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Abstract

Cystic fibrosis (CF) is a life-threatening genetic disorder. Early treatment of CF-positive

newborns can extend lifespan, improve quality of life, and reduce healthcare expenditures. As

a result, newborns are screened for CF throughout the United States. Genetic testing is costly;

therefore, CF screening processes start with a relatively inexpensive, but not highly accurate,

biomarker test. Newborns with elevated biomarker levels are further screened via genetic testing

for a panel of variants (types of mutations), selected among hundreds of CF-causing variants,

and newborns with mutations detected are referred for diagnostic testing, which corrects any

false-positive screening results. Conversely, a false-negative represents a missed CF diagnosis,

and delayed treatment. Therefore, an important decision is which CF-causing variants to include

in the genetic testing panel so as to reduce the probability of a false-negative under a testing

budget that limits the number of variants in the panel. We develop novel deterministic and

robust optimization models, and identify key structural properties of optimal genetic testing

panels. These properties lead to efficient, exact algorithms, and key insights. Our case study

underscores the value of our optimization-based approaches for CF newborn screening compared

to current practices. Our findings have important implications for public policy.
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1 Introduction and Motivation

Newborn screening (NBS) tests newborns for genetic disorders that can be life-threatening or that

may have a profoundly negative effect on development, if not treated early. NBS is a highly

successful public health initiative in the United States (US), and saves thousands of infants and

children from disability and death each year through early detection and treatment of genetic

disorders (Grosse (2015)). NBS is conducted through in-vitro laboratory tests, performed on dried

blood spots routinely collected from newborns (via a heel-prick). In the US, NBS is administered

at the state level, and while there is a recommended set of 60 genetic disorders (ACHDNC (2018)),

the number of disorders screened for by each state varies from 31-70 (Baby’s First Test (2019)).

With a prevalence of around 1 in 3,700 newborns, cystic fibrosis (CF) is one of the most prevalent

disorders included in NBS (Kammesheidt et al. (2006)). In 2004, the Centers for Disease Control

and Prevention recommended CF for NBS (Grosse et al. (2004)), and since 2010 every state’s NBS

program includes CF screening (Cystic Fibrosis Foundation (2009)). Important testing design

decisions arise in NBS, and in this paper we focus on the design of its genetic testing component,

using CF as a model disorder.

We first provide a brief background on genetic disorders, and refer the interested reader to in-

depth resources, e.g., Jorde et al. (2015). Humans have 23 pairs of chromosomes (22 autosomal pairs

and one pair of sex chromosomes). Each chromosome is a sequence (i.e., string) of deoxyribonucleic

acid (DNA) molecules; each DNA molecule has one of four bases (adenine (A), thymine (T), guanine

(G), and cytosine (C)), and the sequence of these bases encode information. A gene is a segment of

chromosome that codes instructions to build a specific protein (e.g., an enzyme). One chromosome

of each pair is inherited from each parent, and each pair of autosomal chromosomes has the same

set of genes; thus humans have two copies of each autosomal gene, one from each parent. A genetic

disorder occurs when a harmful mutation, i.e., an error (extra, missing, or wrong base(s)) occurs in

the DNA sequence, which inhibits the correct production of the protein coded by the gene, leading

to specific physical symptoms. For instance, CF is caused by mutations to the cystic fibrosis

transmembrane conductance regulator (CFTR) gene that inhibit the newborn’s ability to make

a properly functioning CFTR protein (Kerem et al. (1989); Boyle and Boeck (2013)). Currently

there are 312 known CF-causing variants (types of harmful mutations), that is, specific, inheritable

errors in the CFTR genetic code (CFTR2 (2018)). The CFTR protein plays an important role in

regulating the flow of chloride in and out of cells (NIH (2019)). As a result, CF-positive subjects

suffer from a chloride imbalance that causes mucus to be more viscous, especially in the lungs.

This can be life-threatening: CF’s clinical presentation includes chronic lung disease, pancreatic

insufficiency, failure to thrive (e.g., 90% of CF-positive infants suffer from fat malabsorption by one

year of age), meconium ileus, and infertility (NIH (2019)). Early detection of CF, before symptoms

appear, can improve the nutritional status and growth, and extend the lifespan, of the newborn, and

reduce hospitalization and complications throughout the newborn’s lifetime (Grosse et al. (2004);

Accurso et al. (2005); Campbell and White (2005); Farrell et al. (2005); Borowitz et al. (2009)).
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Similar to many NBS disorders, CF is an autosomal recessive disorder, which means that to have

CF, a newborn must inherit a mutation, of any CF-causing variant, from each parent; inheriting

only one such mutation, thus having one functional CFTR gene, results in asymptomatic carrier

status. (As long as a newborn inherits a CF-causing mutation, the specific variant does not alter

the newborn’s CF-positivity or carrier status.) Due to a relatively high number of carriers in the US

population (1 in 35 individuals, Grosse et al. (2004); Cystic Fibrosis Foundation (2019)) coupled

with states’ limited screening resources (e.g., testing budget and capacity), and diagnostic testing

that is expensive and inconvenient, the main purpose of CF NBS is to identify newborns with CF,

and not to determine the carrier status. The limited testing budget/capacity is a major driver for

the design of public health screening policies, including NBS (e.g., van den Akker et al. (2006);

Mehta (2007); Nshimyumukiza et al. (2014); Grosse (2015); van der Ploeg et al. (2015); CDPH

(2019); Schmidt et al. (2019)).

In the US, the following tests, which are conducted on a dried blood spot, are used in CF NBS:

Immunoreactive Trypsinogen (IRT) Test: CF-positive newborns tend to have higher levels of

IRT in their blood than CF-negative newborns (e.g., Cunningham and Taussig (2013)). Measuring

IRT levels involves a relatively low-cost biomarker test (around $1.5, Lee et al. (2003)), but un-

fortunately there is an overlap between the IRT levels of CF-positive and CF-negative newborns

(Kloosterboer et al. (2009); Sadeghzadeh et al. (2020)). As a result, the accuracy of the IRT test

is not very high, and is dependent on the state’s IRT threshold policy. For instance, in the state

of New York, which is the subject of our case study, based on NBS data between 2007 and 2012,

the IRT test had a positive predictive value (the conditional probability of having CF, given that

the IRT test is positive) of only 3.29%, resulting from a sensitivity of 96.54% and a specificity of

99.39% (Kay et al. (2015)).

Mutation Panel (MP) Test: This genetic test searches for a panel (i.e., subset) of CF-causing

variants, and is more expensive than the IRT test (e.g., a 25-variant panel costs $50.70, Rosenberg

and Farrell (2005); Rock et al. (2005)), but it is also highly sensitive and specific in detecting the

variants in the panel. A panel can contain any subset of variants (e.g., Lim et al. (2016)), but

the panel size (number of variants in the panel) is restricted, with many current MP technologies

having a panel size limit of around 90 variants (Lim et al. (2016)). While the MP test is commonly

used by many states, the composition of its panel varies among the states. The American College

of Medical Genetics recommends a panel of at least 23 variants (Deignan et al., 2020), and many

states use panels of 30 to 50 variants, e.g., New York’s panel includes 39 variants, and California’s

panel includes 40 variants; and both California and New York have customized and changed their

panels over the years (Kay et al. (2015); Kharrazi et al. (2015)).

Genetic Sequencing (GS) Test: This genetic test sequences the entire CFTR gene (thus gen-

erating the sequence of all the bases) and uses bio-informatics to search for all known CF-causing

variants, and is significantly more expensive than both the IRT and MP tests (e.g., $200, Illumina

(2019)), but it is also highly sensitive and specific in detecting all known CF-causing variants.

While each state designs its own CF NBS process, all processes begin with the IRT test (due
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to the low cost), and ends with a classification of the newborn as screen-negative or screen-positive.

Testing stops for newborhs classified as screen-negative, but screen-positives are referred for an

expensive diagnostic Sweat Chloride (SC) test ($237, Wells et al. (2012)). The SC test requires the

newborn to be taken to a specialized testing facility, and can cause parental stress and anxiety as well

as out-of-pocket costs (e.g., travel, missed work) (Tluczek et al. (2005); Wells et al. (2012); Cystic

Fibrosis Foundation (2017)). Further, while the SC test is highly accurate, it can be inconclusive

in around 10% of the cases, requiring a second test on another day (Cystic Fibrosis Foundation

(2017); Pagaduan et al. (2018)). Thus, all false screen-positives (false-positives) are eventually

rectified through the SC test, but at the expense of unnecessary SC testing (Willis (2012)).

With the discovery of the CFTR gene in 1989 (Kerem et al. (1989)), genetic testing for CF

became viable. However, due to the high cost of genetic testing, in the US it is used post-IRT, i.e.,

for newborns with elevated IRT levels, based on the state’s IRT threshold policy, so as to mitigate

the low positive predictive value of the IRT test. Thus, in between the IRT test and classification,

most states use a genetic test or tests, as part of one of the following two processes: (1) the most

common one-tier process, see Fig. 1a (e.g., North Carolina, New York, Virginia, Wisconsin); and

(2) the two-tier process, see Fig. 1b (e.g., California). As Fig. 1 indicates, genetic testing has not

replaced the SC test, because the SC test is the only universally accepted test for CF diagnosis.

While this may change in the future, this is beyond the scope of this paper. However, our models

can be modified to explore the impact of this issue on CF NBS process design.

Due to the importance of genetic testing in CF screening (as well as screening for other genetic

disorders) and the complexity of the screening process, we focus on the genetic component of the

NBS process, that is, post-IRT testing, and study the one-tier and two-tier genetic testing processes

(Fig. 1). For both these processes, the composition of the MP panel, i.e., the specific variants to

search for in MP, has significant implications on the classification accuracy and cost of screening,

and therefore optimal panel design, which we refer to as the Mutation Variant Selection Problem

(MSP), is the focus of this paper. Our research objectives are to develop models to determine an

optimal MP panel, and to characterize the conditions under which the one-tier or two-tier genetic

testing process should be used, so each state can customize their CF NBS process considering their

constraints as well as characteristics of the state’s population.

In summary, false-positives are corrected by the diagnostic SC test (Fig. 1), and hence do not

contribute to misclassification, but the unnecessary SC testing is costly, inconvenient, and anxiety-

causing for families. Conversely, false-negatives (i.e., CF-positive newborns classified as screen-

negative) result in delayed CF diagnoses, potentially leading to poor health outcomes and high

healthcare expenditures. Each state’s public health laboratory is the decision-maker on MP panel

composition and NBS process selection, and their primary objective is to reduce the false-negative

rate, but their screening effort is naturally constrained by the state’s testing budgets (e.g., the high

cost of testing is the primary reason all newborns are not screened for CF via the highly sensitive

and specific GS test), and they are also sensitive to sending newborns for unnecessary SC testing

(even though the latter cost is not borne by the lab). Thus, designing an NBS process necessitates
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examining the societal perspectives of this decision, to consider both the resources consumed by

the state’s public health laboratory and the burden of SC testing on families, insurance companies,

and the state (e.g., Medicaid); and we study the policy insights of the trade-off between total

testing cost (screening and diagnostic) and screening accuracy (false-negative rate) in CF NBS.

Towards this end, we represent this trade-off in our formulations of MSP through the use of a

testing budget, which represents the per person burden for the testing from a societal perspective.

We solve MSP for a wide range of testing budgets to inform the decision-maker of the trade-offs

involved, so that the best decision can be made.

Another important consideration is the uncertainty around the prevalences of CF-causing vari-

ants, which stems from many factors, from rare variants to shifting demographics to limited data.

Thus, the goal of MSP is to determine an MP panel for each process (one-tier and two-tier), so

as to minimize the false-negatives, under uncertainty on variant prevalences and considering the

trade-off between false-negatives and the testing cost.

Previous literature on NBS processes focuses mostly on descriptive analyses (e.g., Hughes et al.

(2015); Kay et al. (2015); Kharrazi et al. (2015); Currier et al. (2017)), with a small number of pre-

dictive analyses that use Monte Carlo simulation to estimate the false-negative rate and the testing

cost for current testing processes (e.g., Wells et al. (2012)). A few studies use discrete-event simula-

tion to study operational issues in NBS, so as to improve its timeliness (e.g., Cochran et al. (2018));

such operational issues are outside the scope of this paper. While this work falls within the general

area of resource allocation in public health screening, the specific application domain, of genetic

testing in newborns, coupled with the biological issues surrounding genetic disorders, gives rise to

unique decision problems and models, such as MSP, which differ substantially from other public

health screening domains (e.g., donated blood screening, infectious disease screening), necessitating

novel analysis and customized algorithms. For example, considering donated blood screening, Bish

et al. (2014) and El Amine et al. (2018) study the problem of allocating a screening budget among

a set of infections to minimize the expected risk of a transfusion-transmitted infection, as well as to

minimize the maximum regret (which lacks a closed-form expression), formulate these problems as

variations of the Knapsack Problem with continuous decision variables, and establish key structural

properties of an optimal budget allocation under each objective function. In another application

area, infectious disease screening, several papers consider pooled testing in which specimens (e.g.,

blood) from multiple subjects are combined into testing pools, with each pool tested by only one

test, so as to increase the efficiency of testing (e.g., Dorfman (1943); Hwang (1975); McMahan

et al. (2012); Aprahamian et al. (2018); Aprahamian et al. (2019)). In this context, the decision

problem is to determine pool sizes, and assignment of subjects, with different risk estimates, to

testing pools. Compared to this line of research, MSP involves individual, not pooled, testing,

and the decision is characterized by binary decision variables, representing a subset of variants to

include in the panel, among the set of variants that can cause the genetic disorder.

Our contributions in this paper are multi-fold. From a modeling perspective, we introduce

MSP, a novel decision problem, and develop both deterministic and robust optimization models
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forMSP, under uncertainty on variant prevalences, considering the genetic testing processes used in

most states, i.e., the one-tier and two-tier processes. This modeling framework takes a distribution-

free approach, which is desirable in practice due to data scarcity. To our knowledge, this paper

is the first to provide a mathematical model and prescriptive analysis of this decision problem.

From a methodological perspective, we identify key structural properties of optimal panels; and

use these properties to develop efficient, exact algorithms. MSP is not a trivial problem; in both

the deterministic and robust settings, a greedy approach of selecting a number of the highest

frequency variants does not always lead to an optimal panel. From an application perspective, we

characterize the conditions (e.g., in terms of the cost structure and variant prevalences) under which

the two-tier process outperforms the one-tier process; this characterization is important due to the

continuously evolving cost structure of genetic testing, newly discovered variants, and changing

prevalences. We also develop various insights and quantify the value of robust optimization in

our context. Our case study illustrates that, for the given data and cost structure, the two-tier

process reduces false-negatives, over its one-tier counterpart, by 18%-46%, depending on the testing

budget (for larger budgets the reduction is less, as the panels are larger, and cover more of the

higher prevalence variants), while at the same time referring only about 3.6% as many newborns

for SC testing compared to the one-tier process. We also find that robust panels, which require

only an uncertainty set and the first moment of the prevalence vector of the CF-causing variants,

reduce false-negatives by 7.3%, and the worst-case false-negative rate by almost 3.5% on average,

compared to the deterministic panels, which are sensitive to estimation errors. (Over the 17 budgets

considered, four have the same panel for the robust and deterministic models, and the robust model

dominates the deterministic model for all other budget levels.) We also show that our models

improve upon current practices without leading to an increase in the testing cost. In particular,

both deterministic and robust models lead to a reduction in the false-negative rate, compared to

the New York panel, by 5.7% and 17.0%, respectively. These results have important public policy

implications. This research is timely, because an early CF diagnosis, and an understanding of the

underlying genetic defect, are likely to become more important in the treatment of this disease,

especially as new pharmacological and genetic therapies are discovered, placing this type of research

on the forefront of personalized, precision medicine.

The remainder of this paper is organized as follows. In Section 2, we present the notation,

assumptions, and the decision problem. In Section 3, we provide novel formulations of MSP, derive

key structural properties of optimal MP panels, develop an efficient, exact algorithm, characterize

the conditions under which each of the one-tier and two-tier process dominates, and study the

price of robustness, i.e., the increase in false-negatives in return for a robust solution. In Section 4,

we perform a case study and apply the proposed optimization-based approaches to realistic data.

Finally, we conclude, in Section 5, with a summary of our findings and suggestions for future

research. To facilitate the presentation, all derivations and proofs, and some results and tables, are

relegated to the Appendix.
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Figure 1: CF NBS Processes Currently Used in the US

(a) CF NBS with one-tier genetic testing (b) CF NBS with two-tier genetic testing

2 The Notation, Assumptions, and the Decision Problem

Each individual has a pair of CFTR genes, one from each parent, and each gene can have a CF-

causing mutation or not. An individual is CF-negative if they are mutation-free or have exactly one

mutation (giving them carrier status), and CF-positive if they have two mutations; in the latter

case, both mutations can be of the same variant, or of different variants, and this does not affect

the CF-positivity. CF-positive parents are rare, due to the rarity of the disease (there are around

30,000 CF-positive individuals in the US (Cystic Fibrosis Foundation (2018))), and due to CF

related health complications. For example, CF reduces fertility, especially in males (Hull and Kass

(2000); NIH (2019)); and in 2018 there were only 280 pregnancies in CF-positive women (Cystic

Fibrosis Foundation (2018)) out of 3,791,712 births in the US (CDC (2018)). Consequently, in our

study, we consider the adult population that excludes CF-positive adults as a proxy for the parent

population of interest, as we formally state in Assumption (A1). The scope of our study is the

genetic testing component of the CF NBS process, i.e., post-IRT testing.

Throughout, we use upper-case letters to denote random variables, lower-case letters to denote

their realization, and bold-face to denote vectors. We denote the sample space or the uncertainty

set (the latter is constructed by the decision-maker) of a random variable X by S(X). Let Ω denote

the set of variants known to cause CF, which currently contains 312 variants. Let Qi, i ∈ Ω, and Q0

respectively denote the conditional probability that a random parent has one mutation of variant

i, and is mutation-free, given that the parent has at most one mutation (i.e., not CF-positive),

with Q = (Qi)i∈Ω∪{0} representing the prevalence vector in the parent population of newborns

undergoing genetic testing, excluding CF-positive parents. Then, Q is a correlated random vector,

because
∑︁

i∈Ω∪{0}Qi = 1 with probability one.

There is uncertainty around the prevalences of CF-causing variants. Therefore, we develop

a robust optimization model that utilizes an uncertainty set, S(Q), and a point estimate of the

mean vector, µ̂ = (µ̂i)i∈Ω∪{0}, for the random prevalence vector Q, that is, the distribution of

Q is not needed. Specifically, the robust optimization model utilizes a correlated uncertainty set,

S(Q) =
{︂
θ : θi ∈ [qLBi , qUB

i ], i ∈ Ω ∪ {0},
∑︁

i∈Ω∪{0} θi = 1
}︂
, where the range of each Qi, i.e., q

UB
i −

qLBi , i ∈ Ω ∪ {0}, depends on the available data as well as the level of conservatism the decision-

maker is seeking (see Section 4 and Appendix E.1). We assume, without loss of generality, that

qLB0 ≥ 1−
∑︁

i∈Ω qUB
i , and qUB

0 ≤ 1−
∑︁

i∈Ω qLBi . To study the price of robustness associated with
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robust optimization, we also consider a deterministic model that only requires the estimated mean

vector, µ̂ ∈ S(Q).

The decision problem, i.e., the Mutation Variant Selection Problem (MSP), is to determine

which variants to search for in MP (i.e., panel) for each process represented in Fig.1, so as to

minimize the false-negatives, under a technological limit on panel size and a post-IRT testing

budget. While the primary objective in NBS is to reduce the false-negatives, a trade-off exists

between a false-negative, which leads to a missed diagnosis, and the testing cost (including the

cost resulting from false-positives, which require further testing). The testing budget constraint is

used to model this trade-off, so as to enable the decision-maker to select the panel based on the

trade-offs involved at various budget levels (see Section 1).

We make the following assumptions.

Assumption (A1). Each parent has at most one mutation, that is, each parent is either a carrier

(i.e., with one mutation) or mutation-free, independently of the other parent.

Assumption (A2). All CF-causing mutation variants are known and included in set Ω.

Assumption (A3). Both genetic tests, MP and GS, and the diagnostic test, SC, are perfectly

reliable, i.e., the sensitivity (true positive probability) and specificity (true negative probability) of

each genetic test is 1 for each variant searched for in MP, and for the entire set of variants searched

for in GS, and SC can identify all CF-positive and CF-negative subjects accurately.

Assumption (A1) is reasonable, because it is highly unlikely for a newborn to have a CF-positive

parent, as we explain at the beginning of this section. Assumption (A2) is reasonable based on

current medical knowledge; further, if a CF-causing variant is not yet discovered, then its preva-

lence is likely very small. Finally, Assumption (A3) is validated by CF genetic testing data (e.g.,

Kammesheidt et al. (2006); Johnson et al. (2007); Kosheleva et al. (2017); John Hopkins Medicine

(2019)), which indicate that both MP and GS have almost perfect sensitivity and specificity. Then,

MP will fail to identify a mutation only if the corresponding variant is not included in its panel; and

GS will identify all mutations corresponding to the variants in set Ω. Finally, SC is a diagnostic

test, which is considered the gold standard for CF diagnosis.

Decision Variable Vector:

x = (xi)i∈Ω, with xi = 1 if variant i is included in the MP panel, and xi = 0 otherwise

Random Variables:

Qi, i ∈ Ω ∪ {0} : Conditional probability that a random adult has one mutation of variant i ∈ Ω,

or is mutation-free (i = 0), given that the adult has at most one mutation

N : Number of mutations, of all variants in set Ω, in a random newborn, with

sample space S(N) = {0, 1, 2}˜︁N(x), ∀x : Number of mutations detected by MP in a random newborn, given an MP

panel x, with sample space S
(︂ ˜︁N(x)

)︂
= {0, 1, 2}

Costl, l = 1, 2 : Testing cost for genetic screening process type l, with l = 1, 2, respectively

corresponding to the one-tier and two-tier process
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By Assumptions (A1) - (A3), the number of mutations detected by MP is such that Pr
(︂ ˜︁N(x) ≤ N

)︂
=

1 for all x; and the number of mutations detected by GS, which is independent of x, always equals

N , i.e., the number of mutations the newborn has.

Parameters:

m = |Ω| : Number of CF-causing variants (i.e., cardinality of set Ω)

m : Maximum number of variants that can be included in an MP panel due

to technological limitations of the testing platform, where m ≤ m

S(Q) : Uncertainty set around Q, constructed by the decision-maker, where

S(Q) =
{︂
θ : θi ∈ [qLB

i , qUB
i ], i ∈ Ω ∪ {0},

∑︁
i∈Ω∪{0} θi = 1

}︂
µ̂i, i ∈ Ω ∪ {0} : Point estimate of E(Qi), where µ̂ = (µ̂i)i∈Ω∪{0} ∈ S(Q)

CGS , CSC , CMP : Cost of each GS test and SC test, and the fixed cost of each MP test,

respectively (e.g., cost of testing kit, labor, machine time)

g
(︁∑︁

i∈Ω xi
)︁

: Variable cost of MP (e.g., reagent cost associated with each variant),

which is strictly increasing in panel size,
∑︁

i∈Ω xi, with inverse function

g−1(.)

B (≥ CMP ) : Post-IRT CF testing budget per newborn (i.e., for newborns subject to

further testing after IRT)

Since GS searches for all variants in set Ω and SC is not a genetic test (i.e., it does not search for

mutations), both GS and SC incur only a fixed cost, of CGS and CSC per newborn, respectively. On

the other hand, MP incurs a fixed cost of CMP per newborn and a variable cost, g
(︁∑︁

i∈Ω xi
)︁
, that is

an increasing function of the number of variants in the panel (and not the specific variants), hence

it is invertible. This is realistic for a mutational probe technology (e.g., PCR-based technologies,

see Johnson et al. (2007) for details), which is commonly used in CF NBS (see Section 4), where a

genetic probe (a sequence of DNA bases) adheres to the strand of DNA with a specific variant if

that variant exists, and produces a signal. Thus, for each variant a unique probe is needed, and the

variable cost corresponds to the cost of the probe, which is independent of the variant. However,

the actual cost structure depends on the pricing practices of manufacturers, therefore we do not

make any assumptions on the functional form of g(.).

Then, in both the one-tier and two-tier processes, a false-negative classification, which we denote

by event FN , occurs only if the newborn is CF-positive (i.e., N = 2) and no mutations are detected

in MP (i.e., ˜︁N(x) = 0); this happens when the newborn’s specific variants are not included in the

MP panel (see Assumptions (A2) and (A3)). This follows because if one mutation is found in

MP, then, depending on the NBS process, the newborn will undergo GS and/or SC testing, both

of which will eliminate a false-negative classification; see Fig. 1 (recall that missing a carrier is

not considered a false-negative). Then, the probability of a false-negative classification, given a

realization θ of the random vector Q, follows (see Appendix A.2 for derivations):

Pr(FN(x;θ)) =Pr
(︂ ˜︁N(x) = 0, N = 2;θ

)︂
=

1

4

[︄
(1− θ0)−

(︄∑︂
i∈Ω

xiθi

)︄]︄2
. (1)

For both the one-tier and two-tier processes, post-IRT testing starts with MP, and follows
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stochastically different routes, based on the outcome of MP (i.e., random variable, ˜︁N(x)), see Fig.

1. Using the structure of each testing process depicted in Fig. 1, we derive their expected testing

cost (with expectation taken over random variables N and ˜︁N(x)), given a point estimate, µ̂, of the

random vector Q (see Appendix A.3 for derivations):

EN, ˜︁N(x)

[︁
Cost1(x; µ̂)

]︁
=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+
[︂
Pr
(︂ ˜︁N(x) ≥ 1

)︂]︂
CSC

=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+

(︄∑︂
i∈Ω

xiµ̂i

)︄
CSC −

(︄∑︂
i∈Ω

xiµ̂i

)︄2 [︃
CSC

4

]︃
(2)

EN, ˜︁N(x)

[︁
Cost2(x; µ̂)

]︁
=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+ Pr

(︂ ˜︁N(x) = 1
)︂ [︂

CGS + Pr
(︂
N = 2| ˜︁N(x) = 1

)︂
CSC

]︂
+ Pr

(︂ ˜︁N(x) = 2
)︂
CSC

=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+

(︄∑︂
i∈Ω

xiµ̂i

)︄[︃
2CGS + CSC (1− µ̂0)

2

]︃
−

(︄∑︂
i∈Ω

xiµ̂i

)︄2 [︃
2CGS + CSC

4

]︃
.

In our distribution-free approach, we do not take expectation over the random vector Q (which,

due to the quadratic terms, would require estimating not only the first two moments of each Qi,

but also the terms, E[QiQj ], for correlated random variables Qi and Qj , ∀i, j ∈ Ω, j ̸= i), and

simply utilize its point estimate vector, µ̂, in a deterministic manner. Then, the expected testing

cost for both genetic screening processes has the same functional form, that is, for l = 1, 2:

E
[︁
Costl(x; µ̂)

]︁
= CMP + g

(︄∑︂
i∈Ω

xi

)︄
+Kl

1

∑︂
i∈Ω

xiµ̂i −Kl
2

(︄∑︂
i∈Ω

xiµ̂i

)︄2

, (3)

where (K l
1,K

l
2) equals

(︂
CSC ,

CSC
4

)︂
for l = 1, and

(︂
2CGS+CSC(1−µ̂0)

2 , 2CGS+CSC
4

)︂
for l = 2.

To simplify the subsequent notation, if a result applies to both genetic screening processes, then

we drop the process type index l, and simply refer to the corresponding testing cost as Cost, and

to the corresponding parameters as K1 and K2; we also define B′ ≡ B − CMP .

3 Optimal Mutation Selection: Formulations and Properties

In MSP, the objective is to select a set of variants (panel) for MP so as to minimize the false-

negative probability, under a given testing budget and a technological constraint on the maximum

number of variants allowable in a panel. In this section, we develop and study two formulations

of MSP: a deterministic formulation that simply uses a point estimate vector, µ̂, and a robust

formulation that uses an uncertainty set, S(Q), for variant prevalences, and the point estimate

vector, µ̂. The deterministic formulation allows us to quantify the price of robustness.

We first provide some properties for the false-negative probability and the expected testing cost

(Eqs. (1) and (3)). Recall that x is a binary decision variable vector,
∑︁

i∈Ω∪{0} θi = 1, ∀θ ∈ S(Q),

and g(.) is strictly increasing in panel size.

Property 1.

1. The objective,
{︁
minimizex Pr (FN(x;θ))

}︁
, is equivalent to the objective,

{︁
maximizex

∑︁
i∈Ω xiθi

}︁
,

and the objective,
{︁
minimizexmaxθ∈S(Q) {Pr (FN(x;θ))}

}︁
, is equivalent to the objective,
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{︁
maximizexminθ∈S(Q)

{︁
θ0 +

∑︁
i∈Ω xiθi

}︁}︁
.

2. The expected testing cost, E[Costl(x; µ̂)], is strictly increasing in xi, for all i ∈ Ω, l = 1, 2.

We are ready to provide the deterministic and robust formulations of MSP.

Deterministic MSP (DM):

minimize
x

Pr (FN(x; µ̂)) maximize
x

∑︂
i∈Ω

xiµ̂i (4)

subject to E [Cost(x; µ̂)] ≤ B ⇔ g

(︄∑︂
i∈Ω

xi

)︄
+K1

∑︂
i∈Ω

xiµ̂i −K2

(︄∑︂
i∈Ω

xiµ̂i

)︄2

≤ B′ (5)

∑︂
i∈Ω

xi ≤ m
∑︂
i∈Ω

xi ≤ m (6)

xi binary, i ∈ Ω xi binary, i ∈ Ω (7)

Robust MSP (RM):

minimize
x

max
θ∈S(Q)

{︄
Pr (FN(x;θ))

}︄
⇔ maximize

x
min

θ∈S(Q)

{︄
θ0 +

∑︂
i∈Ω

xiθi

}︄
(8)

subject to (5), (6), (7).

DM objective function (4) minimizes the false-negative probability for a given point estimate

vector, µ̂, while RM objective function (8) minimizes the worst-case false-negative probability

among all possible realizations of the random vector Q (see Property 1). Constraint (5) ensures

that the expected testing cost, based on the point estimate µ̂, remains within the testing budget,

while Constraint (6) imposes a technological limit on MP panel size. As discussed in Section 1,

all false-positive outcomes are resolved by SC (Assumption (A3) and Fig. 1), and hence, are not

included in the objective function, but they do contribute to the testing cost in Constraint (5). Let

x∗k and Z∗k, k ∈ {D,R}, respectively denote the optimal solution vector and the corresponding

objective function value for DM (k = D) and RM (k = R).

DM and RM lead to novel decision problems and model structures, due to the specific form

of the nonlinear cost constraint (Constraint (5)), where the first term is a function of the sum of

the binary decision variables (i.e., g(
∑︁

i∈Ω xi)); and, additionally, due to the correlation structure

of the uncertainty set used in RM. Consequently, in the following, we establish their structural

properties, which allow us to reformulate each problem as a series of sub-problems (Theorem 1 and

Remark 2). In particular, each DM sub-problem is reformulated as an exact γ-item 0-1 Subset-sum

Problem, and each RM sub-problem is reformulated as a novel variation of an exact γ-item 0-1

maximin Knapsack Problem, with a correlated uncertainty set (for any γ ∈ Z+).

RM can be conservative, because it accounts for the worst possible value of the objective

function (see (8)), butRM still considers the expectation of the testing cost in the budget constraint

(i.e., Constraint (5) is computed based on µ̂). This is to preserve the feasible region of DM so

that the robust and deterministic solutions can be directly compared and insights can be derived.

However, other robust formulations, with different degree of conservatism, are possible, based on
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how the uncertainty in the testing cost is handled (see Remark 1). In the remainder of the paper,

we provide our analysis for RM, which forms the basis of the analysis for the other robust models

(see Appendix B). We compare all robust models in Section 4.

Remark 1. Observe that for any given panel x, the specific prevalence vector realizations that

respectively yield the worst-case objective function (maximum false-negative probability) and the

worst-case (maximum) testing cost do not necessarily coincide. We suggest two ways to model

a robust version of Constraint (5), i.e., without utilizing the point estimate vector, µ̂. These

formulations differ in their treatment of the uncertain testing cost (i.e., in the prevalence vector

used in Constraint (5)):

Correlated Robust MSP (C-RM) considers the worst-case objective (as in RM), that is, for

any x, it evaluates the false-negative probability at the prevalence vector that maximizes it, i.e.,

βFN (x) ≡ argmaxθ∈S(Q)

{︂
Pr (FN(x;θ))

}︂
≡ argminθ∈S(Q)

{︂
θ0 +

∑︁
i∈Ω xiθi

}︂
(if multiple such vectors

exist, then, without loss of optimality, the vector that yields the smallest expected testing cost

is selected). The model uses this prevalence vector, βFN (x), in both objective function (8) and

Constraint (5).

Upper Bound Robust MSP (U-RM) considers both a worst-case objective (as in RM and

C-RM), but also a worst-case testing cost in Constraint (5), that is, for any x, it evaluates the

false-negative probability at prevalence vector βFN (x), defined above, but evaluates the testing cost

at the prevalence vector that maximizes it, i.e., βCost(x) ≡ argmaxθ∈S(Q)

{︂
E [Cost(x;θ)]

}︂
. Thus, the

model potentially uses different prevalence vectors in objective function (8) and Constraint (5).

Thus, while C-RM is consistent in terms of how the uncertainty is resolved, both U-RM and RM

use potentially different prevalence vectors in their objective function and testing cost constraint.

Therefore, the three robust models offer different degrees of conservatism, with U-RM always

being the most conservative, which is typically followed by RM and then C-RM (however, the

relationship between RM and C-RM is inconclusive in general).

The trade-off between solution robustness and accuracy has been studied in the OR litera-

ture in general, considering various objective functions, such as minimax type or regret-based

objectives (e.g., Savage (1951); Perakis and Roels (2008); El Amine et al. (2018)); and various

forms of uncertainty sets, including interval type uncertainty sets and others (e.g., ellipsoidal,

polyhedral, conic sets), or sets that restrict the number of uncertain parameters in an effort

to reduce the conservatism of the robust solution (e.g., Ben-Tal and Nemirovski (2000); Bert-

simas and Sim (2004); Bertsimas et al. (2011); Soleimanian and Jajaei (2013)). Our novel ro-

bust formulations, RM, C-RM, and U-RM, all of which rely on a correlated uncertainty set,

S(Q) =
{︂
θ : θi ∈ [qLBi , qUB

i ], i ∈ Ω ∪ {0},
∑︁

i∈Ω∪{0} θi = 1
}︂
, the derivation of their structural prop-

erties, and the bounding of the price of robustness in our setting, provide a contribution to the

literature, while extending this line of research to a new application area, of genetic testing.

Even with a linear objective function implied by Property 1, DM remains a difficult prob-

lem, because Constraint (5) has not only quadratic terms but also an arbitrary nonlinear function
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g(.) that is a function of the sum of the binary decision variables. RM, with a nonlinear objective

function and a correlated uncertainty set, is at least as difficult as DM. While DM can be reformu-

lated as a mixed integer linear programming problem (MILP) following the standard linearization

techniques (e.g., Adams and Sherali (1986); Smith and Taskin (2008)), the MILP reformulation

adds a large number of binary variables and constraints (see Remark C.2 in Appendix C). This is

compounded by the fact that the number of binary variables in DM and RM, which corresponds

to the number of known CF-causing variants (m), continues to grow: This number was 130 in April

2012, but increased to 272 by August 2016, and further to 312 by December 2017 (CFTR2 (2018)).

Our numerical analysis in Section 3.2 indicates that the problem size, m, coupled with an arbitrary

nonlinear cost function, g(.), leads to computational issues for off-the-shelf solvers. Therefore, in

the remainder of this section, we establish key structural properties of DM and RM formulations,

and use these properties to develop a customized, exact algorithm, which is able to solve realistic

sized DM and RM problem instances in a highly efficient manner (within a few seconds).

3.1 Equivalent Formulations of DM and RM

We first formulate, and establish various properties of, a specific sub-problem of each of DM and

RM, which we refer to as DM-S(γ) and RM-S(γ), respectively. This is done by imposing an

additional constraint on the original problem that exogenously fixes the number of variants to be

used in any MP panel, i.e.,
∑︁

i∈Ω xi = γ, for some γ ∈ Z+:γ ≤ m. For these specific sub-problems,

i.e., when
∑︁

i∈Ω xi = γ is fixed for some γ, we are able to express Constraint (5) as a linear function

of xi, i ∈ Ω, reducing these sub-problems to certain special cases of the Knapsack Problem.

Theorem 1. Consider any γ ∈ Z+: γ ≤ m.

1. DM, under the additional constraint that
∑︁

i∈Ω xi = γ, can be equivalently formulated as:

Sub-problem DM-S(γ):

maximize
x

∑︂
i∈Ω

xiµ̂i

subject to
∑︂
i∈Ω

xiµ̂i ≤ ZUB(γ) (9)∑︂
i∈Ω

xi = γ (10)

xi binary, i ∈ Ω. (11)

2. RM, under the additional constraint that
∑︁

i∈Ω xi = γ, can be equivalently formulated as:

Sub-problem RM-S(γ):

maximize
x

min
θ∈S(Q)

{︄
θ0 +

∑︂
i∈Ω

xiθi

}︄
⇔ maximize

x,u
u

(︄
qLB
0 +

∑︂
i∈Ω

xiq
LB
i

)︄
+ (1− u)

(︄
1−

∑︂
i∈Ω

(1− xi) q
UB
i

)︄

subject to (9), (10), (11) subject to (9), (10), (11)

u binary, (12)
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where ZUB(γ) ≡ K1−
√

(K1)2+4[g(γ)−B′]K2

2K2
is independent of x when x satisfies that

∑︁
i∈Ω xi = γ;

and Constraint (9) becomes redundant when ZUB(γ) does not exist. Further, ZUB(γ) is strictly

decreasing in γ in the region that it exists.

For a given γ ∈ Z+:γ ≤ m, let x∗k(γ), k ∈ {D,R}, denote the optimal solution vector to Sub-

problem DM-S(γ) and RM-S(γ), respectively; and let Z∗D(γ) =
∑︁

i∈Ω x∗Di (γ)µ̂i and Z∗R(γ) =

max
{︂
qLB0 +

∑︁
i∈Ω x∗Ri (γ)qLBi , 1−

∑︁
i∈Ω(1−x∗Ri )qUB

i

}︂
, that is, the corresponding objective function

value for DM-S(γ) and RM-S(γ), respectively, i.e., with the addition of Constraint (10). In

addition, for k = {D,R}, define γ∗k ≡
∑︁

i∈Ω x∗ki , where x∗k represents the optimal solution vector

to the corresponding original problem, i.e., γ∗D and γ∗R respectively represent the optimal panel

size for DM and RM.

Remark 2.

1. RM-S(γ) reduces to a novel variation of the exact γ-item 0-1 maximin Knapsack Problem,

with an uncertainty set that has a specific correlation structure (i.e., the random prevalence

vector needs to satisfy,
∑︁

i∈Ω∪{0}Qi = 1), whereas DM-S(γ) is an exact γ-item 0-1 Subset-

sum Problem, which arises as a special case of the exact γ-item 0-1 Knapsack Problem (Capara

et al. (2000)). Consequently, while the solution to the standard exact γ-item 0-1 maximin

Knapsack Problem (i.e., without a correlated uncertainty set) reduces to the maximization

of the objective function when all item values (prevalences in our setting) take on the lower

bound of their support (e.g., Chinneck and Ramadan (2000); Nobibon and Leus (2014)), this

is no longer the case for RM-S(γ), hence the need to formulate its deterministic counterpart

in Theorem 1.

2. Various pseudo-polynomial algorithms have been developed in the literature for the exact

γ-item 0-1 Knapsack Problem (which also apply to its special case, the exact γ-item 0-

1 Subset-sum Problem), including an exact algorithm with complexity O(mr), where r =

γ×ZUB(γ) (Capara et al. (2000); Kellerer et al. (2004)); and an approximate algorithm with

complexity O(mγ/ϵ), where ϵ denotes the maximum absolute difference allowable between

the objective function value generated by the algorithm and the optimal objective function

value (i.e., accuracy) (Capara et al. (2000)). Various pseudo-polynomial algorithms have

been also developed specifically for the exact γ-item 0-1 Subset-sum Problem, including an

exact algorithm with complexity O(mr′), where r′ = 1+ZUB(γ)−
∑︁m

i∈Ω:i=m−γ+1 µ̂i (Pisinger

(1998)). All three algorithms are pseudo-polynomial due to their dependence on problem

parameters, m, γ, r, or r′.

3. The reformulations in Theorem 1 continue to hold in the following cases:

(a) The term, K1
∑︁

i∈Ω xiµ̂i −K2

(︁∑︁
i∈Ω xiµ̂i

)︁2
, in Constraint (5) is replaced by any func-

tion f
(︁∑︁

i∈Ω xiµ̂i

)︁
that is monotone increasing in

∑︁
i∈Ω xiµ̂i in the interval [0, 1 − µ̂0],

equivalently, for all panels of size γ, the larger the prevalences of the variants in the panel

(
∑︁

i∈Ω xiµ̂i), the larger the testing cost is. In this case, ZUB(γ) in Theorem 1 needs to

be replaced by the (unique) root of the function, −B′ + g(γ) + f(
∑︁

i∈Ω xiµ̂i) = 0, in
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[0, 1 − µ̂0]. If ZUB(γ) does not exist, then either there exists no feasible solution with

panel size γ, or any solution x :
∑︁

i xi = γ is feasible with respect to Constraint (5).

(b) The function, g(
∑︁

i∈Ω xi), is of any functional form (including non-invertible functions),

as long as it is a function of panel size, γ =
∑︁

i∈Ω xi. However, in this case, ZUB(γ) is

not necessarily monotone decreasing in γ.

With the reformulation in Theorem 1, one can utilize any of the aforementioned algorithms

developed in the literature (Remark 2) to solve DM-S(γ) and RM-S(γ) (for the latter, this

applies only when the value of u ∈ {0, 1} is fixed, see Theorem 1). Further, for the special case

where g
(︁∑︁

i∈Ω xi
)︁
= 0, i.e., with no MP variable cost, DM can be solved via a single 0-1 Subset-

sum Problem, and RM via two 0-1 Knapsack Problems, one for each value of u ∈ {0, 1} (see

Remark C.1 in Appendix C).

In the subsequent sections, we utilize the DM-S(γ) and RM-S(γ) Sub-problems to solve the

original problems, DM and RM, in an efficient manner.

3.2 Structural Properties and an Exact Algorithm

In this section, we analyze some key properties of the ZUB(γ) function (see Constraint (9) in

Theorem 1) so as to establish bounds on the optimal number of variants to include in the MP

panel, i.e., γ∗k, k ∈ {D,R}. These bounds will be useful for developing an efficient algorithm for

DM and RM, and for establishing the termination criteria.

To this end, without loss of generality, we arrange the variants in set Ω such that µ̂i ≥
µ̂j , ∀i, j ∈ Ω, i < j, for a given µ̂. We also define ΩLB (ΩUB) as an ordered set of qLBi (qUB

i ),

i ∈ Ω, arranged such that qLBi ≥ qLBj (qUB
i ≥ qUB

j ), ∀i, j ∈ ΩLB(ΩUB), i < j. We define

∆ ≡
⌊︁
g−1

(︁
B′ −K1(1− µ̂0) +K2(1− µ̂0)

2
)︁⌋︁
, which provides the number of variants that is fea-

sible to include in an MP panel if every newborn with at least one mutation is sent for further

testing beyond MP, that is, considering an upper bound on the number of newborns sent for GS

and/or SC testing.

We first characterize optimal DM-S(γ) and RM-S(γ) solutions for a special case.

Lemma 1. Consider any γ ∈ Z+:γ ≤ m. If γ < ∆, then Constraint (9) becomes redundant, and

the following results hold:

1. An optimal DM-S(γ) solution consists of γ variants with the highest µ̂i values, i ∈ Ω,

breaking ties arbitrarily, with Z∗D(γ) =
∑︁

i∈Ω:i≤γ µ̂i.

2-i. If qLB0 +
∑︁

i∈ΩLB :i≤γ q
LB
i ≥ 1−

∑︁
i∈ΩUB :i≥γ+1 q

UB
i , then an optimal RM-S(γ) solution consists

of γ variants with the highest qLBi values, i ∈ ΩLB, breaking ties arbitrarily, with Z∗R(γ) =

qLB0 +
∑︁

i∈ΩLB :i≤γ q
LB
i .

2-ii. If qLB0 +
∑︁

i∈ΩLB :i≤γ q
LB
i ≤ 1−

∑︁
i∈ΩUB :i≥γ+1 q

UB
i , then an optimal RM-S(γ) solution consists

of γ variants with the highest qUB
i values, i ∈ ΩUB, breaking ties arbitrarily, with Z∗R(γ) =

1−
∑︁

i∈ΩUB :i≥γ+1 q
UB
i .
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Lemma 1 holds because any solution vector x that satisfies
∑︁

i∈Ω xi ≤ ∆ is feasible with respect

to Constraint (9). In practice, the budget is often constraining. Therefore, while we do not expect

the condition in Lemma 1 (i.e., γ < ∆) to hold in general, this result establishes a special case when

a greedy panel is optimal, with an optimal DM-S(γ) panel consisting of the γ highest prevalence

variants (part 1), and an optimal RM-S(γ) panel consisting of the γ variants, with either the

highest lower bounds (part 2-i), or the highest upper bounds (part 2-ii). This characterization of

the greedy solution for the robust sub-problem also shows that its solution differs from the robust

(maximin) Knapsack Problem, due to its correlated uncertainty set (Remark 2). Further, this

lemma assists with the development of bounds on γ∗D and γ∗R, i.e., the number of variants to

include in an optimal DM panel and RM panel, respectively.

Theorem 2. Optimal DM and RM solutions satisfy:

γ∗k ∈
[︃
min {γLB ,m} ,min

{︁
γk
UB ,m

}︁ ]︃
, k = {D,R}, where µ̂m = mini∈Ω{µ̂i}, and

γLB ≡ max {0,∆} ,

γD
UB ≡ max

⎧⎪⎨⎪⎩0,min

⎧⎪⎨⎪⎩
⎢⎢⎢⎢⎣ g−1

⎛⎜⎝B′ −K1

⎛⎜⎝ ∑︂
i∈Ω:
i≤γLB

µ̂i

⎞⎟⎠+K2

⎛⎜⎝ ∑︂
i∈Ω:
i≤γLB

µ̂i

⎞⎟⎠
2⎞⎟⎠
⎥⎥⎥⎥⎦,
⎢⎢⎢⎢⎣g−1 (︁B′ −K1µ̂m +K2µ̂

2
m

)︁⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭, and

γR
UB ≡ max

⎧⎪⎨⎪⎩0,min

⎧⎪⎨⎪⎩
⎢⎢⎢⎢⎣ g−1

⎛⎜⎝B′ −K1

⎛⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︂
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︂
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎠

+K2

⎛⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︂
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︂
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎠
2⎞⎟⎠
⎥⎥⎥⎥⎦,
⎢⎢⎢⎢⎣g−1 (︁B′ −K1µ̂m +K2µ̂

2
m

)︁⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭,

Observe that the lower bound, γLB, is derived based on ∆, which corresponds to the minimum

feasible panel size, i.e., considering an upper bound on the testing cost beyond MP, that is, when

every newborn with at least one mutation were to be identified and sent for GS and/or SC testing.

Also observe that if there exists at least one non-empty panel that is feasible to DM and RM,

then the one-variant panel with variant m (i.e., the variant with the smallest prevalence) will also

be feasible. Therefore, the upper bound, γkUB, k = {D,R}, is based on either this particular

one-variant solution (which is feasible if there exists a feasible non-empty panel), or the solution

that uses γLB variants (which is always feasible). On the other hand, if there exists no feasible

non-empty panel to the problem, then γLB = γkUB = 0, k = {D,R}, and the optimal solution is

given by the empty panel, i.e., x∗ = 0.

Theorem 2 leads to the following form of optimal DM and RM solutions for some special cases.

Corollary 1.

1. If m ≤ γLB, then Constraint (5) becomes redundant, and Z∗D = Z∗D(γ = m) =
∑︁

i∈Ω:i≤m µ̂i,

and Z∗R = Z∗R(γ = m) = max
{︂
qLB0 +

∑︁
i∈ΩLB :i≤m

qLBi , 1−
∑︁

i∈ΩUB :i≥m+1
qUB
i

}︂
.

2. If m ≥ γDUB (m ≥ γRUB), then Constraint (6) becomes redundant, and parameter m does not

affect an optimal DM (RM) solution.
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Thus, in the special case of m ≤ γLB (i.e., when the budget constraint, Constraint (5), is

redundant), optimal DM and RM solutions can be obtained in a greedy manner (similar to

Lemma 1 for the sub-problems). In practice, however, newborn screening is constrained by the

testing budget, hence a greedy approach does not necessarily lead to an optimal panel for DM

or RM. To see this, consider DM as an example; its greedy solution consists of as many of the

highest prevalence variants as the testing budget allows. The higher the prevalence of the selected

variant, the higher the reduction in the false-negative probability. However, a higher prevalence

variant also leads to a higher expected testing cost (Eq. (3)): Notice that while the MP cost,

given by CMP + g
(︁∑︁

i∈Ω xi
)︁
, is independent of the panel selection, the post-MP testing cost (i.e.,

the expected cost of subsequent GS and/or SC testing), given by K l
1

∑︁
i∈Ω xiµ̂i−K l

2

(︁∑︁
i∈Ω xiµ̂i

)︁2
,

l = 1, 2, is strictly increasing in the panel prevalence,
∑︁

i∈Ω xiµ̂i, for both testing processes (see

Property A.1). Thus, it is possible for a larger, non-greedy panel (i.e., one that does not contain

the sequential set of the highest prevalent variants) to have a lower false-negative probability than

a greedy panel. Indeed, our case study in Section 4 provides multiple problem instances for which

a greedy panel is not optimal for DM or RM.

The equivalent formulations and structural properties lead to the following exact algorithm for

DM and RM.

Theorem 3. The Mutation Variant Selection Optimization Algorithm (Algorithm MSO)

solves DM and RM to optimality, and is pseudo-polynomial, with complexity:

1. O(bDmr′) for DM, where r′ = 1 + ZUB(γLB)−
∑︁m

i∈Ω:i=m−γ+1 µ̂i; and

2. O(2bRmr) for RM, where r = γRUB × ZUB(γLB),

and bk = min
{︁
γkUB,m

}︁
−min {γLB,m}, for k ∈ {D,R}.

Algorithm MSO (k = {D,R})
Input: γLB, γ

k
UB, x

∗k (γ = min {γLB,m}), Z∗k (γ = min {γLB,m})
for γ ∈

[︁
min {γLB,m}+ 1,min

{︁
γkUB,m

}︁ ]︁
do

Compute ZUB(γ)
if ZUB(γ) ≤ Z∗k(γ − 1) then Stop
else:

Solve Sub-problem DM-S(γ) (if k = D) and RM-S(γ) (if k = R), and obtain x∗k(γ)
and Z∗k(γ)

end if

if Z∗k(γ) < Z∗k(γ − 1) then Z∗k(γ) = Z∗k(γ − 1),x∗k(γ) = x∗k(γ − 1)
end if

end for
Output(x∗k = x∗k(γ), Z∗k = Z∗k(γ))

Observe that Algorithm MSO always returns an optimal solution. In particular, when γLB =

γkUB = 0, the algorithm returns x∗ = 0 (the only feasible solution), and when γkUB > 0, the
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algorithm proceeds through iterations to determine an optimal solution. Also note that if m ≤ γLB,

the algorithm generates the greedy solution, which is optimal in this case (see Corollary 1), in the

initialization step, i.e., Z∗k = Z∗k(m), and does not go through any iterations; and it accounts for

the second part of Corollary 1 through the bounds on γ.

Lemma 2. If g
(︁∑︁

i∈Ω xi
)︁
= c

(︁∑︁
i∈Ω xi

)︁n
, for all n ∈ Z+:n ≥ 2, then both γLB and γkUB, k ∈

{D,R}, are non-increasing in n. Further, γLB decreases in n at a slower rate than γkUB, k ∈ {D,R}.

Lemma 2 indicates that when the g(.) function is polynomial, the higher its degree, the narrower

the range, γkUB − γLB, of the number of variants in an optimal panel (Theorem 2), leading to a

potential reduction in the number of γ values that need to be considered in Algorithm MSO

when determining an optimal panel.

Next we perform a numerical study to compare the efficiency of Algorithm MSO for DM

with its MILP reformulation (see Remark C.2) and with an off-the-shelf solver, Gurobi (Gurobi

Optimization (2019)). Table 8 (Appendix C) reports the computational times, as well as the

number of additional binary variables and constraints required for the MILP reformulation, for

various polynomial functions for the MP variable cost, g(.), and various number of variants, m. As

Table 8 indicates, Algorithm MSO substantially outperforms both the MILP reformulation and

the Gurobi solver (without any reformulation). Further, a main advantage of Algorithm MSO

is that its efficiency does not degrade for higher-degree polynomials for the g(.) function. This is

because Algorithm MSO relies on solving sub-problems for which the term, g
(︁∑︁

i∈Ω xi
)︁
, reduces

to a constant for a given γ, i.e., g(γ), which is incorporated into parameter ZUB(γ) (Theorem

1), and consequently, its run time is not impacted by the functional form of g(.); this is not

the case for the other two methods. In particular, when g
(︁∑︁

i∈Ω xi
)︁
= c

(︁∑︁
i∈Ω xi

)︁3
, i.e., in the

presence of a cubic constraint, the Gurobi solver was not able to obtain a solution (without any

reformulation), while the MILP reformulation required a large number of additional binary variables

and constraints, leading to out of memory issues. In fact, in this numerical study Algorithm

MSO became slightly more efficient for higher-degree polynomials, mainly because of a reduction

in the number of iterations needed (γDUB − γLB), see Theorem 2 and Lemma 2. For instance, for

g
(︁∑︁

i∈Ω xi
)︁
= c

(︁∑︁
i∈Ω xi

)︁3
, γLB = γDUB = 3(= γ∗D), with Algorithm MSO not requiring any

iteration, whereas for g
(︁∑︁

i∈Ω xi
)︁
= c

(︁∑︁
i∈Ω xi

)︁2
, γLB = 5, γDUB = 7(= γ∗D), with Algorithm

MSO requiring at most 2 iterations, and for g
(︁∑︁

i∈Ω xi
)︁
= c

∑︁
i∈Ω xi, γLB = 33 and γDUB = 36

(γ∗D = 35), with Algorithm MSO requiring at most 3 iterations.

In summary, while a higher degree polynomial for the g(.) function typically degrades the

run time needed for off-the-shelf solvers and standard linearization techniques, Lemma 2 and our

numerical study indicate that this is not necessarily the case for Algorithm MSO.

3.3 Comparison of One-tier and Two-tier Genetic Screening Processes

While most states utilize the one-tier genetic screening process for CF NBS, some others use

the two-tier process (Fig.1); hence, an important research objective is to characterize the condi-
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tions under which the two-tier process outperforms the one-tier process. To this end, let x∗k1

and x∗k2, k ∈ {D, R}, respectively denote the optimal DM and RM solutions for the one-tier

and two-tier process. Then, the two-tier process “dominates” the one-tier process in DM if

Pr
(︁
FN(x∗D2; µ̂)

)︁
≤ Pr

(︁
FN(x∗D1; µ̂)

)︁
, and it dominates in RM if maxθ∈S(Q)

{︃
Pr
(︁
FN(x∗R2;θ)

)︁}︃
≤

maxθ∈S(Q)

{︃
Pr
(︁
FN(x∗R1;θ)

)︁}︃
.

Theorem 4. For any problem instance:

1. If CSC
CGS

≥ 2
1+µ̂0

, then the two-tier process dominates for both DM and RM.

2. If CSC
CGS

≤ 1, then the one-tier process dominates for both DM and RM.

3. If 1 < CSC
CGS

< 2
1+µ̂0

, and if there exists at least one feasible solution x to DM and RM

for the one-tier process (i.e., Constraints (5)–(7), with (K1
1 ,K

1
2 ) =

(︂
CSC ,

CSC
4

)︂
), such that∑︁

i∈Ω xiµ̂i ≥ 2− CSC
CGS

(1 + µ̂0), then the two-tier process dominates for both DM and RM.

Theorem 4, which delineates the region in which each process dominates, is illustrated in Fig. 2.

Observe that the conditions in the first two parts of Theorem 4 (respectively corresponding to the

RHS of the orange (dashed) line and the LHS of the gray (dashed and vertical) line in the figure)

are functions of only the mutation-free proportion, µ̂0, and testing costs, CGS and CSC , whereas

the condition in the third part (corresponding to the region between the black (solid) line and the

orange line, where the black line is numerically computed for each (µ̂0,
CSC
CGS

) pair) depends also on

budget and cost parameters, B and g(.), as well as the entire prevalence vector, µ̂.

Thus, Theorem 4 completely characterizes the conditions under which each genetic screening

process should be utilized. Further, as an immediate consequence of Theorem 4, we can also express

the dominance region for the two-tier process as a function of cost parameters and the prevalence

vector only.

Corollary 2. If CSC
CGS

≥
2−

∑︁min{γLB,m}
i∈Ω:i=1

µ̂i

1+µ̂0
, then the two-tier process dominates for both DM and

RM.

Observe that the dominance region for the two-tier process for DM and RM expands as: (i)
CSC
CGS

increases, or (ii) µ̂0 increases. This can be explained as follows. As CSC
CGS

decreases, that is,

as SC becomes less costly compared to GS, the one-tier process becomes more desirable, because

the SC cost spent on carriers in the one-tier process (i.e., Pr
(︂ ˜︁N(x) = 1

)︂
CSC) becomes lower than

the total cost of GS on carriers, plus cost of GS and SC on CF-positive newborns in the two-

tier process (i.e., Pr
(︂ ˜︁N(x) = 1

)︂
CGS + Pr

(︂ ˜︁N(x) = 1
)︂
Pr
(︂
N = 2| ˜︁N(x) = 1

)︂
CSC); see Eq. (2).

For the second part, Pr
(︂ ˜︁N(x) = 1

)︂
is strictly increasing in µ̂0, while

Pr( ˜︁N(x)=1|N=2)
Pr( ˜︁N(x)=1|N=1)

is strictly

decreasing in µ̂0 (see Appendix A.1). As a result, higher values of µ̂0, i.e., the proportion of

mutation-free parents, result in more carriers being sent for SC testing in the one-tier process,

whereas these carriers are tested via the less expensive GS test in the two-tier process.
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Figure 2: Comparison of One-tier and Two-tier Processes for Different Values of µ̂0 and CSC
CGS

for
Case Study Parameters (CMP = $19.24, g(

∑︁
i∈Ω xi) = $1.26× (

∑︁
i∈Ω xi), and with µ̂i, i ∈ Ω, values

(from Table 9) Normalized such that
∑︁

i∈Ω µ̂i = 1− µ̂0) for a Budget of B = $100

3.4 The Price of Robustness

While the deterministic modelDM provides a solution that minimizes the false-negative probability

for the point estimate of the prevalence vector, the robust model RM provides a solution that

performs well, in terms of the false-negative probability, for all realizations of the random prevalence

vector. RM does this by minimizing the worst-case false-negative probability (the highest possible

false-negative probability for any realization of the prevalence vector, Q), but this may come at the

expense of an increase in the false-negative probability when the prevalence corresponds to its point

estimate, i.e., the input to DM. In this section we study this trade-off between solution robustness

and the minimization of the false-negative probability on expectation. To isolate the magnitude of

this trade-off, we assume that the DM input, µ̂, is accurate, i.e., it corresponds to the true mean

vector, µ. (Note that the DM solution can also lead to a high false-negative probability when µ̂

is a poor estimate of the true mean µ.)

Let Π(µ) ≡ Pr(FN(x∗R;µ))
Pr(FN(x∗D;µ))

denote the price of robustness ratio for RM (e.g., Bertsimas and Sim

(2004); Ben-Tal et al. (2009); El Amine et al. (2018)), for a given µ ∈ S(Q). By this definition, the

price of robustness ratio is at least one, and the lower this ratio is, the closer the robust objective

function value is to the minimum possible false-negative probability under vector µ.

Theorem 5. For any given µ ∈ S(Q), without loss of generality, we represent the uncertainty set

of Qi, i ∈ Ω ∪ {0}, [qLB
i , qUB

i ], as [µi

(︁
1− hLB

i

)︁
, µi

(︁
1 + hUB

i

)︁
], where hLB

i ≡ µi−qLB
i

µi
and hUB

i ≡ qUB
i −µi

µi
.

Then, the price of robustness ratio for RM can be bounded from above as follows:

Π(µ) ≤ 1

4Pr (FN(x∗D;µ))
min

⎧⎪⎨⎪⎩1− µ0 −min

⎧⎨⎩
(︄∑︁

i∈Ω x∗D
i (µ)µi

(︁
1 + hUB

i

)︁
(1 + hUB

max)

)︄2

,

(︄∑︁
i∈Ω x∗D

i (µ)µi

(︁
1− hLB

i

)︁(︁
1− hLB

min

)︁ )︄2
⎫⎬⎭ ,

(︄
1− µ0(1− hLB

0 )−
∑︂
i∈Ω

x∗D
i (µ)µi

(︁
1− hLB

i

)︁)︄2
⎫⎪⎬⎪⎭,
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where hUB
max ≡ maxi∈Ω{hUB

i } and hLBmin ≡ mini∈Ω{hLBi }.

Note that all parameters and optimal solutions in Theorem 5 are dependent on µ due to the

definition of hLBi and hUB
i , i ∈ Ω. The bound in Theorem 5 requires knowledge of the optimal

DM solution; therefore, in Lemma C.1 (Appendix C), we also provide an upper bound that is

potentially weaker, but that does not require the optimal DM solution. Observe that the upper

bound in Theorem 5 is non-decreasing in hUB
max and non-increasing in hLBmin, because the higher

hUB
max or the lower hLBmin is, the larger the uncertainty set is. Corollary C.1 (Appendix C) provides

a special case where the price of robustness ratio is 1. We compare the upper bound in Theorem 5

with the actual price of robustness ratio in the case study.

4 Case Study: Cystic Fibrosis Screening of Newborns

In this section, we present a case study on CF newborn screening, based on CF NBS data from

New York (NY) (Kay et al. (2015)). Our focus is on newborns with elevated IRT levels, i.e., those

who undergo post-IRT genetic testing (via the dried blood spot). Our objective is to compare the

performance of: (i) the one-tier and two-tier genetic screening processes depcted in Fig. 1; (ii) the

deterministic and robust models, DM and RM, and the NY MP panel; and (iii) the three robust

model variations, RM, C-RM, and U-RM.

First we discuss the data sources and model calibration.

4.1 Data Sources and Model Calibration

We first describe the process for generating the variant prevalences for a parent population repre-

sentative of the parents of newborns genetically tested in NY (i.e., CF-negative parents of post-IRT

newborns). We then discuss the construction of the uncertainty set for the robust model, and the

testing cost structure.

Both the proportion of the mutation-free population and variant prevalences differ among

racial/ethnic groups (Watson et al. (2004); Schrijver et al. (2016)). Therefore, these parameters

need to be derived based on NY’s diverse population. We use the superscript r ∈ R, where R is

the set of groups considered, to denote group-level parameters and random variables, e.g., µ̂r, N r.

We also define f r as the proportion of group r in the population, and derive the population-level

parameters from their group-level counterparts:

µ̂i =
∑︂
r∈R

f rµ̂r
i , ∀i ∈ Ω ∪ {0}. (13)

Due to the low prevalence of CF, coupled with a large number of CF-causing variants, most

of which are rare, sparsity in NBS data is an issue that every state must contend with. Thus, we

employ a hybrid approach that utilizes data from multiple sources to estimate these parameters,

illustrating the types of data a state would have to gather to use our models. These data sources

are summarized in Table 1.
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Table 1: Data Sources for CF-causing Variants and Population Characteristics

Parameter Data Source

Set of CF-causing variants (Ω) CFTR2 data set (CFTR2 (2018))

Proportion of mutation-free parents in group r (µ̂r
0, r ∈ R) NY CF NBS data (Kay et al. (2015))

Variant prevalences in group r parents (µ̂i
r, i ∈ Ω, r ∈ R) Schrijver et al. (2016)

Proportion of group r in the population (f r, r ∈ R) NY CF NBS data (Kay et al. (2015))

Population Characteristics: We combine NY’s NBS data with other data sets that report the

frequency of CF-causing variants in different populations, to estimate µ̂ and to construct the un-

certainty set, S(Q). Specifically, for NY, Kay et al. (2015) provides six years of CF NBS data on

the number of newborns genetically tested and the number of CF-positive newborns identified, for

various racial/ethnic groups for the period between 2007 and 2012 (Table 2), but due to the low

prevalence of CF, the data on CF-causing variants identified in NY within this six-year period is

too sparse to produce accurate estimates of group-level variant frequencies.

On the other hand, the CFTR2 data set (CFTR2 (2018)) reports the frequency of CF-causing

variants in more than 88,000 CF-positive subjects from Europe, Canada, and the US, and is the

most extensive data set, but does not have racial/ethnic identifiers, and hence is not necessarily

representative of the population of NY. Therefore, we use the CFTR2 data set to define the set

of CF-causing variants, Ω, and complement this data with Schrijver et al. (2016), which reports

the frequencies for the top 50 CF-causing variants for several racial/ethnic groups (each group can

have a different set of top 50 variants) derived from more than 35,000 CF-positive subjects in the

US. We then incorporate the specific demographics of NY into the estimation.

Specifically, we consider three groups, White (W), Hispanic (H), and Black (B), i.e., R =

{W,H,B} (these three groups make up 86.3% of the newborns in the NY CF NBS data set in

the study period; the data for other specific groups is sparse (Kay et al. (2015)), and normalize

the population based on these three groups (Table 2). Parent information is not reported in the

NY data set. Therefore, we use the group proportions of newborns in the NY data set as a proxy

for the group proportions of their parent population (i.e., parents of post-IRT newborns in NY

in the study period, which does not necessarily match the general demographics of NY), and also

estimate group-level prevalences assuming that both parents of a newborn in the NY data set belong

to the same group as their newborn (this is solely for the estimation procedure; our derivations

in Appendix A consider that each parent of a newborn can belong to each group r, r ∈ R, with

probability f r, independently of the other parent).

Based on the data from Kay et al. (2015) (Table 2), we estimate the proportion of mutation-free

parents in each group r (µ̂r
0) via the following relationship (see Eq. (14) in Appendix A.1), and
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Table 2: Parameters by Group in NY’s CF NBS Data Set for 2007-2012 (from Kay et al. (2015))

Parameter (r ∈ R) NY W∗ H∗ B∗

(Overall)

Number of CF-positive newborns in group r 237 190 40 7

Number of genetically tested newborns in group r 69,010 32,313 12,780 23,917

Proportion of group r (normalized) in the population (f r) 1.000 0.468 0.185 0.347

∗ W: White, H: Hispanic, B: Black

report it in Tables 3 and 9 (Appendix E.2):1

Pr(Nr = 2) =
1

4
(1− µ̂r

0)
2 =

number of CF-positive newborns in group r

number of genetically tested newborns in group r
, r ∈ R.

Next, to estimate the prevalence of CF-causing variants in each group (i.e., µ̂r
i ,∀i ∈ Ω, r ∈ R),

we use the data in Schrijver et al. (2016), i.e., each group’s 50 most common variants (denoted as

set Ωr
1), from which we calculate µ̂r

i , i ∈ Ωr
1, as follows (see Eq. (15) in Appendix A.1):

µ̂r
i =

number of mutations of variant i in CF-positive newborns in group r

number of CF-positive newborns in group r

(1− µ̂r
0)

2
.

We do not have group-level frequency data on the remaining set of 262 (=312-50) CF-causing

variants (set Ω \ Ωr
1), i.e., those variants that are not in the top 50 variants for each group, cor-

responding to those variants with a very low combined frequency (see the last row of Table 3).

Therefore, we assume that each of these 262 variants have the same prevalence for a group, and

distribute the group’s remaining prevalence (remaining proportion of parents with one mutation),

i.e., 1−
∑︁

i∈Ωr
1∪{0}

µ̂r
i , evenly among these 262 variants:

µ̂r
i =

1

262
(1−

∑︂
i∈Ωr

1∪{0}

µ̂r
i ),∀i ∈ Ω \ Ωr

1, r ∈ R.

The variant prevalences in the overall NY parent population of interest is then calculated by Eq.

(13). Table 3 reports, for select variants, their prevalence and ranking for the parent population

for NY overall and for each group, to demonstrate the differences among the groups. For example,

F508del is the most prevalent variant in all groups, and hence in the state, and there is a large gap

between the prevalence of F508del and the prevalence of each group’s second ranked variant, which

differs among the groups. Further, the different groups’ rankings do not coincide, for example

Variant #9 (3210+1G->A) is the second most prevalent variant in group B, 33rd in group W, and

9th in group H (see Appendix E.2 for a more extensive parameter table). Throughout the remainder

of the case study, we refer to specific variants by their NY prevalence ranking, i.e., Variant #1 is

F508del (Table 3).

Uncertainty Sets: RM requires an uncertainty set for the variant prevalence vector, S(Q), which

we construct using the group-level data in Schrijver et al. (2016), which is based on 1,551, 2,578, and

1 The proportion of mutation-free parents of newborns genetically tested (0.8828) differs from the proportion of
mutation-free adults in the general NY population (0.9674, Kay et al. (2015)), because the IRT test removes a large
proportion of the CF-negative cases, altering the characteristics of the post-IRT newborn population, and hence the

characteristics of their parent population.
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Table 3: Prevalences and Rankings for NY, and by Group, for Select Variants (based on Schrijver
et al. (2016))

Variant Name Point Prevalence (Ranking)
NY (Overall) W∗ H∗ B∗

F508del 0.083259 (1) 0.112568 (1) 0.060421 (1) 0.015910 (1)

G542X 0.003435 (2) 0.003527 (3) 0.005818 (2) 0.000547 (5)

G551D 0.002651 (3) 0.003987 (2) 0.000783 (13) 0.000479 (6)

R553X 0.001163 (8) 0.001534 (7) 0.000783 (14) 0.000411 (7)

3210+1G->A 0.001014 (9) 0.000153 (33) 0.001007 (9) 0.00373 (2)

1717+1G->A 0.001002 (10) 0.00138 (8) 0.000671 (17) 0.000171 (19)

3876delA 0.000397 (18) 0.000033 (45) 0.001790 (5) 0.0000242 (44)

R347P 0.000294 (25) 0.000460 (20) 0.000060 (>50) 0.0000242 (47)

W1089X 0.000211 (30) 0.000033 (47) 0.000895 (11) 0.0000242 (>50)

E60X 0.000201 (33) 0.000307 (27) 0.000060 (>50) 0.0000242 (>50)

R75X 0.000173 (42) 0.000033 (>50) 0.000671 (19) 0.000068 (37)

µ̂0 and µ̂r
0, r ∈ R 0.8828 0.8466 0.8881 0.9658

1−
∑︁

i∈Ωr
1∪{0}

µ̂r
i , r ∈ R 0.008895 0.016900 0.006501

∗ W: White, H: Hispanic, B: Black

31,286 CF-positive subjects from groups B, H, and W, respectively. In particular, we first derive

the lower and upper bounds for each group’s prevalences, i.e., qr,LBi and qr,UB
i , for each Qr

i , i ∈
Ω∪{0}, r ∈ R. We do this by constructing a 95% confidence interval for each Qr

i , i ∈ Ω∪{0}, r ∈ R,

via the Wilson Score Method with continuity correction (Newcombe (1998)). This method is

adopted, because it maintains a value between 0 and 1 for the bounds, and hence, is commonly

used for prevalences (e.g., Newcombe (2003)), accounts for continuity correction, utilizes the data

available in our setting (µ̂r
i , i ∈ Ω, r ∈ R, and group sample sizes), and is computationally efficient.

Then, the bounds for the overall parent population are derived by, qLBi =
∑︁

r∈R f rqr,LBi and

qUB
i =

∑︁
r∈R f rqr,UB

i , i ∈ Ω∪{0}, producing ranges that are relatively wider for low frequency (rare)

variants. Finally, the overall uncertainty set, S(Q), is obtained by superimposing the constraint

that
∑︁

i∈Ω∪{0}Qi = 1, that is, S(Q) =
{︂
θ : θi ∈

[︁
qLBi , qUB

i

]︁
, i ∈ Ω ∪ {0},

∑︁
i∈Ω∪{0} θi = 1

}︂
; see

Appendix E.1 for details.

Testing Parameters: MP cost data are not readily available, list prices are often not public,

and the prices paid by the laboratories are often negotiated. Thus, while our analytical results

hold for general MP variable cost functions, in the case study we use a linear cost structure, i.e.,

g
(︁∑︁

i∈Ω xi
)︁
= c

∑︁
i∈Ω xi, for demonstration purposes. This is a reasonable assumption due to a

lack of data, and fits mutational probe technologies, where a genetic probe is added to the MP

test for each variant; each probe is similar (i.e., a string of DNA bases that match the variant and

surrounding bases, of sufficient length to ensure adhesion with the variant, and not with other DNA

strands). Actual pricing may deviate from this linear cost function, but as discussed above, this

does not pose a problem for our models.
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Using the MP testing cost data in Rosenberg and Farrell (2005), which reports the cost of a one-

mutation panel as, CMP + c = $20.50, and the cost of a 25-mutation panel as, CMP +25c = $50.70,

we derive CMP = $19.24 and c = $1.26. For genetic sequencing, we set CGS = $200 based on

Illumina (2019), and for the SC test, we set CSC = $340 based on Wells et al. (2012).2 Regarding

the panel size limit (m), many MP technologies have a panel size limit of around 90 variants

(Lim et al. (2016)), which we use in the case study; see Table 4 for a summary of testing related

parameters and data sources. We note that the testing cost structure used in our case study is

mainly for illustrative purposes. Testing costs can differ from state to state, depending on the

technology used and whether testing is done by the state laboratory or outsourced. In addition, as

genetic testing technology is evolving, so is the cost of genetic testing. Consider that the cost of GS

has reduced substantially since its development; for instance, ten years ago, the cost was around

ten times higher than today (NIH (2016)). Further, the cost of SC testing is generally not borne by

the state laboratory, yet it is an important goal to reduce the number of newborns unnecessarily

sent for SC testing, as discussed in Section 1, and we do this through the budget constraint in

our models. In particular, we perform our analysis for a set of budgets and study the effect of the

budget on the optimal MP panel and the resulting false-negative probability.

Table 4: Testing related Parameters and Data Sources

Parameter Value Data Source

Panel size limit (m) 90 Lim et al. (2016)

MP - fixed cost per test (CMP ) $19.24 Wells et al. (2012)

MP - testing cost per variant (c) $1.26 Wells et al. (2012)

GS - cost per test (CGS) $200 Illumina (2019)

SC - cost per test (CSC) $340 Rosenberg and Farrell (2005)

4.2 Case Study Results

In this section, we first provide the optimal panels for DM and RM for the one-tier and two-tier

processes under a set of budgets, and discuss panel composition. We then compare the performance

of the different panels using a Monte Carlo simulation.

4.2.1 Optimal Panels

We report the optimal panels generated by DM and RM over a range of budgets, as well as the NY

panel and its effective budget for the one-tier process (i.e., NY’s process during the study period),

given our testing cost parameters (Table 4). The panels are reported in Table 5 in terms of the

variant numbers (based on the NY prevalence rank) and, in parentheses, their panel size, leading

to the following findings:

• Panel composition: The testing budget, and not the technological limit (m = 90), restricts

the panel sizes in Table 5. In addition, optimal panels do not necessarily contain the most

2 The cost of the SC test, CSC , includes the testing cost $237 plus an inconvenience and travel cost of $103.
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Table 5: The Set of Variants in Optimal MP Panels (Panel Size) for DM and RM for Different
Budgets (B), and the NY Panel

Budget ($) One-tier Process Two-tier Process
DM RM DM RM

65.0 1-10 (10) 1-8, 10, 11 (10) 1-19 (19) 1-17, 19, 25 (19)
67.5 1-11, 15 (12) 1-8, 10-13 (12) 1-21 (21) 1-17, 19, 25-27 (21)
70.0 1-13 (13) 1-13 (13) 1-23 (23) 1-17, 19, 21, 24-27 (23)
72.5 1-15 (15) 1-15 (15) 1-24, 26 (25) 1-19, 21, 22, 24-27 (25)
75.0 1-17 (17) 1-15, 17, 19 (17) 1-27 (27) 1-19, 21-28 (27)
77.5 1-18, 23 (19) 1-17, 19, 25 (19) 1-29 (29) 1-28, 32 (29)
80.0 1-20 (20) 1-17, 19, 25, 27 (20) 1-31 (31) 1-28, 32, 35, 37 (31)
82.5 1-22 (22) 1-17, 19, 21, 25-27 (22) 1-31, 33, 34 (33) 1-28, 32, 34-37 (33)
85.0 1-24 (24) 1-17, 19, 21, 22, 24-27 (24) 1-31, 33-35, 38 (35) 1-28, 32-38 (35)
87.5 1-25, 27 (26) 1-21, 23-27 (26) 1-27, 31, 33-38, 40, 42, 45 (37) 1-19, 21-30, 32-38, 48 (37)
90.0 1-28 (28) 1-28 (28) 1-38 (38) 1-38 (38)
92.5 1-30 (30) 1-28, 32, 35 (30) 1-40 (40) 1-39, 48 (40)
95.0 1-31 (31) 1-19, 21-27, 32-35, 37, 38 (32) 1-42 (42) 1-39, 48, 49, 58 (42)
97.5 1-31, 33, 34 (33) 1-28, 32-35, 38 (33) 1-44 (44) 1-39, 45, 48, 49, 55, 56 (44)
100.0 1-31, 33-35, 38 (35) 1-28, 32-38 (35) 1-46 (46) 1-39, 43-45, 48, 49, 55, 56 (46)
102.5 1-36, 38 (37) 1-30, 32-38 (37) 1-48 (48) 1-39, 43-49, 55, 56 (48)
105.0 1-39 (39) 1-39 (39) 1-49, 52 (50) 1-40, 42-49, 57, 58 (50)
101.5 NY panel (budget applies to one-tier process): 1-20, 22, 25-28, 32-34, 37, 38, 45, 48, 56, 65, 83-85 (37)a

a The NY panel actually has 39 variants, but two are not included in the CFTR2 data set as CF-causing variants,
because they were later found to be not CF-causing, and thus are excluded from our analysis (as was also done in
Hughes et al. (2015), which re-examines the dried blood spots of 439 CF-positive newborns found in NY’s CF NBS
from 2002 to 2012).

prevalent variants, except for special cases (see Lemma 1). While all variants have the same

variable cost (c=$1.26 per variant), variants with higher prevalences reduce the FN proba-

bility more and incur higher downstream testing costs (GS and/or SC testing), because of a

higher detection rate for both CF-positive cases (which is the goal of NBS) and CF carriers

(which is not the goal of NBS, and which unnecessarily consumes testing resources).

• One-tier versus two-tier panels: The two-tier process has larger panels than the one-tier pro-

cess at each budget, because the use of GS in the two-tier process (after MP, Fig. 1) serves

to reduce the referral rate for the high cost SC. This, in turn, allows more variants to be

included in the two-tier panel, potentially reducing the FN rate.

• DM versus RM panels: DM and RM share the same panel only in four of the 17 budgets

considered for one-tier (for $70, $72.5, $90, and $105), and only once for two-tier (for $90).

While both DM and RM panels can deviate from the set of variants with the highest preva-

lences, RM is also sensitive to the prevalence bounds (see Lemma 1). To illustrate, consider

Variant #9, which, for budgets of $65 and $67.5, is included in the one-tier DM panels, but

not in the one-tier RM panels. Variant #9 is ranked 33rd in group W, 9th in group H, and

2nd in group B (Table 3), and because of this, the range for Variant #9 is wider than the

ranges for Variants #8 and #10 (both of which are included in both DM and RM panels),

with a lower bound that is only 61.1% and 69.8%, respectively, of the other two variants.

Thus, RM excludes Variant #9 because of its low lower bound; this is in line with Lemma 1,

which indicates that RM has a tendency to choose variants with higher lower bounds.
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• Comparison with the NY panel: NY used a one-tier process and a 37-variant panel during the

study period (Kay et al. (2015)). The variants in the NY panel do not perfectly coincide with

the 37 highest prevalence variants from our data, e.g., the NY panel includes Variants #83-85

(using our ranking), which were not found in any CF-positive newborn in NY between 2007

and 2012 (Kay et al. (2015)), and hence, are not used in any of our optimal panels. Given

our cost structure, the NY panel requires a budget of $101.5; for a slightly lower $100 budget,

both the one-tier DM and RM use smaller panels with 35 variants, while the two-tier DM

and RM each contain 46 variants; for both one-tier and two-tier processes, the DM and RM

panels are not identical in composition.

4.2.2 Simulation Analysis

To compare the performance of the panels in Table 5, we perform a Monte Carlo simulation and

study the realistic situation in which each group’s variant prevalence vector realization may deviate

from the point estimate vector, µ̂r, r ∈ R, which we set as the expectation of each group’s prevalence

vector. This allows for uncertainty, but without any errors in the point estimate vector. Thus, the

simulation requires prevalence distributions to sample from. Based on the prevalence data in the

case study, almost all bounds, [qr,LBi , qr,UB
i ], i ∈ Ω, r ∈ R, are asymmetric around their mean (µ̂r

i ).

This is because many prevalences have small means and large variances, and thus their lower bounds

are very close to zero. Therefore, we use the triangular distribution for each Qr
i , i ∈ Ω, r ∈ R, which

can model the asymmetry of the bounds around the mean, and the implied right skewness of

the unknown distribution, and is a good modeling choice in the absence of sufficient data to fit a

distribution (e.g., Yoe (2019)). We utilize group-level prevalence bounds and first moment estimates

(Section 4.1) to calibrate the parameters (min, mode, and max) of each triangular distribution.

Specifically, we analyze the performance of each panel for a common set of 2,000 replica-

tions, where each replication corresponds to a population of 100,000 newborns, generated as fol-

lows. For each replication, we randomly generate a realization of each group’s prevalence vec-

tor, θr, r ∈ R, where each Qr
i , i ∈ Ω, r ∈ R, follows a triangular distribution (with parameters,

minr
i = qr,LBi ,maxri = min

{︂
qr,UB
i , 3µ̂r

i − 2qr,LBi

}︂
, and moderi = max

{︂
3µ̂r

i − qr,LBi − qr,UB
i , qr,LBi

}︂
,

i.e., the distribution parameters are calibrated so that its mean matches µ̂r
i ).

3 Due to the corre-

lated structure of the random vector (i.e.,
∑︁

i∈Ω∪{0}Q
r
i = 1, r ∈ R), we use the acceptance-rejection

method (Devroye (1986); Martino et al. (2018)) in our sampling. Specifically, for each group r ∈ R,

we generate each variant’s prevalence θri , i ∈ Ω, from its corresponding triangular distribution, and

compute the mutation-free proportion, θr0 = 1 −
∑︁

i∈Ω θri : if θr0 ∈ [qr,LB0 , qr,UB
0 ], then the sam-

pling for group r is accepted, and otherwise, it is rejected and the process is repeated until an

acceptable vector realization for each group is generated. For each newborn, we randomly generate

two parents, such that each parent belongs to group r, r ∈ R, with probability f r, independently

3 For the case where the calibrated mode turns out to be lower than the min parameter (i.e., the case where
3µ̂r

i − qr,LB
i − qr,UB

i < qr,LB
i , which happens when the range (max−min) is too wide to fit a triangular distribution

with the same mean), the mode is adjusted (increased) to equal the lower bound (i.e., moderi = qr,LB
i ), and the upper

bound is adjusted (reduced), i.e., maxr
i = 3µ̂r

i − 2qr,LB
i , in order to maintain the mean, µ̂r

i .
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of the other parent. For each parent, we randomly generate either zero or one mutation variant

according to their group’s prevalence vector realization, θr. Given the parents’ mutational status,

we then randomly generate the mutational status of the newborn, i.e., if a parent is mutation-free,

then the newborn inherits a mutation-free gene from that parent; and if the parent has a variant,

the newborn inherits it with probability 0.5, and inherits a mutation-free gene with probability

0.5. Then, the newborn’s number of mutations and types of variants are automatically determined

by the pair of genes inherited from the parents. Then, for each panel in Table 5, we determine

the corresponding number of FNs and the testing cost per 100,000 newborns in each replication.

Based on the simulation results depicted in Figs. 3–9, we provide a comparison of the one-tier

and two-tier processes, followed by a comparison of the DM, RM, and the NY panels. When

discussing the simulation results, the worst-case FN rate refers to the maximum FN rate (over

2,000 replications), and both the FN rate and the worst-case FN rate are per 100,000 newborns.

One-tier versus two-tier processes: For illustrative purposes, we use DM for this comparison (the

results for RM are similar). Based on Theorem 4 and case study parameters, the two-tier process is

expected to outperform the one-tier process (i.e., CSC
CGS

= 1.7 ≥ 2
1+µ̂0

= 1.07, satisfying the condition

in the first part of Theorem 4), which is indeed the case for the simulation results.

• Due to larger panels, the two-tier process incurs, on average, both a lower FN rate and

a lower worst-case FN rate at every budget (Table 5). As budgets increase, the two-tier

process remains superior, but the benefits decrease as both panels include more of the higher

prevalence variants. For example, at the $65 budget, the two-tier process uses nine more

variants, leading to a 45.6% reduction in the FN rate (from 11.89 to 6.46), and a 36.0%

reduction in the worst-case FN rate (from 25 to 16); and at the $105 budget, the two-tier

process uses 11 more variants, leading to a 18.1% reduction in the FN rate (from 2.57 to

2.11), and a 10.0% reduction in the worst-case FN rate (from 10 to 9).

• SC referrals for the two-tier process are, on average, only 3.6% of the referrals for the one-tier

process (Fig. 5). This is because the GS test is performed for all newborns with at least one

mutation detected in MP (Fig. 1), thus eliminating many carriers from SC testing. This is

desirable, and decreases the parental burden associated with SC testing. Therefore, while

GS testing is expensive, it increases the accuracy of the genetic screening process for a given

budget, and this is one of the reasons the two-tier process performs so well, especially when

the cost of GS is sufficiently low compared to the cost of SC testing (Theorem 4).
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Figure 3: Average False-negatives per 100,000 Newborns for One-tier and Two-tier DM

Figure 4: Maximum False-negatives per 100,000 Newborns for One-tier and Two-tier DM

DM versus RM: DM minimizes the FN probability using a point estimate of the prevalence

vector (which equals the true mean prevalence vector, µ̂, used in the simulation), whereas RM

minimizes the worst-case FN probability for all prevalences that fall in the uncertainty set, S(Q).

To compare these models, we focus on the one-tier process (the two-tier results are similar).

If the prevalence vector realization corresponds to the point estimate vector used in DM (i.e.,

µ̂), then RM incurs, on average, a 0.69% increase in the FN rate over all budgets, compared

to DM. Table 6 reports the price of robustness ratio and its corresponding upper bound from

Theorem 5 for this baseline scenario (which are calculated using the optimal DM solution for

different budgets, assuming that µ = µ̂). While in this setting the price of robustness is fairly

small (i.e., the ratio is close to one), in general RM can potentially have fewer FNs than DM,
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Figure 5: Average Number of Sweat Chloride (SC) and Genetic Sequencing (GS) Tests per 100,000
Newborns for One-tier and Two-tier DM

that is, when the prevalence realization deviates from the point estimate, which we explore via

simulation, leading to the following findings:

• Over all budgets, RM reduces the average FN rate by 7.3% (from 5.75 to 5.33) and the

average worst-case FN rate by 3.5% (from 15.06 to 14.53), compared to DM (Figs. 6-7). For

the FN rate, the maximum reduction is 18.6% at the $95 budget, and the minimum reduction

is 0%, which occurs for the four budgets where DM and RM panels are identical. When

compared to DM over all budgets, the FN rate of RM is lower 32.5% of the time, equal

60.7% of the time, and higher only 6.8% of the time (Fig. 8). For illustration, consider the

$65 budget (Fig. 9), for which RM dominates DM, having a lower or equal FN rate 71.1%

and 24.9% of the time, respectively, and with an average 11.0% reduction in the FN rate. To

test the sensitivity of these results to the triangular distribution assumption, we also conduct

a simulation study under the uniform distribution assumption for each Qr
i , i ∈ Ω, r ∈ R, with

parameters, minr
i = qr,LBi and maxri = qr,UB

i , and using the acceptance-rejection sampling

method, and observe similar results. These results indicate that RM is better equipped

to reduce FNs in general, and does so without requiring any distribution information on

prevalences.

Comparison with the NY panel: The NY panel (with a corresponding cost of $101.5) is dominated

by both one-tier DM and RM at their lower budget of $100, despite their smaller panels (35

variants). In particular, both one-tier DM and RM reduce the average FN rate by 5.7% and

17.0%, respectively, compared to the NY panel (Figs. 6-7). The two-tier DM and RM (at the

same $100 budget) use larger panels (46 variants), and reduce the average FN rate by 29.5% and

35.2%, respectively, compared to the one-tier NY panel. One-tier and two-tier DM and RM also
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Table 6: Price of Robustness Ratio (Π(µ̂)) and its Upper Bound from Theorem 5 for Various
Budgets

Budget ($) Π(µ̂) (Upper Bound)
One-tier Two-tier

65 1.0019 (2.2710) 1.0117 (3.1460)
70 1.0000 (2.5874) 1.0228 (3.5192)
80 1.0186 (3.2487) 1.0064 (4.2918)
90 1.0000 (3.9859) 1.0000 (4.7868)
100 1.0067 (4.6643) 1.0306 (6.0554)

Figure 6: Average False-negatives per 100,000 Newborns for One-tier DM, RM, and the NY Panel

reduce the worst-case FN rate (11 for both one-tier DM and RM, and 10 and 9 for the two-

tier DM and RM, compared to 14 for NY). These results highlight the value of an optimization

approach to MP panel design.

To put these results in perspective, consider that during the six-year period between 2007 and

2012, 79,973 newborns underwent post-IRT genetic testing in NY. Based on our prevalence vector

(µ̂) and simulation results, the NY panel led to 2.76 FNs for this cohort (equivalently, 3.45 FNs

per 100,000) under the one-tier process. Compared to this, RM, limited by a budget of $100, not

only led to 2.23 FNs per 79,973 (2.78 per 100,000), but also a testing cost reduction of $181,844

under the one-tier process; and to 1.73 FNs per 79,973 (2.16 per 100,000), accompanied by a

testing cost reduction of $173,608 under the two-tier process in this six-year period. These results

demonstrate the effectiveness of our models, especially when using the two-tier process. NY is

adopting the two-tier process (Wadsworth (2017)), which is in line with our findings.
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Figure 7: Maximum False-negatives per 100,000 Newborns for One-tier DM, RM, and the NY
Panel

Figure 8: Percent of Replications in which the One-tier RM Dominates, or is Equal to, the One-tier
DM, in Terms of False-negatives per 100,000 Newborns

4.2.3 Robust Model Variations

We use Monte Carlo simulation to illustrate the performance of RM, C-RM and U-RM (Remark

1 and Appendix B), as well as the deterministic model, DM, and provide some results for a budget

of $65. For each replication, we compute the average testing cost per newborn and report the

percent of replications in which this cost exceeds the per newborn budget of $65 (Table 7).

Our results indicate that the correlated C-RM yields the lowest FN rate (8.88) but this comes
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Figure 9: Histogram of the False-negatives per 100,000 Newborns for One-tier DM and RM for a
Budget of B = $65

at the expense of a higher per newborn testing cost (an average of $68.03, over all replications),

and exceeds the per newborn budget in every replication. On the other hand, U-RM is the most

conservative in terms of the testing cost (due to its worst-case cost constraint), as a result, its

testing cost ($61.45 on average) is always below the per newborn budget, but this model yields

the highest FN rate (13.55). Finally, RM incurs a testing cost ($64.61 on average) that exceeds

the budget in only 0.1% of the replications, and incurs an FN rate of 10.58. We also note that

RM, which shares the feasible region of DM, leads to both a lower FN rate and a lower testing

cost than DM, underscoring the value of robust optimization in our setting. These results provide

insight on the trade-off between the FN probability and the testing cost, and should assist the

decision-maker in model selection.

Table 7: Average and Maximum False-negatives per 100,000 Newborns, Average and Maximum
Testing Cost per Newborn, and Percent of Replications in which the Average Testing Cost is Higher
than Budget, for a Budget of B = $65 (One-tier).

Average Maximum Average Maximum Over-budget
Model FN Rate FN Rate Testing Cost Testing Cost Percent

(per 100,000) (per 100,000) (per Newborn) (per Newborn) of Replications
DM 11.89 25 64.62 65.02 0.05%
RM 10.58 23 64.61 65.09 0.10%
C-RM 8.88 20 67.55 68.03 100%
U-RM 13.55 28 61.45 61.89 0%
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5 Conclusions and Future Work

In this paper, we study the optimal design of the genetic portion of CF NBS processes (see Fig. 1).

Specifically, we develop and study two distribution-free models, a robust optimization model and

a deterministic optimization model, which can be used to design optimal MP panels for the one-

tier and two-tier processes, considering the trade-off between the false-negative and false-positive

classification rates, and the state’s unique characteristics (e.g., population demographics, variant

prevalences) and constraints (e.g., testing resources). Further, these models can also be used to

redesign the screening process as genetic testing costs change with evolving technology. We provide

design insight, models, and algorithms to help practitioners develop optimal screening processes.

To our knowledge, this research is the first to use optimization models and methodologies to study

the design of CF screening processes. Most of the literature that examines screening processes is

in the medical realm, and mainly uses historical data sets and performs descriptive analysis on

existing screening processes to determine which process performs best on the given data set. These

methods have many shortcomings, the limited data do not provide high levels of confidence in

the results, and there is no guarantee that the current screening processes are even near-optimal.

Therefore, we hope that our work will motivate further research in this important area, especially

as more data on CF-causing variants is collected, which is an important input to our models.

Cystic fibrosis is one of many genetic disorders for which newborns are screened. Newborn

screening is performed at the state level, and states choose both the disorders to screen for, and

the screening process to use. As such, the disorders screened for, and the processes used, can, and

do, differ by state. Our ultimate research goal is to produce decision support models that can help

states design optimal and robust screening processes, given each state’s unique characteristics and

constraints. Having efficient processes that are cost-effective is essential for screening, as this is one

of the deciding factors for whether to screen for a disease or not.

Designing optimal screening panels and processes for genetic disorders is timely and important,

because genetic testing technologies are improving and becoming less costly, and treatment options

for genetic disorders is expanding, thus increasing the number of disorders for which screening

is appropriate. Further, for CF and other disorders, identifying the specific genetic variant(s)

causing the disorder is becoming more relevant. Currently there are generic CF treatments that are

highly beneficial, but customized treatment options that target the underlying defect are becoming

available. For example, CF-causing mutation variants have been classified into six types, based on

the mechanism through which they compromise the CFTR protein (resulting in CF). Thus there

is a strong genotypic/phenotypic correlation in this gene. For example, the use of Ivacaftor in

patients having some class III mutation variants is now FDA-licensed (FDA (2018)), and studies

show substantial clinical benefit of these types of customized therapies. Further, there is evidence

that some therapies can reduce the loss of pancreatic function, which can occur just months after

birth (Bell et al. (2015)). Thus early diagnosis, and an understanding of the underlying genetic

defect, are likely to become more important in the treatment of this disease, especially as new
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pharmacological and genetic therapies are discovered, placing this type of research on the forefront

of the new wave of personalized, precision medicine.

Future work in this area includes expanding our models to study different methods for construct-

ing the uncertainty set and sampling under the correlated structure of the uncertainty set; and to

consider genetic tests that may have less than perfect accuracy (sensitivity and/or specificity) for

other genetic disorders, CF variants that may have varying, or uncertain, consequences, and some

measures of equity in the selection of variants, as the prevalence of certain variants can vary among

different ethnic/racial groups. It is also an important research direction to construct mathemat-

ical models to examine, and optimize, the entire screening process, which includes the IRT test

(the IRT decision rules can influence the testing budget available for genetic testing, the overall

misclassification rates, and the post-IRT prevalences). As another exciting research direction, one

can integrate these optimization models with data analytics methodologies to consider subject risk

factors for genetic disorders, so that risk-based newborn screening schemes can be developed.
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APPENDIX

A Derivations and Supporting Results

We first provide some derivations and supporting results that will be used in the remainder of the Appendix.

A.1 Probability Mass Functions

We first derive the probability mass functions for random variables N , ˜︁N(x)|N , and ˜︁N(x). We use the
notation | or ; interchangeably to denote probabilistic conditioning.

Recall that each parent provides one CFTR gene, randomly selected among the parent’s two CFTR
genes, to their newborn; and each parent can have at most one CF-causing mutation (Assumption (A1)).
Consequently, if both parents are carriers, then there is a 0.25 probability that the newborn will have CF
(i.e., with two mutations), a 0.5 probability that the newborn will be a carrier (i.e., with one mutation),
and a 0.25 probability that the newborn will be mutation-free. On the other hand, if one parent is a carrier
while the other parent is mutation-free, then there is a 0.5 probability that the newborn will be a carrier,
and a 0.5 probability that the newborn will be mutation-free. Let Ai,j , i, j ∈ Ω∪ {0}, denote the event that
the mother of a random newborn has one mutation of variant i, and the father has one mutation of variant
j, with i = 0 or j = 0 if the corresponding parent is mutation-free.

We derive the following expressions for any prevalence vector realization θ ∈ S(Q); thus, all the following
probabilities are conditioned on θ, but we omit the conditioning notation in most parts of this section to
simplify the notation. The expressions for any specific prevalence vector, e.g., µ̂ ∈ S(Q), can be simply
obtained by replacing θ with the prevalence vector of interest:
Probability mass function of N:

By the law of total probability, we can write, for n=0,1,2:

Pr (N = n) =
∑︂

i∈Ω∪{0}

∑︂
j∈Ω∪{0}

Pr (N = n|Ai,j)Pr (Ai,j)

=Pr (N = n|A0,0)Pr (A0,0) +
∑︂
i∈Ω

[︁
Pr (N = n|Ai,0)Pr (Ai,0) + Pr (N = n|A0,i)Pr (A0,i)

]︁
+
∑︂
i∈Ω

∑︂
j∈Ω

Pr (N = n|Ai,j)Pr (Ai,j) , where

Pr (A0,0) =θ0
2, P r (A0,i) = Pr (Ai,0) = θiθ0, and Pr (Ai,j) = Pr (Aj,i) = θiθj ,∀i, j ∈ Ω (by Assumption (A1)).

Then, using the equality that θ0 = 1−
∑︁

i∈Ω θi, we derive:

Pr (N = 0) =(1)θ0
2 + 2

∑︂
i∈Ω

(︃
1

2

)︃
θiθ0 +

∑︂
i∈Ω

∑︂
j∈Ω

(︃
1

4

)︃
θiθj = θ0

2 + θ0 (1− θ0) +
1

4
(1− θ0)

2
=

1

4
(1 + θ0)

2

Pr (N = 1) =(0) + 2
∑︂
i∈Ω

(︃
1

2

)︃
θiθ0 +

∑︂
i∈Ω

∑︂
j∈Ω

(︃
1

2

)︃
θiθj = θ0 (1− θ0) +

1

2
(1− θ0)

2
=

1

2

(︁
1− θ0

2
)︁

(14)

Pr (N = 2) =(0) + 2(0) +
∑︂
i∈Ω

∑︂
j∈Ω

(︃
1

4

)︃
θiθj =

1

4
(1− θ0)

2
.

To derive the conditional probability mass function of Ñ(x)|N , we define Yi, i ∈ Ω, as the number of
mutations of variant i in a random newborn, with S (Yi) = {0, 1, 2}. First note the following equivalent
events:

{Yi = n,N = n} ≡ {Yi = n, Yk = 0, k ∈ Ω\{i}}, for i ∈ Ω, n = 0, 1, 2, and
{Yi = 1, Yj = 1, N = 2} ≡ {Yi = 1, Yj = 1, Yk = 0, k ∈ Ω\{i, j}}, for i, j ∈ Ω, i ̸= j.

2



Hence, we can write, for n = 0, 1, 2:

Pr (Yi = n|N = n) =
Pr (Yi = n, Yk = 0, k ∈ Ω\{i})

Pr (N = n)
=

∑︁
s∈Ω∪{0}

∑︁
j∈Ω∪{0} Pr (Yi = n, Yk = 0, k ∈ Ω\{i}|As,j)Pr (As,j)

Pr (N = n)
.

Then:

Pr (Yi = 0|N = 0) =1,∀i ∈ Ω

Pr (Yi = 1|N = 1) =
2
(︁
1
2

)︁
θiθ0 +

(︁
1
2

)︁
θ2i + 2

∑︁
j∈Ω\{i}

1
4θiθj

Pr (N = 1)
=

θiθ0 +
1
2θ

2
i +

1
2θi (1− θ0 − θi)

Pr (N = 1)

=
1
2θi (1 + θ0)
1
2

(︁
1− θ0

2
)︁ =

θi
(1− θ0)

, ∀i ∈ Ω

Pr (Yi = 2|N = 2) =

(︁
1
4

)︁
θ2i

1
4 (1− θ0)

2 =
θ2i

(1− θ0)
2 , ∀i ∈ Ω

Pr (Yi = 1, Yj = 1|N = 2) =
2Pr (Yi = 1, Yj = 1, Yk = 0, k ∈ Ω\{i, j}|Ai,j)Pr (Ai,j)

Pr (N = 2)
=

2
(︁
1
4

)︁
θiθj

1
4 (1− θ0)

2

=
2θiθj

(1− θ0)
2 , ∀i, j ∈ Ω, i ̸= j,

E[Yi|N = 2] =2Pr (Yi = 2|N = 2) +
∑︂

j∈Ω\{i}

Pr (Yi = 1, Yj = 1|N = 2) =
2θ2i

(1− θ0)
2 +

2
∑︁

j∈Ω\{i} θiθj

(1− θ0)
2

=
2θ2i + 2θi(1− θ0 − θi)

(1− θ0)
2 =

2θi(1− θ0)

(1− θ0)
2 =

2θi
(1− θ0)

, ∀i ∈ Ω. (15)

In the case study of Section 4, the term E[Yi|N = 2, µ̂] is estimated as number of mutations of variant i in CF-positive newborns
number of CF-positive newborns ,

based on the data reported in Schrijver et al. (2016) on variant frequencies in 35,415 CF-positive newborns
(i.e., among the newborn population with {N = 2}).

Conditional probability mass function of ˜︁N(x)|N :

By Assumptions (A2) and (A3), we have that Pr
(︂ ˜︁N(x) > n|N = n

)︂
= 0, n = 0, 1, 2, ∀x. Then:

Pr
(︂ ˜︁N(x) = 0|N = 0

)︂
=1

Pr
(︂ ˜︁N(x) = 0|N = 1

)︂
=
∑︂
i∈Ω

(1− xi)Pr (Yi = 1|N = 1) =

∑︁
i∈Ω (1− xi) θi

(1− θ0)

Pr
(︂ ˜︁N(x) = 1|N = 1

)︂
=
∑︂
i∈Ω

xiPr (Yi = 1|N = 1) =

∑︁
i∈Ω xiθi

(1− θ0)

Pr
(︂ ˜︁N(x) = 0|N = 2

)︂
=
∑︂
i∈Ω

(1− xi)Pr (Yi = 2|N = 2) +
∑︂
i∈Ω

∑︂
j∈Ω:j≥i+1

(1− xi) (1− xj)Pr (Yi = 1, Yj = 1|N = 2)

=

∑︁
i∈Ω (1− xi) θ

2
i

(1− θ0)
2 +

2
∑︁

i∈Ω

∑︁
j∈Ω:j≥i+1 (1− xi) (1− xj) θiθj

(1− θ0)
2 (16)

=

∑︁
i∈Ω

∑︁
j∈Ω (1− xi) (1− xj) θiθj

(1− θ0)
2

Pr
(︂ ˜︁N(x) = 1|N = 2

)︂
=
∑︂
i∈Ω

∑︂
j∈Ω

xi (1− xj)Pr (Yi = 1, Yj = 1|N = 2) =
2
∑︁

i∈Ω

∑︁
j∈Ω xi (1− xj) θiθj

(1− θ0)
2

3



Pr
(︂ ˜︁N(x) = 2|N = 2

)︂
=
∑︂
i∈Ω

xiPr (Yi = 2|N = 2) +
∑︂
i∈Ω

∑︂
j∈Ω:j≥i+1

xixjPr (Yi = 1, Yj = 1|N = 2)

=

∑︁
i∈Ω xiθ

2
i

(1− θ0)
2 +

2
∑︁

i∈Ω

∑︁
j∈Ω:j≥i+1 xixjθiθj

(1− θ0)
2 =

∑︁
i∈Ω

∑︁
j∈Ω xixjθiθj

(1− θ0)
2 .

Probability mass function of ˜︁N(x):

By the law of total probability, we can write, for ñ = 0, 1, 2, ∀x:

Pr
(︂ ˜︁N(x) = ñ

)︂
=

2∑︂
n=ñ

Pr
(︂ ˜︁N(x) = ñ|N = n

)︂
Pr (N = n) .

Then:

Pr
(︂ ˜︁N(x) = 0

)︂
=(1)

(︃
1

4
(1 + θ0)

2

)︃
+

(︃∑︁
i∈Ω (1− xi) θi

(1− θ0)

)︃(︃
1

2

(︁
1− θ0

2
)︁)︃

+

(︄∑︁
i∈Ω

∑︁
j∈Ω (1− xi) (1− xj) θiθj

(1− θ0)
2

)︄(︃
1

4
(1− θ0)

2

)︃

=

(︃
1

4
(1 + θ0)

2

)︃
+

1

2
(1 + θ0)

(︄∑︂
i∈Ω

(1− xi) θi

)︄
+

1

4

⎛⎝∑︂
i∈Ω

∑︂
j∈Ω

(1− xi) (1− xj) θiθj

⎞⎠
Pr
(︂ ˜︁N(x) = 1

)︂
=

(︃∑︁
i∈Ω xiθi

(1− θ0)

)︃(︃
1

2

(︁
1− θ0

2
)︁)︃

+

(︄
2
∑︁

i∈Ω

∑︁
j∈Ω xi (1− xj) θiθj

(1− θ0)
2

)︄(︃
1

4
(1− θ0)

2

)︃
(17)

=
1

2

⎛⎝(︄∑︂
i∈Ω

xiθi

)︄
(1 + θ0) +

∑︂
i∈Ω

∑︂
j∈Ω

xi (1− xj) θiθj

⎞⎠
Pr
(︂ ˜︁N(x) = 2

)︂
=

(︄∑︁
i∈Ω

∑︁
j∈Ω xixjθiθj

(1− θ0)
2

)︄(︃
1

4
(1− θ0)

2

)︃
=

1

4

⎛⎝∑︂
i∈Ω

∑︂
j∈Ω

xixjθiθj

⎞⎠ .

The probability mass functions for the corresponding random variables for each group r ∈ R follow
similarly, with group index r added as a superscript, e.g., Nr.

A.2 False-negative probability

For any θ ∈ S(Q), we have:

Pr(FN(x;θ)) =Pr
(︂ ˜︁N(x) = 0, N = 2;θ

)︂
= Pr

(︂ ˜︁N(x) = 0|N = 2,θ
)︂
Pr (N = 2;θ)

=
1

4

∑︂
i∈Ω

∑︂
j∈Ω

(1− xi) (1− xj) θiθj (by Eqs. (14) and (16))

=
1

4

∑︂
i∈Ω

(1− xi) θi
∑︂
j∈Ω

(1− xj) θj

=
1

4

⎡⎣(1− θ0)
2 − 2 (1− θ0)

∑︂
i∈Ω

xiθi +

(︄∑︂
i∈Ω

xiθi

)︄2
⎤⎦

=
1

4

[︄
(1− θ0)−

(︄∑︂
i∈Ω

xiθi

)︄]︄2
.
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A.3 Expected Testing Cost

One-tier genetic screening process:

EN,Ñ(x)

[︁
Cost1(x;θ)

]︁
=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+
[︂
Pr
(︂ ˜︁N(x) ≥ 1;θ

)︂]︂
CSC

=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+

CSC

2

[︄
(1 + θ0)

∑︂
i∈Ω

xiθi +
∑︂
i∈Ω

∑︂
j∈Ω

xi (1− xj) θiθj +
1

2

∑︂
i∈Ω

∑︂
j∈Ω

xixjθiθj

]︄
(by Eq. (17))

=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+

CSC

2

[︄
(1 + θ0)

∑︂
i∈Ω

xiθi + (1− θ0)
∑︂
i∈Ω

xiθi −
1

2

∑︂
i∈Ω

∑︂
j∈Ω

xixjθiθj

]︄

=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+

(︄∑︂
i∈Ω

xiθi

)︄
CSC −

(︄∑︂
i∈Ω

xiθi

)︄2 [︃
CSC

4

]︃
.

Two-tier genetic screening process:

EN,Ñ(x)

[︁
Cost2(x;θ)

]︁
=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+ Pr

(︂ ˜︁N(x) = 1;θ
)︂ [︂

CGS + Pr
(︂
N = 2| ˜︁N(x) = 1,θ

)︂
CSC

]︂
+ Pr

(︂ ˜︁N(x) = 2;θ
)︂
CSC

=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+

[︄
CGS (1 + θ0)

∑︁
i∈Ω xiθi

2
+

(CGS + CSC)
∑︁

i∈Ω

∑︁
j∈Ω xi (1− xj) θiθj

2

]︄

+

[︄
CSC

∑︁
i∈Ω

∑︁
j∈Ω xixjθiθj

4

]︄
(by Eqs. (16) and (17))

=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+

(︃∑︁
i∈Ω xiθi

2

)︃[︄
2CGS + CSC (1− θ0)− (CGS + CSC)

∑︂
i∈Ω

xiθi +
CSC

(︁∑︁
i∈Ω xiθi

)︁
2

]︄

=CMP + g

(︄∑︂
i∈Ω

xi

)︄
+

(︄∑︂
i∈Ω

xiθi

)︄[︃
2CGS + CSC (1− θ0)

2

]︃
−

(︄∑︂
i∈Ω

xiθi

)︄2 [︃
2CGS + CSC

4

]︃
.

A.4 Supporting Results

In this section, we provide a set of results that will be used in the subsequent proofs. We use the notation
K1 (θ0) to express parameter K1 as a function of θ0; and drop the process type index, l = 1, 2, when the
result or proof holds for both process types.

Property A.1. The following result applies to both process types l = 1, 2, hence we drop the process type
index l. For any θ ∈ S(Q), we have that:

1. K1(θ0) > 2(1− θ0)K2.

2. E [Cost(x;θ)] is strictly increasing in
∑︁

i∈Ω xiθi, and non-increasing in θ0.

Proof. Consider any θ ∈ S(Q).

1. From Eq. (3), for process type 1, K1
1 (θ0) = CSC > CSC

2 = 2K1
2 ≥ 2(1 − θ0)K

1
2 , and for process type

2, K2
1 (θ0) =

[︂
2CGS+CSC(1−θ0)

2

]︂
> (1− θ0)

[︁
2CGS+CSC

2

]︁
= 2(1− θ0)K

2
2 , and the result follows.

2. From Part 1 of this property, we have that for both process types l = 1, 2, Kl
1(θ0) > 2(1 − θ0)K

l
2 ≥

2Kl
2

∑︁
i∈Ω xiθi ≥ 0. Then,

∂E[Costl(x;θ)]
∂(

∑︁
i∈Ω xiθi)

= Kl
1(θ0) − 2Kl

2

∑︁
i∈Ω xiθi > 0, l = 1, 2. We also have

that
∂E[Costl(x;θ)]

∂(Kl
1(θ0))

=
∑︁

i∈Ω xiθi ≥ 0, l = 1, 2,
∂(K1

1 (θ0))
∂θ0

= 0, and
∂(K2

1 (θ0))
∂θ0

=
−CSC

∑︁
i∈Ω xiθi

2 ≤ 0.

Therefore, we have that, for both process types l = 1, 2, E
[︁
Costl(x;θ)

]︁
is strictly increasing in∑︁

i∈Ω xiθi and non-decreasing in Kl
1(θ0), and Kl

1(θ0) is non-increasing in θ0. Then, it follows that

E
[︁
Costl(x;θ)

]︁
is non-increasing in θ0, l = 1, 2.
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Property A.2.

1. max
θ∈S(Q)

{︃∑︂
i∈Ω

xiθi

}︃
= min

{︃∑︂
i∈Ω

xiq
UB
i , 1− qLB

0 −
∑︂
i∈Ω

(1− xi) q
LB
i

}︃
.

2. min
θ∈S(Q)

{︃
θ0 +

∑︂
i∈Ω

xiθi

}︃
= max

{︃
qLB
0 +

∑︂
i∈Ω

xiq
LB
i , 1−

∑︂
i∈Ω

(1− xi) q
UB
i

}︃
.

Proof. By definition,
∑︁

i∈Ω θi = 1− θ0, ∀θ ∈ S(Q), and hence, θ0 +
∑︁

i∈Ω xiθi = 1−
∑︁

i∈Ω(1− xi)θi.

1. We have that, maxθ∈S(Q)

{︁∑︁
i∈Ω xiθi

}︁
≤
∑︁

i∈Ω xiq
UB
i , and maxθ∈S(Q)

{︁∑︁
i∈Ω xiθi

}︁
≤ 1 − qLB

0 −∑︁
i∈Ω(1−xi)q

LB
i , and at least one of these inequalities must be binding in the solution to maxθ∈S(Q)

{︁∑︁
i∈Ω xiθi

}︁
.

2. We have that, minθ∈S(Q)

{︁
θ0 +

∑︁
i∈Ω xiθi

}︁
≥ qLB

0 +
∑︁

i∈Ω xiq
LB
i , and minθ∈S(Q)

{︁
θ0 +

∑︁
i∈Ω xiθi

}︁
≥

1 −
∑︁

i∈Ω(1 − xi)q
UB
i , and at least one of these inequalities must be binding in the solution to

minθ∈S(Q)

{︃
θ0 +

∑︁
i∈Ω xiθi

}︃
.

Property A.3. The following result applies to both process types l = 1, 2, hence we drop the process type
index l:

max
θ∈S(Q)

{E [Cost(x;θ)]} = CMP + g

(︄∑︂
i∈Ω

xi

)︄
+ max

θ∈S(Q)

⎧⎨⎩K1(θ0)
∑︂
i∈Ω

xiθi −K2

(︄∑︂
i∈Ω

xiθi

)︄2
⎫⎬⎭

= CMP + g

(︄∑︂
i∈Ω

xi

)︄
+min

{︁
C1

UB(x), C
2
UB(x)

}︁
,

where C1
UB(x) = K1

(︁
qLB
0

)︁∑︁
i∈Ω xiq

UB
i −K2

(︁∑︁
i∈Ω xiq

UB
i

)︁2
, and C2

UB(x) = K1

(︁
qLB
0

)︁ (︁
1− qLB

0 −
∑︁

i∈Ω(1− xi)q
LB
i

)︁
−

K2

(︁
1− qLB

0 −
∑︁

i∈Ω(1− xi)q
LB
i

)︁2
.

Proof. For any process type l=1,2, and for any panel x, we have that E [Cost(x;θ)] is strictly increas-
ing in

∑︁
i∈Ω xiθi, and non-increasing in θ0 (Property A.1). Further, because θ ∈ S(Q), by definition of

S(Q) we have that, 1 − qLB
0 ≤

∑︁
i∈Ω qUB

i =
∑︁

i∈Ω xiq
UB
i +

∑︁
i∈Ω(1 − xi)q

UB
i . By Property A.2, the term,

maxθ∈S(Q)

{︃∑︁
i∈Ω xiθi

}︃
, attains two possible values, both of which are considered below:

Case 1: maxθ∈S(Q)

{︃∑︁
i∈Ω xiθi

}︃
=
∑︁

i∈Ω xiq
UB
i ≤ 1 − qLB

0 −
∑︁

i∈Ω(1 − xi)q
LB
i . Hence, we have that

1 − qLB
0 −

∑︁
i∈Ω(1 − xi)q

UB
i ≤

∑︁
i∈Ω xiq

UB
i ≤ 1 − qLB

0 −
∑︁

i∈Ω(1 − xi)q
LB
i . Then, we have that qLB

0 +∑︁
i∈Ω xiq

UB
i +

∑︁
i∈Ω(1− xi)q

LB
i ≤ 1 and qLB

0 +
∑︁

i∈Ω xiq
UB
i +

∑︁
i∈Ω(1− xi)q

UB
i ≥ 1. Hence, there exists a

realization θ such that θ0 = qLB
0 ,

∑︁
i∈Ω xiθi =

∑︁
i∈Ω xiq

UB
i , and

∑︁
i∈Ω(1− xi)θi = 1− qLB

0 −
∑︁

i∈Ω xiq
UB
i .

Therefore, we must have that maxθ∈S(Q) {E [Cost(x;θ)]} = CMP + C1
UB(x) ≤ CMP + C2

UB(x).

Case 2:
∑︁

i∈Ω xiq
LB
i ≤ maxθ∈S(Q)

{︃∑︁
i∈Ω xiθi

}︃
= 1−qLB

0 −
∑︁

i∈Ω(1−xi)q
LB
i ≤

∑︁
i∈Ω xiq

UB
i . Hence, there

exists a realization θ such that θ0 = qLB
0 ,

∑︁
i∈Ω xiθi = 1− qLB

0 −
∑︁

i∈Ω(1− xi)q
LB
i , and

∑︁
i∈Ω(1− xi)θi =∑︁

i∈Ω(1 − xi)q
LB
i . Therefore, we must have that maxθ∈S(Q) {E [Cost(x;θ)]} = CMP + C2

UB(x) ≤ CMP +
C1

UB(x), completing the proof.

Remark A.1. Consider the second-degree polynomial:

−K2(Z(γ))2 +K1Z(γ) + g (γ)−B′ = 0. (18)

Let Z1(γ) and Z2(γ) respectively denote the smallest and largest roots of this polynomial. We have that:

Z1,2(γ) =
−K1 ±

√︁
δ(γ)

−2K2
=

K1 ±
√︁
δ(γ)

2K2
,
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where δ(γ) ≡ (K1)
2 + 4[g (γ)−B′]K2.

B Robust Model Variations: Formulations and Properties

We provide the formulations and properties of the two additional robust models introduced in Remark 1,
namely Correlated Robust MSP (C-RM) and Upper Bound Robust MSP (U-RM). Recall that

βFN (x) ≡ argmaxθ∈S(Q)

{︄
Pr (FN(x;θ))

}︄
≡ argminθ∈S(Q)

{︁
θ0 +

∑︁
i∈Ω xiθi

}︁
(if multiple such vectors exist,

then, without loss of optimality, the vector that yields the smallest expected testing cost, i.e., the LHS of

Constraint (5), is selected); and βCost(x) ≡ argmaxθ∈S(Q)

{︄
E [Cost(x;θ)]

}︄
.

B.1 Correlated Robust MSP (C-RM)

C-RM:

maximize
x

βFN
0 (x) +

∑︂
i∈Ω

xiβ
FN
i (x) (19)

subject to g

(︄∑︂
i∈Ω

xi

)︄
+K1

(︁
βFN
0 (x)

)︁∑︂
i∈Ω

xiβ
FN
i (x)−K2

(︄∑︂
i∈Ω

xiβ
FN
i (x)

)︄2

≤ B′ (20)

βFN (x) = argminθ∈S(Q)

{︄
θ0 +

∑︂
i∈Ω

xiθi

}︄
, ∀x (21)∑︂

i∈Ω

xi ≤ m

xi binary, i ∈ Ω.

Next, we provide a reformulation of C-RM under the additional constraint,
∑︁

i∈Ω xi = γ, for any
γ ∈ Z+ : γ ≤ m, which we refer to as Sub-problem C-RM-S(γ). To this end, we first provide a property
that follows in light of Property A.2.

Lemma B.1. For any given x, βFN
0 (x) and

∑︁
i∈Ω xiβ

FN
i (x) take one of the following pairs of values:

1. If qLB
0 +

∑︁
i∈Ω xiq

LB
i ≥ 1−

∑︁
i∈Ω(1−xi)q

UB
i , then βFN

0 (x) = qLB
0 and

∑︁
i∈Ω xiβ

FN
i (x) =

∑︁
i∈Ω xiq

LB
i .

2. If 1 −
∑︁

i∈Ω(1 − xi)q
UB
i ≥ qLB

0 +
∑︁

i∈Ω xiq
LB
i , then there may be multiple solutions for βFN

0 (x) and∑︁
i∈Ω xiβ

FN
i (x), and the solution that yields the smallest expected cost is given by either one of the

following solutions:

(a) βFN
0 (x) = qUB

0 and
∑︁

i∈Ω xiβ
FN
i (x) = 1− qUB

0 −
∑︁

i∈Ω(1− xi)q
UB
i , or

(b) βFN
0 (x) = 1−

∑︁
i∈Ω xiq

LB
i −

∑︁
i∈Ω(1− xi)q

UB
i and

∑︁
i∈Ω xiβ

FN
i (x) =

∑︁
i∈Ω xiq

LB
i .

Proof. Consider any x. We have that,

βFN
0 (x) +

∑︂
i∈Ω

xiβ
FN
i (x) = min

θ∈S(Q)

{︄
θ0 +

∑︂
i∈Ω

xiθi

}︄

=max

{︃
qLB
0 +

∑︂
i∈Ω

xiq
LB
i , 1−

∑︂
i∈Ω

(1− xi) q
UB
i

}︃
,

(22)
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where the first equality follows by definition (Eq. (21)) and the second equality follows by Property A.2.
Hence, if we can identify a prevalence vector βFN (x) ∈ S(Q) that satisfies Eq. (22), then this must be the
vector that maximizes the false-negative probability for the given x vector. In order for βFN (x) ∈ S(Q), it
must satisfy the following conditions:

βFN
0 (x) +

∑︂
i∈Ω

βFN
i (x) = 1, (23a)

qLB
0 ≤ βFN

0 (x) ≤ qUB
0 , and (23b)

qLB
i ≤ βFN

i (x) ≤ qUB
i , i ∈ Ω. (23c)

In what follows, we consider all possible values of the term, βFN
0 (x) +

∑︁
i∈Ω xiβ

FN
i (x):

Case 1: qLB
0 +

∑︁
i∈Ω xiq

LB
i ≥ 1−

∑︁
i∈Ω(1− xi)q

UB
i . Then, Eq. (22) reduces to:

βFN
0 (x) +

∑︂
i∈Ω

xiβ
FN
i (x) = qLB

0 +
∑︂
i∈Ω

xiq
LB
i .

Based on Eqs. (23b) and (23c), the unique solution in this case is given by βFN
0 (x) = qLB

0 ,
∑︁

i∈Ω xiβ
FN
i (x) =∑︁

i∈Ω xiq
LB
i , and

∑︁
i∈Ω(1 − xi)β

FN
i = 1 − βFN

0 (x) −
∑︁

i∈Ω xiβ
FN
i (x) = 1 − qLB

0 −
∑︁

i∈Ω xiq
LB
i ; hence all

the conditions in Eq. (23) are satisfied, and βFN (x) ∈ S(Q).

Case 2: 1−
∑︁

i∈Ω(1− xi)q
UB
i ≥ qLB

0 +
∑︁

i∈Ω xiq
LB
i . Then, Eq. (22) reduces to:

βFN
0 (x) +

∑︂
i∈Ω

xiβ
FN
i (x) = 1−

∑︂
i∈Ω

(1− xi)q
UB
i . (24)

In this case, there may be multiple solutions to Eqs. (23)-(24), and without loss of optimality, we choose the
one that yields the smallest expected testing cost, E [Cost(x;θ)].

First, note the following set of constraints on βFN
0 and

∑︁
i∈Ω xiβ

FN
i (x), implied by Eqs. (23)-(24):

βFN
0 (x) ≤ qUB

0 (Eq. (23b)),

βFN
0 (x) = 1−

∑︂
i∈Ω

xiβ
FN
i (x)−

∑︂
i∈Ω

(1− xi)q
UB
i ≤ 1−

∑︂
i∈Ω

xiq
LB
i −

∑︂
i∈Ω

(1− xi)q
UB
i (From Eqs. (23c) and (24)),∑︂

i∈Ω

xiβ
FN
i (x) ≥

∑︂
i∈Ω

xiq
LB
i (From Eq. (23c)), and∑︂

i∈Ω

xiβ
FN
i (x) = 1− βFN

0 (x)−
∑︂
i∈Ω

(1− xi)q
UB
i ≥ 1− qUB

0 −
∑︂
i∈Ω

(1− xi)q
UB
i (From Eqs. (23b) and (24)).

Also recall that E [Cost(x;θ)] is strictly increasing in
∑︁

i∈Ω xiθi, and non-increasing in θ0 (Property A.1).
Therefore, βFN

0 (x) must take its highest feasible value, and
∑︁

i∈Ω xiβ
FN
i (x) must take its lowest feasible

value.
Therefore, if we can show that there exists a vector βFN (x) such that:

βFN
0 (x) = min

{︄
qUB
0 , 1−

∑︂
i∈Ω

xiq
LB
i −

∑︂
i∈Ω

(1− xi)q
UB
i

}︄
, and

∑︂
i∈Ω

xiβ
FN
i (x) = max

{︄∑︂
i∈Ω

xiq
LB
i , 1− qUB

0 −
∑︂
i∈Ω

(1− xi)q
UB
i

}︄
,

(25)

then this must be the vector that satisfies the definition of βFN (x), and yields the smallest expected cost.
From Eq. (24) we have that

∑︁
i∈Ω(1−xi)β

FN
i = 1−βFN

0 (x)−
∑︁

i∈Ω xiβ
FN
i (x) =

∑︁
i∈Ω(1−xi)q

UB
i . In the

following, we analyze all possible solutions to Eq. (25):
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Sub-case 2(a): If 1−qUB
0 −

∑︁
i∈Ω(1−xi)q

UB
i ≥

∑︁
i∈Ω xiq

LB
i ⇔ qUB

0 ≤ 1−
∑︁

i∈Ω xiq
LB
i −

∑︁
i∈Ω(1−xi)q

UB
i .

Then, by Eq. (25), it follows that, βFN
0 (x) = qUB

0 and
∑︁

i∈Ω xiβ
FN
i (x) = 1−qUB

0 −
∑︁

i∈Ω(1−xi)q
UB
i ; hence

all the conditions in Eq. (23) are satisfied, and βFN (x) ∈ S(Q).

Sub-case 2(b): If
∑︁

i∈Ω xiq
LB
i ≥ 1−qUB

0 −
∑︁

i∈Ω(1−xi)q
UB
i ⇔ qUB

0 ≥ 1−
∑︁

i∈Ω xiq
LB
i −

∑︁
i∈Ω(1−xi)q

UB
i .

Then, by Eq. (25), it follows that, βFN
0 (x) = 1 −

∑︁
i∈Ω xiq

LB
i −

∑︁
i∈Ω(1 − xi)q

UB
i and

∑︁
i∈Ω xiβ

FN
i (x) =∑︁

i∈Ω xiq
LB
i ; hence all the conditions in Eq. (23) are satisfied, and βFN (x) ∈ S(Q). This completes the

proof.

Recall that ZUB(γ, θ0) ≡
K1(θ0)−

√
(K1(θ0))2+4[g(γ)−B′]K2

2K2
(Theorem 1), which we express as a function of

both γ and θ0.

Lemma B.2. For any γ ∈ Z+ : γ ≤ m, C-RM, under the additional constraint that
∑︁

i∈Ω xi = γ, can be
equivalently formulated as follows:
Sub-problem C-RM-S(γ):

maximize
x

βFN
0 (x) +

∑︂
i∈Ω

xiβ
FN
i (x)

subject to
∑︂
i∈Ω

xiβ
FN
i (x) ≤ ZUB(γ, β

FN
0 (x)) (26)

βFN (x) = argminθ∈S(Q)

{︄
θ0 +

∑︂
i∈Ω

xiθi

}︄
, ∀x

∑︂
i∈Ω

xi = γ

xi binary, i ∈ Ω,

with the following deterministic counterpart:

Deterministic Counterpart of Sub-problem C-RM-S(γ):

maximize
x,u,v,w

u

(︄
qLB
0 +

∑︂
i∈Ω

xiq
LB
i

)︄
+ (1− u)

(︄
1−

∑︂
i∈Ω

(1− xi)q
UB
i

)︄

subject to (1− w)
∑︂
i∈Ω

xiq
LB
i ≤ u× ZUB(γ, q

LB
0 ) + v × ZUB

(︄
γ, 1−

∑︂
i∈Ω

xiq
LB
i −

∑︂
i∈Ω

(1− xi)q
UB
i

)︄

1−
∑︂
i∈Ω

(1− xi)q
UB
i ≤ u

(︄
qLB
0 +

∑︂
i∈Ω

xiq
LB
i

)︄
+ v

(︄
qUB
0 +

∑︂
i∈Ω

xiq
LB
i

)︄
+ w

(︁
qUB
0 + ZUB(γ, q

UB
0 )

)︁
(1− u)

∑︂
i∈Ω

xiq
LB
i ≤ v

(︄
1− qLB

0 −
∑︂
i∈Ω

(1− xi)q
UB
i

)︄
+ w

(︄
1− qUB

0 −
∑︂
i∈Ω

(1− xi)q
UB
i

)︄
∑︂
i∈Ω

xi = γ

xi binary, i ∈ Ω

u+ v + w = 1

u, v, w binary.
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Proof. The formulation of C-RM-S(γ) follows directly from Theorem 1. The formulation for its deter-
ministic counterpart follows directly from Lemma B.1, because the case where u = 1 (hence v = 0, w = 0)
corresponds to the case where βFN

0 (x) = qLB
0 and

∑︁
i∈Ω xiβ

FN
i (x) =

∑︁
i∈Ω xiq

LB
i (Case 1 in Lemma

B.1); the case where w = 1 (hence u = 0, v = 0) corresponds to the case where βFN
0 (x) = qUB

0 and∑︁
i∈Ω xiβ

FN
i (x) = 1 − qUB

0 −
∑︁

i∈Ω(1 − xi)q
UB
i (Case 2(a) in Lemma B.1); and the case where v = 1

(hence u = 0, w = 0) corresponds to the case where βFN
0 (x) = 1 −

∑︁
i∈Ω xiq

LB
i −

∑︁
i∈Ω(1 − xi)q

UB
i and∑︁

i∈Ω xiβ
FN
i (x) =

∑︁
i∈Ω xiq

LB
i (Case 2(b) of Lemma B.1). Thus, the deterministic counterpart formulation

accounts for all possible values for βFN
0 (x) and

∑︁
i∈Ω xiβ

FN
i (x), and chooses a vector (u(x), v(x), w(x)) for

each possible x, that maximizes the objective function.

Remark B.1. The solutions with u = 1, w = 1, and v = 1 in the deterministic counterpart of Sub-problem
C-RM-S(γ) (Lemma B.2) respectively represent Parts 1, 2(a), and 2(b) of Lemma B.1. In each case, C-
RM-S(γ) reduces to a 0-1 multiconstraint Knapsack Problem. Thus, in order to solve C-RM-S(γ), it is
sufficient to solve three 0-1 multiconstraint Knapsack Problems, one for each case, i.e., u = 1, w = 1, and
v = 1.

B.2 Upper Bound Robust MSP (U-RM)

U-RM:

maximize
x

βFN
0 (x) +

∑︂
i∈Ω

xiβ
FN
i (x)

subject to g

(︄∑︂
i∈Ω

xi

)︄
+K1

(︁
βCost
0 (x)

)︁∑︂
i∈Ω

xiβ
Cost
i (x)−K2

(︄∑︂
i∈Ω

xiβ
Cost
i (x)

)︄2

≤ B′ (27)

βFN (x) = argminθ∈S(Q)

{︄
θ0 +

∑︂
i∈Ω

xiθi

}︄
, ∀x

βCost(x) = argmaxθ∈S(Q)

⎧⎨⎩K1 (θ0)
∑︂
i∈Ω

xiθi −K2

(︄∑︂
i∈Ω

xiθi

)︄2
⎫⎬⎭ , ∀x

∑︂
i∈Ω

xi ≤ m

xi binary, i ∈ Ω.

Next, we provide a reformulation of U-RM under the additional constraint,
∑︁

i∈Ω xi = γ, for any
γ ∈ Z+ : γ ≤ m, which we refer to as Sub-problem U-RM-S(γ), along with its deterministic counterpart.

Lemma B.3. For any γ ∈ Z+ : γ ≤ m, U-RM, under the additional constraint that
∑︁

i∈Ω xi = γ, can be
equivalently formulated as follows:
Sub-problem U-RM-S(γ):

maximize
x

βFN
0 (x) +

∑︂
i∈Ω

xiβ
FN
i (x)

subject to
∑︂
i∈Ω

xiβ
Cost
i (x) ≤ ZUB(γ, β

Cost
0 (x))

βFN (x) = argminθ∈S(Q)

{︄
θ0 +

∑︂
i∈Ω

xiθi

}︄
, ∀x
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βCost(x) = argmaxθ∈S(Q)

⎧⎨⎩K1 (θ0)
∑︂
i∈Ω

xiθi −K2

(︄∑︂
i∈Ω

xiθi

)︄2
⎫⎬⎭ , ∀x

∑︂
i∈Ω

xi = γ

xi binary, i ∈ Ω,

with the following deterministic counterpart:

Deterministic Counterpart of Sub-problem U-RM-S(γ):

maximize
x,u,v

u

(︄
qLB
0 +

∑︂
i∈Ω

xiq
LB
i

)︄
+ (1− u)

(︄
1−

∑︂
i∈Ω

(1− xi) q
UB
i

)︄

subject to v
∑︂
i∈Ω

xiq
UB
i + (1− v)

(︄
1− qLB

0 −
∑︂
i∈Ω

(1− xi) q
LB
i

)︄
≤ ZUB(γ, q

LB
0 ) (28)

∑︂
i∈Ω

xi = γ

xi binary, i ∈ Ω

u, v binary.

Proof. Consider any γ ∈ Z+:γ ≤ m, and recall that Z(γ;θ) ≡
∑︁

i∈Ω xiθi:
∑︁

i∈Ω xi = γ and ZUB(γ,K1(q
LB
0 )) =

K1(q
LB
0 )−

√
(K1(qLB

0 ))2+4[g(γ)−B′]K2

2K2
. Because the Z(γ;θ) function is not one-to-one, we define its set of so-

lutions for a given γ as, S (Z(γ;θ)) =
{︁∑︁

i∈Ω xiθi :
∑︁

i∈Ω xi = γ, xi binary, i ∈ Ω
}︁
. By definition of γ,

Constraint (6) is automatically satisfied. Then, the feasible region of U-RM, i.e., the region where Con-
straint (5) is also satisfied, can be expressed as follows:

maximize
Z(γ;θ)

min
θ∈S(Q)

{θ0 + Z(γ;θ)}

subject to K1

(︁
qLB
0

)︁
max

θ∈S(Q)
{Z(γ;θ)} −K2

(︃
max

θ∈S(Q)
{Z(γ;θ)}

)︃2

≤ B′ − g (γ) (29)

Z(γ;θ) ∈ S (Z(γ;θ)) . (30)

Then the result follows directly by Theorem 1. The deterministic counterpart of Sub-problem U-RM-S(γ)
follows directly from Properties A.2 and A.3, because for the objective function, the case where u = 1
corresponds to the case where βFN

0 (x) +
∑︁

i∈Ω xiβ
FN
i (x) = qLB

0 +
∑︁

i∈Ω xiq
LB
i ; and the case where u = 0

corresponds to the case where βFN
0 (x) +

∑︁
i∈Ω xiβ

FN
i (x) = 1 −

∑︁
i∈Ω(1 − xi)q

UB
i ; and for the budget

constraint, i.e., Constraint (28), the case where v = 1 corresponds to the case where
∑︁

i∈Ω xiβ
Cost
i (x) =∑︁

i∈Ω xiq
UB
i ; and the case where v = 0 corresponds to the case where

∑︁
i∈Ω xiβ

Cost
i (x) = 1 − qLB

0 −∑︁
i∈Ω xiq

LB
i . Thus, the deterministic counterpart formulation accounts for all possible values for βFN

0 (x) +∑︁
i∈Ω xiβ

FN
i (x), and

∑︁
i∈Ω xiβ

Cost
i (x), and chooses a vector (u(x), v(x)) for each possible x, that maximizes

the objective function.

Remark B.2. For each value of u ∈ {0, 1} and v ∈ {0, 1}, U-RM-S(γ) reduces to an exact γ-item 0-1
Knapsack Problem. Thus, in order to solve U-RM-S(γ), it is sufficient to solve four exact γ-item 0-1
Knapsack Problems, one for each pair of values, (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
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C Additional Properties and Reformulations

A Special Case of DM and RM:

Remark C.1. For the special case where g
(︁∑︁

i∈Ω xi

)︁
= 0, i.e., with no MP variable cost, ZUB(γ) reduces

to a constant independent of γ, with ZUB

(︁
γ; g

(︁∑︁
i∈Ω xi

)︁
= 0
)︁
=

K1−
√

(K1)
2−4B′K2

2K2
(see Theorem 1), and

Constraint (10) can be eliminated without loss of optimality. In this special case, to solve DM to optimality,
it is sufficient to solve a single 0-1 Subset-sum Problem, and to solve RM to optimality, it is sufficient to
solve two 0-1 Knapsack Problems, one for each value of u ∈ {0, 1}.

A Mixed Integer Linear Programming Reformulation for DM:

Remark C.2.

1. When the MP variable cost, g
(︁∑︁

i∈Ω xi

)︁
, is a polynomial of degree n ∈ Z+:n ≥ 2, DM can be

reformulated as a mixed integer linear programming problem (MILP), following the standard lin-
earization techniques (e.g., Adams and Sherali (1986); Smith and Taskin (2008)), that is, by us-
ing the fact that (xi)

k = xi, ∀k ∈ {2, · · · , n}, i ∈ Ω, and introducing additional binary variables,

yi1,i2,...,iw ≡ xi1×xi2×...×xiw , along with constraints,
{︂∑︁iw

q=i1
xq−w+1 ≤ yi1,i2,...,iw , yi1,i2,...,iw≤xq,

q ∈ {i1, i2, ..., iw}
}︂
, for all distinct w-tuples {i1, ..., iw} ∈ Ω : i1 ̸= i2 · · · ̸= iw, ∀w ∈ {2, · · · , n}, leading

to
∑︁n

w=2

(︃
m
w

)︃
additional binary variables, and

∑︁n
w=2(w + 1)×

(︃
m
w

)︃
additional constraints.

For the special case where g
(︁∑︁

i∈Ω xi

)︁
= c

(︁∑︁
i∈Ω xi

)︁n
, for some constant c > 0, constraints

{︃
yi1,i2,...,iw ≤

xq, q ∈ {i1, i2, ..., iw}
}︃

become redundant, ∀w ≥ 3 (because E[Cost(x,y; µ̂)] is strictly increasing in

yi1,i2,...,iw), reducing the number of additional constraints to
∑︁n

w=2

(︃
m
w

)︃
+ 2×

(︃
m
2

)︃
.

2. For the linear variable cost case where g
(︁∑︁

i∈Ω xi

)︁
= c

∑︁
i∈Ω xi, for some constant c > 0, constraints{︃

xi1 + xi2 − 1 ≤ yi1,i2 , i1, i2 ∈ Ω, i1 ̸= i2

}︃
become redundant (because E[Cost(x,y; µ̂)] is strictly

decreasing in yi1,i2), and the MILP reformulation requires

(︃
m
2

)︃
additional binary variables and 2 ×(︃

m
2

)︃
additional constraints.

Table 8 provides the computational times, as well as the number of additional binary variables and
constraints required for the MILP reformulation for DM, provided in Remark C.2, for various polynomial
functions for the MP variable cost, g(.), and various number of variants, m.
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Table 8: Comparison of Algorithm MSO, MILP Reformulation, and Gurobi Solver for Various
DM Problem Instances∗

MILP Reformulation Run Time (seconds)
m Number of Additional Number of Additional MILP Gurobi MSO

Binary Variables Constraints Reformulation

g
(︁∑︁

i∈Ω xi
)︁
= c

∑︁
i∈Ω xi

312 48,516 97,032 86 7 1

346 59,685 119,370 91 7 1

400 79,800 159,600 99 8 1

450 101,025 202,050 225 9 1

500 124,750 249,500 582 10 2

550 150,975 301,950 out of memory 10 2

600 179,700 359,400 out of memory 10 2

1,000 499,500 999,000 out of memory 28 3

2,000 1,999,000 3,998,000 out of memory 138 3

g
(︁∑︁

i∈Ω xi
)︁
= c

(︁∑︁
i∈Ω xi

)︁2
312 48,516 145,548 93 7 1

346 59,685 179,055 122 8 1

400 79,800 239,400 313 10 1

450 101,025 303,075 out of memory 10 1

500 124,750 374,250 out of memory 12 1

550 150,975 452,925 out of memory 13 1

600 179,700 539,100 out of memory 15 1

1,000 499,500 1,498,500 out of memory out of memory 1

2,000 1,999,000 5,997,000 out of memory out of memory 2

g
(︁∑︁

i∈Ω xi
)︁
= c

(︁∑︁
i∈Ω xi

)︁3
312 5,061,836 5,158,868 out of memory could not solve 1

346 6,903,565 7,022,935 out of memory could not solve 1

400 10,666,600 10,826,200 out of memory could not solve 1

450 15,187,425 15,389,475 out of memory could not solve 1

500 20,833,250 21,082,750 out of memory could not solve 1

550 27,729,075 28,031,025 out of memory could not solve 1

600 35,999,900 36,359,300 out of memory could not solve 1

1,000 166,666,500 167,665,500 out of memory could not solve 1

2,000 1,333,333,000 1,337,331,000 out of memory could not solve 1

∗Performed on a computer with an i-7 processor @2.90GHz, 16Gb RAM, and 64-bit operating system.
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Price of Robustness Ratio:

The bounds on the price of robustness ratio provided in Theorem 5 require the optimal DM solution.
In the following, we also provide bounds that are potentially weaker, but that do not require the optimal
DM solution.

Lemma C.1. For any given µ ∈ S(Q):

Π(µ) ≤ 1

(1− µ0 − ZUB(γLB))
2 min

⎧⎪⎨⎪⎩1− µ0 −min

{︄(︄∑︁
i∈Ω:i≤γLB

µi

(︁
1 + hUB

i

)︁
(1 + hUB

max)

)︄2

,

(︄∑︁
i∈Ω:i≤γLB

µi

(︁
1− hLB

i

)︁
(1− hLB

min)

)︄2}︄
,

⎛⎝1− µ0(1− hLB
0 )−

∑︂
i∈Ω:i≤γLB

µi

(︂
1− hLB

i

)︂⎞⎠2
⎫⎪⎬⎪⎭,

where γLB is as defined in Theorem 2.

Proof. The result follows directly from Theorem 5 and from the fact that Z∗D(γLB) ≤ Z∗D ≤ ZUB(γ
∗D) ≤

ZUB(γLB), where the first and second inequalities follow by Theorem 3, and the third inequality follows
because ZUB(γ) is strictly decreasing in γ (see Theorem 1).

Corollary C.1. For any given µ ∈ S(Q), if hLB
i = hLB and hUB

i = hUB , for all i ∈ Ω, then x∗D(µ) =
x∗R(µ) ⇔ Π(µ) = 1.

Proof. When hLB
i = hLB for all i ∈ Ω, hLB

min = hLB
max = hLB . Similarly, when hUB

i = hUB for all i ∈ Ω,
hUB
min = hUB

max = hUB (Theorem 5). Then, the result follows from Theorem 1, because DM and RM have the
same feasible region, and because the objective,

{︁
maximizex

∑︁
i∈Ω xiµi

}︁
=
{︁
maximizex 1− µ0 −

∑︁
i∈Ω(1− xi)µi

}︁
,

is equivalent to both objectives,
{︁
maximizex qLB

0 + (1− hLB)
∑︁

i∈Ω xiµi

}︁
and

{︁
maximizex 1− (1 + hUB)

∑︁
i∈Ω(1− xi)µi

}︁
.

Thus, the optimal DM and RM solutions coincide.

D Proofs of the Results in Section 3

Proof of Property 1.

1. We have that Pr (FN(x;θ)) = 1
4

(︁
1− θ0 −

∑︁
i∈Ω xiθi

)︁2
, ∀θ ∈ S(Q) (Appendix A and Eq. (1)). Then,

the proof follows because θ0+
∑︁

iΩ xiθi ≤ 1,∀x (by definition of θ), and the term,
∑︁

i∈Ω xiθi, is strictly

increasing in xi, i ∈ Ω. Therefore, we have that
{︁
minimizex Pr (FN(x;θ))

}︁
≡
{︁
maximizex

∑︁
i∈Ω xiθi

}︁
,

and
{︁
minimizex maxθ∈S(Q) {Pr (FN(x;θ))}

}︁
≡
{︁
maximizex minθ∈S(Q)

{︁
θ0 +

∑︁
i∈Ω xiθi

}︁}︁
.

2. Since the result holds for E
[︁
Costl(x; µ̂)

]︁
, l = 1, 2, we drop the process type index, l, and derive,

∀i ∈ Ω:

∂E [Cost(x; µ̂)]

∂xi
=
∂g
(︁∑︁

i∈Ω xi

)︁
∂xi

+ µ̂iK1 − 2µ̂iK2

∑︂
i∈Ω

xiµ̂i ≥ µ̂iK1 − 2µ̂i(1− µ̂0)K2 > 0,

which follows because g
(︁∑︁

i∈Ω xi

)︁
is strictly increasing in xi,

∑︁
i∈Ω xiµ̂i ≤ 1− µ̂0 (by definition of µ̂),

and K1 > 2(1− µ̂0)K2 for both process types (by Property A.1). This completes the proof.

Proof of Theorem 1. Consider any γ ∈ Z+:γ ≤ m, and recall that Z(γ) ≡
∑︁

i∈Ω xiµ̂i:
∑︁

i∈Ω xi = γ and

ZUB(γ) =
K1−

√
(K1)2+4[g(γ)−B′]K2

2K2
. Because the Z(γ) function is not one-to-one, we define its set of solutions

for a given γ as, S (Z(γ)) =
{︁∑︁

i∈Ω xiµ̂i :
∑︁

i∈Ω xi = γ, xi binary, i ∈ Ω
}︁
. By definition of γ, Constraint (6)

is automatically satisfied. Then, the feasible region of DM and RM, i.e., the region where Constraint (5)
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is also satisfied, can be expressed as follows:

K1Z(γ)−K2 (Z(γ))
2 ≤ B′ − g(γ) (31)

Z(γ) ∈ S (Z(γ)) . (32)

Then, the formulations of Sub-problems DM-S(γ) and RM-S(γ) given in the theorem follow if we can show
the equivalence between Constraints (31)-(32) and Constraint (9). To prove this result, it is sufficient to
show that any feasible solution, Z(γ) ∈ S (Z(γ)), to Constraint (31) belongs to the region (0, Z1(γ)], because
Z1(γ) = ZUB(γ) by definition.

To this end, first observe, by Remark A.1, that Constraint (31) is satisfied if and only if Z(γ) ∈
(−∞, Z1(γ)] ∪ [Z2(γ),+∞). Observe also that, by definition, Z(γ) =

∑︁
i∈Ω xiµ̂i ∈ [0, 1 − µ̂0], for all γ ≥ 0

and µ̂ ∈ S(Q). Assume, to the contrary, that there exists a feasible solution, Z(γ) ∈ S (Z(γ)), to Con-
straint (31) such that Z(γ) ≥ Z2(γ), which must then be in region [Z2(γ), 1 − µ̂0], that is, we must have
Z2(γ) ≤ (1 − µ̂0). However, the condition that Z2(γ) ≤ (1 − µ̂0) ⇔

√︁
δ(γ) ≤ −K1 + 2(1 − µ̂0)K2 < 0

for both process types (by Property A.1). Therefore, we reach a contradiction, and it must be true that
Z2(γ) > (1 − µ̂0), and hence, there exists no feasible solution, Z(γ) ∈ S (Z(γ)), to Constraint (31) that
belongs to region [Z2(γ), 1 − µ̂0]. Thus, we must have Z(γ) ∈ (0, Z1(γ)], where ZUB(γ) = Z1(γ). Then,
Constraint (31) can be equivalently written as: {Z(γ) ≤ ZUB(γ)}, showing the equivalence between Con-
straints (31)-(32) and Constraint (9). Further, observe that when ZUB(γ) does not exist, we have that
δ(γ) < 0, and Constraint (31) is satisfied for any x. It remains to prove that ZUB(γ) is strictly decreasing

in γ, which directly follows because we have that, ∂ZUB(γ)
∂γ = − ∂g(γ)

∂γ
√

δ(γ)
< 0. The deterministic counterpart

of Sub-problem RM-S(γ) follows directly by Property A.2, because the case where u = 1 corresponds to

the case where minθ∈S(Q)

{︃
θ0 +

∑︁
i∈Ω xiθi

}︃
= qLB

0 +
∑︁

i∈Ω xiq
LB
i ; and the case where u = 0 corresponds to

the case where minθ∈S(Q)

{︃
θ0 +

∑︁
i∈Ω xiθi

}︃
= 1 −

∑︁
i∈Ω(1 − xi)q

UB
i . Thus, the deterministic counterpart

formulation accounts for all possible values for minθ∈S(Q)

{︃
θ0 +

∑︁
i∈Ω xiθi

}︃
, and chooses a value u(x) for

each possible x, that maximizes the objective function. This completes the proof.

Proof of Lemma 1. Consider the polynomial in Remark A.1 (Eq. 18)). In what follows, we consider all possi-

ble values of δ(γ) = (K1)
2
+4[g (γ)−B′]K2, and discuss the optimal solutions to DM-S(γ) and RM-S(γ) in

each case. Specifically, Case 1 corresponds to the case where δ(γ) ≤ 0, and hence ZUB(γ) does not exist, and
Case 2 corresponds to the case where δ(γ) > 0, and hence ZUB(γ) exists, where either ZUB(γ) ≥ 1−µ̂0 (Sub-
case 2(a)), or ZUB(γ) < 1 − µ̂0 (Sub-case 2(b)). Recall that ∆ ≡

⌊︁
g−1

(︁
B′ −K1(1− µ̂0) +K2(1− µ̂0)

2
)︁⌋︁
,

we define ∆′ ≡
⌊︂
g−1

(︂
−(K1)

2

4K2
+B′

)︂⌋︂
.

Case 1: δ(γ) ≤ 0:

δ(γ) ≤ 0 ⇔ γ ≤ ∆′ =

⌊︄
g−1

(︄
− (K1)

2

4K2
+B′

)︄⌋︄
.

In this case, the polynomial in Eq. (18) has either no real root, i.e., when γ < g−1
(︂

−(K1)
2

4K2
+B′

)︂
, or only one

real root, i.e., when γ = g−1
(︂

−(K1)
2

4K2
+B′

)︂
, and as a result, Constraint (9) is satisfied for any x and becomes

redundant. By Property A.2 we also have that, minθ∈S(Q)

{︁
θ0 +

∑︁
i∈Ω xiθi

}︁
= max

{︃
qLB
0 +

∑︁
i∈Ω xiq

LB
i , 1−∑︁

i∈Ω (1− xi) q
UB
i

}︃
. Further, to ensure that γ ≥ 1, we must also have that g−1

(︂
−(K1)

2

4K2
+B′

)︂
≥ 1.

1. Recall that the objective function of DM-S(γ) is given by
{︁
maximizex

∑︁
i∈Ω xiµ̂i

}︁
. Therefore, when

Constraint (9) is redundant, an optimal DM-S(γ) solution is given by x∗D
i (γ) = 1, for i ∈ Ω, i =

1, 2, ..., γ, and x∗D
j (γ) = 0, for j ∈ Ω, j = γ + 1, ...,m.

15



2. Recall that the objective function of RM-S(γ) is given by
{︁
maximizex minθ∈S(Q)

{︁
θ0 +

∑︁
i∈Ω xiθi

}︁}︁
.

From Property A.2, if qLB
0 +

∑︁
i∈ΩLB :i≤γ

qLB
i ≥ 1 −

∑︁
i∈ΩUB :i≥γ+1

qUB
i , then the optimal RM-S(γ)

solution is given by x∗R
i (γ) = 1, for i ∈ ΩLB , i = 1, 2, ..., γ, and x∗R

j (γ) = 0, for j ∈ ΩLB , j =

γ+1, ...,m; and if qLB
0 +

∑︁
i∈ΩLB :i≤γ

qLB
i ≤ 1−

∑︁
i∈ΩUB :i≥γ+1

qUB
i , then the optimalRM-S(γ) solution

is given by x∗R
i (γ) = 1, for i ∈ ΩUB , i = 1, 2, ..., γ, and x∗R

j (γ) = 0, for j ∈ ΩUB , j = γ + 1, ...,m.

Case 2: δ(γ) > 0:

δ(γ) > 0 ⇔ γ > ∆′ =

⌊︄
g−1

(︄
− (K1)

2

4K2
+B′

)︄⌋︄
.

In this case, the polynomial in Eq. (18) has two real roots. Furthermore, by feasibility of an optimal
DM-S(γ) and RM-S(γ) solution, we know, by Theorem 1, that Z∗k(γ) ∈ (0, ZUB(γ)], k ∈ {D,R}. Since
DM-S(γ) and RM-S(γ) are infeasible if ZUB(γ) < 0, we must have that:

0 ≤ ZUB(γ) ⇔ 0 ≤
K1 −

√︁
δ(γ)

2K2
⇔ −K1 ≤ −

√︁
δ(γ) ⇔ γ ≤ g−1 (B′).

We analyze two sub-cases.
Sub-case 2(a): ZUB(γ) ≥ 1− µ̂0:

ZUB(γ) ≥ 1 − µ̂0 ⇔ ∆′ ≤ γ ≤ ∆. By definition of µ̂, we have that
∑︁

i∈Ω µ̂i = 1 − µ̂0, and hence
Z∗D(γ) =

∑︁
i∈Ω x∗D

i µ̂i ≤ 1− µ̂0, and Constraint (9) becomes redundant. Then,

1. An optimal DM-S(γ) solution is given by x∗D
i (γ) = 1, for i ∈ Ω, i = 1, 2, ..., γ, and x∗D

j (γ) = 0, for
j ∈ Ω, j = γ + 1, ...,m.

2. From Property A.2, if qLB
0 +

∑︁
i∈ΩLB :i≤γ

qLB
i ≥ 1 −

∑︁
i∈ΩUB :i≥γ+1

qUB
i , then the optimal RM-S(γ)

solution is given by x∗R
i (γ) = 1, for i ∈ ΩLB , i = 1, 2, ..., γ, and x∗R

j (γ) = 0, for j ∈ ΩLB , j =

γ+1, ...,m; and if qLB
0 +

∑︁
i∈ΩLB :i≤γ

qLB
i ≤ 1−

∑︁
i∈ΩUB :i≥γ+1

qUB
i , then the optimalRM-S(γ) solution

is given by x∗R
i (γ) = 1, for i ∈ ΩUB , i = 1, 2, ..., γ, and x∗R

j (γ) = 0, for j ∈ ΩUB , j = γ + 1, ...,m.

Sub-case 2(b): ZUB(γ) < 1− µ̂0:

ZUB(γ) < 1− µ̂0 ⇔ ∆ < γ ≤
⌊︁
g−1 (B′)

⌋︁
. In this case, there exists at least one solution x that is not feasible

with respect to Constraint (9), and one needs to solve DM-S(γ) and RM-S(γ) to determine their optimal
solutions, x∗D(γ) and x∗R(γ).

Proof of Theorem 2. The expression on γLB follows directly from the proof of Sub-case 2(a) in Lemma 1,
which shows that for any γ ≤ ∆, Constraint (9) is satisfied for any x. Therefore, for any γ < ∆, we have

that Z∗D(γ) =
∑︁γ

i∈Ω:i=1 µ̂i <
∑︁∆

i∈Ω:i=1 µ̂i = Z∗D(∆), and Z∗R(γ) = max

{︃
qLB
0 +

∑︁γ
i∈ΩLB :i=1 q

LB
i , 1 −∑︁m

i∈ΩUB :i=γ+1 q
UB
i

}︃
< max

{︃
qLB
0 +

∑︁∆
i∈ΩLB :i=1 q

LB
i , 1−

∑︁m
i∈ΩUB :i=∆+1 q

UB
i

}︃
= Z∗R(∆). Then, an optimal

solution γ∗k, k ∈ {D,R}, satisfies γ∗k ∈ {max{0,∆}, ...,m}.
The expression on γk

UB , k ∈ {D,R}, follows because E [Cost(x; µ̂)] is strictly increasing in xi, i ∈ Ω
(Property 1), γLB leads to a feasible solution for both DM and RM, as shown above in this proof, and γ∗k,
k ∈ {D,R}, is optimal (hence feasible) for DM and RM, respectively. Then, based on Constraint (5), we
can write the following for DM:

g
(︂
γ∗D

)︂
+K1

⎛⎜⎝ ∑︂
i∈Ω:
i≤γLB

µ̂i

⎞⎟⎠−K2

⎛⎜⎝ ∑︂
i∈Ω:
i≤γLB

µ̂i

⎞⎟⎠
2

≤ g
(︂
γ∗D

)︂
+K1

∑︂
i∈Ω

x∗D
i µ̂i −K2

(︄∑︂
i∈Ω

x∗D
i µ̂i

)︄2

≤ B′ ⇔

g
(︂
γ∗D

)︂
≤ B′ −K1

⎛⎜⎝ ∑︂
i∈Ω:
i≤γLB

µ̂i

⎞⎟⎠+K2

⎛⎜⎝ ∑︂
i∈Ω:
i≤γLB

µ̂i

⎞⎟⎠
2

⇔ γ∗D ≤ g−1

⎛⎜⎝B′ −K1

⎛⎜⎝ ∑︂
i∈Ω:
i≤γLB

µ̂i

⎞⎟⎠+K2

⎛⎜⎝ ∑︂
i∈Ω:
i≤γLB

µ̂i

⎞⎟⎠
2⎞⎟⎠ ,
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where the first inequality follows from Property A.1. In addition, we have the following results for RM:

g
(︂
γ∗R

)︂
+K1

⎛⎜⎜⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︂
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︂
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎟⎟⎠−K2

⎛⎜⎜⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︂
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︂
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎟⎟⎠
2

≤ g
(︂
γ∗R

)︂
+Kl

1

∑︂
i∈Ω

x∗R
i µ̂i −Kl

2

⎛⎝∑︂
i∈Ω

x∗R
i µ̂i

⎞⎠2

≤ B′ ⇔

g
(︂
γ∗R

)︂
≤ B′ −K1

⎛⎜⎜⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︂
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︂
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎟⎟⎠+K2

⎛⎜⎜⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︂
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︂
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎟⎟⎠
2

⇔

γ∗R ≤ g−1

⎛⎜⎜⎜⎝B′ −K1

⎛⎜⎜⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︂
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︂
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎟⎟⎠+K2

⎛⎜⎜⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︂
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︂
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎠ ,

where the first inequality follows from Properties A.1 and A.2, completing the proof.

Proof of Lemma 2. Consider g(
∑︁

∈Ω xi) = c
(︁∑︁

i∈Ω xi

)︁n
, for some c > 0 and n ∈ Z+:n ≥ 2, and therefore

g−1(y) = n
√︁

y
c . We first prove the result for any y1 ≥ y2, y1, y2 ∈ R+, with superscript k ∈ {D,R} added as

needed to respectively denote the corresponding values for DM and RM.
Case 1. y1

c < 1 ⇒ ⌊g−1(y1)⌋ = ⌊g−1(y2)⌋ = 0.

Case 2. y2

c ≥ 1 ⇒ ∂g−1(y1)
∂n =

− n
√

y1
c ln(

y1
c )

n2 ≤ ∂g−1(y2)
∂n =

− n
√

y2
c ln(

y2
c )

n2 ≤ 0. Thus, we have that ⌊g−1(y1)⌋ and

⌊g−1(y2)⌋ are non-increasing in n and that ⌊ n
√︁

y1

c ⌋ − ⌊ n+1
√︁

y1

c ⌋ ≥ ⌊ n
√︁

y2

c ⌋ − ⌊ n+1
√︁

y2

c ⌋.
Case 3. y2

c < 1 ≤ y1

c ⇒ ⌊g−1(y2)⌋ = 0, and ⌊ n
√︁

y1

c ⌋ − ⌊ n+1
√︁

y1

c ⌋ ≥ ⌊ n
√︁

y2

c ⌋ − ⌊ n+1
√︁

y2

c ⌋ = 0.

Therefore, the result follows from the expressions in Theorem 2 on γLB and γk
UB , k ∈ {D,R}, by substituting

γLB = ⌊g−1(y2)⌋ and γk
UB = ⌊g−1(yk1 )⌋, k ∈ {D,R}, where

yR1 = B′−K1

⎛⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︁
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︁
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎠+K2

⎛⎜⎝max

⎧⎪⎨⎪⎩qLB
0 +

∑︁
i∈ΩLB :
i≤γLB

qLB
i , 1−

∑︁
i∈ΩUB :
i≥γLB+1

qUB
i

⎫⎪⎬⎪⎭− µ0

⎞⎟⎠
2

,

yD1 = B′ − K1

(︃∑︁
i∈Ω:
i≤γLB

µ̂i

)︃
+ K2

(︃∑︁
i∈Ω:
i≤γLB

µ̂i

)︃2

, and y2 = B′ − K1(1 − µ̂0) + K2(1 − µ̂0)
2, since yk1 ≥ y2, for

k ∈ {D,R}.

Proof of Corollary 1 . Both parts follow directly from Theorem 2 and Lemma 1, which indicate that if
m ≤ γLB , any γ ∈ [0,m] satisfies Constraint (5), and therefore, we must have that γ∗k = m, k ∈ {D,R};
and if m ≥ γk

UB , then γ∗k ∈ {γLB , γ
k
UB}, which automatically satisfies Constraint (6).

Proof of Theorem 3. By Theorem 1, we have that an optimal DM-S(γ∗D) solution, x∗D(γ∗D), corresponds
to an optimal DM solution, x∗D, and an optimal RM-S(γ∗R) solution, x∗R(γ∗R), corresponds to an optimal
RM solution, x∗R. We next show that when ZUB(γ) ≤ Z∗k(γ−1), k ∈ {D,R}, i.e., the stopping criterion of
Algorithm MSO, an optimal solution is attained. This result follows because we have that, for k ∈ {D,R},
if ZUB(γ) ≤ Z∗k(γ − 1), then

Z∗k(γ + i) ≤ ZUB(γ + i) < ZUB(γ) ≤ Z∗k(γ − 1) ≤ ZUB(γ − 1), for all i ∈ [1,m− γ],

where the first and last inequalities follow by feasibility of an DM-S(γ) and RM-S(γ) solution, the
third inequality follows by the assumed condition that ZUB(γ) ≤ Z∗k(γ − 1), and the second inequal-
ity follows because ZUB(γ) is strictly decreasing in γ (Theorem 1). Then, the optimality of Algorithm
MSO directly follows by Theorem 2 and Lemma 1, because the algorithm enumerates over all values of
γ ∈

[︁
min{γLB ,m},min{γk

UB ,m}
]︁
, k ∈ {D,R} which contains the optimal number of variants in DM, i.e.,

γ∗D, or RM, i.e., γ∗R.
Regarding the complexity of Algorithm MSO, there exists an algorithm with complexity O(mr′) that
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solves sub-problem DM-S(γ), and an algorithm with complexity O(mr) that solves sub-problem RM-
S(γ) for a fixed value of u ∈ {0, 1}, hence, the complexity of solving RM-S(γ) is O(2mr) (see Remark
2). Then, the complexity result follows, because Algorithm MSO solves Sub-problem DM-S(γ) at most
min{γD

UB ,m}−min{γLB ,m} times, and solves Sub-problem RM-S(γ) at most min{γR
UB ,m}−min{γLB ,m}

times.

Proof of Theorem 4. By Eq. (3) and Constraint (5), for any solution x that is feasible with respect to both

one-tier and two-tier processes (i.e., (K1,K2) replaced by
(︁
CSC ,

CSC

4

)︁
for l = 1, and by

(︂
2CGS+CSC(1−µ̂0)

2 , 2CGS+CSC

4

)︂
for l = 2), we have: K1

1 −K2
1 = CSC(1+µ̂0)−2CGS

2 and K1
2 −K2

2 = CGS

2 . Then,

E
[︁
Cost1(x; µ̂)

]︁
− E

[︁
Cost2(x; µ̂)

]︁
=(K1

1 −K2
1 )

(︄∑︂
i∈Ω

xiµ̂i

)︄
− (K1

2 −K2
2 )

(︄∑︂
i∈Ω

xiµ̂i

)︄2

=

(︄∑︂
i∈Ω

xiµ̂i

)︄[︄
(K1

1 −K2
1 )− (K1

2 −K2
2 )

(︄∑︂
i∈Ω

xiµ̂i

)︄]︄

=

(︄∑︂
i∈Ω

xiµ̂i

)︄[︄
CSC (1 + µ̂0)

2
− CGS

2

(︄
2−

∑︂
i∈Ω

xiµ̂i

)︄]︄
. (33)

Since
∑︁

i∈Ω xiµ̂i ≥ 0, ∀x, we have that:

E
[︁
Cost1(x; µ̂)

]︁
− E

[︁
Cost2(x; µ̂)

]︁
≥ 0 ⇔

∑︂
i∈Ω

xiµ̂i ≥ 2− CSC

CGS
(1 + µ̂0). (34)

Therefore, we have the following:

1. CSC

CGS
≥ 2

1+µ̂0
⇔ 2− CSC

CGS
(1 + µ̂0) ≤ 2− 2(1+µ̂0)

1+µ̂0
= 0, and the inequality in Eq. (34) is satisfied for any

x. Hence, an optimal solution of the one-tier process is always feasible for the two-tier process.

2. CSC

CGS
≤ 1 ⇔ 2− CSC

CGS
(1 + µ̂0) ≥ 2− (1 + µ̂0) = 1− µ̂0 ≥

∑︁
i∈Ω xiµ̂i, and the inequality in Eq. (34) can

not be satisfied for any x. Hence, an optimal solution of the two-tier process is always feasible for the
one-tier process.

3. 1 < CSC

CGS
< 2

1+µ̂0
:

If there exists a feasible solution x with respect to Constraints (5), (6), and (7), and with (K1,K2) =(︁
CSC ,

CSC

4

)︁
, i.e., the parameters for the one-tier process, which further satisfies the condition pro-

vided in the theorem, i.e., 2 − CSC

CGS
(1 + µ̂0) ≤

∑︁
i∈Ω xiµ̂i, then the optimal solution must satisfy:∑︁

i∈Ω x∗D1
i µ̂i ≥

∑︁
i∈Ω xiµ̂i ≥ 2− CSC

CGS
(1 + µ̂0), and it follows, by Eq. (34), that E

[︁
Cost1(x∗D1; µ̂)

]︁
≥

E
[︁
Cost2(x∗D1; µ̂)

]︁
, i.e., an optimal solution of the one-tier process is feasible for the two-tier pro-

cess, and hence,
∑︁

i∈Ω x∗D2
i µ̂i ≥

∑︁
i∈Ω x∗D1

i µ̂i, or equivalently by Property 1, Pr
(︁
FN(x∗D2; µ̂)

)︁
≤

Pr
(︁
FN(x∗D1; µ̂)

)︁
.

For RM, if there exists a feasible solution x such that
∑︁

i∈Ω xiµ̂i ≥ 2− CSC

CGS
(1 + µ̂0), then there are

two possible cases:

(a)
∑︁

i∈Ω x∗R1
i µ̂i ≥ 2− CSC

CGS
(1+ µ̂0). In this case, we automatically have that, E

[︁
Cost1(x∗R1; µ̂)

]︁
−

E
[︁
Cost2(x∗R1; µ̂)

]︁
≥ 0.

(b)
∑︁

i∈Ω x∗R1
i µ̂i < 2− CSC

CGS
(1 + µ̂0). In this case, it follows, by Property 1, that x∗R1 is feasible for

the two-tier process.

Therefore, by optimality of x∗R2
i for the two-tier process for RM, we have that, minθ∈S(Q)

{︃
θ0 +∑︁

i∈Ω x∗R2
i θi

}︃
≥ minθ∈S(Q)

{︃
θ0+

∑︁
i∈Ω x∗R1

i θi

}︃
, or equivalently, maxθ∈S(Q)

{︃
Pr
(︁
FN(x∗R2;θ)

)︁}︃
≤
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maxθ∈S(Q)

{︃
Pr
(︁
FN(x∗R1;θ)

)︁}︃
, completing the proof.

Proof of Corollary 2. The result follows by Theorem 4, because by Theorem 2 and Lemma 1, the solution
{xi = 1, i = 1, ...,min{γLB ,m}, and xj = 0, j = min{γLB ,m}+ 1, ..m, is a feasible solution for the one-tier
process for both DM and RM.

Proof of Theorem 5. Since DM and RM have the same feasible region, an optimal DM solution is feasible
for RM. Then, by Property A.2, the following inequalities hold, ∀µ ∈ S(Q):

µ0 +
∑︂
i∈Ω

x∗R
i (µ)µi ≥ min

θ∈S(Q)

{︃
θ0 +

∑︂
i∈Ω

x∗R
i (µ)θi

}︃
≥ min

θ∈S(Q)

{︃
θ0 +

∑︂
i∈Ω

x∗D
i (µ)θi

}︃
, (35)

where the first inequality follows because the expression, minθ∈S(Q)

{︃
θ0 +

∑︁
i∈Ω x∗R

i (µ)θi

}︃
, is defined over

all θ ∈ S(Q), and we have that µ ∈ S(Q); and the second inequality follows by the optimality of x∗R(µ)
for RM.

By Property A.2, minθ∈S(Q)

{︃
θ0 +

∑︁
i∈Ω xiθi

}︃
= max

{︃
qLB
0 +

∑︁
i∈Ω xiq

LB
i , 1−

∑︁
i∈Ω (1− xi) q

UB
i

}︃
. Thus,

recalling that qLB
i = µi(1− hLB

i ), and qUB
i = µi(1 + hUB

i ), i ∈ Ω ∪ {0}, the following inequalities hold (see
(Eq. 35)):

µ0 +
∑︂
i∈Ω

x∗R
i (µ)µi ≥ µ0(1− hLB

0 ) +
∑︂
i∈Ω

x∗D
i (µ)µi(1− hLB

i ),

1

4

(︄
1− µ0 −

∑︂
i∈Ω

x∗R
i (µ)µi

)︄2

≤ 1

4

(︄
1− µ0(1− hLB

0 )−
∑︂
i∈Ω

x∗D
i (µ)µi(1− hLB

i )

)︄2

,

and at least one of the following inequalities should hold (see Eq. (35)):

either
∑︂
i∈Ω

x∗R
i (µ)µi(1− hLB

i ) ≥
∑︂
i∈Ω

x∗D
i (µ)µi(1− hLB

i ), or

1−
∑︂
i∈Ω

(1− x∗R
i (µ))µi(1 + hUB

i ) ≥ 1−
∑︂
i∈Ω

(1− x∗D
i (µ))µi(1 + hUB

i ),

⇒ either (1− hLB
min)

∑︂
i∈Ω

x∗R
i (µ)µi ≥

∑︂
i∈Ω

x∗R
i (µ)µi(1− hLB

i ) ≥
∑︂
i∈Ω

x∗D
i (µ)µi(1− hLB

i ), or

(1 + hUB
max)

∑︂
i∈Ω

x∗R
i (µ)µi ≥

∑︂
i∈Ω

x∗R
i (µ)µi(1 + hUB

i ) ≥
∑︂
i∈Ω

x∗D
i (µ)µi(1 + hUB

i ),

⇔ either
1

4

(︄
1− µ0 −

∑︂
i∈Ω

x∗R
i (µ)µi

)︄2

≤ 1

4

(︄
1− µ0 −

∑︁
i∈Ω x∗D

i (µ)µi(1− hLB
i )

(1− hLB
min)

)︄2

, or

1

4

(︄
1− µ0 −

∑︂
i∈Ω

x∗R
i (µ)µi

)︄2

≤ 1

4

(︄
1− µ0 −

∑︁
i∈Ω x∗D

i (µ)µi(1 + hUB
i )

(1 + hUB
max)

)︄2

.

This completes the proof.

E Case Study Details

E.1 Construction of the Uncertainty Set for RM

To construct the uncertainty set S(Q) =
{︂
θ : θi ∈ [qLB

i , qUB
i ], i ∈ Ω ∪ {0},

∑︁
i∈Ω∪{0} θi = 1

}︂
for the robust

model RM, we first derive the bounds for population-level prevalences, qLB
i and qUB

i , i ∈ Ω∪{0}, from their

19



group-level counterparts, qr,LB
i and qr,UB

i , r ∈ R. We do this via the Wilson Score Method with continuity
correction (Newcombe (1998)). In particular, following Newcombe (1998), we derive, for each i ∈ Ω ∪ {0}
and r ∈ R:

qr,LB
i =

2nrµ̂r
i + z2 − 1− z

√︂
z2 − 2− 1

nr + 4µ̂r
i (n

r(1− µ̂r
i ) + 1)

2(nr + z2)
, and

qr,UB
i =

2nrµ̂r
i + z2 + 1 + z

√︂
z2 + 2− 1

nr + 4µ̂r
i (n

r(1− µ̂r
i )− 1)

2(nr + z2)
,

where z is the 95th percentile of the standard normal distribution, and nr is the sample size for group r
based on the data in Schrijver et al. (2016), leading to:

qLB
i =

∑︂
r∈R

frqr,LB
i and qUB

i =
∑︂
r∈R

frqr,UB
i , i ∈ Ω ∪ {0},

that is, the weighted average of lower and upper limits.

E.2 Estimated Variant Prevalences for New York

Table 9: Point Prevalences, Lower Bounds, Upper Bounds, and Rankings for the top 85 CF-causing
variants for NY, and the combined prevalence of the remaining variants (based on Schrijver et al.
(2016))

Variant Ranking-Name Point Prevalence (NY) Lower Bound Upper Bound

Mutation-free 0.8780172 0.8739933 0.8819137

1-F508del 0.0832589 0.0796051 0.0873500

2-G542X 0.0034355 0.0026819 0.0046990

3-G551D 0.0026506 0.0021655 0.0036606

4-R117H;5T 0.0018443 0.0014586 0.0027651

5-N1303K 0.0016919 0.0012453 0.0026652

6-W1282X 0.0015948 0.0012282 0.0025002

7-3849+10kbC->T 0.0012358 0.0008256 0.0021764

8-R553X 0.0011630 0.0008028 0.0020509

9-3120+1G->A 0.0010138 0.0004909 0.0020367

10-1717-1G->A 0.0010018 0.0007026 0.0018403

11-621+1G->T 0.0009916 0.0006921 0.0018282

12-2789+5G->A 0.0007746 0.0005303 0.0015672

13-I507del 0.0006976 0.0003958 0.0015353

14-R334W 0.0006232 0.0003247 0.0014585

15-G85E 0.0005215 0.0003031 0.0012869

16-R1162X 0.0004853 0.0002372 0.0012685

17-1898+1G->A 0.0004007 0.0002642 0.0010998

18-3876delA 0.0003973 0.0001866 0.0011562

19-3659delC 0.0003858 0.0002677 0.0010734

20-S549N 0.0003517 0.0001226 0.0011144

21-3272-26A->G 0.0003427 0.0001903 0.0010489

22-R560T 0.0003151 0.0001873 0.0010033
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23-L206W 0.0003054 0.0001448 0.0010195

24-2184insA 0.0003021 0.0001891 0.0009806

25-R347P 0.0002936 0.0001914 0.0009656

26-A455E 0.0002936 0.0001914 0.0009656

27-Q493X 0.0002936 0.0001914 0.0009656

28-2183AA->G 0.0002588 0.0001266 0.0009489

29-R1066C 0.0002282 0.0000735 0.0009303

30-W1089X 0.0002109 0.0000704 0.0009047

31-406-1G->A 0.0002109 0.0000704 0.0009047

32-394delTT 0.0002014 0.0001180 0.0008551

33-E60X 0.0002014 0.0001180 0.0008551

34-2184delA 0.0002014 0.0001180 0.0008551

35-P67L 0.0002014 0.0001180 0.0008551

36-1154insTC 0.0002014 0.0001180 0.0008551

37-3905insT 0.0002014 0.0001180 0.0008551

38-R347H 0.0002014 0.0001180 0.0008551

39-S945L 0.0001900 0.0000671 0.0008691

40-A559T 0.0001892 0.0000361 0.0008850

41-2307insA 0.0001762 0.0000308 0.0008653

42-R75X 0.0001728 0.0000437 0.0008531

43-2105-2117del13insAGAAA 0.0001643 0.0000461 0.0008382

44-1811+1643G->T 0.0001643 4.61E-05 8.38E-04

45-Y1092X 0.0001518 5.02E-05 8.11E-04

46-R1158X 0.0001439 4.60E-05 7.99E-04

47-3120G->A 0.0001439 4.60E-05 7.99E-04

48-711+1G->T 0.0001434 5.25E-05 7.96E-04

49-R352Q 0.0001434 5.25E-05 7.96E-04

50-W1204X 0.0001410 3.51E-05 8.04E-04

51-663delT 0.0001410 3.51E-05 8.04E-04

52-2055del9->A 0.0001410 3.51E-05 8.04E-04

53-935delA 0.0001177 2.53E-05 7.69E-04

54-1288insTA 0.0001177 2.53E-05 7.69E-04

55-M1101K 0.0001093 5.01E-05 7.40E-04

56-V520F 0.0001093 5.01E-05 7.40E-04

57-R117C 0.0001093 5.01E-05 7.40E-04

58-2622+1G->A 0.0001093 5.01E-05 7.40E-04

59-1811+1634A->G or 1811+1.6kbA->G 0.0001029 1.46E-05 7.48E-04

60-Q890X 0.0000944 1.69E-05 7.33E-04

61-712-1G->T 0.0000944 1.69E-05 7.33E-04

62-G330X 0.0000782 4.50E-06 7.10E-04

63-S466X 0.0000717 4.10E-06 7.00E-04

64-S1255X 0.0000717 4.10E-06 7.00E-04

65-1078delT 0.0000711 1.06E-05 6.97E-04

66-P205S 0.0000711 1.06E-05 6.97E-04

67-1248+1G->A 0.0000711 1.06E-05 6.97E-04
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68-H199Y 0.0000711 1.06E-05 6.97E-04

69-F311L 0.0000711 1.06E-05 6.97E-04

70-H609R 0.0000711 1.06E-05 6.97E-04

71-3271delGG 0.0000711 1.06E-05 6.97E-04

72-1812-1G->A 0.0000651 3.98E-06 6.88E-04

73-3791delC 0.0000651 3.98E-06 6.88E-04

74-R1066H 0.0000586 4.21E-06 6.77E-04

75-L467P 0.0000521 4.83E-06 6.66E-04

76-Q98X 0.0000521 4.83E-06 6.66E-04

77-Y913X 0.0000521 4.83E-06 6.66E-04

78-405+3A->C 0.0000521 4.83E-06 6.66E-04

79-E585X 0.0000455 5.94E-06 6.55E-04

80-444delA 0.0000455 5.94E-06 6.55E-04

81-3500-2A->G 0.0000455 5.94E-06 6.55E-04

82-1548delG 0.0000455 5.94E-06 6.55E-04

83-S549R 0.0000371 8.27E-06 6.40E-04

84-Y122X 0.0000371 8.27E-06 6.40E-04

85-3849+4A->G 0.0000371 8.27E-06 6.40E-04∑︁312
i∈Ω:i=86 µ̂i 0.0084174
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