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Abstract

We revisit the problem of tolerant distribution testing. That is, given samples from an unknown
distribution p over {1,...,n}, is it e1-close to or ez-far from a reference distribution ¢ (in total variation
distance)? Despite significant interest over the past decade, this problem is well understood only in the
extreme cases. In the noiseless setting (i.e., €1 = 0) the sample complexity is ©(y/n), strongly sublinear
in the domain size. At the other end of the spectrum, when 1 = €2/2, the sample complexity jumps to
the barely sublinear ©(n/logn). However, very little is known about the intermediate regime. We fully
characterize the price of tolerance in distribution testing as a function of n, €1, €2, up to a single logn
factor. Specifically, we show the sample complexity to be
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providing a smooth tradeoff between the two previously known cases. We also provide a similar charac-
terization for the problem of tolerant equivalence testing, where both p and g are unknown. Surprisingly,
in both cases, the main quantity dictating the sample complexity is the ratio e1/€3, and not the more
intuitive €1/e2. Of particular technical interest is our lower bound framework, which involves novel
approximation-theoretic tools required to handle the asymmetry between ; and e2, a challenge absent
from previous works.
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1 Introduction

Upon observing independent samples from an unknown probability distribution, can we determine whether
it possess some property of interest? This natural question, known as distribution testing or statistical
hypothesis testing, has enjoyed significant study from several communities, including theoretical computer
science, statistics, information theory, and machine learning. The prototypical problem in this area is
identity testing (sometimes called goodness-of-fit or one-sample testing): given samples from an unknown
probability distribution p over [n], test whether it is equal to some reference distribution ¢, or e-far in
{y-distance. It is now well understood that ©(y/n/e?) samples are necessary and sufficient to solve this
problem [Ing94, GR00, BFFKRWO01, Pan08, VV14, DKN15, ADK15, DGPP18]. Quite surprisingly, this
sample complexity is strongly sublinear in n, enabling sample-efficient testing even over large domains.
The drawback of this formulation is that it is very particular in terms of the relationship between p and
q. More precisely, it prescribes only that one must distinguish between the cases where p and ¢ are far
versus when they are exactly equal — no guarantees are provided for any intermediate case, e.g., for when
p and g are close but not identical. This restriction limits the relevance of solutions to this problem, as it
is unrealistic to assume precise knowledge of a distribution due to a number of reasons, including model
misspecification, imprecise measurements, or dataset contamination.
To address these concerns, the problem of tolerant identity testing was introduced [PRRO6], which is the
main focus of our work.

Tolerant Identity Testing: Given an explicit description of a distribution ¢ over [n], sample access to a
distribution p over [n], and bounds g5 > 1 > 0, and § > 0, distinguish with probability at least 1 —§
between ||p — ¢||1 < e1 and ||p — ¢||1 > e2, whenever p satisfies one of these two inequalities.

We will also study the problem of tolerant equivalence testing (sometimes called tolerant closeness or two-
sample testing):

Tolerant Equivalence Testing: Given sample access to distributions p and ¢ over [n], and bounds
gg > g1 > 0, and & > 0, distinguish with probability at least 1 — § between ||p — ¢||1 < &1 and
llp — q|l1 > €2, whenever p, g satisfy one of these two inequalities.

Focusing our attention on tolerant identity testing and constant eo, it is natural to consider the strong
tolerance requirement of e = e2/2, in which the two cases are separated only by a constant factor. One
would ideally like to maintain the strongly sublinear sample complexity of O(y/n), as in the non-tolerant case
where e; = 0. Unfortunately, this is impossible: as shown by Valiant and Valiant [VV10a, VV10b, VV11a],
9(1o§n) samples are necessary and sufficient, see also [JHW18, JVHW17, HJW16]. On the other end of
the spectrum, it is known that mild tolerance of ¢; = 52 is achievable with the same strongly-sublinear
sample complexity of O(y/n), by converting ¢5-tolerance to ¢1-tolerance [GR00, BFFKRW01, BFRSW13,
DKN15, DK16, DKW18]. However, existing results only capture these two extremes, and we have very little
understanding of the intermediate landscape of tolerant testing. Does there exist a smooth hierarchy of
increasingly difficult testing problems, or is there a sharp transition in the sample complexity from strongly
to barely sublinear?

1.1 Results and Techniques

We provide a complete characterization of the sample complexity of tolerant identity and equivalence testing
(up to a single logarithmic factor in the domain size n). Our main results are as follows:

Theorem 1.1 (Identity testing (Informal; see Theorem 2.1 and Corollary 3.2)). The sample complexity of
tolerant identity testing over [n] with parameters 0 < ey < &g <1 is
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Theorem 1.2 (Equivalence testing (Informal; see Theorem 2.2 and Corollary 3.3)). The sample complexity
of tolerant equivalence testing over [n] with parameters 0 < e; < eg <1 is
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In both cases, we give computationally-efficient algorithms which achieve the upper bounds. Moreover, one
interesting feature of our algorithms is that they require no knowledge of €1, which only arises in the sample
complexity: that is, our algorithm automatically achieves the best possible €1, for a given target 5 and
number of samples.

It is worth noting that prior to our work, only two extreme points of the full tradeoff we show were
known:

e the “non-tolerant” (noiseless) case where £; = 0, for which the ©(y/n/e3) sample complexity (or, for
the equivalence testing version, @(max{\/ﬁ/sg,n2/3/sg/3})) [Pan08, Valll, CDVV14, VV14]. In the
case of identity testing, it is further known that some of the optimal testers (namely, those based on
testing in the ¢y distance as a proxy) achieve a weak tolerance of 1 = e2/+/n “for free”, due to the

relation between /1 and ¢; norm along with the Cauchy—Schwarz inequality.

e the maximally noisy case where 1 = O(e2), for which results of Valiant and Valiant [VV10a, VV10b,
VV1la] as well as follow-up works [JHW18, JVHW17, HIW16] show that the sample complexity must
grow as ©(n/logn). Interestingly, the dependence on e1,e9 was not fully understood, even in this
case, as most lower bounds dealt with estimation of the distance between p, ¢ to an additive &, which
is a related yet different problem (essentially, showing that Q(n/(e2 —e1)? logn) samples are required,
when €7 = O(1) and €3 — €1 can be arbitrarily small). The lower bound from [VV10a] does imply, by
“scaling,” an 2(n/(e2logn)) lower bound for arbitrary €2 and €1 = ©(e1), but it is still far from the
upper bound of O(n/(e3logn)) in this regime that both [VV10b] and [JHW18] prove in this setting.
Our result shows that this upper bound is tight in this parameter regime, as our lower bound is then
Q(n/(e3 logn)).

We emphasize that our results go beyond those two extreme points, and essentially settles the landscape of
tolerant testing. As just one example, the question of testing 1/n'/™-close vs. 1/n'/5-far was left completely
open by previous work; our results imply that the sample complexity is é(n) We depict in Figure 1 the
different regimes of sample complexity this leads to, for both identity and closeness testing.

Surprisingly, our results for both tolerant identity and equivalence testing show that the relevant quantity
governing the “price of tolerance” is not the ratio €1/e3, as one might naively think; but instead is the
(inhomogeneous!) ratio p := e1/e%, which might seem counterintuitive — especially in view of the two
different regimes the max(p, p?) scaling implies.

Another interesting and unexpected byproduct of our result is to show that even the known “weak
tolerance” of the standard ¢5-based testers, which allow to test identity with tolerance ey = £5/y/n with the
same O(y/n/e3) sample complexity as the non-tolerant case, is not the best one can do with this sample
complexity. Indeed, our results imply that one can actually achieve tolerance up to 1 = min(1/4/n, e2/¥/n)
“for free,” a significant improvement over £5/y/n. One can rephrase this as saying that the Cauchy—Schwarz
inequality, from which this “natural” weak tolerance provided by fo-based testers stems from, is (oddly) not
the right way to look at the problem.

Finally, our techniques allow us to derive an analogue of Theorem 1.1 for the “instance-optimal” set-
ting [VV17] (see also [BCG17, DK16]), where the sample complexity is expressed as a function of the known
reference distribution ¢ instead of the domain size n (which corresponds to a worst-case over all possible
reference distributions). Specifically, we show the following:?

Theorem 1.3 (Instance-optimal identity testing (Informal; see Theorem C.6 and Theorem C.5)). For any
fixed q over N, the sample complexity of tolerant identity testing with reference distribution q with parameters
0<e1<eg<1us
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Here and in Appendix C, we slightly abuse the © notation to also hide logarithmic factors in n, not just in the argument.
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Figure 1: The different regimes of sample complexity corresponding to Theorem 1.1 (identity testing, left)
and Theorem 1.2 (closeness testing, right), as a function of 0 < g1 < 5 < 1 (for fixed n), depicting in both
cases which of the terms of the sample complexity bound dominates.

where q_, denotes the (sub)distribution obtained by removing as many of the smallest elements of q as
possible, without removing more than a total of o probability mass overall.

We defer the details and proof of this result to Appendix C; and discuss some of its aspects here. First,
note that by choosing ¢ to be the uniform distribution, we see that ||g_g(,)ll2/3 & v, l9—e()ll1/2 = 7,
and [|g_g(c,)llo = n, so that Theorem 1.3 retrieves Theorem 1.1 up to logarithmic factors. In particular, this
gives a refined perspective on Theorem 1.1, showing that the C:)(n) term actually arises due to two separate
costs, which happen to coincide for the uniform distribution. This brings us to our second point: the term
l4—6(cs)ll2/3 corresponds to the non-tolerant instance-optimal identity testing bound established in [VV17],
i.e., a testing term; while the quantity ||g_eg(c,)||1/2 can be interpreted as capturing the difficulty of learning,
as the 1/2-quasinorm is known to capture the sample complexity of learning a probability distribution (see,
e.g., [KOPS15, Can20b]). Thus, the bound of Theorem 1.3 can be read as saying the sample complexity of
tolerant identity testing is (nearly) characterized by three aspects of the reference distribution: how hard it
is to test, how hard it is to learn, and how large its effective support size is.

Relation to the Statistics literature. Despite their pervasive use, the Statistics community is outspo-
ken about the pitfalls associated with point nulls (i.e., e; = 0) for statistical hypothesis testing [BS87, RL16,
Aba20]. Instead, the community advocates for composite nulls, where the null hypothesis is a set of distri-
butions rather than a single one. This more-general problem is often reduced to our tolerant testing problem
(sometimes called the imprecise null by the Statistics community) by assuming the null holds and perform-
ing estimation to obtain a candidate distribution g. Thus, we believe our results may be a useful tool for
solving more challenging composite-versus-composite hypothesis testing problems. While some classic work
provides minimax rates for certain related tolerant testing problems [Ing00], results in this direction have
been relatively hard to come by. In a recent survey paper [BW18], Balakrishnan and Wasserman specifically
highlight the problem of designing non-conservative thresholds for imprecise null hypothesis tests, which we
believe to be an interesting direction for future work.

Overview of our techniques. Given the extensive literature on distribution testing, the community has
developed a rich set of tools for problems in this space. However, the techniques used for the two extreme
cases appear to be qualitatively quite different. In the non-tolerant case, algorithms usually take the form
of simple f3- or x2-test statistics, and lower bounds are established via either Ingster’s method [Ing94] or



mutual information arguments. On the other hand, analysis for the maximally noisy case depends on results
from the literature on best-polynomial approximation. Given the contrasting approaches for these two cases,
it is natural to wonder which set of techniques will be effective for the problems which lie between the two.
Interestingly, our results borrow from both: our algorithms are more similar to those from the non-tolerant
setting, while our lower bound techniques resemble those in the maximally noisy case.

Our main algorithm thresholds a rescaled fy-statistic (in certain cases called a x2-statistic), similar to
testing algorithms in the past (see, e.g., [CDVV14, VV14, ADK15, DKN15]). Specifically, our statistic takes
the form Z = )", ((XZ -Y)?-X; — YZ-) /fz, where X; and Y; are the number of occurrences of symbol i

drawn from distribution p and ¢, respectively, and f,» are symbol-dependent rescaling factors. While prior
works either computed these factors for identity testing based on the reference distribution g, or used the same
set of samples for both the numerator as well as the rescaling factor in the denominator, we use sample-
splitting to separately obtain empirical estimates fl for the relevant quantities. We show multiplicative
concentration for these factors to ensure they are close to the values for which we are using them as a proxy.
These rescaling factors are empirical estimates of two terms. A typical choice, now common in the literature,
is based on p; + ¢;, which limits fluctuations in the estimator caused by individual terms. Our approach
crucially introduces an additional novel rescaling term based on |p; — ¢;|, which prevents the statistic from
placing too much emphasis on the the fo-norm of the distribution. The contributions of both terms are
crucial for making the analysis work out.

We note that our test statistic only involves the first two moments of the distribution. This is in contrast
to previous upper bounds for tolerant testing in the maximally noisy case, which instead inspected logn
moments. Thus, we show that considering only two moments suffices for near-optimal tolerant testing.
Interestingly, our algorithm achieves the optimal sample complexity (up to constants) for the non-tolerant
case, but loses a logn factor in the maximally noisy case. Removing this final logarithmic term may require
a statistic which exploits higher-order moments, and is an interesting question for future work.

Our lower bounds are obtained via the generalized two-point method. At a high level, we follow the
moment matching approach pioneered by [WY16]. We construct two priors over distributions, where dis-
tributions drawn from the two priors are e;-close to and es-far from uniform, respectively. To prove lower
bounds, we must choose these priors such that the process of drawing a distribution and then m samples from
it has low total variation distance between the two priors. By considering priors over product distributions,
we can further reduce our task to simply constructing a pair of univariate random variables with properties
described in Theorem 3.1. By appealing to results from polynomial approximation (Lemma 3.5), it suffices
to construct this pair such that their low-order moments match.

Prior works construct this pair of random variables by expressing this moment matching problem as an
infinite dimensional convex program and analyzing its dual. Our approach follows the same recipe, however,
the analysis of the dual convex program is much more involved in our case. Prior lower bounds only
considered the special case where €1 and €5 differ by a fixed, constant factor. In this regime, tolerant testing
becomes essentially equivalent to learning the ¢; distance between p to g to error £;. This is a setting which
is much easier for this formalism to handle; indeed, the moment matching paradigm was initially designed
for estimation problems. Importantly, this induces an key symmetry in the lower bound construction, and
consequently, the dual has a very nice interpretation in terms of the best uniform approximation of a given
function by a low-degree polynomial.

In our case we must handle general e; and €9, and this symmetry is lost. As a result, we analyze a
convex program which directly captures the testing problem. However, the dual has a much more complex
interpretation. At a high level, the goal is now to approximately fit a low-degree polynomial within a “wedge”
of minimal arc length. Interestingly, in our formulation of the dual, instead of having to prove that there is a
good approximating polynomial, we must demonstrate that no low degree polynomial can achieve this task.
This is the main technical difficulty in the lower bound, and we do so from first principles by leveraging classic
tools from polynomial approximation theory to prove new approximation-theoretic results in our setting.

1.2 Related Work

Distribution testing was first considered in the theoretical computer science community by Goldreich and
Ron [GRO0], who analyzed and applied an algorithm for uniformity testing towards the problem of testing
whether a graph is an expander. Batu, Fischer, Fortnow, Kumar, Rubinfeld, and White [BFFKRWO01]



studied the general problem of identity testing. A number of results have discovered and rediscovered optimal
bounds for identity testing [Pan08, VV14, ADK15, DKN15, Gol16, DK16, DGPP18, DKW18, DGPP19],
even with optimal dependence on the failure probability § and on an instance-by-instance basis. The harder
problem of equivalence testing was studied in [BFRSWO00], and optimal upper and lower bounds were given
in [Valll, CDVV14, DKW18, DGKPP21]. Some work has also studied the case where an unequal number
of samples are received from the two distributions [AJOS14, BV15, DK16].

Tolerant testing has been previously considered, in a few different regimes. Strong tolerance, or equiva-
lently, estimating distance between distributions, was studied first by Valiant and Valiant [VV10a, VV10b,
VV1la, VV11b], and in more recent works by Han, Jiao, Venkat, and Weissman [JHW18, JVHW17, HIW16].
Tolerance in distances besides ¢; (including chi-squared, KL, Hellinger, and ¢3) has also been consid-
ered [GR00, BFRSW00, CDVV14, ADK15, DKW18]. An interesting direction for future work is to un-
derstand the sample complexity of tolerant testing for these other distances in a fine-grained manner, as we
do for ¢y distance. Moreover, results with f>-tolerance imply testers with weak ¢;-tolerance, through the
relation between ¢; and ¢ norms and the Cauchy—Schwarz inequality. Finally, very recent work sets out
to understand whether, for general properties of distributions, the (near)-quadratic gap between tolerant
and non-tolerant testing achievable for identity testing is the worst possible [CFGMS21]. For additional
background on distribution testing, see surveys and related work in [Rub12, BW18, Kam18, Can20a).

Techniques involving moment matching and best-polynomial approximation are useful for tolerant distri-
bution testing, but also play a key role in estimation of distributional properties, including entropy, support
size, support coverage, and distance to uniformity [WY16, JHW18, ADOS17, OSW16, WY18] See [WY20]
for a survey on applications of polynomial methods in statistics.

1.3 Preliminaries

We identify a probability distribution p over a known discrete domain [n] := {1,2,...,n} with its probability
mass function (pmf), i.e., a nonnegative vector p = (p1,p2,...,pn) such that 2?21 p; = 1. Given two
distributions p, g, their total variation distance (also known as statistical distance) is defined as

n
TV(p.0) = sup () —a($) = 5 3 i —ail = 5o —all.
SCln] i=1

Due to this equivalence with the /1 norm, we will interchangeably use the TV and ¢; norms in our paper. We
will also extensively use the £5 distance between probability distributions, which is just the £5 norm ||p — ¢||2
between their pmfs and, by Cauchy—Schwarz, satisfies ﬁHp —qlli <llp—qll2 < llp —4ql1-

Let p, g be two distributions over the domain [n]. For given £; and 5 such that 0 < e < €9, we want to
understand the sample complexity (i.e., minimum number of i.i.d. samples required) to distinguish between:

Yes: [lp—ql1 < e,
No: [lp —qll1 > e2.

with probability at least 4/5.2

We consider the problems of tolerant uniformity, identity, and equivalence testing. In identity testing the
distribution q is explicitly known in advance, while p is unknown: the sample complexity is then the number
of i.i.d. samples from p. Uniformity testing is a special case of identity testing, where g = (%, %, ceey %) is the
uniform distribution, denoted Unif,. In equivalence testing, both p and ¢ are unknown and we get samples
from each. The sample complexity is then the total number of samples obtained from both p and q. We will
typically denote the number of i.i.d. samples used by an algorithm by m. Note that uniformity testing is a
special case of identity testing (and hence lower bounds for the former imply lower bounds for the latter),
and that equivalence testing is at least as hard as identity testing, in terms of sample complexity.

2The exact constant here is immaterial, and by standard amplification arguments one can achieve a probability of success
of 1 — 4 at the cost of a multiplicative O(log(1/6)) factor in the sample complexity.



2 Algorithms for Tolerant Testing

In this section, we describe our testing algorithm (Algorithm 1), before analyzing its performance. As a
preliminary simplification, instead of assuming the algorithm is provided with m independent samples we
will rely on the so-called “Poissonization trick” and assume we obtain Poi(m) samples each from both p
and ¢. The benefit of Poissonization is that the number of occurrences of each domain element will be an
independent Poisson, eliminating correlations between symbols which arise with a fixed budget. This is
without loss of generality, as by standard arguments about concentration of Poisson random variables this
changes the sample complexity by at most a (small) constant factor. Moreover, losing again a factor 2 in
the sample complexity, our algorithms will take as input two sets of Poi(m) samples for each of p and g.

Let X; and X; be the count of occurrences of symbol i € [n] in the first and the second set of the samples
from p, respectively. Similarly, let ¥; and ¥; be the count of symbol 7 in the first and the second set of the
samples from ¢, respectively. Let

e max{/mn - |p; — ¢;|,n- (pi + ¢),1} ifm>n
" max{m - (pi + q;), 1} if m < n.

We will use the first set of counts X; and Y; to estimate fi with ﬁ, defined as

o o ] o
max{X; +Y;,1} if m <n.
Let Z; = (X; — Y;)? — X; — Y; and let
7 = —=. (1)
i=1 Ji

2_2
m3/2e, mZe2
nl/2 » n

Our tester is then as follows:

and 7 :=c- min( ), where ¢ > 0 is an absolute constant determined in the course of the analysis.

Algorithm 1 Tolerant testing algorithm.

Require: 0 <¢e; < g9 <1, m, n, two sets of Poi(m) samples from both p and ¢
Set the threshold

_(m?Pey m2ed
T<—c-m1n( Py R )
Compute Z from the sets of samples, as per (1).
if Z > 7 then return ||p — q|j; > e
else return ||p — ¢q|l; < e;
end if

Note that the algorithm itself requires no knowledge of €1, and thus as the number of samples m increases,
the same test statistic (with appropriate substitution of m) becomes more and more tolerant.

To gain some intuition, we first remark that our tester is a modification of the ¢y testers in [CDVV14,
DK16], and akin to the chi-square tester from [ADK15]. The main difference lies in the choice of normalizing
factor f; (of which ]/”; is merely the natural estimator). The goal of this denominator is twofold: the relatively
standard term n - (p; +¢;) (which is comparable to the standard deviation of Z;; for m < n, we use m(p; +q;)
to make up for larger imprecision in our estimates) ensures that no single term of the sum will make the
estimator fluctuate too much. The term /mn - |p; — ¢;| (which is only needed the regime m > n, since for
m < n the best accuracy we can get for |p; — ¢;| is & 1/m, but scaling by m|p; — ¢;| would be unnecessary
as the m(p; + ¢;) term already dominates) is a crucial difference with previous work; its goal is to “tamper
down” the numerator Z; when the ¢5 contribution (p; — ¢;)? is too large, which is key for our fo-based tester
to work. Indeed, in the “far” case where ||p — ¢||1 > €2, this is not a problem; however, in the “close” case



where ||p — ¢||1 < &1, the relation between ¢5 and ¢; does not preclude an individual element to have a large
contribution (p; — g;)?, which could cause the statistic to be too large and the tester to incorrectly reject. To
avoid this, the term /mn - |p; — ¢;| in the denominator will “kick in” for any such element i, and make the
ratio Z;/f; behave proportionally to |p; — ¢;|/v/mn instead of (p; — ¢;)?, ensuring that the algorithm does
not mistakenly reject “close” distributions due to any single large element contribution.

Remark 2.1. For the identity testing problem, where the reference distribution ¢ is known, we use the
now-standard “splitting operation” of Diakonikolas and Kane [DK16] (see Section A for details) to obtain
distributions p’ and ¢’ over a domain of size 2n such that ||p" —¢'||1 = |lp—¢|l1 and ||¢’||2 < 1/+/n. Moreover,
samples from p and ¢ can be used to simulate the same number of samples from distributions p’ and ¢/,
respectively. We apply our tester on the modified distributions p’ and ¢/, instead of using it for p and ¢
directly. As the new reference distribution ¢’ is over a domain of size 2n and satisfies ||¢'[2 < v/2/v/2n,
this transformation lets us assume without loss of generality that the reference distribution g over [n] in the
identity testing problem is such that |||z < \/2/n.

We now formally state the performance of Algorithm 1 for tolerant identity and equivalence testing, i.e.,
that it achieves near-optimal sample complexity in both cases.

Theorem 2.1 (Identity testing). Let g be a known reference distribution and p be an unknown distributions,
both over [n]. There exists an absolute constant ¢ > 0 such that, for any 0 < e <1 and 0 < &1 < ceq, given

€1\2 € n
o(n(5) +n(3)+ %)
€5 €3 €3
samples from each of p and q Algorithm 1 (after the splitting operation of Remark 2.1) distinguishes between

lp—qlli < e1 and ||p — ql|1 > €2 with probability at least 4/5.

Theorem 2.2 (Equivalence testing). Let p and g be two unknown distributions over [n]. There exists an
absolute constant ¢ > 0 such that, for any 0 < e9 <1 and 0 < g1 < ceq, given

€1\2 €1 NI

samples from each of p and q Algorithm 1 distinguishes between ||p — ql|l1 < &1 and ||p — qll1 > €2 with
probability at least 4/5.

Note that for a unified exposition, we assumed in Theorem 2.1 that the algorithm is provided with
samples even from the explicitly known reference distribution ¢. This is not a restriction, as given this
explicit knowledge it is possible to efficiently sample from the distribution gq.

2.1 Analysis of Algorithm 1

This section is devoted to the proofs of Theorems 2.1 and 2.2, which are both established in a similar manner.

Observe that, following the Poissonization, all Z;’s and f;’s are independent random variables. From the

properties of Poisson distribution, it is not hard to check that the expectation and variance of the Z;’s are
given by

E[Z;] = m*|pi — aif*, (2)

Var[Z;] = 4m® (pi — ¢:)* (i + @i) + 2m° (pi + ¢:)*. 3)

Next, using the independence of Z; and ﬁ’s, we get that the conditional expectation of Z is

E[Z‘ﬁ-forie[n]}:E ;% ﬁforie[n}]:;E[J,?L (4)




while its conditional variance is given by
>z
f;

=1 J?

n

Fiforie [n]] _yo Yarl), (5)

)
P

To prove the optimality of the tester, we first bound the conditional expectation and variance of Z. These
bounds differ for the regimes m > n and m < n, and are characterized in Lemmas 2.3 and 2.4, respectively.

Var [Z‘ﬁ for i € [n]} = Var

Lemma 2.3. There exist absolute constants ci,ca,c3 > 0 such that the following holds. For m > n, and
any distributions p and q over [n], the following bounds simultanously hold with probability at least 9/10:

3/2(,, _ 200, 2 =N 3/2||y _
C1 min<m pr q||1’ mlp — all ) < E{Z ‘ fi fori e [n]} < C24m ”f2 QH17’
n n nl/

2

and Var{Z ’ fi forie [n]} <c3?-.

Lemma 2.4. There exist absolute constants ci,ca,c3 > 0 such that the following holds. For m < n, and
any distributions p and q over [n], the following bounds simultanously hold with probability at least 9/10:

2 2
m?||p — ~ .
clinpn allx §E[Z ’ fi forie [n]} < camllp — ¢ll1,

and Var [Z ‘ fi foric [n]} < c3m. Additionally,
- 1 - ~
Var[Z ’ i forie [n]} < s (BIZ | Fi for i € [nl])? + 824E[Z | J; for i € [n]) + 648m? gl 3.

We prove these lemmata in Section 2.2. We now show that, assuming these statements, we can establish
Theorems 2.1 and 2.2. We handle the cases m > n and m < n separately.

Proof of the theorems for m > n: Using Lemma 2.3, we show that for any m > n such that m =
2
Q (n (z—é) + ‘5@) the estimator correctly distinguishes between ||[p—q|| < &1 vs ||p—q|| > €2 with probability
2 2

at least 8/10.
Applying Chebyshev’s inequality to the conditional expectation and variance and using Lemma 2.3, we
get that, with probability > 8/10,

m3/2||p—q||1 m2Hp—q||12 m
> i — 1 —_—
Z>c m1n< 1/ , - Ocs N (6)
and 52
ZSCQM—F'/lOCzJ,ﬂ. (7)

iz 7

e In the case ||p — ¢||1 > €2, the lower bound in Equation (6) reduces to

3/2 2.2
. [ m°/“eg m* e
Z > m1n< 2)

ni/2

3/2 2.2

m c1 . [m>/feq mies

— 1 - > = - & 4
RV 083\/ﬁ_ 2mm< 7 g, ),

the last step as long as m > Cy/n/e3 for C := max(21/10c3/c1,40c3/c?). Therefore, with probability
at least 8/10 the tester correctly outputs that ||[p — ¢||1 > eo.

e In the case, ||p — ¢|l1 < e1, the upper bound in Equation (7) reduces to

3/2 3/2 2.2
m© Ty m c1 . m°/“eg m7ey
Zseamap tVIle e S 4”““(711/27 n )



VI0cs : 3/2 2,2
where we used that m > C'\/n/e3 for C := max(%, %) to ensure that /10cs 7 < mln(m 22 T 5

ni/2

2
and that (i) 1 < &ep and (i) m > C” - n(i—%) with €7 = 64c3/c? to ensure that cy m?ey <
2

— 8ca ni/2 >~

E 2_2
%min(m;f/z,f?, mnEQ). Therefore, with probability at least 8/10 the tester correctly outputs that
Ip—dall1 < e

This proves the two theorems for the case m > n. We next turn to the case m < n.

Proof of the theorems for m < n: The argument for this case is similar to the previous, using Lemma 2.4

instead of Lemma 2.3. We show that for any m < n such that m = Q <n§§ +min{”|q”2 n2/ }) the
2

E% 9 6421/3
estimator correctly distinguishes between ||p —q|| < 1 and ||p — ¢g|| > €2 with probability at least 8/10. This
in turn follows from computations nearly identical to the ones above, which we thus omit in the interest of
space.

The proofs for the two cases, combined with the fact that for identity testing we can as discussed before
assume without loss of generality that ||¢||2 < 1/2/n, establish Theorems 2.1 and 2.2. O

2.2 Proof of Lemmas 2.3 and 2.4
In this section, we give the proof of the remaining two pieces in our analysis of Algorithm 1, Lemmas 2.3
and 2.4. The following lemma will be useful to lower bound the conditional expectation E [Z ‘ ﬁ for i € [n]|.

Lemma 2.5. There exist absolute constants c1,ca,c3 > 0 such that, for every m, n, and i € [n],

Elf]<afi,  EB7'<Z, ond Bf <

c3
fi’ I

Proof. We use the following two concentration bounds, which provide exponential tail bounds on our es-
timates f; of the of f;’s. The proofs of those two claims are quite technical, and rely on a careful case
distinction along with standard concentration properties of Poisson random variables. We provide them in
Section A.1.

Lemma 2.6. There exists ¢ > 0 such that, for every m, n, t >3, and i € [n], Pr[ﬁ > tf;] <e et
Lemma 2.7. There exists ¢ > 0 such that, for every m, n, t > 2, and i € [n], Pr[ﬁ < fT] < et

Given the above two results, the proof is straightforward: indeed, for every i € [n] we have, using
Lemma 2.6,

R e} . [e%e) R 3 o7} —3c
E[f)] = /0 Prlfy > uldu = f, /O Pr[fi>tfi]dt§fi< /0 dt + /3 e—ctdt) =fi(3+ec )

while, from Lemma 2.7,

1= [ [ o [ a) < (5

and, similarly,

~ o R oo R 00 , / —2c
E[f; %] = /o Pr[f; > uldu = %/0 Prlf; < fi/t]tdt < ;2(2 +/2 te_”dt) - % (2 + <20+c’12)e>

K3

which, given that ¢, ¢’ are just positive constants, is what we set out to prove. O

We also require the following simple inequality.

n

).



Fact 2.8. For any real (a;)?_, and positive (b;)!"_,

Proof. The result follows from applying Cauchy-Schwarz to >, |a;| = Y"1, v/bilai|/v/bi. O

From the above fact and (2), it follows that

S

m? *qz mQ(ZL pi —ai)* _ m?llp — ql?

=1 - i fi i i

1=1 K3

]E{Z ‘ fiforie [n]}

n

Moreover, by definition the random variables ﬁ are non-negative, and thus, applying the Markov inequality
we get that

n n
> Fi <30 E[fi]
i=1 i=1
with probability at least 1 — 1/30. Combined with Lemma 2.5, this means that, with probability at least
1-1/30,

Next, applying the Markov’s inequality for the non-negative random variable IE[Z ‘ ﬁ for i € [n}], we get
that, with probability at least 1 — 1/30,

E[Z‘ﬁforie[n]}SSO]E{]E[Z‘ﬁforie[n]H:3O]E[zn:E[Ai <3002Z _q’ . (9)

- i

Finally, considering the non-negative random variable Var [Z ‘ ﬁ for i € [n]}, we again get that, with prob-
ability at least 1 — 1/30,

Var[7 ‘ i for i € [n]] <30E[Var[Z’fl for i € [n]|| =30 Z Z)

<30c3 Y Vajfgzi). (10)
=1 ?

By a union bound, we get that the guarantees of (8), (9), and (10) simultaneously hold with probability at
least 1 — 3 - % = %. Importantly, the RHS in all three bounds only depend on the deterministic quantities

fi’s, instead of the random variables ﬁ-’s. We bound each of these RHS in the next two lemmas, for m > n
and m < n, respectively.

Lemma 2.9. For anym > n and distributions p and q over [n] the following holds: (1) Y, % < %,

(2) S, (plz ) o m*”? Hp —alhgnd (3) ™ Hziqu”l >mm(m3/227|l\f/;q\|17m2|\%;q|\12).
Proof. First, we upper bound 5 var(Z ): from (3), we get
=1
Z Var _ i 4m3(]9i —¢:)%*(pi + @) +2m2(p; + ¢;)?
= 2
i=1 fi
:zn: (pZ+QZ)+2m (Z%"’Qz)
z- (max{\ﬁ pi— alon (01 +00).1})

IN

Z pz+Qz iQm :8m +2m2:10m2



Next, we prove the second inequality:

n

Zm(pz a:) -y Ipi — il
fi — max{y/mn - |p; — q|,n - (p; + ¢;), 1}

i=1

< 3ol =l _ ol —al,
= nl/2 - nl/2 ’

Finally, we prove the last inequality:

m?llp —qllf _ m?||p — q|?
22;1 fi Z?:l max{/mn - [p; — ¢;|,n- (pi +q),1}
2||p ql1?
- Zf (Vmnpi — gl - (pi+ @) +1)
2 2
lp—qlli

CVmn-p—q|i+2n+n

- 2
m3/2|lp — qlli m?|lp — qllx )

O
2nl/2 ’ 6n

> min (
Lemma 2.10. For any m < n and distributions p and q over [n] the following holds: > " % < 24m,

=1
2
(2) Zz ) (pz i) <m||p qll1, and (3) ™ Hp qu > llp— qlh

' f 3n

Var(Z;) .

Proof. As before, we first upper bound Z?Zl 72

N Var(Z;) = 4m3(p — q0)%(pi + @) + 2m2(pi + ¢;)*
Z f? - Z f?
i=1 i i=1 i
Z 4m®(p; — ¢;)%(pi + @) + 2m>(p; + ¢;)?
= 3
(max{m (Pz‘+%‘)71})
4m3(pi — ¢:)*(pi + @) + 4m>(p; — q;)* + 8m?q? 9 2 2
< b <2(a—> 4b
Z max{m2 i+ @)% 1) (as (@ +b)* < 2(a —b)* + 4b%)
4m pz - QZ + (h = 4m2 pz - ‘h - 8m2 2
< + +
Z (pi + q)? Z m - (p; + qi) Z: max{m?(p; + qi)?, 1}
8m?
< 4mz Ipi — aqi| +4m Z lpi — il + Z . (max{z? 1} > max{z,1})

max{m pi +¢i), 1}

< 8mllp — qlh + ng%’
i=1

< 16m + 8m = 24m.

Next, we prove the second inequality:

n n 2
g m’ 7% E |p27Qz
- m = mllp —
1max{m (pﬂrqz) 1}—2 lpi — qil llp — qll1-

=1 =

Finally, we prove the last inequality:

m?llp —qllf _ m?|p — ql} - m?||lp — q||3 _m?lp—dli m2||p—q\|%.
>iey fi Yoy max{m- (pi +q), 1} ~ YL (m-(pi +q) +1) 2m+n 3n

11



It only remains to establish the last part of Lemma 2.4, which we do next.

—~ n 7. " Am3(n: — a:)2(n: + a;) + 2m2(v; + g:)2
Varlz | frtor i e )] = 30 VHA) 3 (i — ) <pz+qz>+ m2(pi +q.)

1/2
(®) =~ (p: %)2) ( — (pi + ¢:)? ) - 2m2(pi+qz)
<4 ¥ -~ = —_—
" (’LZ—; fi Zz:; f’L2 =1 22
n n 1/2 n
(pi — @) (pi + ¢;)* 2m?(p; + ¢;)?

— <mzz p 5q )(mzz b A2q ) +Z PA.2 q

=1 fl =1 ) =1 fz

where step (a) is the Cauchy—Schwarz inequality, and (b) is monotonicity of ¢, norms: for any vector u,
[lullz2 < |Julli. We can then continue as follows, making the expectation appear:

Var[Z ‘ Fforie [n]] :4(1@{2 ’ Fforic [H]D<iw>w+iw

i=1 f?
;4710(]}1{ fi for i € | D + (160 + 2) éw
@ 1 g 2 img?
¢ 40(1@[ F forie| D —1—1622 +162; ;
(%)%O(E{ Fiforic] ])2+324§n:m +6482m
%(E[z \ Fiforicn D2+324E[Z \ fiforieln }] + 648m2 g2,

where step (c) uses 2ab < a? + b?, (d) uses (a + b)? < 2(a — b)? + 4b?, and finally (e) uses fi>1.0

3 Lower Bounds for Tolerant Testing

In this section, we derive our lower bounds on the “price of tolerance,” i.e., on the increase in the sample
complexity as a function of the parameters €1,€2. The main technical result is a lower bound for tolerant
uniformity testing, from which the results for identity and equivalence will follow. In particular, we show:

Theorem 3.1 (The price of tolerance for uniformity testing). For any n and €1 < €3 < ¢, for some
universal constant ¢ > 0, any tester which for any unknown distribution p over [n| distinguishes between

2
llp — Unif, || < e and ||p— Unif, ||; > ez with probability at least 4/5 must use Q(logn (6 ) + ogn (il) )

samples from p.

By combining the above lower bound with previously known lower bounds for non-tolerant uniformity/identity
testing [Pan08], we obtain:

Corollary 3.2 (Tolerant uniformity testing lower bound). For any n and 0 < g1 < ey < ¢, for some
universal constant ¢ > 0, any tester which for any unknown distribution p over [n] distinguishes between
|[p — Unif, ||; <&y vs ||p— Unif, |1 > €2 with probability > 4/5 needs at least

Q(logn (%) + logn (2)2 * g)

samples from p.

12



Similarly, by combining our lower bound with previously known lower bounds for non-tolerant equivalence
testing [Valll, CDVV14], we obtain:

Corollary 3.3 (Tolerant equivalence testing lower bound). For any n and 0 < &1 < €3 < ¢, for some
universal constant ¢ > 0, any tester which for any unknown distributions p and q, both over [n], distinguishes
between ||p — qll1 < e1 and ||p — q|l1 > €2 with probability at least 4/5 must use

€ £1\2 2/3
(g (D) (B 5+ )
logn \&3 logn \ &3 e3 ey

samples.

3.1 The moment matching technique

The starting point for our proof of Theorem 3.1 is the moment matching technique first used in [WY16].
We briefly review this technique here. The first step is to consider the Poissonized version of the problem.
Namely, given ©(m) samples from a distribution p = (p1, ..., pn), then with high probability, we can simulate
a set of Poi(m) samples from the same distribution. Thus, without loss of generality, we may assume that
we are given Poi(m) samples from p, and our goal is to distinguish with high probability given these samples
whether ||p — Unif,,||; < &1 or ||p — Unif,||1 > e2. A classical fact is that the result of sampling Poi(m)
samples from p is identical in distribution to a draw from (X3,...,X,), where now the X; ~ Poi(mp;) are
independent.

The high-level idea of the moment matching technique to construct two priors U,U’ over distributions
on n elements so that with high probability two conditions hold. First, if p ~ U and p’ ~ U’, then with high
probability, ||p — Unif,||; < &; and ||p’ — Unif,||; > 2. Second, the result of (i) sampling a distribution
p ~ U then (ii) sampling Poi(m) elements from p is close in TV distance to applying the same process to
U’. Specifically, the priors we construct will be product distributions, that is, 4 = P™ and U’ = (P’')" for
some positive univariate distributions P,P’. Then, ignoring some technical issues which we will address
momentarily, the problem becomes: find distributions P, P’ supported on nonnegative values such that
(1) nEp |p; — 1/n| <e1 and nEp: [p; — 1/n| > e2, and (2) the following distance is small:

TV (}JE; (Poi(mpy), ..., Poi(mpy,)), (PI[jZ)n (Poi(mph),. .. ,Poi(mp%))) =o(1).

Note that, in view of the subaditivity of TV distance, this condition can be relaxed to the condition
TV(IEPOi(mpi), E Poi(mp;)) = o(1/n) . (11)

While this will make later calculations much simpler, this introduces a couple of minor complications here.
First, the vectors in the domain of U,’ may not sum to 1, that is, 4 and U’ may not actually be priors over
bona fide distributions. However, if we additionally enforce that Eyp[V] = Eyswp/[V'] = 1/n, then under
some mild conditions on the P, P’ by standard concentration arguments, the resulting vectors are very close
to summing to 1 and thus form “approximate” distributions. One can then show that by slightly changing
the construction, we can create priors over distributions that satisfy the desired properties. Second, the
vectors p,p’ in the domain of &, U’ may not deterministically satisfy the properties that ||p — Unif,||; < e;
and ||p’ — Unif,,||; > e2. However, again by standard concentration inequalities, with high probability these
random variables will not exceed their expectation by too much, and thus will satisfy these same constraints
with high probability, perhaps relaxed by constant factors. We make this discussion more precise in the
following theorem, whose (rather technical) proof is deferred to Section B.1:

Theorem 3.4. Let 0 < e1 < g9 <1, and let n,m be positive integers and m > ¢, where ¢ > 0 is an absolute
2
constant. Suppose there exist random variables U, U’ supported on the domain [a,b] so that b —a < 18%,

E[U]=E[U'] =1/n, and

1
}SEI, and EHU'—
n

}ang. (12)

13



Moreover, assume
1

< —.
— 20n
Then, any tester which for any unknown distribution p distinguishes between |p — Unif,||; < 25e1 and
|[p — Unif, ||; > e2/2 with probability at least 4/5 requires at least m/2 samples from p.

TV (E Poi(mU), EPoi(mU")) (13)

Thus, for given m, n and €; the problem reduces to finding the maximum value of €5 for which we can
construct a pair of random variables U and U’ for which the assumptions of Theorem 3.4 hold. The next key
insight is that we can further reduce the condition in (13) to designing two random variables with matching
moments:

Lemma 3.5 ([JHW18, Lemma 32]; see also [WY16]). For anyx > M >0, let Y, Y’ be two random variables
over [k — M,k + M] so that EY* =EY" for alli=1,...,L. Then, we have

L+1
. it eM
TV(EPoi(Y),EPoi(Y")) <2 <I€(L+1)> .

With this lemma in place, our goal can be restated as follows: maximize n - E|U] — 1/n| such that n -
Ep |U —1/n| < &1 and the first L moments of U and U’ match, where the support of U and U’ is over

[%, %M} for some k > M > 0. The value of this maximum is a function of the parameters x, M and L,

whose values we choose later appropriately so that this function is maximized, while

M o 1
(M) L (14)
K(L+1) 20n
holds, so that (13) is satisfied.

We formulate the problem of maximizing n - E|U’ — 1/n| for any given choice of parameters as the
following linear program over infinitely many variables, where we have used random variables V and V' to
denote n - U and n - U’, respectively,

max E|V' — 1] st. E|V —1]| <¢; and
EV=EV'=1, and
EVi=EV" i=2,...,L, and
[TL(K—M) n(m+M)]
m m

vV, V' ¢

(15)

Let L(e1,n,m, M, k, L) denote the value of the optimal solution of the above optimization problem. Observe
that we do not need to find the exact solution to the above linear program: instead, any reasonable lower
bound on the solution of the above optimization problem suffices. The next theorem gives one such lower
bound. To state the theorem, we define

(M + k) (M — k)

A= ——= —1—¢q, andB::n

1—e;. 16
m m + &1 ( )

Theorem 3.6. For any x, M, n, m, L, and 1, if for A, B, defined in (16), 0 < g1 < min{%, f}, then the
value of optimal solution of (15) is lower bounded by

1 /| A+B | VAB
> . .
L(e1,n,m, M, k,L) > 73 max{ &1 gora o\ e 61 } (17)

We prove the theorem later in Section 3.3. First in Section 3.2 we use this theorem to prove the distri-
bution testing lower bounds.

14



3.2 Proof of Theorem 3.1

Theorem 3 6 implies that for any ey smaller than L£(eq1,n,m, M, x, L), there exist random variables U =

and U’ = Y such that

v
n

E|U" —1/n| > ez/n and
E|U —1/n| <e&1/n and
EU =EU’' =1/n, and
EU'=EU",i=2,...,L, and

UU e (k—M) (k+ M)
) m )

m

Next, we choose the values of parameters L, k and M so that L(g1,n,m, M, k, L) is maximized while (14)
hold, which by Lemma 3.5 will imply TV (E Poi(mU), EPoi(mU’)) < 5. The choice of the parameters
differs for different regimes of m.

20n

e First we consider the regime m < inlog n. Consider any such m and €1 < 1/8. Choose k = M =logn
and L = 4e?logn. One can check that the desired bound on TV distance in (14) is satisfied for

these choices of the parameters. Further, we have A = 2”1% —1—g > M7 where we used
nlogn

>4>1+ 51 in the above parameter range; and B = 1 —&; > 1/2. Finally, 1 < 1/8 we have
that e; < mm{ 1071 } Then, invoking Theorem 3.4 we get that for any

g3 < L1, n,m, M =logn, r = logn, L = 4e*logn)
and €3 > 1000 = 1000%°2", one cannot distinguish between 25¢i-close and e/2-far using m/2

samples.

Equivalently, by rescaling the parameters, for any m < conlogn,

g9 < fﬁ( ,n,2m, M = logn, k =logn, L = 4¢* 10gn>, (18)

2
and 6—3 > 10001(’&, we can not distinguish between e1-close and eo-far using m samples.

Next, we show that the above statement holds even without the constram 2 10001°g" We do so by

showing that even when E— < 1000 1°g" or equivalently m < 400010g” we can not distinguish between
e1-close and eo-far using m samples even for e; = 0. From the known uniformity testing lower bound

\F

for non tolerant case, we know that there is an absolute constant c3 > 0 such that m > ¢35 samples

are needed to distinguish correctly between p = Unif,, and ||p — Unif,||; > €2 with probablhty >4/5.

f

Since for n larger than an absolute constant cs, we have ¢35 > 4000=5%~ logn m, hence m samples are
2

insufficient and the claim follows.

From Theorem 3.6 we get:

E( ,n,2m, M = logn, k = logn, L = 4e? logn >max c1 cvn
mlogn Vmlogn

where ¢, and ¢ are some absolute positive constants.

From (18) and the above lower bound on £ it follows that for any n > c4, for any m < (nlogn)/4 and

g1 < 1/8, such that
5 N (51) 3 N (51)
< )
" max{cl logn \&3 “2logn €3

then using m samples from p one can not distinguish correctly with probability > 4/5 between |p —
Unianl <eg and Hp - Unlanl > eo.

15



Observe given ¢; and c¢g, there exist an universal constant cs such that for any (Z—;) < c5logn, we
2

masxd 2 n (51> 3 N (81>2 < nlogn
X — .
Yogn \ 3 “logn 3 - 4

2
Therefore, for any e; < &, n > ¢4 and ( ) < ¢5logn, then using max{ 2 (81) c3 (61) } =
2

have

C110gn €2 )2 2logn \ €2

€1

2
1ogn< ) + logn (—) ) samples from p one can not distinguish correctly with probability > 4/5

between ||p — Unif,||; <e; and ||p — Unif,||; > e2.

e Next, we choose the parameters for the regime m > 4nlogn. Note that since the theorem statement
makes no claim for the setting where m > we can restrict our attention to the case where

6% logn’
n n nlogn :
m < Zlogn” Furthermore, because Tlogn < 61c? (using the fact that 1 < e5), we only need
to consider m < "GIEg ". This condition on m implies that e, < % ”10%. Consider any such m.
Choose k = ™ and M = w and L = 4e®logn. Observe that for this choice M < 2 = g,

hence Kk — M > 0. Then A = B =24 _ o = \/"k’% —¢€1. Since g1 < %\/%nf", observe that

A B> %,/ nlogn and g1 < min {Z’ Z}' Then, invoking Theorem 3.4 and rescaling the parameters as
m
for the previous case, we get

1
52_£< ,n,2m, M = mOgn,lim,Lllezlogn),
n

n

and 2 > 1000M = 10004/ > log" , we can not distinguish between £;—close vs eo—far using m samples.
From Theorem (3.6) we get:

- vnlogn
b /mlogn’

mlogn

ﬁ(el,n,m,M— ,n—m,L—46210gn>206
n

n

where cg is some absolute constant.

Following the similar steps as before it can be shown that for any ¢; < 3, n > ¢g and ( ) > c7logn,

2
then using cg (i—é) samples from p one can not distinguish correctly with probability > 4/5
2

logn

2
between ||p — Unif,||; < e; and ||p — Unif,|; > 3. Using (61> > crlogn, we get cGlogn(E—l) =

2
Q(logn ( ) + logn (64) ) bound on the sample complexity.

We have so far shown the target lower bound on the sample complexity for both regimes z—l < c5logn

and z—é > c7logn for some absolute positive constants c5 and c;. To conclude for the intermedlate cases,
2

observe that the sample complexity is an increasing function of £; (more tolerance makes the problem harder)

and a decreasing function of €. Thus, by monotonicity, the lower bound for i—; = c5 logn still applies to
2

This only affects the resulting lower bound

cslogn < z—é < ¢7logn, by relaxing the problem to &} = °5f1

by a constant factor, and allows us to conclude with the desired

n o /e1\2 n /€1
Uiogn (3) + 1o (3))
logn \&3 * logn \&3

sample complexity lower bound for the full range of parameters.
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3.3 Proof of Theorem 3.6

We break the proof of Theorem 3.6 into two parts. First, we convert the primal form of the problem into
a more convenient representation via a few helpful transformations, and then take the dual (Section 3.3.1).
We then lower bound the value of the dual using tools from approximation theory (Section 3.3.2).

3.3.1 Transforming the primal

First, to simplify the optimization problem (15), notice that moment matching of all degree-L or less moments

is unaffected by translation. So if one introduces the random variables X =V — 1 and X' = V' — 1, we
n(k—M) 1 n(k+M) 1]

see that these are supposed to be mean zero random variables over | with matching

L-th and below moments, and that distance to uniformity corresponds to E|X| and E|X'|.
max E |X'| s.t. E|X|<e; and
EX=EX =0
EX‘=EX"i=2,...,L, and
n(k — M) _LTL(FE-l-M) B 1] '
m m

X, X' € (19)

It will be useful to remove the constraint that E[X] = E[X'] = 0. To do so, we propose the following
optimization problem without this constraint.

max E|Y’| s.t. E|Y| < %1 and

EY'=EY",i=1,...,L, and
Y,Y' € [-B, 4], (20)

where A = W —1—¢y and B = —("(”T_M) -1+ 51), first defined in Equation (16). We show the

following claim.
Lemma 3.7. The value of the solution of (19) is at least half the value of the solution of (20).

Proof. Let Y and Y’ be the random variables that achieve the maximum in (20). To prove the claim, first
we show that random variables X =Y —EY and X’ =Y’ — EY satisfy the constrains in (19).

First note that E|X| =E|Y —EY| <2E|Y| <¢e;. Next, usingEY =EY’, weget EX =E[Y —-EY] =0
and EX’ = E[YY —EY] = 0. Since the moment matching of all degree-L or less moments is unaffected
by translation, all L moments of X and X’ will match. Finally, |E[Y]] < E[[Y]] < &, and Y,Y’ €

2
(R 4y, TL(”T% —1— ] ensures X, X/ € [M5=M) g nlstM) gy

m m ’ m
Now to complete the proof we show that the solution of the optimization problem (19) is at least >
If E|Y'| < 1, then this is obviously true as the maximum in (19) is at least ;. If E|Y’| > &1 then

E|X'|=E|Y' —EY|>E[Y/|—E[Y|>E|Y|— % > ZY where we used E[Y’| > &; in the last step. [J

E|Y’|
—5 -

Mechanically taking the dual of (20), we obtain that the dual is:

L
min %a +21+ 228t 2+ ch-pi(x) > |z| for all x € [-B, A],
i=1

L
alz] > Zcipi(x) — 2o for all z € [-B, A], and
i=1

a>0. (21)

By weak duality, we know that the value of the optimal solution to (20) is upper bounded by the value of
the optimal solution to (21). However, since we seek to prove a lower bound on the value of the optimal
solution to (20), this is insufficient for our purposes. However, we show that in this case, strong duality still
holds:
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Lemma 3.8. The value of the optimal solution to (20) is equal to the value of the optimal solution to (21).

This follows from the classical theory of convex duality [Roc74], however, for completeness we also give a
self-contained proof of this fact in Section B.2.

We now make a couple of final simplifications before we lower bound the value of (21). Let P, denote
the collection of all degree-L polynomials. We reparametrize the above dual by letting 9 = aep, p(x) =

L
Ly iiicapi(x) — 22 and z = 21 + 2.
€
min 52 + z s.t. for some p(x) € Py,

p(x) > £ || — L, for all & € [-B, 4], and
130} 135

|z| > p(z) for all z € [-B, A], and

Imposing the additional constraint that z = €5, we get the following program:
mines s.t. for some p(z) € Py,
€
p(z) > = |z| — e for all 2 € [~ B, A], and
€2

|z| > p(x) for all x € [-B, A], and
Suppose €2 = a and z = b achieve the optimal solution of (22), which is therefore a/2 + b. It is easy
to verify that for z < 0 the optimization problem (22) is infeasible, hence b > 0. Further, observe that
z = g9 = max{a, b} is also a feasible solution of (22), and z + £2/2 = max{3a/2,3b/2}, which is at most 3

times the optimal solution of (22). Since (23) scales it down by 2/3, it follows that the solution of the new
dual (23) is at most twice the solution of the previous dual (22).

Lemma 3.9. The value of the solution of (15) is at least 1/4 times the value of the solution of (23).

Proof. From the preceding discussion, the value of the solution of (15) is equal to the value of the solution
of (19). From Lemma 3.7, this value is at least is at least 1/2 times the value of the solution of (20). From
Lemma 3.8 the values of the solutions of (20) and (21) are equal. Furthermore, the value of the solution
of (21) is equal to the value of the solution of (22). Finally, the value of the solution of (22) is at least 1/2
times the value of the solution of (23). Hence, the value of the solution of (15) is at least 1/4 times the value
of the solution of (23). O

3.3.2 Lower bounding the dual

We now establish a lower bound on the solution of the dual (Equation (23)). We assume that parameters

A, B are such that e; < A, B. First note that when €3 < &}, then the two conditions are contradictory and

can not be met simultaneously. Therefore, we get the lower bound:

2
This implies that Vz € [-B, 4]
p(x) > 2|x| — &1
Combining this with constraints in the dual imply that for all € [—B, A]
Ip(z)] < 2[z] +e1.
From the above equation, for = 0, we get |pg| < £;. Then Vz € [—B, 4],

Ip(x) — po| < [p(x)] + [pol
< 2|:E| +ée1t+¢e
= 2|1‘| —+ 281.

18



Let p(x) € Pr, be any polynomial satisfying the constrains of the dual. Let py = p(0), p1 be the coefficients
of z in p(x), and p(z) = p(x) — po — p1.
Using the above equation,

()| < Ip(x) — pol + 12| < (2 + [p1]) || + 261 (25)
The constraints in the dual also imply pg < 0 and p(3e2) > 2¢;. Combining these,
p(2e2) — po > 2¢1.
Using p(z) = p(x) — p1x — po for x = 3e5 in the above equation
p(3e2) > 21 — p13es.

Similarly, one can get
]5(—362) > 2e1 + p13es.

Combining the two equations we get
max{p(3e2), p(—3e2)} > 2e1 + |p13ea. (26)
Our lower bound on the dual is the consequence of the following key lemma, which we prove in Section 3.4.

Lemma 3.10. Let g be a degree-L polynomial such that g(0) = ¢’(0) = 0. For some a <0 <b, v > 1 and

0<d6<min{— %2} suppose |g(z)| < y|z|+ 6 for all x € [a,b] then

b—a zf§ < (b—a)

. . B " 32712 32L2
minflel : o(a) > (v = Dkl +0) 2 SV T
16L Zf < 16L *

The next theorem that establishes the lower bound on the dual follows by combining Equation (26),
Equation (25) and Lemma 3.10.

Theorem 3.11 (Lower bound on the solution to the dual). For any A,B >0 and 0 < &1 < min{
the value of optimal solution of (23) is lower bounded by

. 1 A+ B 1 VAB &,
f2 = MAX S\JEL o 3\ 16 2

Proof. Applying Lemma 3.10 for g = p/2, v =1+ |p1]/2, d = €1, b= A, and a = —B gives

o
NS

I

)

CALB (A+B)
36, > €1 552 el < g5
2 >
VAB - VAB
1 - 6L if g1 < 6L -

Combining the above bound with the upper bound €3 > £ in (24), and using the observations that if

g1 > (’;2'213) then 4/eq - y—ng <e1,and if g1 > Vlg‘LB then 4/eq - VlglLB < g1, completes the proof. O

Combining Lemma 3.9 and Theorem 3.11 proves Theorem 3.6.

3.4 Proof of Lemma 3.10

First, we recall some useful results from approximation theory, which we then leverage to derive a few
auxiliary lemmas. Finally, using these lemmas we establish Lemma 3.10.

We will use the two following results, both of which bound the absolute value of derivatives of bounded
polynomials. The first is the Markov Brothers’ inequality, which gives a bound on all derivatives of bounded
polynomials.
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Theorem 3.12 (Markov Brothers’ inequality [Mar92]). For any real polynomial g of degree-L, 0 < k < t,
and real numbers a and b s.t. —0o < a < b < 00, the k' derivative of g satisfies

k=1 ra2 .2
k. maxgzela,b |g(‘%‘)‘ . H (L —1 )

) (z)] < 2
max 9 ()] < b—a)k %+ 1

z€a,b

We next need Bernstein’s inequality, which provides a bound on the first derivative, which for some values
of = is stronger than the Markov Brothers’ inequality.

Theorem 3.13 (Bernstein’s inequality [Berl2]). For any real polynomial g of degree-L and real numbers
—0<a<z<b< oo, we have

L- MaXye[q,b] lg(z)]
(x —b)(a—x)

Using Bernstein’s inequality above we can obtain the following bounds on the first and the second derivatives,
which for some range of parameters improve upon Markov Brothers’ inequality. Note that in the following
lemma we have assumed a < 0 < b.

lg'(x)] <

Lemma 3.14. For any real polynomial g of degree-L, and real numbers a and b s.t. —oco < a <0< b < oo,
the following hold

L- r€la
max ‘ /(x)| max E[ 7b] |g(II}')‘

g'(z)| < ,
v€fa/2,b/2] Vbal/2

and

4L(L—1)-
max |g”(w)| < ( ) maXgea,b] |g(l‘)|
z€la/4,b/4] |ab]

Proof. From Bernstein’s inequality we get

L- maxXgzela,b |g(l‘)‘
V/|bal/2 7

where we used (x —b)(a —z) > |ab|/2 if a <0 < band z € [a/2,b/2].
Replacing g — ¢’, a — a/2 and b — b/2 in the above equation, we get

g’ (x)] <

max
z€la/2,b/2]

(L —1) - maxyefasa,p/2) 19’ ()]
1 B

max g () < .
z€la/4,b/4] 97 (@) v/ |ba|/8

Combining the two equations proves the lemma. O

Using the bounds on the derivative of the bounded functions in Theorem 3.12 and Lemma 3.14, and a
Taylor expansion, we derive the following lemma.

Lemma 3.15. Let g be a degree-L polynomial such that g(0) = ¢’(0) = 0. Suppose that, for some a < 0 < b,
we have |g(x)| < |z| for all x € [a,b]. Then the following bounds hold:

8L® .2 if x € [a/4,b/4] and |z| < @

(b—a)
< a
lg(x)] < AL_.2  f g € [a/4,b/4] and |z| < \/4?"

NI

Proof. By Taylor’s theorem, we know that

1
g 2(0) x2,

g(x) = g(0) + ¢'(0)x +

where ¢ is some number between 0 and z.
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Then using g(0) = ¢’(0) = 0, we obtain

1 Z)‘

lg(a)] < o2 - max (27)

z<|z|

Next, let h(x) = g(z)/x. Note that h(x) is a degree-(L — 1) polynomial and maxi,p) |h(z)] < 1. From
Theorem 3.12 and Lemma 3.14 it follows

212 ﬂL}
b—a’ /] abl ’

max |k (z)] < min{
z€la/2,b/2)

and

4L* 4172
h/l T
xe[anﬁﬁ)m] W (@)l < mm{3(b —a)?’ |ab }

The following relation between the second derivative of g and the derivatives of h can be obtained by
differentiation x - h(x) twice using the chain rule:

g"(x) = 2h'(z) + zh" ().

Using the bounds on the derivatives of h, for any z € [a/4,b/4],

412 4L4 2{ L. L?
"(z)] < min{ + |x , }
Note that for any = € [a/4,b/4] s.t. |z| < 203 “),
8L?
1"
<
0@ < G
. |ab|
and similarly for any « € [a/4,b/4] s.t. |z| < \/4;,
4L
1 T < .
9" (z)] < N
Combining the above bounds with Equation (27) proves the lemma. O

Using this, we derive the following lemma.

Lemma 3.16. Let g be a degree-L polynomial such that g(0) = ¢’(0) = 0. Supoose that for some a < 0 < b,
v>1 and0<5<m1n{ 2 f} such that

4 4
6<max{(b_a) \/W)},

1612’ 8L

we have |g(z)| < v|x| +§ for all x € [a,b]. Then g(x) < 2v|z| for all z € [a,b)].

Proof. Note that |g(x)| < v|z| 4 0 implies that |g(z)| < 2v|z| for |z| > % We proceed by contradiction. For
contradiction, assume

. @)l

=r>1.
\w\@ |z

Consider the polynomial §(x) := g(x)/r. Then from the definition of 7, for any x such that |z| < 2 5 it follows
that

19(2)] = lg(x)|/r < |z], (28)
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and

19(x)] = || (29)
for at least one x such that |z| < %. To show the contradiction, in the reminder of the proof, we show that
this is impossible. For z € [a,b] \ [—%, %],

. l9(@)|
9(2)] = == < lg(@)] < 7lz] +6 < 2yla],

where the last inequality uses the fact that for |z| > % we get 0 < |z|. Combining with Equation (28), we

get |g(z)| < 2v|z| for all = € [a, b)].
Applying Lemma 3.15 o

2y L2 if z € [a/4,b/4] and 2| < 2059

By b-a)”?
z)| < /Tabl
5(@)l < 27y "“Lble if x € [a/4,b/4] and |z| < szl.
a
Recall 0<6< min{ T 4} and v > 1. First we show a contradiction when § < fﬁ—L‘g. In this case,
< §< L Torz < 3(b )| , hence for any z such that |z| < £ the above equation implies that
8L? 16L? 16L* &  16L?
|9(z)] < 29 jz]* <7 - |z] - max|z] < v o= -0 <l

(b—a) (b—a) v (b—a)

To—a)
b-9  This contradicts Equation (29).

F

where the last inequality uses § < 757%.

Next we show a contradiction when § < by using similar steps. In this case,

hence for any x such that |z| < 2 S we get

9@ < 2y fof? <y fa] ik fa] <y =y fa - <a]

(@) <L 2y——==|z|* < vV——= " |z| max|z| <YV—rn —=7—="|x x|,

+/|ab] |ab] labl ¥ |ab|

where the last inequality uses § < ‘ab . This contradicts Equation (29). O

Finally, we use Lemmas 3.15 and 3.16 to derive Lemma 3.10.

Proof of Lemma 3.10.  First consider the case § < (lbﬁLaz). Then Lemma 3.16 implies g(z) < 2v|z|.

Applying Lemma 3.15 gives

8L2
<2yt 2.
lg(z)| < "o—a)”

To prove the first bound in the lemma we show that if [z| < /& - 2% then g(z) < (y — 1)|z| + 4.

First we show it when v < 2. In this case, for all  such that |z| < 4/¢ - ;{—L‘é,

8L?
l9(z)] <2y

(b—a)

2 Y
—§ < 0.
T < 9 <

Then, we turn to the case v > 2. In this case, for all x such that || < /¢ - ;;—L%,

8L?2 v
l9(@)] < 295 ——a® < Jla < (v = Dlal,

where step the second inequality uses |x| < 32L27 which follows since |z] < 4/0 - ;’QL“Q and § < 32L2, and the

last inequality uses /2 < (y — 1), since v > 2. This completes the proof of the first upper bound in the
lemma. The second upper bound in the lemma can be shown using similar steps. O
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A Details on the “splitting” operation

Given an explicit reference distribution ¢ over [n], we describe the splitting operation with respect to ¢, as
introduced in [DK16]. For i € [n], let a; .= 1+ |ng;] and D = {(4,5) : i € [n],j € [a;]}. The splitting
operation with respect to ¢ maps any given distribution p over [n] to a new distribution p°(@ over the new
domain D such that the new distribution p°(9) assigns the probability P to element (3, ).

We note a few properties of the splitting operation: '

1. The new domain is at most twice as large: indeed, |D| =Y"" (1 + [ng]) < > i (ng; + 1) = 2n.

2. If ¢ is known, then m i.i.d. samples from an unknown distribution p can be used to simulate the m i.i.d.
from p®(@ by (independently for each) mapping a sample i € [n] to a (i, j), for j chosen uniformly at
random in [a;].

3. The resulting distribution obtained by applying splitting operation w.r.t. ¢ on itself has small {5 norm,
s gi qa g 1
Wol= 3 =3y (1) -x et
(i,5)€D 1=1 j€la4]

4. The pairwise ¢; (and thus total variation) distances between any two distributions p and p’ are preserved
after the splitting operation, namely for any distributions p, p’ over [n],

lp = p'[ly = [[p@ = 5@
this follows from observing that
n
s s
P50 — S =37 T [0 - 5| - = > Ipi =Pl
= 1]6[(11 = 1]6[1%] i=1

A.1 Proofs of Lemmas 2.6 and 2.7

The following standard bound on the concentration of Poisson random variables will be useful:

Theorem A.1l. Let X ~ Poi(\) be a Poisson random variable for some A > 0. Then for any x > 0,
2

)

Pr|X — )\ >z] < exp( - Q(min {x,

Next, we prove Lemma 2.6.

Proof. First we prove the lemma for the simpler of the two cases when m < n and then later for m > n.

Proof for the regime m < n:

Pr [ﬁ > tfl] @ Pr [maX{Xi +Y;, 1} > tmax{m(p; + ¢;), 1}]
=Pr [Xi +Y; > tmax{m(p; + @), 1}]
=Pr[X; +Y; — m(p; + ¢;) > t max{m(p; + ¢;), 1} — m(p; + @;)]
= Pr [X; +Y; —m(pi + ¢;) > (t — 1) max{m(p; + ¢;), 1}]

(2 exp (‘Q(min{(t — 1) max{m(p; + ), 1}, - 2;1:{1:1{;%53})2 . D)

< exp(—Q(min{ (t — 1), (t — 1)}))
< exp(—t)),

here (a) uses definition of f;, (b) uses the fact that X +Y ~ Poi(mp; + mg;) and the Poisson concentration
bound in Theorem A.1, and (c) uses ¢ > 1.
Next we prove the lemma for the other case when m > n.
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Proof for the regime m > n: We first bound Pr [ﬁ > tfi] by sum of three different terms, and then
later we bound each term one by one.

Pr [ﬁ > tfz]

(@) X, -V Xi+Y;
< Pr g>tf1 + Pr >tf;
vm/n m/n
(;) Pr | Xi — mpi| + [Yi — mgi| + [mp; — mgi| >, X+, >,
vm/n m/n

=Pr [|Xi —mp;| + Vi — mg;| > tfin/m/n —mp; — qz‘q +Pr [Xz +Y; > tfi%}
- . tfi/ _ ;-
< Pr [max{|Xi —mp;|,|Y; — mgq|} > fivm/n—mlpi — q

z‘|} 4 Pr [Xi+)~’¢>tfiﬂ}

2 n

(c) - tfia/ — s - tf: _ i — G
< Pr [‘Xi —mp;| > fi/m/n 2 mipi qzl] +Pr [|Yi —mg;| > f“/mz mlp q"}

+Pr[% 4+ Vi > tf 0]
n

where inequalities (a) and (c) use union bound and (b) uses triangle inequality.
To obtain an upper bound we bound each term in the above equation. Next, we bound the first term

o t i — i
Pr {\XZ —mp;| > if“/m/n - w]

(a) o 3 mipi — qi
2 pr (1%, — mpil > & mas{mlp: — ail, VR + g2), /) — "]

(b) S tm|p; — ¢i| + tymn(p; + q;) +t+/ i — Qi

SPr[|Xi—mpz'|> mlpi — il + npi + ;) + /n_m|p2 q|}
5 t—3 i — qi| +1 i +qi) +1

= Pr [|Xi—mpi| o (= 3)mlpi — gif + \/6mn(p +aq:) + \/m/n}

(¢) - / ) ) /
< Pr[IX; — mpi| > ! mn(plﬂé’)ﬁ m/n}

<%>2exp< ( {t\/rﬁpﬁ—qz +tm (tv/mn(pi + ¢;) + ty/m/n)>? }))

36mp;

36mp;

< 2eXp< ( m{tm e (m/n)}>>
< 2exp ( (mln{tW) tnp; 36t7jpi }))

where (a) uses the definition of f;, (b) follows from the fact that “*2+¢ < max{a,b,c}, inequality (c) uses

t > 3, inequality (d) uses the fact that X ~ Poi(mp;) and the Poisson concentration bound in Theorem A.1,
and finally (e) uses m > n and the fact that  + 1/x > 2 for any = > 0.

Note that because of the symmetry the above bound will also apply on the second term, namely

o t mp; — gi
Pr [|X, —mg;| > §fm/m/n - % < exp(—Q(t)).
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Next we bound the last term in Equation (30) to complete the proof of the first concentration inequality.

- m
= pr {X +Y; >tmax{ Y Ipi — qz| (pi-l-qi),g}}
+

(Pz‘ +qi) +t
5 —m(p; + Qi)]

G L (t_2)m<pi+%‘)+t%}
2

2 ' 4m(p’ia qi

(t=2)m(pi +q;) +t57 ((t—2)m(pi +q) +15)° })
)

m <<t—2>m<pi+qi>+<t—2>7:>2})>

(d)
< _ .
< 2exp ( Q| min {th, 1m(ps + 00

m (t—2)*m(p; + @) (t—2)?
"o 4 - 4m(pi + q:) })>

where (a) uses the definition of f;, (b) uses the fact that %2 < max{a, b}, inequality (c) uses the fact that

X+Y ~ Poi(mp; + mg;) and the Poisson concentration bound in Theorem A.1, inequality (d) uses ¢t > 3,
inequality (e) uses the fact that for a,b > 0, (a +b)? < a® + b?, and finally (f) uses m > n and the fact that
x4+ 1/xz > 2 for any x > 0.

Combining the bounds on all three terms in Equation (30) proves the Lemma. O

Finally, we prove Lemma 2.7.

Proof. First we prove the lemma for the simpler of the two cases when m < n and then later for m > n.

Proof for the regime m < n: Based on the value of f;, we further divide in two cases, and for both cases
we show one by one that the concentration inequality holds.

1. Case 1: f;=12> m(Pz +q;).
Since fl > 1 then fZ > fi, hence for any ¢t > 1 we have Pr [fl tfi] =0

2. Case 2: f; =m(p; +¢;) > 1.
Note for t > f; the inequality Pr {ﬁ < f?} = 0 trivially holds as ﬁ > 1.
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Fort < f;
Pr [ﬁ fi fl} @ Pr {maX{X +Y;,1} < fl}
< Pr{X +Y; < ﬂ

Pr{m(piJrq%) X, +Y, <mp; +q)— J;Z]

1
O py {m(pi +q¢)-Xi+Yi< (1 - t)fi:|

@Pr[ (pi + @) — X+Y<fl}

Y op(-o(mnf b1
2o (-a(m{4 1}))

D exp(—Q(#))

where (a) uses the definition of ﬁz (b) uses the fact that f; = m(p; + ¢;), inequality (c) uses t > 2,
inequality (d) uses the fact that X + Y ~ Poi(mp; + mg;) and the Poisson concentration bound in
Theorem A.1, inequality (e) uses f; = m(p; + ¢;), and finally (f) uses f; > ¢ and t > 1.

Next we prove the lemma for the other case when m > n.

Proof for the regime m > n: Based on the value of f;, we further divide in three cases, and for each of
the three cases we show one by one that the concentration inequality holds.

1. Case 1: f; =1>max{n- (p; +q),v/m |p1- —ql]}-
In this case p; + ¢; < % and |p; — ¢;| < W
Since ﬁ > 1, then

erf < ) << 5] -

2. Case 2: f; =n-(p; + ¢;) > max{1, /mn - |p; — ¢]}.
In this case p; + ¢; = fi and Ipi — qi| < ‘/L:rlzn'

n
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Note for ¢ > f; the inequality Pr {ﬁ < %} = 0 trivially holds as ﬁ >1. Fort < f;

Pr(fi < £}<Pr{m(X+Y) fl}
— Pr [(Xi +Y) < TZ{}
=Pr [m(pﬂrqz) (Xi +Yi) = m(pi +¢:) — n;ﬂ
b (e + )~ (X + ¥ 2 (1= )]

—~

C

< Pr[m(pi +a) — (X; +Y:) >

N2

e

@ mfz 2f2
< 2exp ( (mln{ I An2 -m(p, + q.) m(p; + ¢;) }>>
(e)

< 2exp < Q(mm {ﬂ;f 4722]% ((pp:—'—;-qqlz)) }>>

< Qexp< Q(’Z{))
®))

(f)
< exp (

where (a) uses the definition of fi, (b (b) uses the fact that p; + ¢; = f;/n for Case 2, inequality (c) uses
t > 2, inequality (d) uses the fact that X +Y ~ Poi(mp; + mg;) and the Poisson concentration bound
in Theorem A.1, inequality (e) uses f; = n(p; + ¢;), and finally (f) uses m > n and f; > ¢.

. Case 3: f; =+v/mn-|p; — ¢;| > max{l,n- (p; + q;)}.
In this case |p; — ¢;| = fi/v/mn and (p; + ¢;) < fi/n.
Note for ¢ > f; the inequality Pr {ﬁ < %} = 0 trivially holds as ﬁ >1. Fort < f;

Pr|fi< ﬁ} < Pr [WW/_T};'SH
® Pr[lmpi—mqil - )j%%pi—ﬁ+mqi - fﬂ
:Pr[p?i_m%erqzl > il — g Jn
“ py :Xi_m%erM > fi(1— %)}

(d) [ o Y, fz

< Pr||X; —mp; =Y, +mgi| >/ — —}
L n 2

(e) i 2

< Pr | max{|X; — mp;|,|Y; — mq;|} > 1/ - f]

® r : S

< Prl||X; — mpz|>’/ f}+Pr[|Y qu|>1/ f}
L n n

(2) . 2

< 2exp | — 2| min Tﬁ,% +2exp | — Q[ min .

n 4 16n-mp;

()
< exp (—Q(1)),

S
N b

mf?
" 16n - mg; })
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where (a) uses the definition of ﬁ-7 inequality (b) follows from the triangle inequality, inequality (c) uses
the fact that /mn|p; — ¢;| = f; for Case 3, inequality (d) uses ¢t > 2, inequality (e) uses the fact that
|z —y| < 2max{|z|, |y|}, inequality (f) uses union bound, inequality (g) uses the Poisson concentration
bound in Theorem A.1, and finally (h) uses m > n, f; > n(p; + ¢;) and f; > ¢. O

B Missing proofs from Section 3

B.1 Proof of Theorem 3.4

Let P be the joint distribution of n independent copies of U and P®) be the joint distribution of n
independent copies of U’, respectively. For j = 1,2, let (Ul(J), ey U,(lj)) ~ PU). Define random vectors D)
as the /1-normalizations of these vectors:

oo (U 7
=\ o)

Since UY) > 0, the vectors DU are distributions.
Let N ~ Poi(my"; Ui(J)). Let (C’fj),...,CT(LJ)) be the collection of random variables, whose joint

distribution conditioned on (Ul(j N A )) and NU) is the following multinomial distribution,
_ | _ ; | ) 0o ) o
(Cf”,...,C,(LJ))‘((Ufj),...,U,(LJ))7N(J)) ~ Mult LI I € EMult<D(J)7N(3)).

It follows that we can use (Cl(j ), ey cy )) to generate up to N samples from D). Observe that for i € [n],
conditioned on the UY’s, CY) ~ Poi(mU”)) are independent Poisson random variables.

Define the events
1
EMW = { vt — ‘ < 1051},
n

E® = > 92 |
=10

We bound the probability of the complement events E(1) and E(). The following general lemma will be
useful, which we prove using Chebyshev’s inequality.

n

SulV-1

i=1

<uin{s

i=1

and

n

Su -1

i=1

g _1

¢ n

<einfs

=1

Lemma B.1. Let X1,...,X, be n i.id. random variables over [a,b] for some 0 < a < b and E[X;] = p.

Then
Pr[ Z X, —nu

Proof. The following bound on the variance of a random variable will be useful. This bound has been proved
in many previous works including [BD00]. We provide the proof for completeness.

Theorem B.2. Let X be any random variable over [a,b], then Var(X) < (b — E[X])(E[X] — a).

1
10

> /10nu(b — a)] <

Proof. Let Y = $=2%. Note Y € [0,1]. Then

Var(Y) = E[Y?] - (E[Y])* < E[Y] - (E[Y])* = E[Y](1 - E[Y]),

where we used the fact Y2 <Y, since Y € [0, 1]. Then using the relations Var(Y) = \(lzji(a);‘) and E[Y] = E[li];a

completes the proof. O
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From Theorem B.2
Var(X;) < (b— 1) (1 —a) < (b—a)p,

where we used 0 < a < < b. Then Var(d_ X;) < nu(b — a). From Chebyshev’s inequality

—Z]E[X] >

1
10°

10nu(b — a)] <

First we bound the probability of E(1). Using the union bound
n

We next upper bound both these terms, starting with the former. Note that U(1 € [a,b] and E[ )}
Applying Lemma B.1, we obtain

Pr E(l) < Pr + Pr

>

=1

10

1
Ul - ‘ > 1051].
n

Soul 1] >
i

1
— < —
10(b a)} <1y

which, since 10(b — a) < 1;0 < 100, upper bounds the first term in the expression.
We now bound the second term using linearity of expectations and Markov’s inequality,
g _ 1
o TP I o (e N (G
P vt — = >10 = nll < =
! ; N 102, 105, — 10
Combining the bounds on both terms we get:
PrED] < 2.
— 10
Next, we bound the probability of E(2).
=@ ~ @ 4| € S| 1] 9=
Pr[E®@)] < Pr ;U 1] > +Pr;Ui 1<l

Again, note that Ui(z) € [a,b] and ]E[Ul@} = % Applying Lemma B.1, we obtain

Suf -1

upper bounds the first term in the expression.

— 10’

> 10(ba)1 < 1

2
which, since 10(b — a) < 13,

Next, we bound the second term. Recall that random variables Ui(z) are independent copies of U’. Since
U’ € [a,b] and a < %L < b, then 0 < |U’ — %’ < (b— a). Applying Lemma B.1, we obtain

Z U’—:LH—\/10n(b—a)EHU’—;” g%.

Since 10(b —a) < Tﬁ < 155 and IEHU’ — %H > 22 then
R

]EHU’—iH —\/10n(b—a)EHU’—TllH an{ n > 15
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n
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Combining the above two equations we get

1 952 1
P v - o< 22 <
g Z i TR0~ 10
Combining the bounds on both terms:
PrE®] < =
10
Note that the event E(!) implies that
n &
- 1
D) = Unif,, [y = Ll 0
el DO
“ (o™ 1 1
< 5~ + |- -
;( 2o Ui(l) ny, Ui(l) mony Ui(l)
_ XU =l |1
o (1) B (1)
> U; > U;
1)
2 Ui = 1/n] i ‘ZZ vi - 1‘
SN S
1
_ o, iU —1/m]
B s oW
1061 20051
<2 < 2be;. 1
ST S g =P 51)
Similarly, event E(?) implies that
|
() _ Uni - [ A
D — Unif, ||, ; > 0@
n (2)
22( Ui(2)’ 1<2)7%7 1<2>)
i\ 22 U ny; U ny.; U
IV Vi
o S U»(Q) T S U(2)
2
o -y [0 1]
DS S
(962/10) — (52/10) 862
> > — > 2 2
S ey TR THE (32)

where we used the triangle inequality and 5 < 1.

For j = 1,2, let CY) denote the distribution of (CY)...C{), and let Pl(é)(j), D‘%)(j) and Cl(é)(j) denote the

distributions of (U ... UY)), DG, and (CY) ... C{), respectively conditioned on the event E).

In light of Equations (31) and (32), to prove the lemma it suffices to show no tester using m/2 samples from
p correctly identifies whether p = D‘(;)(l) or p = D‘(;)@) with probability > 4/5. To prove by contradiction,
suppose there is such a tester 7. 4 4 ' 4

Event EU) implies that 3 Ui(j) > 19—0. Hence, for any given (Ulm . Ur(ﬂ)) ~ Pl(fzi)“)’ we have

Pr(NY) > m/2) = Pr[Poi(m Y U?) > m/2] > Pr[Poi(0.9m) > m/2],
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which is at least 0.95 for m larger than some absolute constant c. ‘ ‘
If N@ > m/2, then we can simulate m/2 samples from D@ using (C\) ... ) and use the tester T
on these m/2 samples. Hence, using this tester we can correctly identify whether (C7...C,) ~ CI%)“) or

(Cr...Cp) ~ cfé{z) with probability > 0.95(2) = 0.76.

Next, we show that the TV distance between the distributions C‘%)@) and C‘(;)@) is small.

TV (€l €

- - 1) - (1) - 1) i (1) 6 )
TV(PIEII) (Pm(mU1 )s .., Poi(mU, )) ’P]<E?> (Pm(mU1 )s ..., Poi(mUy ))) + Pr[EMD] + Pr[E®)]

< nTV(E Poi(mU), EPoi(mU")) + Pr[EMW] + Pr[E®)]
9
20°

)

1 — —
<m.— 1) 2] <
<n 2On+Pr[E |+ Pr[E®?)] <

This implies that for any tester the probability of correctly distinguishing C‘(é)(l) and Cl(;)@) is at most Hgﬂ =
29/40 = 0.725, which is a contradiction since 0.725 < 0.76.

B.2 Proof of Lemma 3.8

For any finite subset S of C [—B, A], consider the optimization problem
max E|U’| s.t. E|U| < 6—21 and

EU'=EU",i=1,...,L, and
UU €S, (33)

and its dual

L
min %a + 21+ 29 8.t 21 + Zcipi(:r) > |z| for all z € S,
i=1

L
alz] > Zcipi(x) — 29 forall x € S, and
i=1

a>0. (34)

For a given S, let Ps and Dgs be the optimal solution to the primal and dual, respectively. Since S
is finite, the distribution of both U U’ is a finite vector of size S, then from the strong duality for linear
programming we have Ps = Dg.

Let P and D denote the value of optimal solution of (20) and (21), respectively. From the weak duality
we have P < D.

For any &, the corresponding optimization problem (33) can be obtained by imposing the constraints
Pr[U € [-B, A]\ 8] = Pr[U’ € [-B, A]\ §] = 0 in (20). Since upon imposing the additional constrains, the
value of the optimal solution in (20) would only decrease, hence Ps < P. This implies for all finite subset S
of C [-B, A], the following holds P > Ps = Dg.

Let Ss = {z:2 = —B+ké for k € {0,1,...,|2EE|}}. Observe that for all § > 0, S is a finite subset
of [-B, A]. Taking the supremum over Ss as § — 0 ,

P > sup Dg;.
>0

Using the continuity of functions 2% and |z| and elementary real analysis it can be verified that

sup Ds, = D.
>0

Hence, we get P > D. Combining this with P < D proves the lemma.
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C Instance-optimal tolerant testing

In this appendix, we establish our “instance-optimal” tolerant identity bounds (Theorem 1.3); that is, sample
complexity bounds parameterized by the reference distribution ¢ itself, instead of the domain size n. We do
so by establishing separately the lower bound (Theorem C.5) and upper bound (Theorem C.6) parts of the
statement, in Section C.1 and Section C.2.3

In order to formally state our results, a few definitions will be useful. For any distribution ¢ over a set

s
[n] and any subset S C [n], let ||gs]lco = max;es ¢i, and py s = {%J, where as usual ¢(S) = >, g q-
Moreover, for any x > 0, let ¢_, denote the vector obtained by iteratively removing the smallest entries from
q and stopping just before the sum of the removed elements exceed x. Finally, recall that for any integer

t > 1, Unif; denotes the uniform distribution over [¢].

C.1 Lower bound

Given a reference distribution ¢, 0 < 1 < g3 < 1 and § > 0, let SC(q,e1,€2,d) denote the minimum
number of samples (in the Poissonized sampling model) any tester requires from an unknown distribution p
to correctly distinguish between ||p — ¢|j1 < €1 and ||p — ¢||1 > €2 with probability at least 1 — 6.

Our main tool will be the following theorem relating the lower bound of testing uniform distributions to
the lower bound of testing for general q.

Theorem C.1. For any distribution q over [n], subset S C [n] such that pgs > 1,0<e1 <& and § > 0,

SC(Q75175235) > !

_ - . if 4e;  4dea 8).
2105 SC(Unifp, s, ¢ ,9)

ew

Proof. For any S C [n] and any distribution p over [p,,s], we derive a distribution p"*" over [n] such that

[P — qlly = #PHP — Unif,, [|1 and, for any m > 0, Poi(m) samples from p can be used to generate
Poi (4m/q(S)) samples from p¢¥, with the knowledge of just ¢ and not of p and p*°V. Then the statement

of the theorem follows, since to distinguish ||p — Unif,_ .|l; < 4(531) and [|p — Unif, .[[; < 4(552’) one can use

new new

samples from p to generate samples from p"*V and test ||[p™*V — ¢q||; < &1 vs ||p™*" — ¢||1 > &2 instead.

The rest of the proof focuses on obtaining such a distribution p"°¥

Fix any S is a subset of [n] such that p, ¢ > 1, and let ||gs|lcc = max;es ¢;- Consider a partition of S into
S1,82,...,8p (for some ¢ > 1) such that ¢(S;) € [||gs|locs2]/¢slleo) for every j € [£]. Such partition exists,
and can be obtained by a greedy construction. Since the mass of each S} is less than 2||gs||~, We also have
that £ > 5 a( H) > Pg,5-

Given a distribution p on [pg 5], we define p as follows. For every 1 < j < pg g (i.e., the first pg g
subsets), each element i € S} is given the probability

i = Qi + ¢+ = — 35
P =qi+q 14(5,) P; Pus (35)

new

while every i € i>pas S; is assigned the probability p;'°" = ¢;. Next we show that p"®" is indeed a

distribution, and can be sampled given samples from p and knowledge of ¢ only.

e For i ¢ U] <po s Jj» since pi®¥ = g;, we have pi” > 0. Moreover, the count Poi(mg;) can clearly be

generated w1t11 the knowledge of ¢, m only.

e For j < p, s and any element ¢ € S, note that

1 1 1 1
p?ew g + q; q(S) (j )Z P — G Q(S) > i—Qiﬂ'iz . AMZO.
4q(5;) 49(S;)  pq,s 4lgslloe  Pq.s 2pq,5

K3 K3

Pq,S

Using the standard properties of Poisson processes it is easy to see that for any j < pg g, a sample
from Poi(mp,) and the knowledge of g suffice to generate Poi( 22 PG epPe™) samples for each i € S;.

3 As mentioned earlier, we slightly abuse the @ and €2 notation in those two statements to also hide logarithmic factors in n,
not just in the argument.
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e Finally,

S 1 S
S =Y ar ¥ asimey (v ) =+ 1P S owet) =1

i€[n] i€[n] 7<pq,s

This shows that p"°% is indeed a distribution.

To complete the proof, it only remains to relate the ¢; distances, which we do now.

new 1 () 1 q(S) ,
T o -ai= ¥ S aihln L5 8 - |- - v
§<pq,s i€S; Pa.s J<pq.s Pa.5
as claimed. O]
The lower bound from Theorem 3.1 implies that for any subset S such that p;s > 2 and 0 < 4(51) <

;(ESQ) < ¢ (for some universal constant ¢ > 0),

L der dey _ o 49) pas e1y |, a(S)pys (1)
SC(Umqu,S?q(S),q(s)A/E))—Q( oz n (€%)+ Tog 7 <5§) :

Combining this bound with the above theorem and using the observation that if p; ¢ <2 then p; s—2 <0
and pg s - q(S) <0, we get:

Corollary C.2. For any distribution q over [n], 0 < &1 < g5 < 1, and some universal constant ¢ > 0,

SC(q,51,52,4/5)>Q< max ((pq,s—z) 1(51)+(pq,s—2) 1(51) ))

SCln):q(S)>4ea/c, logn \&3 logn \&3

We would like to relate this bound, which involves a maximum over subsets S and the quantity p, s, to
a more interpretable expression involving the 0- and 1/2-quasinorms of ¢, as stated in Theorem 1.3. Our
next two lemmas will allow us to do so.

Lemma C.3. For any x € (0,1) such that ||q—g|l0 > 1, there exists some i* € [n] such that for A = {j :
q; < gi'} the following holds: (i) maxjea q; = ¢;», (1) g(A) > x and (i) % > %

Proof. Without loss of generality, we can assume that the distribution ¢ = (q1, ¢a, .., ¢») is non-increasing,
that is that g1 > g2 > .... > g,. This in particular implies that [|¢_z[lo = max{i: > ;5 q; > x}

Note that for any i* € [n] property (i) holds trivially, and property (ii) holds for any * < ||g—z|l0, as
q(4) = Z:jeA 9 = Zj:QJSqi* 4 = ZJUZZ* % = Z]UZHQ—w”O 4 = -

To complete the proof, it thus suffices to establish (iii) for some i* < ||g_.||o; that is, to find i* < |lg_z]lo
such that

> jeads S D jsic 4 S lg—zllo — 1
@ ¢ In(l/2)

Since if % < 1 this trivially holds for every i* < ||g_.|lo, in what follows we assume % > 1.

Suppose by contradiction that for every i < ||¢_z|lo, we have quzf %< ”(f;(’i”/(;;l; equivalently, that

In(1l/x In(1l/x . . .
G > (s q])# Hence, > s, 65 = Q5 ) — @ < (X5 qj)(l - m) By induction, this
gives

lla—zllo—1 In(1 lla—allo—1
S o< Yy (1_111(1/“")) :(1_”11(”/33)1) <e /) = g
q—=zl|l0 —

5>lla—zllo =1 lg—zllo —1

where we used that 0 < 1 —wu < e ™ for u € (0,1). But, by definition >, ¢ = x: thisis a
contradiction, concluding the proof. B O
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T la—zllx
Lemma C.4. For any distribution q over [n] and x € (0,1), maxgcn].q(s)>z Pg,5 = W —4

Proof. Let D = max{S : ¢(S) < x} be a largest subset that has mass < z under ¢q. From the definition of D
it is not hard to see that we can choose D such that min;e[,)\p ¢; > max;ep g;, and

r < ZEZI:) ¢ + in g <(D+1) in gi < n i g,
therefore, min;ep,)\p ¢ > 7.
Next, we perform a “bucketing” of the remaining elements; that is, we partition [n] \ D in subsets so
that the probability assigned by ¢ to any two elements in the same subset differ by at most a factor 2. Let
¢ = [log(2)] + 1 and for j € [{], let

2 2

lg—alliz=| D D" ¢ | <Pmax| Y ¢%| < max|Dy|-q(Dy), (36)
jEl]ieD; I€l\ jep, J€lt]

. 1 1
Dj = {Z € [n] \D 1 q; € (2]’ 5i—1

We can write

the last inequality being Cauchy—Schwarz. Let j* € [{] be the index maximizing the term on the left, and
choose S = Dj« UD. Since Dj« is non-empty, from the definition of D, we have ¢(S) > z. Further,

a(S) > iep,.up i >iep,. i |D;-|-277" | _ |D;-
2|lgs ]| o 2maxX;ep,.uD i 2maxiep,. qi 2.27J 4
Putting together (36) and (37), we get
lg—all1/2
;72/ < [Dj+| - a(Dj) < [Dj+] - 4(S) < (pg,5 +4)(4(5)) < pg,s - ¢(5) +4
which concludes the proof. O

Combining Corollary C.2 and the above two lemmas for © = 4e5/¢, for some universal constant ¢ > 0,
any distribution ¢ over [n], 0 < &1 < g9 < ¢/4,

||Q—4£2/c”0 1 €1 ||q—482/CH1/2 1 €12
4/5) > Q| ——— -3 - = — = -6 - — .
SC(q,e1,€2,4/5) > <( In(c/4e2) 3 logn <€§) + log?(nc/4es) 6 logn(sg)

lla_crc, H2/3—1)
— =
3

By combining the above lower bound with previously known lower bound Q( for non-tolerant

identity testing from [VV14], where ¢’ > 0 is an absolute constant, we obtain:

Theorem C.5. For any distribution q over [n], 0 <&y < g2 < ¢/4, for some universal constant ¢ > 0,

~ £ €1\ 2 ||q746 c||23 1
0 e1.22.4/5) = @ la-sewelo () + loaarllya () + 4722 ) — 0 5 ).
€3 € €3 €3

This establishes the lower bound part of Theorem 1.3.

C.2 Upper bound

The proof of our instance-optimal upper bound follows the same outline as [DK16, Proposition 2.12], yet
the extension to tolerant testing requires a significantly more detailed argument.
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Theorem C.6 (Identity testing). Let ¢ be a known reference distribution and p be an . There is a computa-
tionally efficient algorithm with the following guarantee. Given a known reference distribution q over [n], as
well as parameters €1,e9 such that 0 < ey <1 and 0 <&y < cm (where ¢ > 0 is an absolute constant),
the algorithm takes

) €1)? €1 1g—c, /20l 2
O<”q—€2/20|§(€2> + ||Q—52/20H0(;2) + 5723 .
2 2

2

samples from an unknown distribution p over [n] and distinguishes between ||p — q||1 < &1 and ||[p—q|1 > &2
with probability at least 4/5.

Proof. Let D = argmax{S : ), ¢ ¢ < £2/20} be a largest subset that has mass < £5/20. From the definition
of D it is easy to see that we can choose D such that min;c[,)\p ¢; > max;ep g;, and thus

€2 . . .
— < i+ min ¢, <(D+1) min ¢; <n min ¢,
20 %;qz i€[n]\D ¢ < )ie[n]\D e i€[n]\D i

which implies that min;e[,\p ¢ > 57 - Moreover, given the full description of ¢, this set D can be efficiently

computed. We then (as in the lower bound section) “bucket” the remaining elements [n] \ D into disjoint
subsets so that the probability assigned by ¢ to any two elements in the same subset differ by at most a
factor 2. That is, for £ := Llog(%")J + 1 and j € [¢], we let

D, = {z’e[n]\D:qie (21]2311]} (38)
We denote by p’ and ¢/ the conditional distributions on D; induced by p and g, respectively. With this in
hand, we get the following:
Claim C.7. If ||p — q|1 < €1, then all three conditions below hold simultaneously:
1. p(D) <e1+ 53 and
2. for every j € [¢], [p(D;) — ¢(D;)| < €1, and
2¢;

3. for every j € [{], ||p’ — ¢ |1 < Nk

Proof. We prove the claim by showing that if any of the three conditions fails to hold then we must have
llp — gll1 > e1. Note that, by the triangle inequality,

L 4
lp=all ==l + 32 3 o = ail = p(D) = a(D)] + 3 p(Dy) — (D)l

i€D j=1ieD;

Recalling that ¢(D) < 2, it is easy to see that if either of the first two conditions fails to hold, the above

inequality implies that ||p — ¢||1 > 1. Turning to the third condition, we can write
I — o'l = - < - + -
EZD: p(D;)  a(Dj) GXD: a(D;)  a(D;) ez,; p(D;)  a(Dj)
Yiep, i — @il +1p(D5) —a(Dj)| 23 cp, IPi — 4il _2lp—dlh
a(D;) - a(D;) ~ a(Dy)

which shows that if the third item fails to hold for some j, then ||p — ¢|j1 > 1. O

Di qi Di qi Di Di

The next claim then provides a qualitatively converse statement.

Claim C.8. Suppose that p satisfies all three conditions below:
1. p(D) < %,
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2. for every j € [{], [p(D;) — q(Dj)| < 7%, and
3. for every j € [¢] such that ¢(D;) > B, 7 —¢’ll1 < 5&1 (b)) -
Then, we have ||p — q|j1 < ea.

Proof. Suppose that the three conditions hold. By the triangle inequality, we have

¢
Ip —dallx =Z|pi—qz‘|+z Z lpi — ail

ieD j=1ieD;
4di
< (D) +a(D) + X Y aty[ - ]
j=1li€eD; ) q(DJ)
¢
Di
5+ Y o - DIPIXIC ~ D
j=14€D; ]) j=1ieD; J) q( ])
+Zq ! — ¢ H1+le a(Dy)|
j=1
€ € ¢ €
2 2 2
<=4+ = j - — <&y,
S5 T |! z:: b;) 5£q 5tq(Dy) | T 100 <
where we used the three conditions for the second-to-last inequality. O

Given the above claims, we can describe our testing algorithm. First, the algorithm computes the set D,

the value ¢, and the bucketing of [n]\ D into Dy,..., Dy. Then, it runs a total of (at most) 2¢ 4 1 sub-tests,
which we will detail momentarily:

(1) Distinguish p(D) < §2 + &1 (accept) from p(D) > 2 (reject),

5
(2) For every j € [¢], distinguish [p(D;) — q(Dj)| < &1 (accept) from |p(D;) — q(D;)| > 1% (reject), and

(3) 501? evt;ryj € [{] such that ¢(D;) > £, distinguish P! —¢?]l1 < eqz(EDlj) (accept) from ||p? —¢7||; > 5€q(D 505
reject).

If all the above testers accept, the overall tester accepts (i.e., outputs ||p — ¢||1 < €1); otherwise, it rejects
(i.e., outputs ||p — ql|1 > e2).

From Claims C.7 and C.8, it is not hard to see that if €1 < e5/(40¢) and all the above testers give
correct outputs with probability at least 1 — m each, then we correctly distinguish ||p — ¢|]1 < &1 and

lp — gll1 > e2 with probability at least 1 —1/5 = 4/5 (by a union bound). We now proceed to describe how
those tests are implemented.

e Using O(lzf %@) = O(%) samples from p one can estimate p(D) and p(D,) for every j € [{]

2

to an additive e5/(20¢) with probability at least 1 —

(2)-

e Theorem 2.1 provides a tester that, for any fixed j, distinguishes between ||p/ — ¢]|; < ZqQ(%_) and
J

W—H) each, which gives us the testers for (1) and

lp? — ¢’ ll1 > 5TalD; Sta(pyy With probability of success > 4/5 and uses

o <|Dj| (M)Q + |Dj|(€1(€g§(Dj)) L& a(D;))*v/ |Dj|>

2 2
€3 €3

samples from p’. By standard amplification arguments one can achieve a probability of success of
1-— m at the cost of a multiplicative O(log(1/¢)) factor in the sample complexity.
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To use this in order to obtain the tests required for (3), note that for any j € [¢] such that ¢(D;) > £ if
lp(Dj) —q(Dj)| > 7% then the correspondlng test from (2) already outputs reject with high probability;
so we can assume that p(D;) > q(D;) — i& > q(D;)/2. In this case for any m > 0, using m
samples from p, we can get Q(mp(D;)/logl) = Q(mq(Dj)/log ¢) samples from p’ with probability
at least 1 — 1/(10¢%). Note that we can use the same overall set of m samples from p to obtain our
m; = Q(mq(D;)/log¥) samples from every p’, j € [¢].

This gives us the testing algorithms for (3).

Combining these bounds, we get the following upper bound on the sample complexity:

O L)+ ma 5L .o<|pj|(51<€ AP p, (AL gD, (LoD |Dj>

€5 jet q( €5
A1 ~ _ €12 (€1 Q(Dj)\/m
= O(€%>) + %1?§0<|DJ|Q(DJ)(E§) + |Dy|(g) + T

_ Al 25-j (€1 (e L 270Dy )32
_O(€%>)+max(’)<|D|2 (eg) +|DJ|(€§)+ = :

where the last line uses the definition of D; in (38) (the “bucketing”) to relate ¢(D;) to |D;,|.
To conclude, we observe that

l9-c2/20llo = n = [ D] = max | D]

lg—ca/20ll3 = ( qu“z )" = max(|D;[2” irzye,

JjEK])i€D;
3/2
1g—5 /20012 = Z Z 2/3 / >mag<(|D 12724/3)3/2,
jE[] i€D; jel]

Combining the above four equations, and using |‘Q—ag/20||§ = Q(1), we get the following upper bound on

the sample complexity:
~ £1\2 €1 Hq762/20||,2
o (3" () + 122201
<|q es/200 1 2 + l1g—c2 20llo 22 + 22

This concludes the proof of the theorem. O
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