) is a state-level initiative that routinely screens newborns for life-threatening

genetic disorders for which early treatment can substantially improve health outcomes. NBS has

saved thousands of newborns from disability and death in the United States (US) [44]. While

the Advisory Committee on Heritable Disorders in Newborns and Children recommends thirty-five

genetic disorders for NBS [3], the number of disorders included in a state’s NBS program can be

less [8], as cost is a major barrier to the inclusion of disorders, e.g., [16, 44, 68, 71, 78, 85, 86].

Thus, screening must be both accurate and efficient. NBS is performed via laboratory tests on

dried blood spots routinely collected from newborns for this purpose.

One of the most prevalent NBS disorders is cystic fibrosis (CF), which is caused by harmful

mutations to the CFTR gene [14, 54]. Currently, there are 352 well-characterized CF-causing

variants (specific types of mutations), most of them very rare [18, 80]. Like most NBS disorders,

CF is a recessive disorder; everyone has two copies of the CFTR gene, one inherited from each

parent, and to have CF a newborn must inherit a mutation, of any CF-causing variant, from each

parent. That is, a CF-positive newborn has two CF-causing mutations, one on each CFTR gene.

Newborns that inherit only one CF-causing mutation are asymptomatic CF-carriers (the type of

variant does not alter the newborn’s CF-positivity nor carrier status). CF manifests primarily with

respiratory and digestive symptoms, and is potentially life-threatening [33], but starting treatment

before symptoms appear can reduce hospitalization and complications [2, 12, 17, 39, 45]. In 2004,

the Centers for Disease Control and Prevention recommended CF for NBS [45], and since 2009

every state’s NBS program has included CF screening [25].

NBS for CF is accomplished via a screening process, i.e., a sequence of tests and decision rules,

that classifies newborns as screen-negative or screen-positive as accurately as possible, under limited

resources. The two most commonly used screening tests, both of which are performed on the dried

blood spots routinely collected from the newborn and sent to the NBS laboratory, include:

Immunoreactive trypsinogen (IRT) test is a biomarker test that measures IRT levels, which are

generally elevated in CF-positive newborns [22]. However, the range of IRT levels for CF-positive

and CF-negative (mutation-free or CF-carrier) groups overlap [58, 77], resulting in relatively low

classification accuracy, e.g., depending on the decision rule (threshold), sensitivity and specificity

vary between 85-97% and 95-99%, respectively [24, 45, 53, 55, 62].
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Deoxyribonucleic acid test (DNA) is a genetic test that typically uses variant-specific molecular

probes, which bind to the variant, amplify it via polymerase chain reaction (PCR), and provide a

signal if binding occurs (implying the presence of the specific variant) [84].1 Probe-based DNA has

a technological limit on the number of variants included in the panel (i.e., set of variants searched

for), e.g., a panel limit of around 90 variants is common [64]. DNA has almost perfect analytical

sensitivity, that is, it detects the variants in its panel with almost perfect reliability [50, 51, 52, 59].

However, its clinical sensitivity, that is, the likelihood that it will detect a CF-positive subject, is

dependent on the variants included in its panel. Because there is a large number of variants, adding

more variants to the panel improves the test’s clinical sensitivity, but comes at the expense of a

higher testing cost, and is restricted by the technological limit on panel size. Consequently, for the

practical case when the DNA panel does not contain all CF-causing variants, its clinical sensitivity

will be less than perfect. Thus, it is the test’s clinical sensitivity that impacts the likelihood of a

missed CF case, and we explicitly model this accuracy versus cost trade-off.

While each state designs its own CF screening process, all states use IRT as the first test. The

most commonly used process is the IRT/DNA process (Fig. 1), in which the IRT test is followed

by a DNA test for newborns with IRT levels exceeding a given threshold. Fig. 1 depicts the

commonly used 5% daily IRT threshold (§4.2.2): newborns with IRT levels in the top 5%, of all

IRT levels for each testing day, undergo DNA testing [53]. For DNA, newborns with at least one

mutation detected (of any CF-causing variant) are typically classified as screen-positive, and all

other newborns are classified as screen-negative (e.g., [53, 70, 89]). A false-negative occurs when a

CF-positive newborn is classified as screen-negative, and a false-positive occurs when a CF-negative

newborn is classified as screen-positive. For example, for the IRT/DNA process, a false-negative

occurs when either the CF-positive newborn’s IRT level is below the IRT threshold, or the DNA

panel does not include any of their specific mutation variants (i.e., it has less-than-perfect clinical

sensitivity). On the other hand, a false-positive occurs when the newborn is a CF-carrier, whose

single mutation variant is included in the DNA panel (hence detected due to the test’s perfect

analytical sensitivity), and whose IRT level is higher than or equal to the IRT threshold.

By the FDA guidelines, “genetic testing is not intended for stand-alone diagnostic” [40]. Con-

sequently, all current processes end with the referral of the screen-positive newborns for diagnostic

1The probe-based DNA test differs from next-generation sequencing, which is another genetic testing technology
that determines the genetic code for larger sections of the CFTR gene, and then known variants are detected via
bioinformatics [9]. However, the probe-based DNA tests are less expensive, and require shorter processing times than
next-generation sequencing tests. More importantly for our purposes, the DNA tests allow for pooled (group) testing,
whereas next-generation sequencing tests, for technical reasons, do not.

2



Figure 1: The commonly used IRT/DNA process for CF NBS

testing, conducted via the gold standard Sweat Chloride (SC) test in all US states, e.g., [26, 38, 66].

SC has perfect sensitivity and specificity, and thus, correctly classifies the newborns, fixing any

false-positives from NBS. However, an SC referral of a false-positive comes at the expense of un-

necessary testing [88], which requires the newborn to be taken to a specialized testing facility,

potentially causing parental anxiety and out-of-pocket costs (e.g., travel, missed work) [26, 83, 87].

On the other hand, any CF-positive newborn missed in the screening process (i.e., a false-negative)

is not referred to SC, leading to late diagnosis, which often results in poor health outcomes. Conse-

quently, maximizing the accuracy of CF NBS becomes equivalent to minimizing the false-negatives;

and the testing process is naturally constrained by testing cost considerations, and the unnecessary

testing (DNA and/or SC) of false-positives contribute to the testing cost.

The common IRT/DNA process suffers from two major drawbacks: (1) IRT test leads to some

false-negatives (missed CF cases); for example, between 2007-2012, all false-negatives reported for

New York’s CF NBS program, and half of all false-negatives reported for California’s CF NBS

program, stemmed from the IRT test [53, 55]; and (2) DNA testing is expensive, and has a tech-

nological limit on panel size; as a result, variant selection for DNA revolves around the trade-off

between clinical sensitivity and cost, e.g., see [35], further the cost of DNA limits the number of

newborns that can be genetically tested.

With the goal of improving current CF NBS practices, we explore a novel approach of pooled

DNA, which we refer to as P-DNA. Under P-DNA, we use Dorfman pooling ([31]), where samples

from multiple subjects (extracted from their dried blood spots) are combined into a single testing

pool and tested with one DNA test. If the pool tests positive (i.e., at least one variant in the panel

is detected), then each subject is individually tested (with an additional DNA test per subject,

using a new sample, extracted from the same dried blood spot) to identify subject(s) with CF-

causing variants; and if the pool tests negative, then all subjects in the pool are classified as

screen-negative. Pooling can substantially reduce the number of DNA tests required for NBS over
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the current individual DNA testing paradigm. While Dorfman pooling is used in various health

screening contexts (e.g., [6, 67], and the references therein), NBS introduces a new application area

and a new pooling design problem. First, panel composition (i.e., variant set) and pool size (i.e.,

the number of subjects tested in each pool) must be determined jointly, because panel composition

impacts the optimal pool size: adding more variants to the panel increases the clinical sensitivity

of DNA testing, which is a driver of the optimal pool size [7]. We also explore another novel

idea, of using multiple panels, where each panel has its own pool size, and requires its own DNA

test, leading to the decision of how to optimally partition the selected variant set into multiple

panels. Specifically, in the case of a multi-panel P-DNA, each panel has its own testing pool,

and each newborn’s dried blood spot (through samples extracted) is tested, in parallel, in every

panel’s pool, followed by the individual testing of those newborns (through additional samples) in

any positive-testing pool according to Dorfman pooling. Then, a newborn is classified as screen-

negative only if no mutations are detected in any of the panels, and is classified as screen-positive

otherwise, see Fig. 2. The multi-panel approach allows the testing of more variants, in numbers

comparable to some next-generation sequencing tests (thus increasing the clinical sensitivity of

DNA), but importantly, as we show in this paper, it can increase efficiency substantially when used

in conjunction with pooling, beyond the efficiency gains of pooling alone. Therefore, the P-DNA

design problem incorporates this variant partition decision into variant selection (using only one

panel is thus a special case).

This research falls under the general umbrella of public health screening and its intersection with

operations research (OR), e.g., see [15, 42] for references on the application of OR and statistics

models to disease screening. In the following, we provide an overview of the related literature.

Given the vast literature, our discussion is not exhaustive, but rather indicative of how this paper

complements, and contributes to the literature. Literature that is the most closely related to this

work is also cited throughout the paper. Because genetic testing is performed in vitro, i.e., on

specimens (in our setting, dried blood spots from newborns), pooled testing is viable, and this

aspect differentiates this research from studies that focus on in vivo testing, i.e., directly on the

subject. From this perspective, this work is closer to donated blood screening, e.g., [34], infectious

disease screening, e.g., [5, 37, 49, 67], in vitro cancer screening, e.g., [47, 61, 65, 81], among others.

However, the unique characteristics of CF and genetic testing give rise to a novel decision problem

in our setting, i.e., the integrated variant selection, variant partition, and pool size determination

problem discussed above.
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Regarding the CF NBS literature that examines screening processes, a majority of these studies

are in the domain of medical/health systems literature; see [35, 36] for a more detailed overview,

and §4.2.1 for additional literature about current CF NBS practices. Many of these papers use

descriptive analyses based on historical data, e.g., [23, 48, 55], with only a few studies that utilize

predictive analyses to compare a small number of given CF NBS processes, e.g., [71, 87]. To our

knowledge, there are only two papers that use prescriptive analyses to optimize different parts of CF

NBS; [35, 36] both design a single-panel DNA for individual testing (i.e., without pooling), that is,

following the current CF testing paradigm, given a testing budget, and focusing, respectively, on the

robustness and equity aspects of screening. The partitioning of variants into multiple panels, and

pooling aspects of this work are unique elements that differentiate it from this previous research.

Much of the pooled testing literature studies Dorfman pooling and its variations, mostly under

a deterministic and known prevalence rate; only a few papers consider a stochastic rate with a

given distribution, see the references in [7]. Other pooling methods, such as array pooling, are

also explored, e.g., [56, 72]. Pooled testing is one component of our decision problem, which

has unique characteristics in our setting, including a pool prevalence that depends on variant

selection and partition components, and a limited testing budget. We consider Dorfman pooling

because it is relatively easy to implement, yet highly efficient, and hence is adopted in many

screening applications, including screening of donated blood, sexually-transmitted diseases and

other infectious diseases, and many others, e.g., [1, 4, 30, 57, 63, 73, 74]. Thus, Dorfman pooling

is a viable first step for CF NBS, where pooling is currently not utilized. We also briefly discuss

P-DNA under array pooling, but the research question, of which pooling method to use in different

settings, is beyond the scope of this paper.

The contributions of this paper are multi-fold. From a modeling perspective, we introduce a

novel decision problem that arises not only in NBS, but in genetic testing in general. From a

theoretical perspective, we establish key structural properties of optimal P-DNA designs (variant

selection, variant partition into multiple panels, pool size determination). The unique pooling

and multi-panel dimensions of this work give rise to a new decision problem in genetic testing,

contributing to the small number of mathematical models on genetic testing, including [35, 36],

both of which design a single-panel DNA under individual testing and for a given testing budget,

as discussed above. The structural properties of optimal designs lead to an efficient methodology

for generating a family of optimal P-DNA designs, along with their corresponding budgets (i.e.,

budget breakpoints, which are complex functions of the overall process design and parameters).
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Figure 2: Representative P-DNA process for CF NBS

We also characterize the conditions under which a 1-panel versus a multi-panel P-DNA design

is optimal. From a practical perspective, the family of designs generated by our methodology

allows the decision-maker to design an optimal P-DNA, considering the trade-off between clinical

sensitivity and cost. Further, the increased efficiency in the genetic testing component, made

possible by the reduced cost per newborn of P-DNA, allows for improved CF NBS processes.

The case study, which uses published CF NBS data from the state of New York [53], indicates

that the multi-panel and pooling aspects of genetic testing work synergistically, and the proposed

NBS processes have the potential to substantially improve both the efficiency and accuracy of

current practices. These findings have important implications on NBS practices, for instance, our

modeling framework and methodology can be used by state laboratories to make decisions on new

screening processes, e.g., testing platforms, testing kits, and/or subcontracting decisions, and by

test manufacturers to develop new, innovative testing kits.

The remainder of this paper is organized as follows. §2 presents the notation, assumptions,

decision problem, and some preliminaries. §3 derives key structural properties of optimal P-DNA

designs, which lead to an efficient, optimization-based methodology for generating a family of

optimal P-DNA designs and their corresponding budgets. §4 performs a case study and applies

the new methodology for P-DNA design to published CF NBS data from the state of New York.

Finally, §5 provides a summary of the main takeaways from this work, along with the limitations

of the study, which motivate future research directions. To facilitate the presentation, Appendix A

provides a summary of the acronyms and the mathematical notation, Appendix B includes many of

the derivations, and Appendices C-E include supplementary results and the mathematical proofs.
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2 The Decision Problem and Preliminaries

We first provide the notation, assumptions, and the decision problem (§2.1), followed by some

preliminaries that will be used in the subsequent analysis (§2.2).

2.1 Notation, and Assumptions, and Decision Problem

Let Ω denote the set of CF-causing variants, with cardinality m (currently m = 352) and variant

frequency vector q = (qi)i∈Ω, with qi, i ∈ Ω, denoting the conditional probability that a CFTR gene

has a mutation of variant i, given that the gene has a mutation, thus
∑︁

i∈Ω qi = 1. Because each

subject has two CFTR genes, the probability that a CF-positive subject (i.e., with one mutation in

each CFTR gene) has two mutations of variant i ∈ Ω is q2i , and one mutation of variant i and one

mutation of variant j, i, j ∈ Ω, i ̸= j, is given by 2qiqj . We define random variable N as the number

of mutations (of any variant in set Ω) a random newborn has, with sample space S(N) = {0, 1, 2},

respectively denoting the newborn’s status as mutation-free, CF-carrier, and CF-positive, and with

probability mass function (pmf), PN (n) = Pr(N = n), n ∈ S(N). Without loss of generality, we

arrange the variants in set Ω such that qi ≥ qj , ∀i, j ∈ Ω, i < j. In the remainder of the paper,

we refer to an individual DNA test simply as DNA, to pooled-DNA as P-DNA, and use the term

genetic testing to refer to both.

We denote vectors in boldface. Let 0 denote the m-dimensional 0 vector, and 1l, l ∈ Z+, l ≤ m,

denote the m-dimensional binary vector having a value of 1 for the first l elements, and a value

of 0 for the remaining m-l elements. We use the subscript i to refer to the variants in set Ω, the

superscript k to refer to each P-DNA panel (Fig. 2), and omit the indices when it is clear from

context, or when a result or an expression applies independently of the related index.

The goal of the P-DNA design problem is to minimize the probability of a false-negative

classification (FN) by making three inter-dependent decisions: (i) selecting the set of variants for

screening; (ii) partitioning the selected variants into panels; and (iii) selecting the pool size for

each panel. This design problem has technological limitations on panel size, z, pool size, t, and

number of panels used, η. Then, the decision variables include, for each panel k = 1, · · · , η, the

binary vector xk =
(︁
xki
)︁
i∈Ω, where xki = 1 if variant i is included in panel k, and xki = 0 otherwise

(equivalently represented by set S(xk) ≡ {i ∈ Ω : xki = 1}); and pool size tk ∈ Z+. Observe that

panel k, k = 1, · · · , η, is empty (i.e., not used) if xk = 0. Further, there is a budget restriction,

B, on the total cost of genetic and diagnostic (SC) testing per newborn. We use the budget, B,

7



as a modeling convenience; in reality, this is also a decision (§1), therefore, we develop an efficient

methodology for generating a family of optimal P-DNA designs for a range of budget values, to

allow the decision-maker to make trade-offs between budget and accuracy, i.e., the costs of testing

and false-negatives.

Define the binary vector x12···η ≡
∑︁η

k=1 x
k, and set S(x12···η) ≡ {i ∈ Ω : x12···ηi = 1} =

∪η
k=1S(x

k), i.e., respectively the combined variant vector and set covered by P-DNA. As will become

clear in the sequel, it is informative to consider the three components of the P-DNA design problem:

the variant selection component determines set S(x12···η), and the variant partition component splits

the selected variant set into vectors (xk)k=1,··· ,η (equivalently, sets S(xk), k = 1, · · · , η), which, in

turn, impact pool sizes (tk)k=1,··· ,η. For a given panel vector x, we denote the panel size by z(x) ≡∑︁
i∈Ω xi and panel coverage by y(x) ≡

∑︁
i∈Ω xiqi (with superscript k = 1, · · · , η added for panel

index as needed); and for a given variant partition, we let η((xk)k=1,··· ,η) ≡
∑︁η

k=1 I{xk>0} denote

the number of panels used, where the indicator variable I{xk>0} = 1 if xk > 0, and I{xk>0} = 0

otherwise, k = 1, · · · , η. To simplify the notation, in places we drop the arguments in parantheses

when clear from context. Finally, without loss of generality, we relabel the panels in any variant

partition such that panels 1, · · · , η are non-empty, and panels η + 1, · · · , η are empty. We refer to

a variant partition that uses exactly η panels as an η-panel design or an η-partition.

At the conclusion of genetic testing, newborns who do not have any variants in set S(x12···η) are

classified as screen-negative, while newborns with at least one variant in set S(x12···η) are referred

for the diagnostic SC test, and diagnosed with CF or not according to the outcome (Fig. 2).

Specifically, SC distinguishes between CF-positives, who have two mutations, and CF-carriers, who

have a single mutation (independent of which variant(s)). On the other hand, if a CF-positive

newborn’s specific variants are not included in set S(x12···η), a false-negative occurs, and these

missed CF cases are a primary concern in NBS.

We make the following assumptions, which we briefly discuss here; §5 provides a more thorough

discussion.

Assumption (A1). All CF-causing variants are known and included in set Ω.

Assumption (A2). Both the genetic test, DNA, and the diagnostic test, SC, are perfectly reliable,

i.e., the DNA analytical sensitivity (the probability of detecting a variant in the panel) and specificity

(the true negative probability) are 1 for each variant included in its panel(s), and SC can identify

all CF-positive and CF-negative subjects accurately.
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Assumption (A3). Pooling does not alter the analytical sensitivity of P-DNA.

Assumption (A1) is a practical assumption; there are additional variants that are suspected of

being CF-causing, and undoubtedly, more unknown variants, but the set of 352 variants [18] is well-

characterized, that is, there is high confidence that these variants are CF-causing. We expect this

set to expand as more variants are discovered and characterized, but any variant that has not yet

been identified in CF-positive individuals is likely to be very rare. Assumption (A2) is supported

by various clinical studies on CF genetic testing, which indicate that the analytical sensitivity and

specificity of the DNA test is almost perfect for variants included in its panel (e.g., [50, 51, 52, 59]);

and the SC is considered the gold standard for CF diagnosis [26]. However, the clinical sensitivity

of the DNA test is naturally less than 1 when its panel does not include all CF-causing variants, i.e.,

the clinical sensitivity is a function of the variant selection decision, and a less-than-perfect clinical

sensitivity is the main driver of a missed CF case for the DNA test. For Assumption (A3), pooling

might lower the analytical sensitivity for large pool sizes, due to dilution of positive samples with

negative samples in the pool, e.g., [32, 69, 76]. Thus, while Assumption (A3) is supported up to

certain pool sizes (which we model via the pool size limit, t) in other contexts [60], this assumption

would need to be validated for CF NBS, as we discuss in §5. Pooling does not affect the test’s

specificity.

On the cost side, each SC test incurs a cost of cSC , and each genetic test incurs a fixed cost (e.g.,

consumables, labor) of cf , plus a variable cost (e.g., dNTPs, enzymes, variant-specific reagents)

of cv (z(x)), which is non-decreasing in panel size, z(x); we make no other assumptions on the

functional form of cv(.). Thus, cv(.) depends only on panel size z(x), and not on the specific

variants in the panel. This is a good assumption for probe-based genetic testing technologies (see

§1), where each variant has a unique probe (i.e., a unique sequence of DNA), but all probes are

similar in structure, i.e., a segment of DNA and a signaling molecule. Besides the probes, which

contribute to a linear form, the test has other reagents (e.g., dNTPs, enzymes), and the amount of

these reagents (hence cost) may increase in a concave manner. As a result, in practice we expect

cv(.) to be either (approximately) linear or concave increasing in the number of variants.

2.2 Preliminaries

We provide expressions on the expected testing cost and false-negative probability as a function of

panel composition x, and pool size t (these expressions expand their counterparts in [7] and [35] to

the P-DNA scheme); see Appendix B for all derivations in this section.
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To this end, let p(x) denote the probability that a random newborn has at least one mutation,

of any variant covered by the panel, and D(x, t) and C(x, t) respectively denote the per newborn

expected number of tests and per newborn expected cost for P-DNA. We can write:

p(x) =PN (1) y(x) + PN (2)
(︂
2y(x)− (y(x))2

)︂
, ∀x ≥ 0 (1)

D(x, t) =
1

t
+ 1− (1− p(x))t, ∀x > 0,∀t ≥ 2 (2)

C(x, t) =D(x, t)× (cf + cv (z(x))) ∀x > 0, ∀t ≥ 2. (3)

Observe that Eq. (2) follows because one test for t subjects suffices if the pooled test’s outcome

is negative (i.e., no subject in the pool has any variant covered by the panel), and t additional

individual tests (one per each subject in the pool) are needed if the pooled test’s outcome is

positive (i.e., at least one subject in the pool has a variant covered by the panel), see Assumptions

(A1)-(A2). (Note that for the individual DNA, D(x) = 1, and pool size is irrelevant.) Then,

the expected total testing cost per newborn, denoted by TC(.), is the SC cost multiplied by the

probability that a newborn is referred for SC, plus the cost of P-DNA:

TC((xk, tk)k=1,··· ,η) =cSC × p(x12···η) +

η∑︂
k=1

I{xk>0} × C(xk, tk), (4)

As discussed above, the primary concern for NBS is to minimize the probability of a false-

negative (FN). An FN occurs if the newborn is CF-positive (i.e., has two mutations) and no

mutations are detected by genetic testing (i.e., when the specific variants of the CF-positive newborn

are not covered by any panel, or equivalently by set S(x12···η), see Assumptions (A1)-(A3)). This

follows because if at least one mutation is found in any panel, then the newborn will undergo SC

testing, which eliminates an FN (Fig. 1), leading to the following expression:

Pr(FN(x12···η)) =

(︄
1−

∑︂
i∈Ω

x12···ηi qi

)︄2

PN (2). (5)

3 Optimal Genetic Testing Design: Model and Properties

The P-DNA Genetic Testing Design Problem (GP) minimizes the probability of a false-negative

(Pr(FN)) by making variant selection, variant partition, and pool size decisions, under a testing

budget (B), and limits on panel size (z), number of panels (η), and panel pool size (t):
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GP Model:

minimize
(xk,tk)k=1,··· ,η

Pr
(︁
FN(x12···η)

)︁
=

(︄
1−

∑︂
i∈Ω

qi

η∑︂
k=1

xk
i

)︄2

PN (2) (6)

subject to TC((xk, tk)k=1,··· ,η) = cSC × p

(︄
η∑︂

k=1

xk

)︄

+

η∑︂
k=1

(︃
max
i∈Ω

{xk
i }
)︃
×
(︃

1

tk
+ 1− (1− p(xk))t

k

)︃
×
(︃
cf + cv

(︁
z(xk)

)︁)︃
≤ B

(7)∑︂
i∈Ω

xk
i ≤ z, k = 1, · · · , η (8)

η∑︂
k=1

xk
i ≤ 1, i ∈ Ω (9)

η∑︂
k=1

(︃
max
i∈Ω

{xk
i }
)︃

≤ η (10)

tk ≤ t, k = 1, · · · , η (11)

xk
i binary, i ∈ Ω, k = 1, · · · , η (12)

tk ≥ 0, integer, k = 1, · · · , η. (13)

We let xk∗, tk∗, k = 1, · · · , η, and η∗((xk∗)k=1,··· ,η) =
∑︁η

k=1 I{xk∗>0} respectively denote the panel

vector, pool size, and number of panels used in an optimal solution to GP, where the indicator

variable I{xk>0} = maxi∈Ω{xki }, equivalently, it equals 1 if xk > 0, and 0 otherwise, for k = 1, · · · , η,

as defined in §2.1.

GP is a difficult optimization problem: the variant selection component, on its own, is NP-hard

even for a special case of individual DNA (i.e., D(x) = 1) [35]. That is, even without the variant

partition and pool size components, which further increase the difficulty of the problem. Therefore,

in the following, we establish key structural properties of optimal solutions to GP. These properties

allow us to not only generate a family of optimal solutions and their corresponding budgets in an

efficient manner, but also construct an effective approximation procedure that generates a solution

for any specific budget and bound its deviation from an optimal solution.

Observe that the GP objective function (minimization of the FN probability) depends only on

the variants selected, and is independent of both the variant partition and panel pool size decisions,

where the latter decisions impact only the feasible region (Eqs. (7)-(11)), as formally stated below.
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Remark 1.

1. Given any variant set S(x12···η), the false-negative probability Pr
(︁
FN(x12···η)

)︁
is independent

of both the variant partition and panel pool sizes, (xk, tk)k=1,··· ,η.

2. Given any panel x, there exists an optimal pool size such that:

t∗(x) = argmin
{t∈Z+, t≤t}

{︁
C(x, t)} = argmin

{t∈Z+, t≤t
}︁ {︁D(x, t)

}︁
.

Thus, the panel’s optimal pool size is a function only of the panel’s own variant composition,

x, and is independent of other panel compositions, hence, tk∗ = t∗(xk), k = 1, · · · , η.

3. Given any variant set S(x12···η), there exists an optimal variant partition such that:

(xk∗)k=1,··· ,η = argmin
{(xk)k=1,··· ,η :

∑︁η
k=1 x

k=x12···η}

{︁
TC((xk, t∗(xk))k=1,··· ,η)

}︁
.

Without loss of optimality, in the remainder of the paper we focus on the optimal pool size

vector and optimal variant partition characterized in Remark 1. In particular, we expand the

characterization of an optimal Dorfman pool size, established in [7], to consider panel composition

(Appendix C). We then study the variant partition (§3.1) and variant selection (§3.2) components.

All mathematical proofs can be found in Appendix E.

3.1 Variant Partition

In this section we establish structural properties of an optimal variant partition. Without loss of

generality, for any η-panel design (η-partition), we relabel the non-empty panels as k = 1, · · · , η,

and for any variant set S(x12···η), with size z(x12···η) = l, we relabel the variants as {1, · · · , l},

following a non-increasing order of their frequency, i.e., q1 ≥ q2 ≥ · · · ≥ ql. In the following,

we focus on the optimal variant partition characterized in Remark 1, that is, a minimizer of the

expected total cost.

Definition 1. A partition of a given variant set S(x12···η) = {1, · · · , l} is said to be an or-

dered partition if S(x1) = {1, · · · , z(x1)}, S(x2) = {z(x1) + 1, · · · , z(x1) + z(x2)}, · · · , S(xη) =

{
∑︁η−1

k=1 z(x
k) + 1, · · · , l}, for any panel size vector z(xk)k=1,··· ,η and η = 1, · · · , η.

Thus, an ordered partition for given a variant set can be constructed in a greedy manner, with

a number of the highest frequency variants assigned to one panel, a number of the next highest

frequency variants assigned to another panel, and so on, and there exist multiple ordered partitions
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having the same panel size vector even when symmetric partitions are excluded. The concept of

an ordered partition will play an important role in the search for an optimal variant partition, as

indicated by the following set of results.

Lemma 1. Among all variant partitions of set S(x12···η), there exists an ordered partition that

minimizes the expected total cost, TC((xk, t∗(xk))k=1,··· ,η).

In light of Lemma 1, we are able to formulate the variant partition problem for any given variant

set as a shortest path problem, for which there exist known polynomial-time algorithms.

Corollary 1. The variant partition problem for variant set S(x12···η) = {1, · · · , l} (i.e., with

variants relabeled following a non-increasing order of variant frequency) can be formulated as a

shortest path problem (denoted SP(S(x12···η))), defined on an acyclic directed graph, with vertex

set V (l) = {1, · · · , l, l + 1} (i.e., a vertex for each variant, plus a dummy vertex l + 1); and edge

set E(l) = {(i, j) : i < j, i, j ∈ V (l)}, where each edge (i, j) corresponds to a panel comprised

of variants {i, i + 1, · · · , j − 1}, that is, x(i, j) : (xr = 1)r=i,i+1,··· ,j−1, (xr = 0)r=1,··· ,i−1,j,··· ,η,

and edge cost d(i, j) represents the panel’s expected cost, that is, d(i, j) = C(x(i, j), t∗(x(i, j)))

(Eq. (3)) if j − i ≤ z, and d(i, j) = ∞ otherwise, where t∗(x(i, j)) is computed via Property

C.1 using p(x(i, j)) = PN (1) y
(︁
x(i, j)

)︁
+ PN (2)

(︂
2y(x(i, j))− (y(x(i, j)))2

)︂
(Eq. (1)), where

y(x(i, j)) =
∑︁j−1

r=i qr. The complexity of SP(S(x12···η)) is O(ηl2) for η < m (e.g., Bellman-

Ford Algorithm, [11, 19, 41]); and O(l2) for η ≥ m (e.g., topological sorting algorithm, Dijkstra’s

Algorithm [19, 21, 29]).

By construction of the graph in Corollary 1, each path from vertex 1 to vertex l+1 corresponds to

an ordered partition of set S(x12···η). For example, path 1 → i → j → l+1 corresponds to an ordered

3-partition, consisting of sets S(x1) = {1, · · · , i − 1}, S(x2) = {i, · · · , j − 1}, S(x3) = {j, · · · , l}.

Thus, the set of paths from vertices 1 to l + 1 includes all ordered partitions of the given variant

set, and the shortest path corresponds to the ordered partition with the lowest expected total cost,

which, by Lemma 1, is an optimal partition. Lemma 1 and the shortest path problem formulation

in Corollary 1 follow based on the concavity of the D(x, t∗(x)) function in y(x), along with various

properties established in [19, 21] (Appendix E). For a special case of the variant partition problem

with η = 2 (i.e., at most 2 panels are allowed), we also develop an algorithm that solves the variant

partition problem with improved complexity compared to Corollary 1.
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Lemma 2. For the special case of the variant partition problem with η = 2, there exists an algorithm

that solves the variant partition problem with complexity O(l) for a variant set with l variants,

l = 2, · · · ,min{2z,m}.

3.2 Variant Selection

In this section we study properties of an optimal variant set.

Definition 2. For any l = 1, · · · ,m, the set S(l) ≡ {1, 2, · · · , l}, which is comprised of the l highest

frequency variants in set Ω (i.e., without the relabeling of the variants), is said to be an ordered

variant set.

By this definition, ordered variant set S(l), l = 1, · · · ,m, corresponds to variant selection vector

x12···η = 1l, and we denote its optimal variant partition by xk∗(l), k = 1, · · · , η :
∑︁η

k=1 x
k∗(l) = 1l,

i.e., the ordered partition that minimizes the expected total cost among all partitions of set S(l),

which is characterized in Lemma 1. Then, η∗(l) =
∑︁η

k=1 I{xk∗(l)>0}.

Definition 3. For any variant set S(l), l = 1, · · · ,m, the per newborn expected total cost corre-

sponding to its optimal partition and optimal pool sizes is said to be a budget breakpoint (Bl):

Bl ≡ TC((xk∗(l), t∗(xk∗(l)))k=1,··· ,η), (14)

and the solution, (xk∗(l), t∗(xk∗(l))k=1,··· ,η), is said to be an optimal breakpoint design.

Theorem 1.

1. When B = Bl, l = 1, · · · ,m, the optimal variant set is given by x12···η∗ = 1l. Equivalently,

S(x12···η∗) = S(l) is an optimal variant set.

2. For any budget B < Bl, l = 1, · · · ,m, ∄ any non-ordered or ordered variant set S ⊆ Ω such

that Pr(FN(S)) < Pr(FN(S(l))).

Corollary 2.

1. At budget B = Bl, l = 1, · · · ,m, an optimal variant partition corresponds to the optimal

ordered partition for set S(l) that is characterized in Lemma 1, that is, xk∗(l), k = 1, · · · , η;

and Bl is the lowest budget at which Pr(FN(S(l))) can be attained.
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2. If set Ω has variants with distinct frequencies, i.e., no two variants have the same frequency,

then xk∗(l), k = 1, · · · , η, is the unique optimal solution at budget B = Bl.

3. The optimal solution at B = Bm remains optimal for all budgets B ≥ Bm.

Theorem 1 is a key result. It establishes that when the testing budget corresponds to any budget

breakpoint Bl, l = 1, · · · ,m, the optimal variant set consists of the l highest frequency variants,

i.e., set S(l), and hence, can be determined in a greedy manner. The theorem also states that each

budget breakpoint is the lowest budget at which the corresponding FN probability can be attained;

this is also significant, because it applies to all (i.e., non-ordered and ordered) variant sets. Thus,

if the goal is to generate the entire family of optimal breakpoint designs and budget breakpoints,

then it is sufficient to consider only the m ordered variant sets, S(1), · · · , S(m), instead of the total

2m variant sets. Thus, Theorem 1 not only leads to an efficient methodology for generating the

entire family of optimal breakpoint designs and budgets in polynomial-time, but also motivates the

development of an effective approximation procedure at any budget level (i.e., not necessarily one

of the breakpoints), the optimality gap of which is analytically characterized.

In the presence of multiple optimal designs at a budget breakpoint, Corollary 3 generates those

with variant set, variant partition, and pool sizes respectively characterized in Theorem 1, Lemma

1, and Property C.1. In particular, Corollary 3 follows because, in the process of computing the

shortest path from vertex 1 to the dummy (terminal) vertex, Bellman-Ford Algorithm, Dijkstra’s

Algorithm, and the topological sorting algorithm all compute the shortest path from vertex 1 to

every other vertex in the vertex set [10, 21, 29].

Corollary 3. To generate the entire family of optimal breakpoint designs and budget breakpoints,

it is sufficient to solve the shortest path problem defined in Corollary 1 only once, for variant set

S(m). Then, for each l = 1, · · · ,m, the optimal variant set corresponds to S(l); the optimal variant

partition (xk∗(l))k=1,··· ,η, can be retrieved from the shortest path from vertex 1 to vertex l+1; and

the optimal pool sizes, (t∗(xk∗(l)))k=1,··· ,η (computed a priori, via Property C.1, for construction

of the graph in Corollary 1) and budget breakpoint Bl can be retrieved from the graph, based on

the edges on the shortest path from vertex 1 to vertex l+1. The complexity is O(ηm2) for η < m,

and O(m2) for η ≥ m.

In general, however, the problem of finding an optimal solution to GP at an arbitrary (non-

breakpoint) budget B remains difficult, as discussed at the beginning of §3. Nevertheless, the family

of breakpoint designs and budget breakpoints, generated by Corollary 3, enable the decision-maker
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to design the P-DNA process considering the trade-off between the testing cost and the false-

negative probability. Further, the family of breakpoint designs can be used to select an approximate

solution at an arbitrary budget B. For example, a “good” approximate solution is given by the

highest breakpoint design feasible at budget B, whose optimality gap, ε(B), is bounded in the

following theorem.

Theorem 2. Consider any budget B such that Bl < B < Bl+1, for some l = 1, · · · ,m − 1. The

optimality gap of the approximate solution at budget B, given by (xk∗(l), t∗(xk∗(l))k=1,··· ,η, can be

bounded from above as follows:

ε(B) < Pr(FN(x12···η = 1l))− Pr(FN(x12···η = 1l+1))

=

⎡⎣(︄1− l∑︂
i=0

qi

)︄2

−

(︄
1−

l+1∑︂
i=0

qi

)︄2
⎤⎦PN (2) ≡ εUB(B).

Remark 2. By Theorem 1, ∄B : Bl < B < Bl+1, l = 1, · · · ,m− 1, for which the upper bound on

the optimality gap, εUB(B), provided in Theorem 2, is tight.

The following lemma leads to insight on how the upper bound on the optimality gap behaves

in the budget.

Lemma 3. The upper bound on the optimality gap, εUB(B), is non-increasing in budget B.

Thus, at higher non-breakpoint budgets, the approximate solution (i.e., the highest breakpoint

design that is feasible) is likely to yield a false-negative probability that is closer to the optimal

solution.

3.3 Design Insights

In this section our goal is to provide design insights on when the decision-maker should use a 1-panel

(i.e., η = 1) or a multi-panel (i.e., η ≥ 2) design, and in the latter case, the number of panels, η.

We do this by analytically characterizing the conditions under which each design type dominates.

Recall that an η-panel design, η = 1, · · · , η, refers to a design that uses exactly η panels. To

establish the structural properties in this section, we use the term optimal η-panel design to refer

to an optimal design among the class of η-panel designs, that is, an optimal solution to GP when

the number of non-empty panels is constrained to equal η, η = 1, · · · , η (through the modification

of Constraint (10)). The following definition will be used in our analysis.
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Definition 4. A function f is said to be sub-additive if f(x+ y) ≤ f(x)+ f(y), and super-additive

if f(x+ y) ≥ f(x) + f(y), ∀x, y ∈ R. [43]

In the following, we first fix the variant set for both 1-panel and multi-panel designs, hence

their false-negative probability remains equal (Remark 1). We say a design type “cost-dominates”

its counterpart if it yields the same false-negative probability as its counterpart, but at a lower or

equal expected total cost, for a given variant set. Theorem 3 derives the conditions under which

each design type cost-dominates.

Theorem 3. Consider any variant set S(x12···η) with size z(x12···η) ≥ 2. The following properties

hold ∀η = 2, · · · ,min{η, z(x12···η)}:

1. If ∃ cf ≥ 0 such that the optimal η-panel (1-panel) design cost-dominates the optimal 1-panel

(η-panel) design, then the η-panel (1-panel) design will continue to cost-dominate for all lower

(higher) values of cf .

2. Let cv(z(x)) = ϵ × c′v(z(x)), where c′v(z(x)) is non-decreasing in z(x), and ϵ > 0. Then,

∃ ϵ(S(x12···η), η) > 0 such that the optimal 1-panel design cost-dominates for all ϵ ≤ ϵ(S(x12···η), η),

and the optimal η-panel design cost-dominates otherwise.

Thus, if the fixed cost cf is sufficiently low, or the variable cost cv(.) (equivalently, ϵ) is suffi-

ciently high, a multi-panel design cost-dominates for a given variant set, but a sufficiently low cf

value may not exist for some variant sets, that is, if the optimal 1-panel design cost-dominates the

optimal η-panel design at cf = 0, then the 1-panel design will cost-dominate, ∀cf ≥ 0. On the

other hand, the threshold on the variable cost function, ϵ(.), is always strictly positive.

Next, we discuss the optimality, i.e., in terms of minimizing the false negative probability, of

each design type. To this end, we say a design type “FN -dominates” its counterpart if it leads to

a lower or equal FN probability at a given budget.

Theorem 4. For any budget B:

1. If cf + cv (z(x)) is super-additive in z(x), then ∃ k(B, η) such that the optimal η + k-panel

design FN -dominates the optimal η-panel design for any η = 1, · · · , η, k = 0, · · · , k(B, η).

2. If cv(z(x)) = c, ∀z(x) ∈ Z+, for some c ≥ 0, then the optimal η-panel design FN -dominates

the optimal η + k-panel design for any η = 1, · · · , η − 1, k = 1, · · · , η − η.

17



Because the expected total cost, TC(.), is a function of both the fixed and variable costs, cf

and cv(.), of the genetic test, and covers both the pool testing and individual retesting components,

the cost thresholds in Theorem 3 clearly depend on all problem parameters. Theorem 4 makes the

dependence on the genetic test cost parameters explicit. In particular, when the cost per genetic

test is super-additive in panel size (Definition 4), a 1-panel design incurs a higher cost per genetic

test than the combined cost of all panels of a multi-panel design. This, combined with the property

that the expected number of tests per panel, D(.), is monotone increasing in panel coverage, y(x)

(Lemma E.1), implies that the expected cost, TC(.), is higher for a 1-panel design compared to

a multi-panel design, for any variant set. Secondly, when the variable cost is a constant, i.e.,

independent of panel size, TC(.) depends only on the expected number of tests, D(.), which is

concave in panel coverage, y(x) (Lemma E.1), and hence the cost is lower when the variants are

combined into a single panel, compared to a multi-panel design.

In general, while higher values of cf favor a lower number of panels (Theorem 3), a convex

cv(.) function would behave in the opposite way, and restrictions on both cf and cv(.) are needed

in Theorem 4 for the FN -dominance of one design type over another. We provide two illustrative

examples below. In both examples, a budget is given, which may not correspond to a budget

breakpoint for an optimal η-panel design (that is, Theorem 1 may not necessarily hold). Hence,

we obtain the optimal variant set for each η-panel design via enumeration; the optimal pool size

and variant partition for a given variant set are then obtained by Lemma 1 and Property C.1.

Tables 1 and 2 display each optimal η-panel design (variant set, with variant partition given in {.}

– the 5-panel design is not feasible in either example), and the optimal solution to GP(η = 5), i.e.,

without any restriction on number of panels, is bolded.

Common parameters for Examples 1-2: Ω = {1, 2, 3, 4, 5}, with normalized frequency vector

q = (0.58, 0.19, 0.11, 0.08, 0.04); cost per SC test, cSC = $500; pmf of N : PN (0) = 0.97125, PN (1) =

0.02857, PN (2) = 0.00018.

Example 1. Consider that cf = $1, cv(z(x)) = $(z(x))0.9 (a concave function, thus violating the

conditions in Theorem 4, see Definition 4), and B = $15.00. The optimal 1-, 3-, and 4-panel designs

all share the same non-ordered variant set S = {1, 2, 3, 5} (the ordered variant set S(4) = {1, 2, 3, 4}

is not feasible for these designs at the given budget), and thus have the same FN probability. The

2-panel design feasibly uses the ordered variant set S(4), lowering the FN probability (Table 1).

Thus, the 2-panel design FN -dominates all other designs, and the FN -dominance relationship from

Theorem 4 does not hold.
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Table 1: Optimal η-panel, η = 1, · · · , 4, P-DNA designs for Example 1.

η-panel design η = 1 η = 2 η = 3 η = 4
Optimal variant set (each partition in {.}), {1,2,3,5} {1}{2,3,4} {1}{2}{3,5} {1}{2}{3}{5}

S(x12···η∗(η))
Expected total cost, $14.68 $14.91 $14.44 $14.43

TC((xk∗(η), t∗(xk∗(η)))k=1,··· ,η)
False-negatives per 106 newborns, 1.04 0.26 1.04 1.04

Pr(FN(x12···η∗(η)))× 106

Example 2. Consider that cf = 0, cv(z(x)) = $(z(x))1.1 (a convex function, thus satisfying the

condition in part 1 of Theorem 4, see Definition 4), and B = $13.25. The 1-panel design is FN -

dominated by both 2- and 3-panel designs, but not by the 4-panel design, where the latter requires

a set with at least 4 variants, and because the ordered set S(4) is not feasible, it is forced to

select a non-ordered variant set, and does not perform well (Table 2). Thus, Theorem 4 holds with

k(B, 1) = 3.

Table 2: Optimal η-panel, η = 1, · · · , 4, P-DNA designs for Example 2.

η-panel design η = 1 η = 2 η = 3 η = 4
Optimal variant set (each partition in {.}), {1,2,5} {1}{2,4} {1}{2}{3} {1}{3}{4}{5}

S(x12···η∗(η))
Expected total cost, $12.61 $12.79 $13.23 $12.15

TC((xk∗(η), t∗(xk∗(η)))k=1,··· ,η)
False-negatives per 106 newborns, 6.47 4.14 2.33 6.47

Pr(FN(x12···η∗(η)))× 106

Theorem 4 leads to the following corollary.

Corollary 4. For any budget B:

1. If cf + cv (z(x)) is super-additive in z(x), then the optimal solution to GP must correspond

to an η + k(B, η)-design, for some η = 1, · · · , η.

2. If cv(z(x)) = c, ∀z(x) ∈ Z+, for some c ≥ 0, then the 1-panel design must be optimal for

GP.

In general, we do not expect the genetic test cost function to be super-additive, which is satisfied,

for example, by a convex non-decreasing cv(.) and cf = 0 (Definition 4), see §2.1 for discussion.

When the super-additivity condition is not satisfied, there exists no clear FN -dominance of the

1-panel design over a multi-panel design, as Example 1 demonstrates for a concave cv(.) function.

We discuss the impact of the form of the variable cost function further in §4.3.2.
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4 Case Study

We start with an outline of the objectives and scope of the case study (§4.1), followed by data

sources and calibration (§4.2), and a discussion of key findings (§4.3-§4.4).

4.1 Objectives and Scope

We perform a case study based on the state of New York (NY), using published or publicly available

data to illustrate the properties and benefits of the P-DNA test.

To this end, we first discuss the P-DNA test in isolation (§4.3), and then when integrated into

two novel CF NBS processes, IRT/P-DNA and P-DNA (§4.4). For comparison, we also consider

IRT/DNA (i.e., with individual single-panel genetic testing), which is representative of most current

CF NBS processes (Fig. 1), and is the process described in [53] for NY2. These are not the only

processes that can effectively utilize P-DNA, and it is possible to improve upon their performance

through process-level optimization and process design, which are interesting problems beyond the

scope of this paper (§5). Because our focus in this work is on the optimization of the genetic testing

component (P-DNA or DNA), we use decision rules from practice to govern the rest of the process

(§4.2.2).

We generate a family of optimal breakpoint designs for both P-DNA and DNA, i.e., for each

ordered variant set S(l), along with their budget breakpoint Bl, indexed by l (Definitions 2 and

3). Specifically, for P-DNA, we generate the optimal breakpoint designs characterized in Lemma 1,

Theorem 1, and Property C.1, using Corollaries 1 and 3. For comparison purposes, we allow DNA

to use multiple panels. However, DNA does not use pooling, and therefore, unless the genetic test

cost function is super-additive, the only advantage of a multi-panel design for DNA is a higher

coverage, and not the efficiency benefit that a multi-panel design brings to P-DNA. Then, under

the linear cv(.) that we consider (§4.2.1), the optimal number of panels used in DNA always equals

the minimum number of panels possible for a given variant set (i.e., index l), and the optimal DNA

design at index l simply follows from Theorem 1, as there is no pooling, and the variant partition

among panels is immaterial.

For both P-DNA and DNA, the number of panels affects only the expected testing cost, and

not the false-negative probability (Remark 1); we report the latter in terms of the expected false-

2With the exception that newborns without any detected mutations but ultra-high IRT levels were also referred
for SC testing during the study period in NY.
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negatives per 1,485,358 newborns (the number of newborns in the NY study, see §4.2.3), using the

notation FN . Therefore, for an index l, both the P-DNA and DNA will yield the same FNs given

the same testing population. However, the characteristics of the testing population that undergoes

genetic testing changes depending on the process used (i.e., depending on whether or not IRT is

used, §4.2.4). To simplify the presentation, we refer to a budget breakpoint (i.e., expected cost per

newborn) simply as budget in this section. All cost and budget terms are in US dollars ($).

4.2 Data Sources and Model Calibration

We next provide the case study data, and the decision rules for the three CF NBS processes.

4.2.1 Genetic Testing Data

In practice, states negotiate prices for testing kits and related material, and infrequently, some states

subcontract some portion of the testing process. Further, there are numerous testing platforms to

choose from, hence numerous cost structures to consider. We use representative cost data for genetic

testing, loosely derived from the literature. Specifically, for the base case, we consider that the

variable and fixed costs per genetic test are, cv(z(x)) = $z(x) (i.e., linear increasing in panel size)

and cf = $10, respectively, and the costs per IRT and SC tests are, cIRT = $1.5 and cSC = $161.4,

respectively [75]. Because genetic testing is a generic, and relatively new, technology, with many

applications beyond newborn screening and much current development, the cost of genetic testing

is, in general, trending downward. Therefore, we also consider scenarios with different fixed and

variable costs (§4.4).

Regarding the technological limits, we do not use a pool size limit t due to a lack of rigorous

clinical studies showing the relationship of pool size and accuracy for DNA (§5). Based on current

probe-based technologies, we use a technological panel size limit of z = 90 variants [64]. We vary

the limit on number of panels, η, to study optimal designs with different number of panels (with

η = m representing the setting with no limit on number of panels). If multiple panels are used,

they are tested in parallel; and an η-panel design, η = 1, · · · , η, can test up to ηz variants.

To provide perspective, consider that the American College of Medical Genetics (ACMG) rec-

ommends testing, using, at a minimum, the 23 most common variants in the US [28], but current

CF panels differ among states. For instance, New York’s process, as described in [53], used 39

variants (until 2019), and California’s process uses 40 variants [55], while states like North Carolina

and Wisconsin both use a panel of 139 variants (using a next-generation sequencing technology)
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[70, 89]. No state currently uses Dorfman pooling or multiple panels as part of CF NBS. To our

knowledge, all current DNA panels are derived solely based on descriptive analyses. Typically, a

number of the highest frequency variants are added to the DNA panel, based on frequencies from

historical screening data and budget considerations, e.g., [28, 55].

4.2.2 Process Decision Rules

For the IRT/DNA and IRT/P-DNA processes, we follow the 5% daily threshold for IRT, reported

in [53], in which newborns with IRT levels in the top 5% of all IRT levels each testing day are

classified as IRT-positive, and sent to the next test in the process. This daily percentile threshold

is a common decision rule for the IRT test due to seasonal, biological, and demographic variations

in IRT levels [53, 58, 77, 82], with 4% and 5% threshold values commonly used, dictated mainly by

limited testing budgets [45]. In addition, following current practices, for genetic testing (DNA or

P-DNA), we classify any newborn with at least one mutation detected (of any variant and in any

panel) as screen-positive, and refer them for SC testing for diagnosis (Fig. 1).

4.2.3 Population-level Data

The CFTR-2 data set [18] is the most comprehensive data set on CF-causing variants, and includes

352 well-characterized CF-causing variants from more than 88,000 CF-positive subjects. We include

all 352 variants in set Ω (hence m = 352), and derive the variant frequency vector, q = (qi)i∈Ω,

based on variant frequencies reported in the data set, normalized so that
∑︁

i∈Ω qi = 1. The CFTR-2

data set indicates that variant frequencies can vary significantly, for example, the most frequent

variant, F508Del, has a (normalized) frequency of 0.741741, which is around 27 times the frequency

of the second most frequent variant, G542X, which has a frequency of 0.027031. Some variants are

very rare, e.g., 248Del2515, the least frequent variant, has a frequency of 1.5× 10−5.

Only the P-DNA process uses genetic testing on all newborns (general newborn population),

and both IRT/DNA and IRT/P-DNA processes use genetic testing only on the subset of newborns

that are IRT-positive (post-IRT population). Importantly, CF and carrier prevalence likely differ

in these two populations. Therefore, we derive the proportion of mutation-free, CF-carrier, and

CF-positive newborns for both the general population (i.e., the pmf of random variable N), and

the post-IRT population (which we denote by the pmf of random variable Npost). For this purpose,

we use the CF NBS data reported in [53], for 1,485,358 newborns screened in NY between 2007-

2012. In this study cohort, 260 newborns were CF-positive, 9 of whom were missed by the IRT
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test (these 9 FNs at the IRT level constitute all the FNs reported for NY NBS in this cohort);

79,973 newborns were screened post-IRT (i.e., with individual 1-panel DNA), based on the 5% IRT

threshold; and of those 79,973 post-IRT newborns, all 251 were correctly identified as CF-positive

via the process (excluding the 9 FNs from IRT), and 3,850 newborns, who were referred for SC

testing with only one mutation detected, were confirmed to be CF-carriers by SC. Thus, for the

general population, we compute:

PN (2) =
# CF-positive newborns

# screened newborns
=

260

1, 485, 358
= 0.00018.

We do not have data on the number of carriers and mutation-free newborns in this cohort, therefore

we use estimates from the literature that suggest that the proportion of CF-carriers in the general

US population is around 1:35 [27, 46], that is, PN (1) = 1
35 = 0.02857, yielding PN (0) = 0.97125.

For the post-IRT newborn population, based on the NY data set, we compute:

PNpost(2) =
# CF-positive newborns in the post-IRT population

# post-IRT newborns
=

251

79, 973
= 0.00314,

PNpost(1) =
# CF-carriers in the post-IRT population

# post-IRT newborns
=

3, 850

79, 973
= 0.04814,

yielding PNpost(0) = 0.94872.

4.2.4 Process-level Data

When a process uses IRT, we modify the budget breakpoint (Eq. (14)) and the false-negative

probability (Eq. (5)) to consider the 5% IRT threshold, and respectively include the IRT cost per

newborn, denoted by cIRT , and the rate of FNs stemming from IRT; and for the genetic test (DNA

or P-DNA), we use the pmf of the post-IRT random variable, Npost, as discussed below. Note that

variant set S(l), l = 1, · · · ,m, corresponds to x12···η∗(l) = 1l (for both DNA and P-DNA).

IRT/DNA(η) process, with DNA panel vector (xk∗(l)k=1,···η):

We have that, xk∗(l) = 1min{l,kz} − 1min{l,(k−1)z}, k = 1, · · · , η, leading to:

Bl =cIRT + 0.05×

(︄
k × cf +

k∑︂
k′=1

cv
(︂
z(xk′∗(l))

)︂
+ cSC × p

(︂
x12···η∗(l)

)︂ )︄
, l = 1, · · · ,m. (15)

IRT/P-DNA(η) process, with P-DNA panel vector (xk∗(l)k=1,··· ,η):

Bl = cIRT + 0.05× TC((xk∗(l), t∗(xk∗(l)))k=1,··· ,η), l = 1, · · · ,m, (16)
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where TC(.) is as defined in Eq. (4).

We compute the FN probability for variant set S(l), equivalently, x12···η∗(l) = 1l, as follows (with

the subscript, post, used to denote the post-IRT genetic testing):

Pr(FN(1l)) = (1− 0.05)× Pr(N = 2|not top 5% IRT) + 0.05× Pr(FNpost(1l)|top 5% IRT)

= 0.95× Pr(N = 2|not top 5% IRT) + 0.05×

(︄
1−

l∑︂
i=1

qi

)︄2

PNpost
(2),

where Pr(FNpost(1l)|top 5% IRT) is the conditional probability of FN from genetic testing, given

that the newborn is IRT-positive, and is calculated via Eq. (5) (with the pmf of random variable N

replaced by the pmf of random variable Npost); and Pr(N = 2|not top 5% IRT) is the conditional

probability that a newborn is CF-positive, given that they are not in the top 5% IRT group (i.e.,

IRT-negative), and is estimated based on the data in [53]. In particular, the cohort of 1, 485, 358

contained 9 FNs from IRT, and 79, 973 IRT-positives, hence we derive:

Pr(N = 2|not top 5% IRT) =
# IRT-negative and CF-positive newborns

# IRT-negative newborns
=

9

(1, 485, 358− 79, 973)
= 6.4× 10−6.

4.3 Properties of the P-DNA Test

In this section we illustrate key properties of the P-DNA test using the data for the P-DNA process,

that is, variant frequencies in the general newborn population. To this end, we first explore the

two novel aspects of a P-DNA design, pooling and multi-panel testing (§4.3.1), and then discuss

some operational issues for P-DNA implementation (§4.3.2).

4.3.1 Efficiency and Efficacy of P-DNA

We first consider P-DNA(η = m) (i.e., no limit on number of panels), and study the optimal number

of panels (η∗(l)) for all ordered variant sets S(l), l = 1, · · · ,m(= 352), see Fig. 3(a). A 1-panel

design is optimal only for small variant sets, e.g., it is optimal for l = 1, · · · , 4 when cf = $10 (base

case), for l = 1, 2 when cf = $5, and for l = 1, · · · , 10 when cf = $20. A 2-panel design is optimal

for l = 5, · · · , 15 in the base case, after which an optimal partition always utilizes more than two

panels. Thus, even if we consider only the 23 most common variants, the minimum recommended

by the ACMG [28], a design with more than two panels is optimal. The optimal number of panels,

η∗(l), increases as variant set S(l) expands, e.g., when the variant set contains all the variants in Ω

(l = 352), the optimal number of panels is 11. In addition, as l increases, η∗(l) remains unchanged

over a larger range of l values (e.g., 2-panel is optimal for l = 5, · · · , 15, whereas 10-panel is optimal
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for l = 234, · · · , 323), because at larger values of l, adding one more variant has only a small impact

on the overall prevalence of the variant set.

We next study the cost efficiency of a multi-panel P-DNA design. Fig. 3(b) displays the genetic

testing cost as a function of index l for P-DNA(η), for η = 1, 2, 4,m, and for the current 1-panel

DNA, indicating that all variations of the P-DNA process dominate the DNA process. Interestingly,

testing all 352 variants in Ω with 11 panels leads to a similar budget ($27.34) as testing 132 variants

with 2 panels ($27.53), or testing only 14 variants with a 1-panel DNA ($28.11), highlighting the

benefits stemming from the pooling and multi-panel aspects of P-DNA. Due to capacity restrictions

of genetic testing machines, using more panels may reduce the throughput; this aspect should be

considered in practical applications. We illustrate how a P-DNA achieves these benefits with a

simple example.

Figure 3: Optimal number of panels used (η∗(l)) by P-DNA(η = m), and the genetic testing cost
for P-DNA(η = 1, 2, 4,m) and DNA, as a function of index l

(a) Number of panels vs design index (b) Genetic testing cost vs design index

Example 3. Consider P-DNA(η = 1), P-DNA(η = 2), and DNA designs for l = 90 (Table 3):

• P-DNA(η = 2): Panel 1 has 12 variants (the highest frequency variants), a pool size of 7, and

a retest (i.e., individual testing) probability of 0.164, while Panel 2 has 78 variants, a pool

size of 19, and a retest probability of 0.053, leading to an expected genetic testing cost per

newborn of $16.05 (= $9.30 + $6.75).

• P-DNA(η = 1): The single, 90-variant panel has a pool size of 7 and a retest probability of

0.181, leading to an expected genetic testing cost per newborn of $32.35.

• DNA: The single, 90-variant panel incurs, in the absence of pooling, an expected genetic

testing cost per newborn of $100.
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For this instance, the 1- and 2-panel P-DNA designs reduce the genetic testing cost by 67.6% and

83.9%, respectively, over DNA. Going from one to two panels reduces the P-DNA cost by 50.3%

(from $32.35 to $16.05) due to further efficiencies gained through multi-panel testing. To see this,

consider that the P-DNA testing cost has two components: the initial pooled testing cost, and

the expected (individual) retesting cost. The 2-panel design reduces both costs (Table 3). For the

pooled test(s), the 1- and 2-panel designs respectively incur costs of $14.29 and $3.14+$4.63 = $7.77:

the 2-panel design is able to reduce this cost through the use of a larger pool size for the more

expensive Panel 2 test (Table 3). On the other hand, for retesting, the 1- and 2-panel designs

respectively incur expected costs of $18.06 and $3.61 + $4.67 = $8.28: this cost reduction follows

because a 2-panel design offers a main advantage, in that if a panel tests positive (which happens

with probability 1 − (1− p(x))t for each panel x with pool size t), then individual retesting is

required only for the positive-testing panel, instead of the entire variant set, as happens in the

1-panel design. Indeed, the more expensive Panel 2 has a lower retest probability, leading to

significant cost savings.

Table 3: Details for P-DNA(η = 1) and P-DNA(η = 2) designs for l = 90.

P-DNA(η = 1) P-DNA(η = 2)
l = 90 Panel 1 Panel 1 Panel 2

Panel Size (z(x)) 90 12 78
Pool Size (t∗(x)) 7 7 19
Retest Probability

(1− (1− p(x)
t∗(x)

) 0.181 0.164 0.053
Cost Per Genetic Test (cf + cv(z(x))) $10 + $90 = $100 $10 + $12 = $22 $10 + $78 = $88

Pooled Test $100/7 $22/7 $88/19
Genetic 1

t (cf + cv(z(x))) = $14.29 = $3.14 = $4.63
Testing Cost Individual Retest 0.181× $100 0.164× $22 0.053× $88

per Newborn
(︂
1− (1− p(x)

t∗(x)
)︂(︂

cf + cv(z(x))
)︂

= 18.06 = 3.61 = 4.67

Total $14.29 + $18.06 $3.14 + $3.61 $4.63 + $4.66
(C(x, t∗(x))) = $32.35 = $6.75 = $9.30

To gain further insight, for P-DNA(η = 2) we display the panel sizes (z(xk∗), k = 1, 2) and panel

coverage (y(xk∗), k = 1, 2), as well as pool sizes (tk∗, k = 1, 2) and individual retest probabilities for

the family of optimal designs (Figs. 9-10, Appendix D.2). These figures indicate that the optimal

variant partition is such that one panel typically contains a smaller number of higher frequency

variants (Panel 1 in this case) than the other panel. Relegating those rare variants to one panel

(Panel 2) allows for a larger pool size (of 19), and even with a larger panel size (of 78), it still

has a lower retest probability, which in turn reduces the testing cost for rare variants. Observe,

in Fig. 3 that around index 109, the 2-panel design starts to lose efficiency, this corresponds to
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the point where Panel 2 reaches its technological limit, forcing Panel 1 to grow at a quicker pace

(interestingly, as l increases, the additional variant goes into Panel 2, and the highest frequency

variant in Panel 2 transfers to Panel 1).

In summary, the P-DNA test utilizes the testing budget more efficiently (through pooling and

multi-panel testing); further, the use of multi-panels allows the detection of more variants compared

to the current single-panel, individual testing practice (DNA).

4.3.2 Practical Considerations

Next, we briefly discuss some practical considerations for the P-DNA test.

• Common pool sizes: We characterize an optimal common pool size for P-DNA (Appendix

C.1). Our numerical study indicates that while moving from a 1-panel to a 2-panel design

is highly effective in reducing costs (as discussed above), allowing panel pool sizes to differ

yields much smaller benefits, thus using common pool sizes preserves most of the efficiency

gains of P-DNA, while reducing process complexity (Appendix C.2).

• Variable cost function: In addition to the linear case, we also consider P-DNA designs

under convex and concave variable cost functions, cv(.). A concave (convex) cv(.) function

makes it more (less) favorable to combine variants in one panel, and not surprisingly, lowers

(raises) the budget breakpoint for each index l, compared to the linear case (Fig. 8, Appendix

D.1). Interestingly, the 1-panel P-DNA cost-dominates the 2-panel P-DNA for small variant

sets (Theorem 3) under all cost functions, i.e., for l = 1, · · · , 4 for linear cost, for l = 1, · · · , 12

for concave cost, and for l = 1, 2 for convex cost functions (Appendix D.1).

• Equity considerations: Variant frequencies can differ across demographic groups, e.g.,

[36], and larger panels are in general more equitable. For example, considering the most

common variants for the White, Hispanic, and Black groups [79], we find that the 25 (50)

most common variants for each of these groups are included in the top 48, 118, and 162 (61,

216, and 195) most common variants, respectively, in the CFTR-2 data set. Thus, by simply

expanding the variant set, P-DNA allows for the screening of some rare variants that may be

found predominantly in minority demographic groups, thus contributing to a more equitable

solution, see §5.2 for further discussion.
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4.4 Process Comparison

In this section we compare the three testing processes, IRT/DNA, IRT/P-DNA, and P-DNA: We

consider two variations of the latter two processes, with η = 2 and 4. For each process, we generate

the family of optimal breakpoint designs for l = 1, · · · , 2z(= 180) (above which a 2-panel design

is no longer feasible), and compute the corresponding budget breakpoint Bl, and expected FNs

in a cohort of 1,485,358 newborns (similar to the NY cohort [53]). This allows us to study the

screening cost versus accuracy trade-off at a process level. Due to the declining cost of genetic

testing, we also look at a second cost structure that is half of the base case costs, i.e., cf = $5 and

cv(z(x)) = $0.5× z(x).

For both cost structures, P-DNA(η = 2) is the most expensive, followed by P-DNA(η = 4),

IRT/DNA, IRT/P-DNA(η = 2), and IRT/P-DNA(η = 4) for each l (Fig. 4). Comparing IRT/DNA

and IRT/P-DNA, we see that for the same index l (where both processes incur the same FNs),

either IRT/P-DNA variation (η = 2, 4) cost-dominates IRT/DNA, by reducing the budget at the

same FN level. Further, the more panels are allowed, the lower the budget.

We next compare P-DNA and IRT/P-DNA. Because P-DNA genetically tests all newborns, as

opposed to only 5% of newborns in IRT/P-DNA, it naturally incurs a higher budget: This higher

P-DNA budget happens through an increase in not only the genetic tests, but also SC referrals. At

the same time, the elimination of the IRT test in P-DNA lowers the FNs for each l, compared to

IRT/P-DNA. We illustrate this with an example.

Example 4. Consider IRT/P-DNA(η = 2) and P-DNA(η = 2) designs at l = 5, for cf = $10 and

cv(z(x)) = $z(x) (Table 4):

• IRT/P-DNA(η = 2): The expected FNs is 16.52, and the budget is $2.07, of which $1.50 is

for IRT, $0.23 is for P-DNA (used only on 5% of newborns), and $0.34 is for SC testing.

• P-DNA(η = 2): The expected FNs is 8.34, and the budget is $8.25, of which $4.44 is for

P-DNA (used on all newborns), and $3.81 is for SC testing.

In this example, the diagnostic SC testing contributes to almost half of the budget of P-DNA,

which refers over ten times as many carriers for SC testing as the other processes (Table 4). The

SC component of cost grows slower than the genetic testing component as l rises, because the

number of carriers detected grows at a fairly slow rate, and index l does not affect the per test cost

of SC (Fig. 11, Appendix D.2).
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Finally, we study the FN versus budget trade-off. Because the commonly used IRT/DNA is

always cost-dominated by IRT/P-DNA, we compare IRT/P-DNA and P-DNA. IRT/P-DNA(η = 2)

attains its lowest FNs at l = 180 (i.e., at its technological limit), with 9.05 FNs and a budget

of $3.74 (Fig. 5(a) and Table 4). On the other hand, P-DNA(η = 2) reduces FNs from 9.05

for all variant sets l ≥ 5, e.g., at l = 5, it incurs 8.34 FNs at a budget of $8.25. Thus, for

budgets less than $3.74, IRT/P-DNA is the best process, but by investing more for testing, FNs

can be further reduced. To explore the cost-effectiveness of P-DNA(η = 2) for l ≥ 5, we compute

the cost per each additional FN reduction possible in this process for l ≥ 5, over the baseline

IRT/P-DNA(η = 2) at l = 180 (i.e., the index at which this process yields its lowest FNs), that

is, Cost per FN= Bl(P-DNA(η = 2))−3.74
9.05−FN(S(l),P-DNA(η = 2)) . We repeat the same analysis for the η = 4 case, using

IRT/P-DNA(η = 4) at l = 180 as the baseline, which incurs 9.05 FNs at a budget of $2.78.

Figure 4: Budget breakpoints, Bl, for various processes for optimal designs for two genetic testing
cost structures, as a function of index l

(a) cf = $10, cv(z(x)) = $z(x) (b) cf = $5, cv(z(x)) = $0.5× z(x)

We discuss the cost-effectiveness of P-DNA(η = 2) (the observations for η = 4 are similar). At

l = 5, the cost per FN reduction is high, with a value of 6.35. This is due to the relatively large gap

between the budgets of IRT/P-DNA at l = 180, and P-DNA at l = 5, and the small difference in

their respective FNs (Fig. 5(a)-(b)). However, the cost per FN reduces as more variants are added

to P-DNA, that is, FN decreases at a faster rate than the testing cost increases, until index l = 21.

At this point, the cost per FN reaches its minimum value of 1.08, before starting to increase again

with each additional variant, which happens because the variants are arranged in a non-increasing

order of their frequency, thus, adding one more variant brings a diminishing return.
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Figure 5: Expected false-negatives for the three processes under P-DNA(η = 2) and (η = 4) for
budget breakpoints, Bl, as a function of index l

(a) Expected false-negatives vs budget breakpoint
(b) Cost increase per FN for P-DNA(η) compared to
IRT/P-DNA(η) vs design index

Table 4: Results for select optimal designs (indexed by l) for the three processes, for two genetic
testing cost structures, where η = 2.

CF NBS Index Budget Breakpoint (Bl) # of FN # of SC Tests
Process (l) cf = $5, cf = $10, (per 1,485,358) (per 1,485,358)

cv(z(x)) = $0.5× z(x) cv(z(x)) = $z(x) IRT DNA CF-carrier CF-positive

IRT/DNA
5

$2.22 $2.59 9 7.52 3,160.35 243.48
IRT/P-DNA $1.96 $2.07
P-DNA $6.03 $8.25 - 8.34 34,836.79 251.66

IRT/DNA
20

$2.63 $3.37 9 2.06 3,491.27 248.94
IRT/P-DNA $2.06 $2.25
P-DNA $7.64 $11.08 - 2.26 38,484.47 257.74

IRT/DNA
40

$3.14 $4.39 9 0.69 3,646.30 250.41
IRT/P-DNA $2.17 $2.46
P-DNA $9.30 $14.21 - 0.73 40,193.44 259.27

IRT/DNA
90

$4.40 $6.90 9 0.17 3,756.94 250.83
IRT/P-DNA $2.36 $2.81
P-DNA $12.57 $20.61 - 0.15 41,413.04 259.85

IRT/DNA
180

$6.91 $11.91 9 0.05 3,817.86 250.95
IRT/P-DNA $2.83 $3.74
P-DNA $22.90 $41.20 - 0.02 42,084.49 259.98

5 Conclusions, Limitations, and Future Work

In this paper, we introduce and study a novel pooled DNA (P-DNA) test, which cleverly incor-

porates pooling and multi-panel testing to improve the efficiency of standard DNA tests, which

are used in many applications, including NBS. While pooling is a common strategy for increasing

test efficiency, its use in CF NBS is novel. More importantly, our work shows that pooling and

multi-panel testing work in a synergistic way to improve the efficiency of testing, and the benefits
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go beyond what pooling alone can achieve. Further, multi-panel testing also expands the techno-

logical limit on the number of variants the genetic test can screen for, thus allowing for a higher

clinical sensitivity. Thus, both aspects provide substantial benefit, especially in the NBS setting

where the goal is to detect genetic disorders, which can be caused by a large number of harmful,

and potentially rare, genetic variants. We incorporate P-DNA into two novel CF NBS processes,

namely IRT/P-DNA and P-DNA, which we compare with the most commonly used IRT/DNA

process (Fig. 1). We develop a family of optimal designs and budget breakpoints for each pro-

cess, and derive key design insights. Considering the implementation of these processes, pooling

is already used in high-volume public health screening (using genetic testing to detect pathogens),

while multi-panel testing is essentially just using multiple tests, and each newborn’s dried blood

spot already undergoes multiple tests for multiple disorders. Hence, the methods discussed in this

paper are viable from an implementation perspective. In general, less complex testing protocols

are desirable, and this should be considered when determining the number of pools, or whether

common pool sizes should be used. The level of implementation difficulty is also a function of the

specific testing platforms used in the testing laboratory; but this topic is beyond the scope of this

paper.

It is our hope that this work inspires both academicians and practitioners to further explore

these novel approaches to NBS. For this purpose, we summarize the main takeaways from this

work, followed by some limitations and future research directions.

5.1 Summary of Insights Gained and Further Discussion

This study leads to the following insights:

• The IRT/P-DNA process outperforms the current IRT/DNA process. This follows due to

the efficiencies from pooling and multi-panel testing, allowing IRT/P-DNA to reduce the

false-negative rate at the same budget (through the use of a larger variant set), or attain the

same false-negative rate at a lower budget, e.g., when both processes use the same variant

set comprised of the 90 highest frequency variants, which offers high coverage (97.58%), the

IRT/P-DNA process cost is around 40.7% of the the IRT/DNA process cost. This savings

can be used to provide genetic testing to more newborns, i.e., by lowering the IRT threshold,

thus potentially decreasing the false-negative rate attributed to IRT, increasing the social

benefits of screening.
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• The high efficiency of P-DNA allows it to be used as a single-test process. This has the

advantage of reducing the false-negative rate by eliminating the IRT test. Indeed, our analysis

indicates that at higher testing budgets, the P-DNA process outperforms the other processes

in terms of the false-negative rate. While the P-DNA process might still be too expensive,

we expect it to become more viable as genetic testing costs go down. For example, our cost-

effectiveness analysis indicates that if the fixed and variable costs of genetic testing reduce

by 50%, the P-DNA process budget (cost) reduces between 24% (for a variant set containing

only the most frequent variant) and 45% (for a variant set containing the 180 most frequent

variants).

• A practical strategy, of using a common pool size for a multi-panel P-DNA, preserves most of

the efficiency gains. In particular, the use of a common pool size in P-DNA, with at most 2

panels allowed, increases the testing cost by at most 9% compared to the unconstrained pool

size setting.

• A family of optimal P-DNA designs (i.e., at specific budgets) can be generated in polynomial

time. While the general problem, of determining an optimal design at an arbitrary budget,

is NP-hard, we exploit structural properties of optimal designs, which allow us to generate a

family of optimal designs, and their budgets, in polynomial time. This not only allows policy-

makers to consider the cost versus accuracy trade-off when designing an NBS process, but also

provides a basis for an approximate solution, at any budget, with a performance guarantee

that improves as the budget increases.

5.2 Limitations and Future Work

Next we discuss some limitations of this work, which also provide opportunities for future research:

• We assume that all CF-causing variants are in set Ω (Assumption (A1)). Practically speaking,

set Ω will grow in size as new CF-causing variants are discovered/characterized. However, we

believe this is a minor limitation. New variants are likely to be very rare, and most newborns

with CF are likely to have at least one variant in the panel, and would thus be referred for

diagnostic testing. Moreover, while this implies that our analysis likely underestimates the

rate of false-negatives, this underestimation is similar for each process at each design index,

thus our overall findings should remain valid even when this assumption is relaxed.

• Our assumption, that pooling does not affect analytical sensitivity (Assumption (A3)), should

be validated in a laboratory setting, and an appropriate pool size limit should be determined.
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• Variant frequencies can differ across demographic groups, e.g., see [36]. Thus, considering

equity issues when selecting variants is important, but not trivial, given the complexity of

the GP Model. Still, the proposed P-DNA framework, with pooling and multi-panel testing,

not only utilizes the testing budget more efficiently, but also expands the technological limit

on the number of variants that can be screened for, over the current single-panel, individual

testing paradigm. This allows the P-DNA to expand the variant set, and include more rare

variants found predominantly in underrepresented demographic groups. In addition, this

work provides a benchmark for an equity-based model, which is an important future research

direction.

• Optimal breakpoint designs are based on the ordering of the variants with respect to their

frequency. As a result, an optimal design may be robust to small estimation errors in variant

frequencies, as long as the ordering is preserved. Consider that in the CFTR-2 data set, the

most common variant (variant 1) has a (normalized) frequency of 74.17%, which exceeds the

combined frequency of all other variants; and the next ten common variants (2, · · · , 11) have

a combined frequency of 12.93%, which again exceeds the combined frequency of all lower

frequency variants (12, · · · , 352). This analysis suggests that if the budget permits, these

twelve most common variants should always be included in an optimal variant set. On the

other hand, as expected, many rare variants are clustered together, but these variants are

less likely to be in an optimal variant set unless the budget is quite large. It is an important

future research direction to explore rigorous approaches for constructing a robust variant set.

• We study Dorfman pooling due to its simplicity and efficiency, which make it a commonly

used pooling method in public health screening. Other pooling methods have also received

attention in the literature (§1). For example, array pooling, e.g., [56, 72], utilizes overlapping

pools (to form a testing array), as opposed to the non-overlapping pools used in Dorfman

pooling. While our structural results do not necessarily extend when P-DNA is implemented

with array pooling, a preliminary numerical study indicates thatP-DNA with array pooling

can be effective in certain cases (Appendix C.3). In general, neither array pooling nor Dorfman

pooling always dominates, and identifying the optimal pooling method for a given setting is

an important research direction.

• For the IRT/DNA and IRT/P-DNA processes, our model optimizes only the genetic testing

component, and not the overall process. For instance, rather than expanding the genetic

testing panel, it might be preferable in some cases to modify the IRT threshold beyond the
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current 5%. This would increase the number of newborns undergoing genetic testing, hence

reducing the false-negatives from IRT. This is a difficult design problem, in part because the

distribution of IRT levels for newborns is noisy in general, and for CF-positive newborns,

data sparsity is a problem. The model and methodology developed in this paper can be used

as a building block to analyze this difficult design problem.

• Alternative processes that utilize P-DNA should be studied. For instance, it would be in-

teresting to study a P-DNA/IRT process that uses IRT only for those newborns with one

mutation detected: in this case, the SC referral rule could be based on both the newborn’s

mutational status and the IRT level, which is potentially more accurate than declaring new-

borns CF-negative based solely on IRT levels. Further, California, and now New York, follow

DNA with a more complete sequencing, i.e., next-generation sequencing test, which is used

to reduce the number of newborns referred for SC testing [55], and a similar concept could

be explored for P-DNA.

• The P-DNA test makes universal genetic testing more viable for NBS, which could allow other

genetic disorders to be included into this test as well. As long as the number of CF-causing

variants in the panel, or panels, is below the technological limit, probes for other disorders

can be added, and this “disorder bundling” can potentially reduce NBS costs, especially

as the prevalence rates of many other NBS disorders are much lower than that of cystic

fibrosis. Further, with universal genetic testing, reliable carrier detection becomes more

viable, which could be of value. Currently, NBS programs do not provide this information,

partially for ethical/privacy concerns, and partially because there is not universal genetic

testing, thus only a limited portion of the newborns would receive this information. Looking

into carrier detection issues is beyond the scope of this research, but this is an important

research direction.

• Pricing structures for genetic testing are not readily available from the manufacturers, and

involve contracts and negotiations. Therefore, further exploration of the genetic testing cost

structure is another important avenue for future research.
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[44] S. D. Grosse. Showing value in newborn screening: Challenges in quantifying the effectiveness and
cost-effectiveness of early detection of phenylketonuria and cystic fibrosis. Healthcare, 3(4):1133–1157,
2015.

[45] S. D. Grosse, C. A. Boyle, J. R. Botkin, A. M. Comeau, M. Kharrazi, M. Rosenfeld, and B. S. Wilfond.
Newborn screening for cystic fibrosis: Evaluation of benefits and risks and recommendations for state
newborn screening programs. Morbidity & Mortality Weekly Report (MMWR), 53(40):1–36, 2004.

[46] L. Henneman, I. Bramsen, L. Van Kempen, M. B. Van Acker, G. Pals, H. E. Van Der Horst, H. J. Adèr,
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APPENDIX

A Summary of Acronyms and Mathematical Notation

A.1 Summary of Acronyms

CF : Cystic fibrosis

CFTR : Cystic fibrosis transmembrane conductance regulator

NBS : Newborn screening

IRT : Immunoreactive trypsinogen

SC : Sweat chloride test

DNA : Deoxyribonucleic acid test (genetic test)

P-DNA : Pooled DNA test (pooled genetic test)

A.2 Summary of Mathematical Notation

All vectors are denoted in bold-face.
Parameters:
Ω : Set of all CF-causing variants (with cardinality m), labeled following a non-

increasing order of variant frequency
qi, i ∈ Ω : Conditional probability that a CFTR gene has a mutation of variant i, given

that the gene has a mutation (i.e., the frequency of variant i), where
∑︁

i∈Ω qi = 1
S(l) = {1, · · · , l}, l = 1, · · · ,m : Ordered variant set, containing the l highest frequency variants in set Ω

cf : Fixed cost (e.g., consumables, labor) per genetic test

cv (z(x)) : Variable cost (e.g., dNTPs, enzymes, variant-specific reagents) per genetic test,
which is a non-decreasing function of panel size, z(x)

cSC : Cost per SC test

cIRT : Cost per IRT test

B : Testing budget per newborn

z : Panel size limit

t : Pool size limit

η : Limit on number of panels
Decision variables:
xk =

(︁
xk
i

)︁
i∈Ω

, k = 1, · · · , η : Binary vector, where xk
i = 1 if variant i ∈ Ω is included in panel k, and xk

i = 0
otherwise

tk ∈ Z+, k = 1, · · · , η : Integer pool size for panel k
Functions of decision variables (represented in terms of panel vector x and pool size t):

I{x>0} : Indicator variable, where I{x>0} = 1 if x > 0, and I{x>0} = 0 otherwise

η((xk)k=1,··· ,η) =
∑︁η

k=1 I{xk>0} : Number of panels used in partition (xk)k=1,··· ,η
z(x) =

∑︁
i∈Ω xi : Panel size

y(x) =
∑︁

i∈Ω xiqi : Panel coverage

p(x) : Probability that a random newborn has at least one mutation, of any variant
covered by the panel

D(x, t) : Per newborn expected number of tests for P-DNA

C(x, t) : Per newborn expected cost for P-DNA

TC((xk, tk)k=1,··· ,η) : Per newborn expected total cost, including the cost of P-DNA and the diag-
nostic SC test

S(x) = {i ∈ Ω : xi = 1} : Variants corresponding to panel vector x, with complement S(x) = Ω \ S(x)
x12···η =

∑︁η
k=1 x

k : Combined variant vector for all panels of P-DNA, corresponding to variant
set S(x12···η)

1



Random event and random variables:
FN(x12···η) : Event that a random newborn is a false-negative, that is, the newborn is CF-positive (i.e.,

with two mutations, one on each CFTR gene) and both mutation variants are excluded from
variant set S(x12···η) (i.e., not screened for)

N : Number of mutations (of any variant in set Ω) a random newborn in the general population
has, with sample space S(N) = {0, 1, 2} (respectively denoting the mutation-free, CF-carrier,
and CF-positive status) and pmf PN (.)

Npost : Number of mutations (of any variant in set Ω) a random newborn in the post-IRT population
has, with sample space S(Npost) = {0, 1, 2} and pmf PNpost

(.) (used only in the case study)

Optimal solutions and functions of optimal solutions:

t∗(x) : Optimal integer pool size for panel x

(xk∗(l))k=1,··· ,η, l = 1, · · · ,m : Optimal partition of set S(l)

η∗((xk∗)k=1,··· ,η) =
∑︁η

k=1 I{xk∗>0} : Number of panels used in optimal partition (xk∗)k=1,··· ,η
Bl = TC((xk∗(l), t∗(xk∗(l)))k=1,··· ,η), l = 1, · · · ,m : Budget breakpoint corresponding to variant set S(l)

B Derivations for §2.2

The following expressions extend those in [35] to the P-DNA scheme,to consider a generic form of the pmf
for random variable N , rather than the specific form in [35] that is derived based on certain assumptions
on the parent population, including “uniform mixing” to produce an offspring. Recall that qi, i ∈ Ω, is the
conditional probability that a CFTR gene has a mutation of variant i, given that the gene has a mutation,
hence q = (qi)i∈Ω:

∑︁
i∈Ω qi = 1 (Appendix A.2). Then, an FN event happens when a newborn is CF-

positive, that is, with two mutations (one on each CFTR gene), and both mutation variants are excluded
from variant set S(x12···η), that is, they are not screened for. We define random variable Vi, i ∈ Ω, as the
number of mutations of variant i a random newborn has (on their two CFTR genes), with sample space
S(Vi) = {0, 1, 2}, and N =

∑︁
i∈Ω Vi. Then, Pr(Vi = 1|N = 1) = qi, Pr(Vi = 2|N = 2) = q2i , and

Pr(Vi = 1, Vj = 1|N = 2) = 2qiqj , i, j ∈ Ω : i < j (domain defined to eliminate symmetries). Then, the FN
probability for any given binary vector x12···η follows:

Pr
(︂
FN(x12···η)

)︂
=

⎛⎝ ∑︂
i,j∈S(x12···η):i<j

Pr(Vi = 1, Vj = 1|N = 2) +
∑︂

i∈S(x12···η)

Pr(Vi = 2|N = 2)

⎞⎠PN (2)

=

⎛⎝ ∑︂
i,j∈S(x12···η):i<j

2qiqj +
∑︂

i∈S(x12···η)

q2i

⎞⎠PN (2)

=

(︄ ∑︂
i,j∈Ω:i<j

2
(︂
1− x12···η

i

)︂(︂
1− x12···η

j

)︂
qiqj +

∑︂
i∈Ω

(︂
1− x12···η

i

)︂
q2i

)︄
PN (2)

=

(︄∑︂
i,j∈Ω

(︂
1− x12···η

i

)︂(︂
1− x12···η

j

)︂
qiqj

)︄
PN (2) =

(︄
1−

∑︂
i∈Ω

x12···η
i qi

)︄2

PN (2) .

Next we derive an expression for p(x), i.e., the probability that a random newborn has at least one
mutation, of any variant covered by panel x, which happens when the panel contains at least one of the
mutation variant(s) of a CF-positive newborn (i.e., for a newborn with two mutations, N = 2), or the single
mutation variant of a CF-carrier (i.e., for a newborn with one mutation, N = 1):

p(x) =

⎛⎝ ∑︂
i∈S(x)

Pr(Vi = 1|N = 1)

⎞⎠PN (1) +

⎛⎝ ∑︂
i∈S(x),j∈S(x):i<j

Pr(Vi = 1, Vj = 1|N = 2)

⎞⎠PN (2)

+

⎛⎝ ∑︂
i∈S(x),j∈S(x):i<j

Pr(Vi = 1, Vj = 1|N = 2)

⎞⎠PN (2)
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+

⎛⎝ ∑︂
i,j∈S(x):i<j

Pr(Vi = 1, Vj = 1|N = 2) +
∑︂

i∈S(x)

Pr(Vi = 2|N = 2)

⎞⎠PN (2)

=

⎛⎝ ∑︂
i∈S(x)

qi

⎞⎠PN (1) +

⎛⎝ ∑︂
i∈S(x),j∈S(x):i<j

2qiqj +
∑︂

i∈S(x),j∈S(x):i<j

2qiqj +
∑︂

i,j∈S(x):i<j

2qiqj +
∑︂

i∈S(x)

q2i

⎞⎠PN (2)

=

(︄∑︂
i∈Ω

xiqi

)︄
PN (1) +

(︄∑︂
i,j∈Ω

2xi(1− xj)qiqj +
∑︂

i,j∈Ω:i<j

2xixjqiqj +
∑︂
i∈Ω

xiq
2
i

)︄
PN (2)

=

(︄∑︂
i∈Ω

xiqi

)︄
PN (1) +

⎛⎝∑︂
i,j∈Ω

2xi(1− xj)qiqj +
∑︂

i,j∈Ω:i̸=j

xixjqiqj +
∑︂
i∈Ω

xiq
2
i

⎞⎠PN (2)

=

(︄∑︂
i∈Ω

xiqi

)︄
PN (1) + 2

(︄∑︂
i,j∈Ω

xi (1− xj) qiqj

)︄
PN (2) +

(︄∑︂
i,j∈Ω

xixjqiqj

)︄
PN (2)

=

(︄∑︂
i∈Ω

xiqi

)︄
PN (1) + PN (2)

(︄
2

(︄∑︂
i∈Ω

xiqi

)︄
−

(︄∑︂
i,j∈Ω

xixjqiqj

)︄)︄
=PN (1) y(x) + PN (2)

(︁
2y(x)− (y(x))2

)︁
.

Next we extend the pooled testing expressions in [7] to the P-DNA scheme. The DNA test has perfect
analytical sensitivity and specificity (Assumption (A2)). Then, for any panel composition x > 0 and pool
size t ∈ Z+, t ≥ 2, the pooled test outcome will be positive only if at least one of the t subjects in the pool
has at least one variant covered by the panel, i.e., with probability 1 − (1 − p(x))t; and will be negative
otherwise. Hence, D(x, t), the per newborn expected number of tests for P-DNA, is 1

t per subject if the
pooled test’s outcome is negative (i.e., there is only one test for t subjects), and 1

t + 1 per subject if the
pooled test’s outcome is positive (i.e., each subject in the pool is retested via an individual test), leading to:

D(x, t) =
1

t
+ 1− (1− p(x))t,

and the expressions for C(.) and TC(.) (Eqs. (3)-(4)) follow by the testing cost structure and decision rules
(Figs. 1-2).

C Optimal Pool Size: Characterization and Properties

Considering Dorfman pooling, §C.1 characterizes the optimal pool size, and §C.2 studies the impact of a
common pool size constraint. Then §C.3 explores the use of an alternative pooling method, namely array
pooling, in our problem setting.

C.1 Analytical Results on the Optimal Pool Size under Dorfman Pooling

We first extend a result from the literature to our problem setting, to condition on panel composition. To this
end, we utilize the Lambert W function, W (α)eW (α) = α, α ∈ ℜ, and use W0(.) and W−1(.) to respectively
refer to the principle and the secondary branches of the Lambert W function, which are well-characterized
in the literature [20].

Property C.1. (Theorem 1 from [7], expanded to consider panel composition x) For a given panel x > 0,
an optimal continuous pool size, t̃(x), can be obtained as follows:

t̃(x) = argmin
t≥0

{D(x, t)} =
2

ln(1− p(x))
W0

(︄
−1

2

√︄
ln

(︃
1

1− p(x)

)︃)︄
.
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Then, an optimal integer pool size, t∗(x), constrained by pool size limit, t, follows:

t∗(x) = min

⎧⎨⎩ argmin
t∈{⌊t̃(x)⌋,⌈t̃(x)⌉,t}

{D(x, t)} , t

⎫⎬⎭ ,

where t∗(x) is non-increasing in p(x). Further, pooled testing (with optimal pool size) reduces the per subject
expected number of tests over individual testing if and only if p(x) < 0.308.

Next we characterize an optimal pool size for P-DNA under a common pool size constraint for all panels,
which, by Remark 1, is the minimizer to the expression,

∑︁η
k=1 I{xk>0} × C(xk, t).

Lemma C.1. Consider a P-DNA scheme, under the additional constraint that all panels use a common pool
size. For given panels xk > 0, k = 1, · · · , η, the optimal common, integer pool size, tc∗((xk)k=1,··· ,η), i.e.,

the minimizer to
∑︁η

k=1 I{xk>0} × C(xk, t), over t ∈ {2, · · · , t}, belongs to the set,

tc∗((xk)k=1,··· ,η) ∈

[︄
min

k=1,··· ,η

{︁
t∗(xk)

}︁
,min

{︄
max

k=1,··· ,η

{︄⌈︄
2

ln(1− p(xk))
W−1

(︄
−1

2

√︄
ln

(︃
1

1− p(xk)

)︃)︄⌉︄}︄
, t

}︄]︄
∪{t}.

Proof. From [7], we have that, for a given x, D(x, t) is strictly decreasing in t, for t ∈ Z+ : 2 ≤ t ≤
t∗(x). Then, since the term, cf + cv (z(x)), is independent of t, we have that C(x, t) is strictly decreas-

ing in t in this range. Further, since the remaining terms in TC((xk, tk)k=1,··· ,η), namely, C(xk′
, tk

′
),

k′ = 1, · · · , k − 1, k + 1, · · · , η, and p
(︁
x12···η)︁× cSC (Eq. (4)), are independent of tk, k = 1, · · · , η, we have

that TC((xk, tk)k=1,··· ,η) is strictly decreasing in tk, k = 1, · · · , η, for tk ∈ Z+ : 2 ≤ tk ≤ t∗(xk). Thus,
it follows that TC((xk, tc)k=1,··· ,η) is strictly decreasing in tc, for tc ≤ mink=1,··· ,η{t∗(xk)}, and the lower
bound of the range follows.

Regarding the upper bound, first note that 2
ln(1−p(x))W−1

(︃
− 1

2

√︃
ln
(︂

1
1−p(x)

)︂)︃
is a local maxima of D(x, t),

and D(x, t) is strictly decreasing in t, for t >

⌈︃
2

ln(1−p(x))W−1

(︃
− 1

2

√︃
ln
(︂

1
1−p(x)

)︂)︃⌉︃
[7]. Then, it follows that

TC((xk, tc)k=1,··· ,η) is strictly decreasing in tc, for tc > maxk=1,··· ,η

{︃⌈︃
2

ln(1−p(xk))
W−1

(︃
− 1

2

√︃
ln
(︂

1
1−p(xk)

)︂)︃⌉︃}︃
.

There are two possible cases:

Case 1: t ≤ maxk=1,··· ,η

{︃⌈︃
2

ln(1−p(xk))
W−1

(︃
− 1

2

√︃
ln
(︂

1
1−p(xk)

)︂)︃⌉︃}︃
.

Because any pool size cannot exceed the pool size limit t, the result trivially follows.

Case 2: t > maxk=1,··· ,η

{︃⌈︃
2

ln(1−p(xk))
W−1

(︃
− 1

2

√︃
ln
(︂

1
1−p(xk)

)︂)︃⌉︃}︃
.

Because TC((xk, tc)k=1,··· ,η) is strictly decreasing in tc, for tc > maxk=1,··· ,η

{︃⌈︃
2

ln(1−p(xk))
W−1

(︃
− 1

2

√︃
ln
(︂

1
1−p(xk)

)︂)︃⌉︃}︃
,

it is sufficient to consider tc(x1, · · · ,xη) = t, which is the optimal solution in this case, and the result fol-
lows.

Thus, while an optimal common pool size is never smaller than the minimum of the “non-common” pool
sizes for all the panels, it can be larger than their maximum.

Remark C.1. In the general setting without a common pool size constraint, the optimal integer pool size
t∗(x) for each panel x > 0 is a step function of p(x) only, independently of the other panels (Remark 1
and Property C.1). Then, optimal pool sizes for all panels will be equal in the general setting only when all
p(xk), k = 1, · · · , η, are sufficiently close, i.e., within some range dictated by the step function.
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C.2 Impact of a Common Pool Size Constraint

We use the case study data (§4) to determine the optimal pool sizes for P-DNA(η = 2) in (i) the unconstrained
pool size setting, where pool sizes t1∗ and t2∗ are derived from Property C.1, and (ii) the common pool size
setting, where the common tc∗ is derived from Lemma C.1. Fig. 6(a) depicts the budget breakpoints in
both settings, and Fig. 6(b) displays the optimal common pool sizes. In this numerical study, common pool
sizes do not turn out to be optimal for the unconstrained problem, because the most prevalent variant,
which is included in the optimal variant set for each index l = 1, · · · ,m, has a frequency that exceeds the
frequencies of all other variants combined (see Remark C.1). However, the numerical study indicates that
allowing panel pool sizes to differ yields only a small benefit. Further, the common pool size is at most 13
over the family of optimal designs, while in the unconstrained setting the pool size can be as high as 47.
This indicates that a pool size limit, t, of 13 or higher will have only a minor impact on the efficiency of the
P-DNA design. We also observe that an optimal variant partition under a common pool size restriction is
similar to its unconstrained counterpart, in that the panel that contains more variants has lower frequency
variants. Thus, most benefits of P-DNA(η = 2) can be attained through a simplified process with common
pool sizes, which might be a beneficial strategy for a testing laboratory.

Figure 6: Budget breakpoints, Bl, for P-DNA(η = 2) with and without a common pool size
constraint, and optimal common pool sizes, tc∗, for a family of optimal designs, as a function of
index l

(a) Budget breakpoint vs design index (b) Common pool size vs design index

C.3 An Alternative Pooling Method: Array Pooling

GP considers P-DNA integrated with the Dorfman pooling method, which is the most commonly studied and
used pooling method (see §1). In this section, we provide some preliminary analysis on the potential benefits
of another pooling method, namely array pooling, which utilizes non-overlapping pools, as opposed to the
overlapping pools used in Dorfman pooling. In this section, we discuss whether the structural results for
Dorfman pooling (§2-3) extend to array pooling, and compare the performance of array pooling and Dorfman
pooling to derive insight. In particular, we consider the 2-stage square array pooling (e.g., [56, 72]), in which
specimens from t2 subjects are placed in a t × t array, and each row pool and each column pool (each
containing t specimens) are separately tested with one DNA test per pool, resulting in 2t pooled tests. After
pooled test outcomes are obtained, different individual retesting rules can be applied.

In our setting, with a test having perfect analytical sensitivity (hereafter, “sensitivity”) and specificity
(Assumptions (A2)-(A3)), if a row (column) pool tests positive, then at least one column (row) pool must
also test positive. In addition, if there is exactly one positive-testing row (column) and at least one positive-
testing column (row), then the locations of all true-positive specimens are known with certainty, that is,
there is no ambiguity. In other words, ambiguity, hence the need for individual retesting, arises only when
there are at least two positive-testing rows, and at least two positive-testing columns. Deriving an expression
for the expected number of retests is cumbersome because of the need to condition on both the number of
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true-positives, and all possible locations of those true-positives, in the array. Hence, the relevant literature,
e.g., [56], makes a simplifying assumption, that the outcomes of row pools and column pools are conditionally
independent, given the true-positivity status of the subject at their intersection. In particular, [56] considers a
retesting rule which, for a perfect test, reduces to individually retesting all subjects that lie at the intersection
of each positive-testing row and each positive-testing column; and derives the expected number of tests under
the conditional independence assumption. Because this specific retesting rule applies to both ambiguous and
unambiguous subjects, the expression on the expected number of tests in [56], given in Remark C.2, provides
an upper bound on the expected number of tests.

Remark C.2. (Eq. (9) in [56] at perfect sensitivity and specificity, expanded to consider panel composition
x) Assume that the outcomes of row pools and column pools are conditionally independent, given the true-
positivity status of the subject at their intersection, and the test has perfect sensitivity and specificity. Then,
for a given panel x and a t× t array, t ∈ Z+, the per newborn expected number of tests under array pooling
(i.e., pooled tests plus individual retests for all ambiguous subjects), denoted by DA(x, t), is bounded from
above as follows:

DA(x, t) ≤ 2

t
+ 1− 2(1− p(x))t + (1− p(x))2t−1. (17)

To study the P-DNA design problem under array pooling, one can replace the expression in Eq. (2)
with the upper bound in Eq. (17), which serves as an approximation, and the GP formulation continues
to hold, with the expected total cost expression in Eq. (4) updated to incorporate the upper bound in Eq.
(17). However, some key structural properties established under Dorfman pooling (§2-3) do not necessarily
extend to array pooling, as stated in Remark C.3.

Remark C.3. The following results do not necessarily extend to P-DNA under array pooling:

1. Property C.1 (optimal pool size for panel x): [7] establishes this result under Dorfman pooling by

writing ∂2D(x,t)
(∂t)2 in the form of the Lambert W function, W (α)eW (α) = α, α ∈ ℜ, and using well-

established properties of the Lambert function (e.g., [20]). In particular, for p(x) < 1−e−e−1

, ∂2D(x,t)
(∂t)2

has exactly two real roots, hence ∂D(x,t)
∂t has exactly two stationary points, which respectively corre-

spond to the principle and secondary branches of the Lambert W function, and the global minimizer
of D(x, t), denoted by t̃(x), can be characterized, as done in Property C.1 (see [7]). The Lambert
function equivalence of the second derivative no longer holds for array pooling under the DA(x, t)
approximation in Eq. (17), and hence Property C.1 does not readily extend to array pooling.

2. Lemma 1 (optimality of an ordered partition for a given variant set). For array pooling, the expected
number of tests DA(x, t), hence TC((xk, t∗(xk))k=1,··· ,η), is not necessarily concave in panel coverage,
y(x). The variant partition problem with an arbitrary TC(.) function is NP-hard [19].

Consequently, under array pooling, one needs to resort to enumeration over both all possible pool sizes,
t = 2, · · · , t, and all possible variant partitions for each variant set.

Next we perform a preliminary numerical study to compare the performance of P-DNA(η = 2), integrated
with either Dorfman pooling or array pooling. We use the data in §4, but due to the need for enumeration
under array pooling, we construct two problem instances having only 15 of the variants in set Ω: (i) the
most frequent variants, {1, · · · , 15}, and (ii) medium frequency variants, {61, · · · , 75}.
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Figure 7: Budget breakpoints, Bl, for P-DNA(η = 2) under Dorfman pooling vs array pooling

(a) Problem instance with variants {1, · · · , 15} (b) Problem instance with variants {61, · · · , 75}

Whether Dorfman pooling or array pooling leads to a lower cost (i.e., a lower budget breakpoint for the
same index l) when integrated with P-DNA depends on variant frequencies. While a lower cost is achieved
by array pooling in the high frequency variant setting (Fig. 7 (a)), this is achieved by Dorfman pooling
in the lower frequency variant setting (Fig. 7 (b)). Further analysis indicates that both Dorfman pooling
and array pooling benefit from the use of a 2-panel design. In particular, the 2-panel design cost-dominates
the 1-panel design for all l ≥ 5 under Dorfman pooling, and for all l ≥ 4 under array pooling in the high
frequency variant setting; and for all l ≥ 15 under both Dorfman and array pooling in the low frequency
variant setting.

D Supporting Numerical Analysis

D.1 Sensitivity on the Form of the Variable Cost Function

To study the sensitivity of P-DNA budget breakpoints and design to the form of the variable cost function,
cv(.), we consider P-DNA(η = 2) with a fixed cost of cf = $10, and three variable cost functions, governed
by parameter r: cv(z(x)) = $(z(x))r, for r = 1 (linear), r = 1.25 (convex), and r = 0.75 (concave). All
other data come from the case study (§4). Fig. 8 displays the budget breakpoints for a family of optimal
designs for the P-DNA(η = 2) process for each variable cost function.

Figure 8: Budget breakpoints for the P-DNA(η = 2) process for a family of optimal designs under
linear, convex, and concave functions for cv(.), as a function of index l

Not surprisingly, the concave (convex) cost function lowers (raises) the budget breakpoint for each index
l, over the linear case (Fig. 8). For example, for index l = 90, the budget breakpoint reduces by 35.1%, and
increases by 91.6%, respectively, over the linear case, under the concave and convex functions. Interestingly,
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while the concave (convex) function expands (shrinks) the cost-dominance region for the 1-panel design
compared to the linear case, it does not alter the order of cost-dominance: 1-panel design remains optimal
for small variant sets (i.e., l = 1, · · · , 4 for the linear case, l = 1, · · · , 12 for the concave case, and l = 1, 2 for
the convex case), and 2-panel design remains optimal for larger variant sets.

D.2 Additional Figures

Figure 9: Optimal size, z(x), and coverage, y(x), of each panel of P-DNA(η = 2) for a family of
optimal designs, as a function of index l

(a) Panel size vs design index (b) Panel coverage vs design index

Figure 10: Optimal pool size, t∗(x), and retest probability of each panel, p(x), of P-DNA(η = 2)
for a family of optimal designs, as a function of index l

(a) Panel pool size vs design index (b) Panel’s retest probability vs design index

E Proofs

E.1 Supporting Derivations and Results

Without loss of generality, we assume that qi > 0, ∀i ∈ Ω (by construction, set Ω includes those variants
that have been detected in CF-positive subjects); and PN (n) > 0, for n = 0, 1, 2.
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Figure 11: Budget breakpoint, Bl, and its genetic and SC testing components for P-DNA(η = 2)
process, as a function of index l

We first provide some derivations and key properties that will be used subsequently in the proofs of the
analytical results. We derive:

∂p(x)

∂xi
=qi (PN (1) + 2PN (2))− 2qi

(︄∑︂
i∈Ω

xiqi

)︄
PN (2) = PN (1)qi + 2PN (2)qi

(︄
1−

∑︂
i∈Ω

xiqi

)︄
> 0, i ∈ Ω.

∂p(x)

∂y(x)
=PN (1) + 2PN (2)− 2y(x)PN (2) > 0,

∂2p(x)

(∂y(x))
2 = −2PN (2) < 0.

∂D(x, t)

∂p(x)
=t(1− p(x))t−1 > 0,

∂2D(x, t)

(∂p(x))
2 = −t(t− 1)(1− p(x))t−2 < 0, t ∈ Z+, t ≥ 2.

Lemma E.1. Consider any panel composition x ̸= 1m and any pool size t ∈ Z+, t ≥ 2 (with panel indices
k, k′ = 1, · · · , η, added as needed):

1. Each of D(x, t), D(x, t̃(x)), and D(x, t∗(x)) is strictly concave increasing in y(x).

2. (i) C(x, t) is strictly increasing in xi, for all i ∈ Ω.
(ii) TC((xk, tk)k=1,··· ,η) is strictly increasing in xk′

i , for all i ∈ Ω, k′ = 1, · · · , η.

3. Define the conditional panel coverage as y(x; γ) ≡ y(x : z(x) = γ), that is, with domain consisting of
all x vectors with panel size γ, for an arbitrary γ ∈ Z+, γ ≤ m− 1:
(i) Each of C(x, t) and C(x, t∗(x)) is strictly concave increasing in y(x; γ).
(ii) Each of TC((xk, tk)k=1,··· ,η) and TC((xk, t∗(xk))k=1,··· ,η) is strictly concave increasing in y(xk′

; γk′
),

for all k′ = 1, · · · , η.

4. Pr(FN(x)) is strictly convex decreasing in y(x).

Proof. 1. Strict concavity of D(x, t): We use the chain rule and the expressions derived at the beginning
of Appendix E.1 to derive:

∂D(x, t)

∂xi
=
∂D(x, t)

∂p(x)

∂p(x)

∂xi
= t(1− p(x))t−1

(︄
qi (PN (1) + 2PN (2))− 2qi

(︄∑︂
i∈Ω

xiqi

)︄
PN (2)

)︄
> 0, i ∈ Ω

∂D(x, t)

∂y(x)
=
∂D(x, t)

∂p(x)

∂p(x)

∂y(x)
= t(1− p(x))t−1 (PN (1) + 2PN (2)− 2y(x)PN (2)) > 0,

∂2D(x, t)

(∂y(x))
2 =

∂2D(x, t)

(∂p(x))
2

(︃
∂p(x)

∂y(x)

)︃2

+
∂D(x, t)

∂p(x)

∂2p(x)

(∂y(x))
2

=− t(t− 1)(1− p(x))t−2 (PN (1) + 2PN (2)− 2y(x)PN (2))
2 − 2t(1− p(x))t−1PN (2) < 0,

9



and the result follows.

Strict concavity of D(x, t̃(x)): From [7], ˜︁t(x) exists if and only if p(x) ≤ 1−e−e−1

. Then, the following
must hold:

− 0.5 < ln
(︂
1−

(︂
1− e−e−1

)︂)︂
≤ ln (1− p(x)) ≤ 0

⇔− 1 ≤ −2ln(1− p(x))

(︄
1 +W0

(︄
−1

2

√︄(︃
ln

1

1− p(x)

)︃)︄)︄
− 1 < 0,

where the last inequality follows because −1 ≤ W0

(︃
− 1

2

√︃(︂
ln 1

1−p(x)

)︂)︃
≤ 0.

Then, we must have:

∂D(x, t̃(x))

∂p(x)
=

−1

2(1− p(x))W0

(︃
− 1

2

√︃(︂
ln 1

1−p(x)

)︂)︃ > 0, and

∂2D(x, t̃(x))

(∂p(x))
2 =

−2W0

(︃
− 1

2

√︃(︂
ln 1

1−p(x)

)︂)︃
+

−W0

(︂
− 1

2

√︂
(ln 1

1−p(x) )
)︂
(1−p(x))

ln(1−p(x))(1−p(x))
(︂
1+W0

(︂
− 1

2

√︂
(ln 1

1−p(x) )
)︂)︂

4(1− p(x))2
(︃
W0

(︃
− 1

2

√︃(︂
ln 1

1−p(x)

)︂)︃)︃2

=

−2ln(1− p(x))

(︃
1 +W0

(︃
− 1

2

√︃(︂
ln 1

1−p(x)

)︂)︃)︃
− 1

4(1− p(x))2W0

(︃
− 1

2

√︃(︂
ln 1

1−p(x)

)︂)︃
ln(1− p(x))

(︃
1 +W0

(︃
− 1

2

√︃(︂
ln 1

1−p(x)

)︂)︃)︃ < 0.

Therefore, by the chain rule, and from the expressions at the beginning of Appendix E.1:

∂D(x, t̃(x))

∂y(x)
=
∂D(x, t̃(x))

∂p(x)

∂p(x)

∂y(x)
> 0, and

∂2D(x, t̃(x))

(∂y(x))
2 =

∂2D(x, t̃(x))

(∂p(x))
2

(︃
∂p(x)

∂y(x)

)︃2

+
∂D(x, t̃(x))

∂p(x)

∂2p(x)

(∂y(x))
2 < 0.

Strict concavity of D(x, t∗(x): By Remark 1, t∗(x) satisfies, D(x, t∗(x)) = mint∈{2,··· ,t}{D(x, t)}.
Also, from part 1(i) of this lemma, we have that D(x, t) is strictly concave increasing in y(x), t =
2, · · · , t. Then, D(x, t∗(x)) is the point-wise minimum of strictly concave increasing functions, and
hence is also strictly concave increasing in y(x) [13].

2-3. To prove the results for C(x, t) = D(x, t)× (cf + cv (z(x))) =
(︁
1
t + 1− (1− p(x))t

)︁
× (cf + cv (z(x))),

we derive:

∂C(x, t)

∂xi
=
∂D(x, t)

∂xi
(cf + cv (z(x))) + (D(x, t))

∂cv (z(x))

∂xi
> 0, i ∈ Ω,

∂C(x, t)

∂y(x; γ)
=
∂D(x, t)

∂y(x; γ)
(cf + cv (γ)) > 0,

∂C(x, t∗(x))

∂y(x; γ)
=
∂D(x, t∗(x))

∂y(x; γ)
(cf + cv (γ)) > 0,

∂2C(x, t)

(∂y(x; γ))2
=

∂2D(x, t)

(∂y(x; γ))2
(cf + cv (γ)) < 0, and

∂2C(x, t∗(x))

(∂y(x; γ))2
=
∂2D(x, t∗(x))

(∂y(x; γ))2
(cf + cv (γ)) < 0,
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and the results follow.

To prove the results for TC((xk, tk)k=1,··· ,η), we derive, for k′ = 1, · · · , η:

∂TC((xk, tk)k=1,··· ,η)

∂xk′
i

=
∂C(xk, tk)

∂xk′
i

+
∂p(x12···η)

∂xk′
i

cSC > 0, i ∈ Ω,

∂TC((xk, tk)k=1,··· ,η)

∂y(xk′ ; γk′)
=

∂C(xk, tk)

∂y(xk′ ; γk′)
+

∂p(x12···η)

∂y(xk′ ; γk′)
cSC > 0,

∂TC((xk, t∗(xk))k=1,··· ,η)

∂y(xk′ ; γk′)
=
∂C(xk′

, t∗(xk′
))

∂y(xk′ ; γk′)
+

∂p(x12···η)

∂y(xk′ ; γk′)
cSC > 0,

∂2TC((xk, tk)k=1,··· ,η)

(∂y(xk′ ; γk′))2
=

∂2C(xk′
, tk

′
)

(∂y(xk′ ; γk′))2
+

∂2p(x12···η)

(∂y(xk′ ; γk′))2
cSC < 0, and

∂2TC((xk, t∗(xk))k=1,··· ,η)

(∂y(xk′ ; γk′))2
=
∂2C(xk′

, t∗(xk′
))

(∂y(xk′ ; γk′))2
+

∂2p(x12···η)

(∂y(xk′ ; γk′))2
cSC < 0,

and the results follow.

4. Pr (FN(x)) =
(︁
1−

∑︁
i∈Ω xiqi

)︁2
PN (2) = (1− y(x))

2
PN (2). Then, for any x ̸= 1m, we have

that y(x) < 1, and hence, ∂Pr(FN(x))
∂y(x) = −2 (1− y(x))PN (2) < 0, and ∂2Pr(FN(x))

(∂y(x))2
= 2PN (2) > 0,

completing the proof.

E.2 Proofs of the Analytical Results

Proof of Lemma 1. By Lemma E.1, C(x, t∗(x)) is strictly concave increasing in conditional panel coverage
y(x; γ), i.e., considering all x : z(x) = γ. Hence, we have that for any set S(x12···η), there exists an ordered

partition that minimizes
∑︁η

k=1 I{xk>0}×C(xk, tk) [19]. Further, since cSC×p(x12···η) is a constant for any set

S(x12···η), i.e., independent of the set partition, by Remark 1 it follows that there exists an ordered partition

of set S(x12···η) that minimizes TC((xk, t∗(xk))k=1,··· ,η) = cSC×p(x12···η)+
∑︁η

k=1 I{xk>0}×C(xk, tk). This
completes the proof.

Proof of Corollary 1. By Lemma 1, TC((xk, t∗(xk))k=1,··· ,η) is minimized by an ordered partition of some
set S(x12···η). Then, the problem of finding the ordered partition that minimizes the TC(.) function for a
given variant set reduces to the shortest path problem described in the corollary [19, 21], and the complexity
result follows from [11, 19, 21, 29, 41].

Proof of Lemma 2. Consider the variant partition problem with η = 2 for some variant set S(x12) that has l
variants, l = 2, · · · ,min{2z,m} (ordered following a non-increasing order of variant frequency). By Lemma
1, the TC(.) function for the given variant set is minimized by either an ordered 2-partition or the 1-partition.
Then, among all 2-partitions with panel sizes z(x1) = γ and z(x2) = l − γ, γ ∈ Z+ :

⌈︁
l
2

⌉︁
≤ γ ≤ min{l, z},

the TC(.) function is minimized by one of the following ordered 2-partitions: (1) S(x1) = {1, · · · , γ} and
S(x2) = {γ+1, · · · , l}; or (2) S(x1) = {l−γ+1, · · · , l} and S(x2) = {1, · · · , l−γ}. Then, the result follows
because the 2-Partition Algorithm, given below, considers all feasible ordered 2-partitions to determine
an optimal 2-partition, and compares it with the 1-partition. Observe that considering only those panel sizes,
z(xk), k = 1, 2 : z(x1) ≥ z(x2) (implied by the range on γ above) is symmetry-breaking, and is without loss
of optimality.
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2-Partition Algorithm (for variant set S(x12) = {1, · · · , l})
Initialization: xk∗ = 0, k = 1, 2, TC = ∞
for γ ∈ [1,min{l, z}] do (Generation of all optimal 1- and 2-partitions)

Set S(x1) = {1, · · · , γ}, i.e., x1i = 1, for i = 1, · · · , γ, and x1i = 0 otherwise.
Set S(x2) = {γ + 1, · · · , l}, i.e., x2i = 1, for i = γ + 1, · · · , l, and x2i = 0 otherwise.
Determine optimal pool sizes, t∗(xk), k = 1, 2 (via Property C.1)
Compute the expected total cost, TC((xk, t∗(xk))k=1,2)
if TC((xk, t∗(xk))k=1,2) < TC then

TC = TC((xk, t∗(xk))k=1,2), x
k∗ = xk, k = 1, 2

end if
end for
Output: Variant partition, pool sizes, expected testing cost: xk∗, t∗(xk∗), k = 1, 2, TC

Regarding the computational complexity of the algorithm, for any variant set S(x12) having l variants, the
algorithm performs at most one operation for each γ = {1, · · · , l} (some panel sizes may not be feasible
due to the panel size limit, z, hence requiring no operation); and the algorithm considers at most l different
values of γ, leading to a complexity of O (l).

Proof of Theorem 1. In the following, we use the term “expected cost” of a given variant set to refer to
its expected total cost at the optimal variant partition and pool size vector. Without loss of generality,
all variant sets are arranged following a non-increasing order of variant frequency. Also recall that budget
breakpoint Bl, l = 1 · · · ,m, corresponds to the expected cost for ordered variant set S(l) (Definition 3). To
simplify the subsequent notation, we refer to an arbitrary variant set S(x12···η) as set S, with η(S) non-empty
panels in the optimal variant partition.

Consider any budget B < Bl for some l = 1, · · · ,m. The proof is two-fold. Considering all ordered and
non-ordered variant sets, we first show that there does not exist any feasible variant set S ⊂ Ω with size
z(S) < l such that Pr(FN(S)) ≤ Pr(FN(S(l))); then we show that there also does not exist any feasible
variant set S ⊆ Ω with size z(S) ≥ l such that Pr(FN(S)) < Pr(FN(S(l))).

First consider any variant set S ⊂ Ω : z(S) < l, i.e., any ordered or non-ordered set with at most l − 1
variants, for which there is a feasible solution at budget B. Because S(l) is an ordered variant set, we must
have that y(S) < y(S(l)) (Definition 2); and because Pr(FN(S)) is strictly decreasing in y(S) (Lemma E.1),
it follows that Pr(FN(S)) > Pr(FN(S(l))).

We prove the second part by contradiction. Consider any variant set S ⊆ Ω : z(S) ≥ l, for which there is a
feasible solution at budget B with Pr(FN(S)) = Pr(FN(S(l))). In the following, we show that the solution
corresponding to set S must have an expected cost TC(S) ≥ Bl, hence set S cannot be feasible at budget
B < Bl. We do this by studying the optimal ordered variant partitions (Lemma 1) for variant sets S and

S(l), respectively denoted by the collection of subsets, S̃
k
, k = 1, · · · , η(S), and Sk∗(l), k = 1, · · · , η(S(l)),

the total cost of which are respectively denoted by TC(S) and TC(S(l)); and comparing them with each
other, and with a set of “dummy” solutions that are obtained by perturbing the variant frequency vector.

To this end, denote the variants in set S as {1, · · · , z(S)}, with optimal ordered partition, S̃
1

=

{1, · · · , z(S̃1
)}, S̃k

= {1 +
∑︁k−1

r=1 z(S̃
r
), · · · ,

∑︁k
r=1 z(S̃

r
)}, k = 2, · · · , η(S), and S̃

k
= ∅, k = η(S) + 1, · · · , η,

i.e., the subsets are arranged such that subset 1 has the highest frequency variants, subset 2 has the sec-
ond most highest frequencies, and so on. Because z(S) ≥ l by definition, there must exist some integer

k′ ≤ η(S) :
∑︁k′−1

k=1 z(S̃
k
) < l ≤

∑︁k′

k=1 z(S̃
k
). Next consider ordered variant set S(l), for which we con-

struct a set of dummy partitions in a sequential manner, and use the collection of subsets, Sk(l), k =
1, · · · , η(S), to refer to the “current” (most recent) dummy partition. We start with the first dummy par-

tition, Sk(l), k = 1, · · · , η(S) : y(S1(l)) =
∑︁z(S̃

1
)

i=1 qi, y(S
k(l)) =

∑︁z(∪k
r=1S̃

r
)

i=z(∪k−1
r=1 S̃

r
)+1

qi, for k = 2, · · · , k′ − 1,

y(Sk′
(l)) =

∑︁l
i=1 qi−

∑︁k′−1
r=1 y(Sr(l)), and y(Sk(l)) = 0, k = k′+1, · · · , η(S). Observe that by construction,∑︁η(S(l))

k=1 y(Sk∗(l)) =
∑︁η(S)

k=1 y(Sk(l)) =
∑︁η(S)

k=1 y(S̃
k
), hence the FN probabilities of all three solutions are

equal (Lemma E.1).
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In the remainder of the proof, we compare the expected cost of the optimal partition of set S, i.e., TC(S),
with that of each dummy partition of set S(l). We do this by creating the set of dummy partitions in such a
way that they all incur the same FN probability as Pr(FN(S)) (which equals Pr(FN(S(l))) by construction
of set S), and showing that each dummy partition results in a lower expected cost than TC(S). Specifically,
each new dummy partition is obtained by modifying the coverage of the two specific subsets (panels) in the
current dummy partition by some constant such that the coverage of one subset increases, while the coverage
of the other subset decreases by this constant: These two subsets respectively correspond to the subset with
the lowest index k : y(Sk(l)) < y(Sk∗(l)), and the subset with the highest index among the non-empty
subsets, based on the current dummy partition (starting with the optimal partition of set S). Then we show
that the expected cost of each new dummy partition is lower than that of the previous dummy partition.
Finally, we show that the optimal partition of set S(l) satisfies, TC((Sk∗(l))k=1,··· ,η) ≤ TC((Sk(l))k=1,··· ,η),
that is, it cost-dominates all the dummy partitions.

To show that TC((Sk(l))k=1,··· ,η) ≤ TC(S), recall that by construction, y(Sk(l)) ≥ y(S̃
k
), k = 1, · · · , k′−

1, and y(Sk(l)) < y(S̃
k
), k = k′ + 1, · · · , η(S). Let ϵk ≡ |y(Sk(l)) − y(S̃

k
)|, k = 1, · · · , η(S). S̃

1 ∪ S̃
η(S)

denotes the set of all variants in panels 1 and η(S) of set S. By Lemma 1, the optimal partition of set

S(x1(S)+xη(S)(S)) must be ordered. Let (S̃
1
, S̃

η(S)
) and (S̃

′1
, S̃

′η(S)
) denote two possible ordered partitions

of set S̃
1 ∪ S̃

η(S)
. Since (S̃

1
, S̃

η(S)
) is the optimal partition for set S, the following must be true:

D(S̃
1
)
(︂
cf + cv

(︂
z(S̃

1
)
)︂)︂

+D(S̃
η(S)

)
(︂
cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

≤ D(S̃
′1
)
(︂
cf + cv

(︂
z(S̃

′1
)
)︂)︂

+D(S̃
′η(S)

)
(︂
cf + cv

(︂
z(S̃

′η(S)
)
)︂)︂

.

In the following, we write D (y(S)), to show its dependence on y(S) (Property C.1, Eqs. (1)-(2)). By Lemma

E.1, we also have that for any set S, D (S) is concave increasing in y(S). By definition of S̃
1
, S̃

′1
, S̃

η(S)
,

and S̃
′η(S)

, we have that y(S̃
′η(S)

) − y(S̃
η(S)

) = y(S̃
1
) − y(S̃

′1
) ≥ 0. Then, due to the strict concavity of

D(y(S)) in y(S), the following result must hold for any positive ϵ ≤ min{ϵ1, ϵη(S)}, because y(S̃
1
)−y(S̃

′1
) =

y(S̃
′η(S)

)− y(S̃
η(S)

):

D
(︂
y(S̃

1
) + ϵ

)︂(︂
cf + cv

(︂
z(S̃

1
)
)︂)︂

−D
(︂
y(S̃

1
)
)︂(︂

cf + cv

(︂
z(S̃

1
)
)︂)︂

ϵ

<
D
(︂
y(S̃

1
)
)︂(︂

cf + cv

(︂
z(S̃

1
)
)︂)︂

−D
(︂
y(S̃

′1
)
)︂(︂

cf + cv

(︂
z(S̃

′1
)
)︂)︂

y(S̃
1
)− y(S̃

′1
)

≤
D
(︂
y(S̃

′η(S)
)
)︂(︂

cf + cv

(︂
z(S̃

′η(S)
)
)︂)︂

−D
(︂
y(S̃

η(S)
)
)︂(︂

cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

y(S̃
′η(S)

)− y(S̃
η(S)

)

<
D
(︂
y(S̃

η(S)
)
)︂(︂

cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

−D
(︂
y(S̃

η(S)
)− ϵ

)︂(︂
cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

ϵ
.

Then, by setting ϵ = min{ϵ1, ϵη(S)}, we reach a new dummy partition with the same or lower expected cost
than the previous study solution. There are two possible cases:
Case 1: ϵ = ϵ1

Then, in the new dummy partition, y′(S̃
1
) = y(S1(l)), y′(S̃

η(S)
) = y(S̃

η(S)
) − ϵ1, and y′(S̃

k
) = y(S̃

k
),

k = 2, · · · , η(S)−1; and the following must hold for any 0 < ϵ ≤ min{ϵ2, ϵη(S)−ϵ1}, because y(S̃
2
)−y(S̃

′2
) =

y(S̃
′η(S)

)− y(S̃
η(S)

):

D
(︂
y(S̃

2
) + ϵ

)︂(︂
cf + cv

(︂
z(S̃

2
)
)︂)︂

−D
(︂
y(S̃

2
)
)︂(︂

cf + cv

(︂
z(S̃

2
)
)︂)︂

ϵ

<
D
(︂
y(S̃

2
)
)︂(︂

cf + cv

(︂
z(S̃

2
)
)︂)︂

−D
(︂
y(S̃

′2
)
)︂(︂

cf + cv

(︂
z(S̃

′2
)
)︂)︂

y(S̃
2
)− y(S̃

′2
)
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≤
D
(︂
y(S̃

′η(S)
)
)︂(︂

cf + cv

(︂
z(S̃

′η(S)
)
)︂)︂

−D
(︂
y(S̃

η(S)
)
)︂(︂

cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

y(S̃
′η(S)

)− y(S̃
η(S)

)

<
D
(︂
y(S̃

η(S)
)
)︂(︂

cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

−D
(︁
y(Sη(S))− ϵ1

)︁ (︂
cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

ϵ1

<
D
(︂
y(S̃

η(S)
)− ϵ1

)︂(︂
cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

−D
(︂
y(S̃

η(S)
)− ϵ1 − ϵ

)︂(︂
cf + cv

(︂
z(S̃

η(S)
)
)︂)︂

ϵ
.

Hence, by setting ϵ = min{ϵ2, ϵη(S)− ϵ1}, we have obtained another dummy partition with the same or lower
expected cost.
Case 2: ϵ = ϵη(S)

Then, in the new dummy partition, y′(S̃
1
) = y(S̃

1
)+ ϵη(S), y

′(S̃
η(S)

) = y(S̃
η(S)

(l)) = 0, and y′(S̃
k
) = y(S̃

k
),

k = 2, · · · , η(S) − 1. Similarly, the following must hold for any 0 < ϵ ≤ min{ϵ1 − ϵη(S), ϵη(S)−1}, because
y(S̃

1
)− y(S̃

′1
) = y(S̃

′η(S)
)− y(S̃

η(S)
):

D
(︂
y(S̃

1
) + ϵη(S) + ϵ

)︂(︂
cf + cv

(︂
z(S̃

1
)
)︂)︂

−D
(︂
y(S̃

1
) + ϵη(S)

)︂(︂
cf + cv

(︂
z(S̃

1
)
)︂)︂(︂

cf + cv

(︂
z(S̃

1
)
)︂)︂

ϵ

<
D
(︂
y(S̃

1
) + ϵη(S)

)︂(︂
cf + cv

(︂
z(S̃

1
)
)︂)︂

−D
(︂
y(S̃

1
)
)︂(︂

cf + cv

(︂
z(S̃

1
)
)︂)︂

ϵη(S)

<
D
(︂
y(S̃

1
)
)︂(︂

cf + cv

(︂
z(S̃

1
)
)︂)︂

−D
(︂
y(S̃

′1
)
)︂(︂

cf + cv

(︂
z(S̃

′1
)
)︂)︂

y(S̃
1
)− y(S̃

′1
)

≤
D
(︂
y(S̃

′η(S)−1
)
)︂(︂

cf + cv

(︂
z(S̃

′η(S)−1
)
)︂)︂

−D
(︂
y(S̃

η(S)−1
)
)︂(︂

cf + cv

(︂
z(S̃

η(S)−1
)
)︂)︂

y(S̃
′η(S)−1

)− y(S̃
η(S)−1

)

<
D
(︂
y(S̃

η(S)−1
)
)︂(︂

cf + cv

(︂
z(S̃

η(S)−1
)
)︂)︂

−D
(︂
y(S̃

η(S)−1
)− ϵ

)︂(︂
cf + cv

(︂
z(S̃

η(S)−1
)
)︂)︂

ϵ
.

Thus, by repeating the same argument for each S̃
k
, k = 1, · · · , η(S), in both cases we obtain the dummy

partition (Sk(l))k=1,··· ,η, which leads to a lower or equal expected cost.
Finally, we show that (Sk(l))k=1,··· ,η has a higher expected cost than (Sk∗(l))k=1,··· ,η. Observe that panels
k′ + 1, · · · , η(S) have zero coverage, hence zero cost. Then:

η(S)∑︂
k=1

D
(︁
Sk(l)

)︁ (︂
cf + cv

(︂
z(S̃

k
)
)︂)︂

≥
k′∑︂

k=1

D
(︁
Sk(l)

)︁ (︂
cf + cv

(︂
z(S̃

k
)
)︂)︂

.

We also have that panel k′ has z(Sk′
(l)) ≤ z(S̃

k′

) variants. Then, we have that:

k′∑︂
k=1

D
(︁
Sk(l)

)︁ (︂
cf + cv

(︂
z(S̃

k
)
)︂)︂

≥
k′−1∑︂
k=1

D
(︁
Sk(l)

)︁ (︂
cf + cv

(︂
z(S̃

k
)
)︂)︂

+D
(︂
Sk′

(l)
)︂(︂

cf + cv

(︂
z(Sk′

(l))
)︂)︂

=

k′∑︂
k=1

D
(︁
Sk(l)

)︁ (︁
cf + cv

(︁
z(Sk(l))

)︁)︁
≥

η(l)∑︂
k=1

D
(︁
Sk∗(l)

)︁ (︁
cf + cv

(︁
z(Sk∗(l))

)︁)︁
,

where the last inequality follows by optimality of partition (Sk∗(l)k=1,··· ,η) for set S(l). Hence, we must have
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that Bl = TC(S(l)) ≤ TC(S), completing the proof.

Proof of Corollary 2.

1-2 The results follow directly from Theorem 1. For part 2, observe that if Pr(FN(S)) < Pr(FN(S(l))
for some variant set S ⊆ Ω, then we must have that z(S) > l (Lemma E.1) because set Ω has variants
with distinct frequencies, as assumed in this part.

3. The result follows from Theorem 1, because the optimal variant set for Bm remains feasible for all
budgets B ≥ Bm. Then, because Pr(FN(x)) is strictly decreasing in y(x) (Lemma E.1), the optimal
variant set must be S(m) = {1, · · · ,m} = Ω, i.e., the optimal variant set for Bm.

Proof of Corollary 3. Solving the shortest path problem for set S(m), i.e., from vertex 1 to vertex m + 1,
generates the shortest path from vertex 1 to every other vertex l = 2, · · · ,m + 1 [10, 21, 29]. Then, to
generate the entire family of optimal breakpoint designs and budget breakpoints, it is sufficient to solve the
shortest path problem only once, for variant set S(m) = Ω. The computational complexity then follows from
Corollary 1.

Proof of Theorem 2. Let x12···η∗ denote the optimal variant set at budget B, where Bl < B < Bl+1 for some
l = 1, · · · ,m − 1. Hence, by Definitions 2-3, variant set S(l), equivalently variant vector x12···η∗(l) = 1l,
incurs an expected total cost (at the optimal partition and pool size vector) of Bl, and is feasible at budget
B, whereas variant set S(l + 1), equivalently variant vector x12···η∗(l + 1) = 1l+1, with an expected total
cost of Bl+1, is not. Then, by Theorem 1, variant sets S(l) and S(l + 1) respectively provide a lower
bound and an upper bound on the optimal objective function value at budget B, that is, Pr(FN(1l+1)) <
Pr(FN(x12···η∗)) ≤ Pr(FN(1l)), and the result follows.

Proof of Lemma 3. Consider any Bl < B < Bl+1 < B′ < Bl+2, l = 1, · · · ,m − 2. By Definition 2, for
ordered variant set S(l), we have that x12···η∗(l) = 1l,∀l ∈ Z+. We can write:

εUB(B)

ql+1
=
Pr(FN(1l))− Pr(FN(1l+1))

ql+1

>
Pr(FN(1l+1))− Pr(FN(1l+2))

ql+2

≥Pr(FN(1l+1))− Pr(FN(1l+2))

ql+1
=

εUB(B
′)

ql+1
,

where the first inequality follows by the strict convexity of Pr(FN(x)) in y(x) (Lemma E.1) and the second
inequality follows because ql+1 ≥ ql+2 by construction of set Ω.
Similarly, for Bl < B < B′ < Bl+1, we have that:

εUB(B)

ql+1
=

Pr(FN(1l))− Pr(FN(1l+1))

ql+1
=

εUB(B
′)

ql+1
.

In either case εUB(B) ≥ εUB(B
′), and the result follows.

Proof of Theorem 3. Given any variant set S(x12···η) with size z(x12···η) ≥ 2, consider the optimal η-panel
design for some η = 2, · · · ,min{η, z(x12···η)} (i.e., with η non-empty panels) with partition (xk∗)k=1,··· ,η:∑︁η

k=1 x
k∗ = x12···η, and pool sizes (t∗(xk∗))k=1,··· ,η; and the optimal 1-panel design with x12···η∗ and pool

size t∗(x12···η∗). In the following, we refer to these optimal designs as the η-panel and 1-panel, respectively.
First note that D (x, t∗(x)) ≥ 0, and D (x, t∗(x)) is strictly concave increasing in y(x) (Lemma E.1),

and hence D (x, t∗(x)) is sub-additive in y(x), which implies:

D
(︁
x12···η∗, t∗(x12···η∗)

)︁
≤

η∑︂
k=1

D
(︁
xk∗, t∗(xk∗)

)︁
. (18)

1. We prove this result in two steps. First we show that for any variant set S(x12···η), if there exists a
fixed cost cf ≥ 0 at which the η-panel cost-dominates the 1-panel, then the η-panel will continue to
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cost-dominate for all lower values of cf ; and similarly, we show that if there exists a cf ≥ 0 at which
the 1-panel cost-dominates the η-panel, then the 1-panel will continue to cost-dominate for all higher
values of cf .

First assume ∃cf ≥ 0 at which the η-panel cost-dominates the 1-panel, that is:

TC(x12···η∗, t∗(x12···η∗)) ≥TC((xk∗, t∗(xk∗))k=1,··· ,η)

⇔ D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + cv(z

(︁
x12···η∗)︁))︁ ≥ η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf + cv

(︁
z
(︁
xk∗)︁)︁)︁ . (19)

Now assume that cf decreases by ϵ, for any 0 ≤ ϵ ≤ cf , and let (x′k∗)k=1,··· ,η denote the new optimal
η-panel partition at cf − ϵ. Because D (x, t∗(x)) is sub-additive in y(x), Eqs. (18) and (19) lead to
the following:

D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + cv(z

(︁
x12···η∗)︁))︁−D

(︁
x12···η∗, t∗(x12···η∗)

)︁
ϵ

≥
η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf + cv

(︁
z
(︁
xk∗)︁)︁)︁− η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁
ϵ (20)

⇔ D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf − ϵ+ cv(z

(︁
x12···η∗)︁))︁ ≥ η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf − ϵ+ cv

(︁
z
(︁
xk∗)︁)︁)︁

≥
η∑︂

k=1

D
(︁
x′k∗, t∗(x′k∗)

)︁ (︁
cf − ϵ+ cv

(︁
z
(︁
x′k∗)︁)︁)︁ ,

where the last inequality follows by optimality of (x′k∗)k=1,··· ,η for the η-panel design when the fixed
cost is cf − ϵ.

Next assume ∃cf ≥ 0 at which the 1-panel cost-dominates the η-panel, that is:

TC(x12···η∗, t∗(x12···η∗)) ≤ TC((xk∗, t∗(xk∗))k=1,··· ,η)

⇔ D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + cv(z

(︁
x12···η∗)︁))︁ ≤ η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf + cv

(︁
z
(︁
xk∗)︁)︁)︁ . (21)

We prove this result by contradiction. Assume cf increases by ϵ, and assume that the new optimal
η-panel design, denoted by (x′′k∗)k=1,··· ,η, incurs a lower expected cost than the 1-panel design, that
is:

TC(x12···η∗, t∗(x12···η∗)) > TC((x′′k∗, t∗(x′′k∗))k=1,··· ,η)

⇔ D
(︁
x12···η∗, t∗

(︁
x12···η∗)︁)︁ (︁cf + ϵ+ cv(z

(︁
x12···η∗)︁))︁ > η∑︂

k=1

D
(︁
x′′k∗, t∗

(︁
x′′k∗)︁)︁ (︁cf + ϵ+ cv

(︁
z
(︁
x′′k∗)︁)︁)︁ .

Then, by Eq. (20), if cf + ϵ decreases by ϵ, then the new optimal η-panel design will continue to
cost-dominate the 1-panel design, that is, we must have that:

D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + cv(z

(︁
x12···η∗)︁))︁ > η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf + cv

(︁
z
(︁
xk∗)︁)︁)︁ ,

reaching a contradiction with Eq. (21). Hence it must be true that:

TC(x12···η∗, t∗(x12···η∗)) ≤TC((x′′k∗, t∗(x′′k∗))k=1,··· ,η),

and the result follows.
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2. We prove this result in two steps. First we show that if there exists a convex non-decreasing variable
cost function c′v(.) ≥ 0 for which the η-panel cost-dominates the 1-panel, then the η-panel will continue
to cost-dominate for all cost functions cv(z(x)) = ϵ × c′v(z(x)), with ϵ ≥ 1; and similarly, we show
that if there exists a variable cost function c′v(.) ≥ 0 for which the 1-panel cost-dominates the η-panel,
then the 1-panel will continue to cost-dominate for all cost functions cv(z(x)) = ϵ × c′v(z(x)), with
0 < ϵ ≤ 1, thus establishing the existence of a threshold, ϵ(S(x12···η), η).

Recall that (xk∗)k=1,··· ,η denotes the optimal η-panel partition for the original variable cost function
c′v(.). Let (x′k∗)k=1,··· ,η, and (x′′k∗)k=1,··· ,η denote the optimal η-panel partition for variable cost
function ϵ× c′v(z(x)), when ϵ ≥ 1 and 0 < ϵ ≤ 1, respectively.

Now assume that the η-panel cost-dominates the 1-panel at variable cost function c′v(.), that is:

TC(x12···η∗, t∗(x12···η∗)) ≥TC((xk∗, t∗(xk∗))k=1,··· ,η)

⇔ D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + cv(z

(︁
x12···η∗)︁))︁ ≥ η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf + cv

(︁
z
(︁
xk∗)︁)︁)︁ . (22)

Assume that c′v(.) is replaced by cv(.) = ϵ × c′v(.), for some ϵ ≥ 1. Because of the sub-additivity of
D (x, t∗(x)) in y(x), Eqs. (18) and (22) lead to the following:

D
(︁
x12···η∗, t∗(x12···η∗)

)︁
(1− ϵ)cf ≥

η∑︂
k=1

D
(︁
xk∗, t∗(xk∗)

)︁
(1− ϵ)cf , and

D
(︁
x12···η∗, t∗(x12···η∗)

)︁
ϵ
(︁
cf + c′v(z

(︁
x12···η∗)︁))︁ ≥ η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁
ϵ
(︁
cf + c′v

(︁
z
(︁
xk∗)︁)︁)︁ . (23)

Therefore, by Eqs. (18) and (23), we have that:

D
(︁
x12···η∗, t∗(x12···η∗)

)︁
ϵ
(︁
cf + c′v(z

(︁
x12···η∗)︁))︁+D

(︁
x12···η∗, t∗(x12···η∗)

)︁
(1− ϵ)cf

≥
η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁
ϵ
(︁
cf + c′v

(︁
z
(︁
xk∗)︁)︁)︁+ η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁
(1− ϵ)cf

⇔ D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + ϵc′v(z

(︁
x12···η∗)︁))︁ ≥ η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf + ϵc′v

(︁
z
(︁
xk∗)︁)︁)︁ (24)

≥
η∑︂

k=1

D
(︁
x′k∗, t∗(x′k∗)

)︁ (︁
cf + ϵc′v

(︁
z
(︁
x′k∗)︁)︁)︁ ,

where the last inequality follows by the optimality of (x′k∗)k=1,··· ,η for the η-panel design for variable
cost function ϵ× c′v(.).

Next assume the 1-panel cost-dominates the η-panel at variable cost function c′v(.), that is:

TC(x12···η∗, t∗(x12···η∗)) ≤TC((xk∗, t∗(xk∗))k=1,··· ,η)

⇔ D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + c′v(z

(︁
x12···η∗)︁))︁ ≤ η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf + c′v

(︁
z
(︁
xk∗)︁)︁)︁ . (25)

We prove this result by contradiction. Assume that function c′v(.) is replaced by cv(.) = ϵ × c′v(.),
for some 0 < ϵ ≤ 1, and assume that the new optimal η-panel design, (x′′k∗)k=1,··· ,η, incurs a lower
expected cost than the 1-panel design, that is:

TC(x12···η∗, t∗(x12···η∗)) >TC((x′′k∗, t∗(x′′k∗))k=1,··· ,η)
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⇔ D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + ϵc′v(z

(︁
x12···η∗)︁))︁ > η∑︂

k=1

D
(︁
x′′k∗, t∗(x′′k∗)

)︁ (︂
cf + ϵc′v

(︂
z
(︂
x′′k∗

)︂)︂)︂
.

Then, by Eq. (24), we have that if ϵ × c′v(.) (0 < ϵ ≤ 1) is replaced by c′v(.), then the new optimal
η-panel design will continue to cost-dominate the 1-panel design, that is, we must have that:

D
(︁
x12···η∗, t∗(x12···η∗)

)︁ (︁
cf + c′v(z

(︁
x12···η∗)︁))︁ > η∑︂

k=1

D
(︁
xk∗, t∗(xk∗)

)︁ (︁
cf + c′v

(︁
z
(︁
xk∗)︁)︁)︁ ,

reaching a contradiction with Eq. (25). Hence, it must be true that:

TC(x12···η∗, t∗(x12···η∗)) ≤TC((x′′k∗, t∗(x′′k∗))k=1,··· ,η),

and the result follows.

Proof of Theorem 4. Consider any budget B, and let (xk∗)k=1,··· ,η denote the corresponding optimal η-panel
design, η = 1, · · · , η.

1. The proof follows by induction. First we show that any 2-panel cost-dominates the 1-panel for any
variant set S(x12···η) : z(x12···η) ≥ 2, i.e., with at least 2 variants. We then use this result to show
that if there exists an η + 1-panel design that cost-dominates the optimal η-panel design for a given
variant set, then it must be true that the optimal η+1-panel design FN -dominates the η-panel design
at budget B, and we repeat this argument to compare an η + 2-panel with the optimal η + 1-panel,
and so on, until adding one more panel is no longer feasible at budget B.

For the first part of the proof, consider some variant set S(x12···η) : z(x12···η) ≥ 2, for which the
1-panel design is feasible at budget B, and consider any 2-panel design of this variant set, which we
denote by ((xk)k=1,2). D (x, t∗(x)) is strictly increasing in in y(x) (Lemma E.1). Then, by definition
of a 2-panel design, we have that xk > 0, k = 1, 2, hence it follows that:

D
(︁
x12···η, t∗(x12···η)

)︁
> D

(︁
xk, t∗(xk)

)︁
, k = 1, 2. (26)

Further, because cf + cv (z(x)) is super-additive in z(x), as assumed in part 1 of the theorem, we have
that:

cf + cv
(︁
z
(︁
x12···η)︁)︁ ≥ cf + cv

(︁
z
(︁
x1
)︁)︁

+ cf + cv
(︁
z
(︁
x2
)︁)︁

. (27)

Therefore, from Eqs. (26) and (27), we have that:

D
(︁
x12···η, t∗(x12···η)

)︁ (︁
cf + cv

(︁
z
(︁
x12···η)︁)︁)︁ ≥D

(︁
x12···η, t∗(x12···η)

)︁ (︁
cf + cv

(︁
z
(︁
x1
)︁)︁

+ cf + cv
(︁
z
(︁
x2
)︁)︁)︁

>D
(︁
x1, t∗(x1)

)︁ (︁
cf + cv

(︁
z
(︁
x1
)︁)︁)︁

+D
(︁
x2, t∗(x2)

)︁ (︁
cf + cv

(︁
z
(︁
x2
)︁)︁)︁

,

that is, any 2-panel design reduces the expected cost over the 1-panel design, that is, it cost-dominates,
at any given variant set.

For the second part of the proof, consider any η = 3, · · · , η, and let S(x12···η∗(η)) denote the optimal
variant set for the η-panel design, with optimal partition (xk∗(η)k=1,··· ,η). Assume, without loss of

generality, that z(x12···η∗(η)) ≥ η + 1 (otherwise the result trivially follows with k(B, η) = η). Then,
there must exist at least one panel with at least 2 variants in the optimal η-panel design, and we
partition any such panel (i.e., with at least 2 variants) into 2 panels, converting the given solution
into an η + 1-panel design for variant set S(x12···η∗(η)). Because any 2-panel design reduces the
expected cost over the 1-panel design for any variant set (shown in the first part of the proof), the
new η + 1-panel, which we denote by (xk(η + 1)k=1,··· ,η+1), remains budget feasible. Then, we have
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that:

η∑︂
k=1

I{xk>0} ×D
(︂
xk∗(η), t∗(xk∗(η))

)︂(︂
cf + cv

(︂
z
(︂
xk∗(η)

)︂)︂)︂
>

η∑︂
k=1

I{xk>0} ×D
(︂
xk(η + 1), t∗(xk(η + 1))

)︂(︂
cf + cv

(︂
z
(︂
xk(η + 1)

)︂)︂)︂
.

Thus, an optimal variant set of an η-panel design can be partitioned into η + 1 panels to obtain a
feasible η + 1-panel design, and the result, that the optimal η + 1-panel design FN -dominates the
optimal η-panel design, follows.
Similarly, we can show that the optimal η + 2-panel design FN -dominates the optimal η + 1-panel
design, which in turn dominates the optimal η-panel design, and so on, that is, the optimal η+k-panel
design FN -dominates the optimal η + k − 1-panel design, as well as all designs with fewer panels.
Therefore, ∃k(B, η) : z(x12···η∗(η)) ≤ k(B, η) ≤ η, such that the η + k-panel design dominates the
η-panel design, ∀k = 0, · · · , k(B, η).

2. The proof follows by induction. We first show that the 1-panel cost-dominates any 2-panel design
for any variant set S(x12···η) : z(x12···η) ≥ 2, i.e., with at least 2 variants. We then use this result
to show that the optimal η-panel design cost dominates any η + 1-panel design for any variant set
S(x12···η) : z(x12···η) ≥ η + 1. Then, it must be true that the optimal η-panel design FN -dominates
the optimal η + 1-panel design at budget B, and we repeat this argument to compare an η + 2-panel
with the optimal η + 1-panel, and so on, until adding one more panel is no longer feasible at budget
B.

For the first part of the proof, consider some variant set S(x12···η) : z(x12···η) ≥ 2, for which there is a
2-panel design that is feasible at budget B, which we denote by ((xk)k=1,2) : x

1+x2 = x12···η. Because
D (x, t∗(x)) ≥ 0, and D (x, t∗(x)) is strictly concave increasing in y(x) (Lemma E.1), D (x, t∗(x)) is
sub-additive in y(x). Therefore, we can write:

D
(︁
x12···η, t∗(x12···η)

)︁
≤ D

(︁
x1, t∗(x1)

)︁
+D

(︁
x2, t∗(x2)

)︁
⇔ D

(︁
x12···η, t∗(x12···η)

)︁
(cf + c) ≤ D

(︁
x1, t∗(x1)

)︁
(cf + c) +D

(︁
x2, t∗(x2)

)︁
(cf + c) .

Thus, the 1-panel design results in a lower or equal expected cost over any 2-panel design, that is, it
cost-dominates, for any variant set.

For the second part of the proof, consider any η = 2, · · · , η, and let S(x12···η∗(η+1)) denote the optimal
set of variants, with an optimalη + 1-panel, (xk∗(η + 1)k=1,··· ,η+1). Because the 1-panel reduces the
expected cost over any 2-panel for any variant set (shown in the first part of the proof), combining any
2 panels in the η+1-panel, thus creating an η-panel denoted by (xk(η)k=1,··· ,η), reduces the expected
cost over the optimal η + 1-panel, that is:

η∑︂
k=1

I{xk>0} ×D
(︂
xk(η), t∗(xk(η))

)︂(︂
cf + cv

(︂
z
(︂
xk(η)

)︂)︂)︂
≤

η∑︂
k=1

I{xk>0} ×D
(︂
xk∗(η + 1), t∗(xk∗(η + 1))

)︂(︂
cf + cv

(︂
z
(︂
xk∗(η + 1)

)︂)︂)︂
.

Thus, the optimal variant set of an η + 1-panel design can be transformed into a feasible η-panel
with lower or equal expected cost, and the result, that the optimal η-panel design FN -dominates the
optimal η+1-panel design, follows. Similarly, we can show that the optimal η+1-panel FN -dominates
the optimal η+2-panel, and so on, that is, the optimal η-panel FN -dominates the optimal η+1-panel,
as well as all designs with higher panels, completing the proof.

Proof of Corollary 4. Both results follow directly from Theorem 4.
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