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Abstract

Accurate estimation of disease prevalence is essential for mitigation efforts. Due to limited

testing resources, prevalence estimation is often conducted via pooled testing, in which multiple

specimens are combined and tested via a single test. The pool design, i.e., the number and sizes

of testing pools, has a substantial impact on estimation accuracy. Determining an optimal pool

design is challenging, especially for emerging or seasonal diseases for which information on the

status of the disease is unreliable or unavailable prior to testing. We develop novel optimiza-

tion models for testing pool design under uncertainty and limited resources, and characterize

structural properties of optimal pool designs. We apply our models to estimate the prevalence

of West Nile virus in mosquitoes (the main vector of transmission to humans). Our findings

suggest that estimation accuracy can be substantially improved over the status quo through the

proposed optimal pool designs.
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1 Introduction

As the current pandemic resulting from the worldwide spread of COVID-19 continues to demon-

strate, surveillance is essential for responding to emerging or seasonal diseases. For other recent

examples, consider the 2016 outbreak of the Zika virus [5,35], or the 2002-2003 outbreak of the West

Nile virus [24]; during both outbreaks, surveillance was crucial for response planning. Surveillance

involves the activities of collection, analysis, dissemination, and response [13]. Among these com-

ponents, collection and analysis activities are conducted frequently at many levels of the healthcare

system, including local, state, federal, and international levels, by both public and private agencies,

with a main goal of estimating the prevalence of the disease in question [13], which is the focus of

this paper. An accurate estimate of disease prevalence is important, as it is a key input to various

other surveillance activities, including outbreak detection, response and prevention evaluation, and

prediction of the impact of various healthcare services (e.g., [13, 16, 58]). However, it is often the

case that testing resources (e.g., budget) available for prevalence estimation is very small relative to

the needs [13]. As a result, prevalence estimation via individually testing of each subject is either

infeasible (e.g., [55, 56]), or highly inefficient in that it leads to small sample sizes, and hence to

potentially inaccurate estimates [26,55].

A solution to both prevalence estimation and subject identification (i.e., identification of all

infected subjects) under limited resources came from Dorfman in the 1940’s [15]. Dorfman’s idea

was to use pooled testing, by combining specimens (e.g., blood, urine, tissue swabs) from multiple

subjects in a single testing pool and testing the pool via a single test [15]. Over the years, pooled

testing has been extensively studied, and shown to be a highly efficient approach under limited

resources for both prevalence estimation and subject identification problems, and today it is a

widely used testing method for both purposes (e.g., [16, 28, 45, 52, 58]). When pooled testing is

used for the purpose of prevalence estimation, it often involves testing of the pools only (i.e.,

without any follow-up testing on individual subjects in positive-testing pools), within a single-stage

pooled testing process, as the goal is to derive an accurate estimate of the disease prevalence rate

(e.g., [23, 28, 37, 38]). While sequential pooling strategies, i.e., multi-stage pooled testing processes

with stage-dependent pool sizes, are possible (e.g., [41, 58, 61]), such strategies are more difficult

to implement in practice. As a result, the simple, single-stage pooled testing strategy described
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above is commonly studied and used for prevalence estimation. This is especially true when the

goal is to estimate the prevalence of “sources” of vector-borne viral or bacterial diseases, e.g.,

mosquitoes carrying Zika virus or West Nile virus (e.g., [44]) or romaine lettuce carrying E. coli

bacteria (e.g., [6]). Because one of our objectives is to provide actionable and practical insights for

decision-makers, we focus on this single-stage pooling strategy throughout the paper, and propose

the study of sequential pooling strategies, and their potential benefit, for prevalence estimation as

a future research direction in Section 6.

The test measures the pool’s concentration of a certain bio-marker, which serves as an indicator

for the presence of the virus or bacteria of interest. The pool’s bio-marker concentration is then

compared with a preset bio-marker threshold, to produce a binary test outcome: positive if the pool’s

bio-marker concentration equals or exceeds the bio-marker threshold, suggesting the presence of

at least one infected specimen in the pool, and negative if the pool’s bio-marker concentration is

lower than the bio-marker threshold, suggesting that all specimens in the pool are infection-free;

and inference on the unknown prevalence rate is made based on the testing data. Thus, the test’s

sensitivity (true positive probability) and specificity (true negative probability) depend on both

the number of infected specimens in a pool, and the bio-marker concentration of each infected

specimen, where the latter depends on the stage of the infection [40,41]. In this paper, we make a

simplifying assumption, common in the pooling literature, that the test is perfectly reliable, that

is, it has perfect sensitivity and specificity. In this case, the test outcome will be positive if there

is at least one infected specimen in the pool, and the test outcome will be negative otherwise; we

suggest the relaxation of this assumption as a future research direction in Section 6.

The efficiency and effectiveness of the estimation process depend critically on testing pool design,

that is, the number of pools to test and the pool size (i.e., the number of specimens to combine

in each pool) (e.g., [7, 41, 49, 53]). Determining an optimal testing pool design is difficult, because

there is often limited, and highly uncertain, information on the status and dynamics of a disease

prior to a surveillance study, especially for emerging or seasonal diseases, but an initial estimate

on disease prevalence is a key input to pool design. Further, research that develops optimal pool

designs for prevalence estimation is quite limited. The majority of the relevant literature focuses on

the “estimation” component, i.e., derivation of an accurate prevalence estimate from testing data,

for a given pool design. This stream of research includes studies that investigate the characteristics
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of the widely used maximum likelihood estimator (MLE) of the prevalence rate in various settings

(e.g., [8,9,53]), and develop various approaches for bias reduction in the MLE (e.g., [3,19,26]), as well

as studies that investigate alternative methods for deriving an estimator, such as Bayesian analyses

(e.g., [17, 43, 51]), or regression analyses (e.g., [10, 18, 27, 57, 60]). On the other hand, only a few

studies discuss the pool design component, and mainly in the context of pool size determination for

a fixed (exogenous) number of testing pools, under both perfect tests (e.g., [29,30,46]), and imperfect

tests (e.g., [20, 37, 55, 56, 62]). However, the aforementioned studies on pool size determination are

mainly numerical in nature, and the optimal pool size is not fully characterized in an analytical

manner, with the notable exception of the work by Liu et al. [37], which derives various properties

of the asymptotic variance function (a commonly used metric for pool design). While modeling

and optimization efforts for testing pool design are lacking, it has been shown that a pool design

that relies highly on an initial point estimate of the prevalence rate, or that corresponds to an

exogenously fixed number of testing pools, can result in highly inaccurate estimates of the prevalence

rate [29,30,41].

Motivated by these gaps in the literature, in this paper we develop and study novel models

for testing pool design under uncertainty and limited resources (e.g., testing budget). Specifically,

we study the pool design problem in two settings: (i) the number of testing pools is fixed exoge-

nously and cannot be altered (single-variable pool design problem), and (ii) the tester has control

over both the number of pools and the pool size (joint pool design problem). The first setting

applies, for example, when there is a limited number of testing kits, which can be an important

constraint in disease testing (e.g., [1,2,37,48]), and hence the tester can only control the pool size.

Almost all existing studies on pool design for prevalence estimation focus on this first setting (i.e.,

single-variable pool design problem), as discussed above. Thus, our study of the single-variable

pool design problem is important in its own right, and provides a contribution to this literature in

that this paper is the first to analytically characterize the optimal solution to the single-variable

pool design problem. In addition, this paper contributes to the existing literature on pooled testing

for prevalence estimation through introducing novel models, including the joint pool design prob-

lem, and novel, robust variations of both the single-variable and the joint pool design problems.

These novel formulations are important in practical applications, because they do not require the

distributional information of the prevalence rate, but only its support. We establish key structural
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properties of optimal pool designs for all models, which allow us to analytically characterize the

form of an optimal pool design and obtain an optimal pool design in a highly efficient manner in

each setting. Not surprisingly, our study of the joint pool design problem also indicates that a

joint optimization of both the pool size and the number of pools can provide substantial benefit,

providing a more accurate estimate at the same testing budget. We complement our analytical

results with a case study on the prevalence estimation of West Nile virus in mosquitoes. This case

study illustrates that a joint optimization of both the pool size and the number of pools can provide

substantial benefit, providing a more accurate estimate at the same testing budget; and the use

of robust models, and especially the robust version of the joint pool design problem, helps correct

inaccuracies in input parameters, further improving estimation accuracy, again without requiring

an increase in the testing budget.

The remainder of this paper is organized as follows. Section 2 presents the notation and model-

ing assumptions, and formulates the pool design optimization models. Then, Section 3 establishes

key structural properties of pool design optimization models, Section 4 provides analytical charac-

terization of optimal pool designs, and Section 5 demonstrates the benefits of optimal pool designs

through the West Nile virus case study. Finally, Section 6 concludes with a discussion of our find-

ings and suggestions for future research. To facilitate the presentation, some supporting results

and all mathematical proofs are relegated to the Appendix.

2 Notation, Assumptions, and Models

Section 2.1 introduces the notation and discusses the modeling assumptions; and Section 2.2

presents pool design optimization models. A summary of notation can be found in Appendix

A.

2.1 Notation and Assumptions

Throughout, we denote random variables in upper-case letters and their realization in lower-case

letters; and use “;” to denote probabilistic conditioning, or an exogenous parameter.

Consider a disease with prevalence rate, p, which needs to be estimated via pooled testing.

The tester models the unknown prevalence rate as continuous random variable P , whose moments
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and support are unknown to the tester. We develop distribution-free models for pool design opti-

mization, that is, our models do not require the distributional form of P , and solely rely on either

its point estimate, denoted by p0 (deterministic pool design), or estimated support, denoted by

[pLB, pUB] (robust pool design). We study the pool design problem in two settings: the setting in

which the tester needs to determine both the pool size, m, and the number of pools to test, n

(joint pool design problem – Problem J); and the setting in which the tester needs to determine

only the pool size, m, for a given number of pools (single-variable pool design (pool size) problem

– Problem S). In both settings, the tester has a limited testing budget, and wishes to obtain an

accurate estimate of the unknown prevalence rate, i.e., to minimize the asymptotic variance of the

estimator, as we discuss below. While the optimal design generated by Problem J (i.e., through

joint optimization) is clearly more desirable, Problem S continues to apply in practice when the

number of testing kits is pre-determined and limited (e.g., [1, 2, 37, 48]), and our study of Problem

S offers practical relevance in those cases.

Testing incurs a fixed testing cost (e.g., cost of the testing kit), of cf per pool, and a variable

cost (e.g., specimen collection and preparation cost), of cv per specimen tested, with cf > cv, and

the tester has a testing budget of B. While these costs are typically test- and disease-dependent, in

general, the fixed testing cost cf is much larger than the variable cost cv. For example, considering

the West Nile virus, for the reverse-transcription polymerase chain reaction (RT-PCR) assay used

in our case study, cf is around $72 per test, while cv is around $4 per specimen (based on [25]);

while for an antibody assay, the fixed and variable costs are around $1.35 and $0.04, respectively

(e.g., [41, 61]). Then, in Problem J, the feasible set for decision variables m and n is given by,

F(m,n) ≡ {m,n ∈ Z+ : cfn+ cvmn ≤ B}, while in Problem S, the feasible set for the single decision

variable m, for a given value of n ∈ Z+, is given by, F(m;n) ≡
{︂
m ∈ Z+ : m ≤ M

S
(n) ≡

⌊︂
B−cfn
cvn

⌋︂}︂
.

The objective is to design testing pools so as to minimize the asymptotic variance of the es-

timator, which is a commonly used objective for both pool design (e.g., [30, 37, 54, 56, 57]), and

for assessing the accuracy of an estimator (e.g., [36, 50]). The asymptotic variance, σ2(m,n; p),

corresponding to a true prevalence rate p, represents the limiting behavior of the mean squared

error (MSE) (i.e., variance plus bias square) of an estimator P̂ , MSE(P̂ ,m, n; p), as the number

of pools, n, becomes large, and is commonly used because, in general, the MSE is analytically

intractable (e.g., [30, 31, 37]). The asymptotic variance also provides a strong lower bound (i.e.,
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through the Cramer-Rao lower bound) on the Fisher’s information obtained from the prevalence

estimate (e.g., [4]), and hence is also utilized in the pool design literature when the objective is to

maximize the Fisher’s information, because obtaining an explicit analytical expression for Fisher’s

information often proves to be intractable (e.g., [29, 58]). Following common terminology, we refer

to a pool design as efficient if it minimizes the asymptotic variance (e.g., [29, 30,58]).

On the testing side, we consider a test that can be applied to pools of specimens collected from

subjects (i.e., m ≥ 2) as well as to individual specimens (i.e., m = 1). We assume that the test

is perfectly reliable and provides a binary outcome, that is, the test has perfect sensitivity and

specificity, thus providing a positive outcome only if there is at least one true-positive specimen

in the pool, and a negative outcome only if all specimens in the pool are true-negative. This is a

reasonable assumption, especially for assays that utilize the nucleic acid amplification technology

for detecting the viral RNA in specimens, see, e.g., [42], and we consider such a test, namely the

the reverse-transcription polymerase chain reaction (RT-PCR) assay, in our case study (Section

**).

We estimate the unknown prevalence rate via the commonly adopted maximum likelihood

estimator (MLE) (e.g., [30]), given by:

P̂ = 1−
(︂
1− T (m,n; p)

n

)︂ 1
m
, (1)

where T (m,n; p) denotes the random number of positive-testing pools among n pools, each con-

taining m specimens, that is, for m = 1 (i.e., individual testing), T (1, n; p) ∼ Binomial(n, p), while

for m ≥ 2 (i.e., pooled testing), T (m,n; p) ∼ Binomial(n, 1− (1−p)m), given a true prevalence rate

of p (i.e., a realization of random variable P ), and the term, 1− (1− p)m, denotes the probability

that a random pool tests positive, i.e., the probability that it contains at least one true-positive

specimen. As n becomes large, the bias incurred by P̂ becomes negligible, and only its variance

remains, i.e., the asymptotic variance of P̂ represents the asymptotic behavior of the MSE of P̂ .

The asymptotic variance of P̂ , given a true prevalence rate p, then follows (e.g., [30]):

σ2(m,n; p) =
1− (1− p)m

nm2(1− p)m−2
. (2)
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Note that for the special case of individual testing, we have that σ2(1, n; p) = p(1−p)
n . A detailed

derivation of σ2(m,n; p) is given in [30].

2.2 Models for Pool Design Optimization

We formulate and study a deterministic optimization model, which relies only on a point estimate

of P , given by p0; and a robust (mini-max) optimization model, which relies only on an estimated

support of P , given by [pLB, pUB], for both the single-variable and joint pool design problem

settings. Thus, the only input needed for the robust models in both the single-variable and joint

pool design problem settings is the support of P , i.e., [pLB, pUB]; not its distribution nor its

point estimate, both of which can be quite difficult to estimate in practice. This is a highly

desirable property of the robust models, facilitating their implementation in practice, especially for

emerging or highly dynamic diseases. Further, both robust models perform quite well, as we show

subsequently in the case study.

We use model indices D and M to respectively refer to the deterministic and robust models,

followed by problem indices S and J to respectively refer to the single-variable and joint pool design

problems, e.g., D-S denotes the deterministic Problem S. We also use the notation D-X and M-X,

X ∈ {S, J}, when an expression or a result applies to both Problems S and J. Model formulations

follow:

Joint Pool Design Models: Single-variable Pool Design Models:

Deterministic (D-J) Model: Deterministic (D-S) Model:

minimize
(m,n)∈F(m,n)

σ2(m,n; p0) minimize
m∈F(m;n)

σ2(m;n, p0)

Robust (M-J) Model: Robust (M-S) Model:

minimize
(m,n)∈F(m,n)

{︁
maxp∈[pLB ,pUB ]

{︁
σ2(m,n; p)

}︁}︁
minimize
m∈F(m;n)

{︁
maxp∈[pLB ,pUB ]

{︁
σ2(m,n; p)

}︁}︁

We use the superscript * to denote an optimal solution, e.g., (m∗
D−J , n

∗
D−J) denotes the optimal

solution to the D-J Model.

To our knowledge, only the D-S Model is utilized in the existing literature, i.e., for a given num-

ber of pools, n, under different objective functions, including the minimization of the asymptotic

variance [30,37], maximization of the Fisher’s information via the Cramer-Rao lower bound, which
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reduces to a function of the asymptotic variance [29,61], or maximization of the probability that a

random pool tests positive [55], but research that establishes the model’s structural properties and

characterizes its optimal solution is limited, with the notable exception of Liu et al. (2011) [37],

as we detail below. Thus, our analysis of the D-S Model provides a contribution to the literature

in its own right; and the D-J, M-S, and M-J Models that we study are novel. In particular, we

build upon the properties developed by Liu et al. (2011) [37], while considering perfect tests ( [37]

also considers imperfect tests). However, instead of assuming a given number of pools (n), or a

given number of specimens tested (mn), i.e., using single-variable optimization as in [37], we also

jointly optimize over both the pool size, m, and the number of pools, n, while explicitly accounting

for the budget constraint. Further, our formulation of the robust models in both settings is novel,

as discussed above. We fully characterize the optimal solutions to all models by establishing new

structural properties of optimal pool designs.

3 Properties of the Asymptotic Variance Function

In this section, we establish key properties of the asymptotic variance function, σ2(m,n; p). In

particular, we first study the setting with a fixed (exogenous) n value (Section 3.1), followed by the

setting where n is optimally set (endogenous) (Section 3.2). All mathematical proofs can be found

in Appendix C.

3.1 Asymptotic Variance Function for an Exogenous Number of Pools

The single-variable pool design problem Problem S, i.e., with an exogenous number of pools, n,

has received some attention in the literature. We first provide the relevant definitions and the

properties previously established in the literature.

Definition 1. (From [37]) For any n,m1,m2 ∈ Z+: m1 < m2, the prevalence threshold, π
S
0 (m1,m2, n) ∈

(0, 1), is defined as the prevalence rate at which σ2
(︁
m1, n;π

S
0 (m1,m2, n)

)︁
= σ2

(︁
m2, n;π

S
0 (m1,m2, n)

)︁
.

By this definition, the prevalence threshold for any pair of pool sizes, m1 and m2, is the prevalence

rate for which the asymptotic variances at these pool sizes are equal for a given number of pools,

n, as we discuss in more detail following Proposition 1. For the exogenous n setting, Liu et al
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(2011) [37] provides the following property on the prevalence threshold, πS
0 (m1,m2, n), and studies

the behavior of the asymptotic variance function mainly through numerical studies.

Proposition 1. (From [37]) For any n,m1,m2 ∈ Z+: m1 < m2, there exists a unique π
S
0 (m1,m2, n) ∈

(0, 1). Further:

σ2(m1, n; p)

⎧⎪⎪⎨⎪⎪⎩
> σ2(m2, n; p), ∀p < πS

0 (m1,m2, n)

< σ2(m2, n; p), ∀p > πS
0 (m1,m2, n)

.

Proposition 1 illustrates one of the key properties of the prevalence threshold. In particular, as

discussed in [37], Proposition 1 implies that, for a given n, a smaller pool (of sizem1) is more efficient

than a larger pool (of sizem2), in terms of minimizing the asymptotic variance, only if the prevalence

rate p is sufficiently high, in comparison to the prevalence threshold, i.e., p > πS
0 (m1,m2, n), and

vice versa.

In the following, we establish various other properties of the asymptotic variance function,

σ2(m,n; p), and the prevalence threshold, πS
0 (m1,m2, n), for a given n. These properties not only

enable us to solve the single-variable pool design problem, i.e., Problem S, to optimality but also

confirm the numerical observations by Liu et al. (2011) [37], further contributing to the literature

on the single-variable pool design problem for prevalence estimation. In particular, Liu et al.

(2011) [37] numerically observes that when n is exogenously fixed, the prevalence threshold below

which pooled testing (i.e., with m ≥ 2) is more efficient than individual testing (i.e., with m = 1),

given by πS
0 (1,m, n), decreases in m. In Lemma 1, we formally establish this result for perfect

tests, for a general case with any m1,m2 ∈ Z+ : m1 < m2.

Recall that σ2(m,n; p) =
(︁
1
n

)︁(︁ 1−(1−p)m

m2(1−p)m−2

)︁
(Eqn. (2)). Then, by Definition 1, when n is fixed, for

any m1,m2 ∈ Z+ : m1 < m2, the prevalence threshold πS
0 (m1,m2, n) equals the prevalence rate p

for which σ2(m1, n; p) = σ2(m2, n; p), equivalently, it is the value of p for which
(︁
1
n

)︁(︁ 1−(1−p)m1

m2
1(1−p)m1−2

)︁
=(︁

1
n

)︁(︁ 1−(1−p)m2

m2
2(1−p)m2−2

)︁
, or 1−(1−p)m1

m2
1(1−p)m1−2 = 1−(1−p)m2

m2
2(1−p)m2−2 , that is, the expression of πS

0 (m1,m2, n) becomes

only a function of m1 and m2, and is independent of n. Therefore, dropping n, we simply use the

notation, πS
0 (m1,m2). Thus, all subsequent results in this section hold for any n ∈ Z+. We first

provide an analytical expression for the prevalence threshold function, which allows us to not only

determine an optimal solution, but also study the prevalence threshold below which pooled testing

is always more efficient than individual testing.
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Lemma 1. 1. For any m1,m2 ∈ Z+: m1 < m2, π
S
0 (m1,m2) is the unique solution to:

(︄
1

1− πS
0 (m1,m2)

)︄m1

= 1 +

(︄
m1

m2

)︄2[︄(︄
1

1− πS
0 (m1,m2)

)︄m2

− 1

]︄
. (3)

2. πS
0 (m1,m2) decreases as m1 or m2 increases, for 2 ≤ m1 < m2.

3. πS
0 (m− 1,m) > πS

0 (m,m+ 1), ∀m ∈ Z+ : m ≥ 2.

Remark 1. Lemma 1 establishes the necessary and sufficient condition for individual testing to be

the most efficient method for prevalence estimation, that is, individual testing outperforms pooled

testing, with any pool size and for any given number of pools, i.e., σ2(1, n; p) < σ2(m,n; p), ∀m ≥ 2,

∀n ∈ Z+, if and only if, p > πS
0 (1, 2) =

2
3 .

Lemma 1 further indicates that as pool size, m, increases, the prevalence threshold below which

pooled testing is more efficient than individual testing reduces, that is, larger pools are particularly

efficient compared to individual testing for smaller prevalence rates. Lemma 1 also analytically

establishes the behavior of πS
0 (1,m), numerically observed in [37], as discussed above. Prevalence

rates of almost all diseases are well below the threshold of 2
3 , and pooled testing is a commonly

used method for disease surveillance. Thus, Lemma 1 provides an analytical justification for the

widespread utilization of pooled testing for prevalence estimation of diseases.

Next, we demonstrate the behavior of the prevalence threshold function, πS
0 , in pool sizes, which

is analytically established in Lemma 1. To this end, Figure 1 plots the asymptotic variance function,

σ2(m,n; p), for various pool sizesm, and number of pools n = 1, and shows the prevalence threshold,

πS
0 , for various pairs of pool sizes. Because σ2(m,n; p) =

(︁
1
n

)︁(︁ 1−(1−p)m

m2(1−p)m−2

)︁
(Eqn. (2)), the number

of pools, n, alters each asymptotic variance function through a common multiplicative factor, 1/n,

in the single-variable pool design setting. Hence, the relationship between the asymptotic variance

functions at different pool sizes remain unchanged for different values of n ∈ Z+, and πS
0 (m1,m2)

becomes independent of n, as discussed above. By Definition 1, πS
0 (m1,m2) corresponds to the

prevalence rate p for which σ2(m1, n; p) = σ2(m2, n; p) (i.e., their intersection point, which is unique

[37]), see πS
0 (1, 2), π

S
0 (1, 3), and πS

0 (2, 3), marked on the figure. In summary, Figure 1 confirms that

πS
0 (m1,m2) decreases as m1 or m2 increases (e.g., πS

0 (1, 2) > πS
0 (1, 3) and πS

0 (1, 3) > πS
0 (2, 3)), and

πS
0 (m− 1,m) > πS

0 (m,m+ 1), ∀m ≥ 2 (e.g., πS
0 (1, 2) > πS

0 (2, 3)), in accordance with Lemma 1.
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Figure 1: The asymptotic variance function, σ2(m,n; p) for m = 1, 2, 3 and n = 1, and the preva-
lence threshold, πS

0 (m1,m2), for (m1,m2) = (1, 2), (1, 3), and (2, 3)

We also establish several key properties of the asymptotic variance function to gain intuition. In

particular, we show that the asymptotic variance increases as the prevalence rate, p, increases; and

decreases as the pool size, n, increases. Further, the asymptotic variance is strictly convex in pool

size, m, indicating that an optimal pool size, i.e., one that minimizes the asymptotic variance, will

be neither too small nor too large (see Lemma 6 in Appendix B). In addition to providing insight,

the results in this section characterize the structure of the prevalence threshold and asymptotic

variance functions, allowing us to determine an optimal pool size for Problem S in Section 4.

3.2 Asymptotic Variance Function for an Endogenous Number of Pools

Next we study properties of the asymptotic variance function in the joint pool design problem,

Problem J, i.e., when the tester can set both n and m optimally. To this end, we first derive an

expression on the optimal number of testing pools, n∗, in Problem J by relaxing the restriction that

n is integer, i.e., we consider that n is continuous. (We discuss how to incorporate the integrality

constraint on n in Section 5.)

Lemma 2. Consider that n is continuous and non-negative. Then, without loss of optimality, the

feasible region for the joint models, D-J and M-J, given by F(m,n), can be replaced by F(m) =
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{︂
m ∈ Z+ : m ≤ M

J ≡
⌊︂
B−cf
cv

⌋︂}︂
, with n∗(m) ≡ B

cf+cvm
, and

σ2(m,n∗(m); p) =

(︄
cf + cvm

B

)︄(︄
1− (1− p)m

m2(1− p)m−2

)︄
. (4)

Thus, each joint model reduces to one with a single decision variable, m, and its asymptotic

variance function reduces to a function of m and p only, i.e., σ2(m,n∗(m); p).

We next show that many of the properties established for Problem S (Section 3.1) extend to

Problem J. To this end, we first define the prevalence threshold in the joint setting, which, based

on Lemma 2, can be represented as a function of pool sizes only.

Definition 2. For any m1,m2 ∈ Z+ : m1 < m2, the prevalence threshold, πJ
0 (m1,m2) ∈ (0, 1), is

defined as the prevalence rate at which σ2
(︁
m1, n

∗(m1);π
J
0 (m1,m2)

)︁
= σ2

(︁
m2, n

∗(m2);π
J
0 (m1,m2)

)︁
.

Proposition 2. For any m1,m2 ∈ Z+: m1 < m2, there exists a unique πJ
0 (m1,m2) ∈ (0, 1).

Further:

σ2(m1, n
∗(m1); p)

⎧⎪⎪⎨⎪⎪⎩
> σ2(m2, n

∗(m2); p), ∀p < πJ
0 (m1,m2)

< σ2(m2, n
∗(m2); p), ∀p > πJ

0 (m1,m2)

.

Lemma 3. 1. For any m1,m2 ∈ Z+ : m1 < m2, π
J
0 (m1,m2) is the unique solution to:

(︄
1

1− πJ
0 (m1,m2)

)︄m1

= 1 +

(︄
m1

m2

)︄2(︄
cf + cvm2

cf + cvm1

)︄[︄(︄
1

1− πJ
0 (m1,m2)

)︄m2

− 1

]︄
. (5)

2. πJ
0 (m1,m2) decreases as m1 or m2 increases, for 2 ≤ m1 < m2.

3. πJ
0 (m− 1,m) > πJ

0 (m,m+ 1), ∀m ∈ Z+ : m ≥ 2.

Thus, similar to the exogenous number of pools setting (Lemma 1), larger pools remain particu-

larly efficient compared to individual testing for smaller prevalence rates in the more general setting

where the decision maker can set both the number of pools and the pool size. Our characterization

of the prevalence thresholds for the single-variable and joint pool size problems (Lemmas 1 and 3)

allows us to study the impact of joint optimization on pool design.

Lemma 4. For any m1,m2 ∈ Z+ : m1 < m2, we have that πJ
0 (m1,m2) < πS

0 (m1,m2), with the

special case that πJ
0 (1, 2) =

2cf
3cf+2cv

< πS
0 (1, 2) =

2
3 .
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Thus, for any given pair of pool sizes, m1 < m2, a smaller pool size (m1) is more efficient than

a larger pool size (m2) for a wider range of prevalence values in Problem J, compared to Problem

S. Under a testing budget, this in turn allows a larger number of pools to be tested in Problem J,

increasing the efficiency of the estimation.

Similar to the exogenous number of pools setting, we show that the asymptotic variance increases

as the prevalence rate, p, increases; decreases as the pool size, n, increases; and is strictly convex

in the pool size, m, in the more general setting where the decision maker can set both the number

of pools and the pool size. Thus, an optimal pool size m will be neither too small nor too large.

Further, given a sufficiently large budget, the optimal number of testing pools will be as large as

possible to reduce the asymptotic variance (see Lemma 7 in Appendix B).

4 Pool Design Optimization

With the properties established in Section 3, we are ready to characterize the optimal solutions

to the single-variable and joint pool design models. In this section, we limit our analysis to the

case where p does not exceed 1
2 ; this is the most realistic case for disease surveillance studies, as

discussed above.

In the following, we fully characterize the optimal solutions to all the single-variable and joint

pool design models, i.e., D-X and M-X, X ∈ {S, J}. Recall that the testing budget constraint

imposes an upper bound on pool size m, i.e., m ≤ M
S
(n) ≡

⌊︂
B−cfn
cvn

⌋︂
for D-S and M-S, and

m ≤ M
J ≡

⌊︂
B−cf
cv

⌋︂
for D-J and M-J. In Problem S, because the number of pools, n, is exogenously

fixed, the optimal pool size, m∗
S , depends on n only through the upper bound, M

S
(n).

The optimal solutions to D-S and D-J are respectively established by the following theorem.

Theorem 1. For a given p0 and an exogenously fixed n such that n ≤
⌊︂

B
cf+cv

⌋︂
, an optimal solution
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to the D-S Model follows a threshold policy:

m∗
D−S(p0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
S
(n), if p0 ≤ πS

0 (M
S
(n)− 1,M

S
(n))

...

m+ 1, if πS
0 (m+ 1,m+ 2) ≤ p0 ≤ πS

0 (m,m+ 1)

m, if πS
0 (m,m+ 1) ≤ p0 ≤ πS

0 (m− 1,m)

m− 1, if πS
0 (m− 1,m) ≤ p0 ≤ πS

0 (m− 2,m− 1)

...

1, if πS
0 (1, 2) ≤ p0 < 1,

where πS
0 (1, 2) =

2
3 .

Similarly, for a given p0, an optimal solution to the D-J Model follows a threshold policy:

m∗
D−J(p0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
J
, if p0 ≤ πJ

0 (M
J − 1,M

J
)

...

m+ 1, if πJ
0 (m+ 1,m+ 2) ≤ p0 ≤ πJ

0 (m,m+ 1)

m, if πJ
0 (m,m+ 1) ≤ p0 ≤ πJ

0 (m− 1,m)

m− 1, if πJ
0 (m− 1,m) ≤ p0 ≤ πJ

0 (m− 2,m− 1)

...

1, if πJ
0 (1, 2) ≤ p0 < 1,

where πJ
0 (1, 2) =

2cf
3cf+2cv

, and n∗
J(p0) follows from Lemma 2, that is, n∗

J(p0) =
B

cf+cvm∗
J (p0)

.

Thus, the optimal D-X, X ∈ {S, J}, solution is unique if the tester’s initial point estimate, p0,

does not correspond to a prevalence threshold point (p0 ̸= πX
0 (m,m+1), ∀m ∈ Z+); and there are

dual optimal solutions if p0 corresponds to a prevalence threshold point. Further, individual testing,

i.e., a pool size of one, becomes optimal if the prevalence rate p0 is sufficiently high (p0 ≥ πS
0 (1, 2)

and p0 ≥ πJ
0 (1, 2) for the single-variable and joint pool design settings, respectively), and the
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optimal pool size increases as the prevalence rate p0 decreases (see the last part of Lemmas 1 and

3), that is, larger pools are particularly efficient at smaller prevalence rates.

Using the convexity of the asymptotic variance function leads to the following alternative char-

acterization for the optimal solutions to the single-variable and joint pool design problems.

Lemma 5. For the case where p < 1/3, consider D-X, X ∈ {S, J}, and let m′ denote the solution

to the first-order condition (FOC), that is,
{︁
m′ : ∂

∂mσ2(m,n; p0)
⃓⃓
m=m′ = 0

}︁
in Problem S, and{︁

m′ : ∂
∂mσ2(m,n∗(m); p0)

⃓⃓
m=m′ = 0

}︁
in Problem J, or equivalently,

m′ :

⎧⎪⎪⎨⎪⎪⎩
m′ = 2[(1−p0)m

′−1]
log(1−p0)

, for Problem S;

m′ =

(︂
1+

cf
cf+cvm′

)︂
[(1−p0)m

′−1]

log(1−p0)
, for Problem J.

Then m∗
D−X ∈

{︂
m′, ⌈m′⌉, ⌊m′⌋,MX

}︂
.

Next, from Lemmas 6 and 7, we have the following characterization of the optimal solutions to

the robust models.

Theorem 2. For any given n ∈ Z+ : n ≤
⌊︂

B
cf+cv

⌋︂
, Model M-X, X ∈ {S, J}, can be equivalently

formulated as its corresponding Model D-X, with p0 = pUB; and for n >
⌊︂

B
cf+cv

⌋︂
, no feasible

solution to M-X exists.

As input, the robust models, M-X, X ∈ {S, J} need only the support, [pLB, pUB], of the

prevalence rate random variable, P , and not its distribution. Theorem 2 further states that it is

sufficient to provide only the upper bound of the support of P , and not the lower bound. This

further simplifies the input estimation process for the robust models, further facilitating their

implementation. Theorems 1 and 2, along with Lemmas 6 and 7, lead to the following results.

Corollary 1. For X ∈ {S, J}:

1. D-X optimal solution, m∗
D−X(p0), is non-increasing as p0 increases, with m∗

D−X(p0) = 1,

∀p0 ≥ πX
0 (1, 2).

2. M-X optimal solution, m∗
D−X(pUB), is non-increasing as pUB increases, with m∗

M−X(pUB) =

1, ∀pUB ≥ πX
0 (1, 2).
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Thus, it becomes more efficient to test smaller pools as p0 and pUB increase. This property, that

pools should get smaller at larger prevalence rates, is so as to gather some “useful” information

from testing. In particular, if pools are very large when the disease prevalence is high, then it is

likely that many pools will test positive (i.e., contain at least one infected specimen); and similarly,

if pools are very small when the disease prevalence is low, then it is likely that many pools will

test negative (i.e., will not contain any infected specimen); and in either case, the tester will not

obtain much information on the prevalence rate. Thus, an optimal pool design balances these

risks, and attempts to gather some useful information from testing. However, when p0 is a poor

estimate of the true p value, m∗
D−S(p0) can still be highly inefficient, and, further, an outcome of

all positive-testing pools or all negative-testing pools may still occur, as we discuss in Section 5.

Finally, we also study how the testing cost structure affects the optimal solutions to D-X and

M-X, X ∈ {S, J}.

Corollary 2. Let γ =
cf
cv
. Then, for X ∈ {S, J}, both D-X and M-X optimal solutions, respectively

given by m∗
D−X and m∗

M−X , are non-decreasing as γ increases.

This result directly follows from the testing cost structure, where each test requires a fixed

cost of cf , independently of the pool size, while each specimen included in a pool costs cv, that is,

only the variable cost component, cv, is a function of pool size. Thus, an increase in the specimen

collection cost, cv, for a given value of cf (i.e., a reduction in γ), makes it more efficient to use

smaller pool sizes, in turn leading to an increase in the number of pools tested in the joint problem.

This result is relevant, because new assays, with different testing cost structures, are continuously

introduced as technology evolves.

5 Case Study: EstimatingWest Nile Virus Prevalence in Mosquitoes

Our goal in this section is to gain insights and derive principles on testing pool design for prevalence

estimation. For this purpose, we utilize the optimization models, D-S, D-J, M-S, and M-J, to

design testing pools so as to efficiently estimate the prevalence of mosquitoes carrying West Nile

virus (WNV), and compare the outcomes of the single-variable and joint pol design models with

each other, and with a benchmark design from the literature.
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In the remainder of this section, we first discuss the data sources and model calibration (Section

5.1), and then compare the performance of the optimal pool designs developed by D-S, M-S, D-J,

and M-J (Section 5.2).

5.1 Data Sources and Model Calibration

WNV infection is a vector-borne disease, and the primary source of disease transmission to humans

is a mosquito bite [24]. The mosquito population carrying WNV in any given year depends on

various factors, including temperature and humidity [16, 24]. As a result, prevalence rate of WNV

in mosquitoes is highly seasonal, and can fluctuate substantially from year to year [16,24,34].

WNV infection is a seasonal endemic in the United States, causing many fatalities from neuro-

invasive diseases each year [24, 34]. Further, as most cases are asymptomatic, WNV infection

in humans is significantly under-reported [59], further contributing to the risk of a transfusion-

transmitted WNV infection via blood transfusion or organ transplantation [32,47]. WNV prevalence

in humans is highly correlated with that in mosquitoes [11,14,33], and an accurate estimate of the

prevalence rate of WNV-carrying mosquitoes is essential for outbreak prediction and prevention of

WNV infection in humans [24,25].

We consider the reverse-transcription polymerase chain reaction (RT-PCR) assay for WNV

screening in mosquitoes [25]. RT-PCR assays employ the nucleic acid amplification technology for

detecting the viral RNA present in the specimens, and are highly sensitive and specific [42]. We

also consider a benchmark pool design, of (m = 50, n = 30), used in the literature to study WNV

prevalence in mosquitoes via RT-PCR assays [43], resulting in a testing budget of B = $8, 160,

based on the testing cost parameters from [25]; see Table 1. The benchmark pool size, m = 50, is

also commonly used in pooled testing for WNV prevalence estimation in mosquitoes via RT-PCR

assays (e.g., [21, 22, 39, 44]). All data in the numerical study are estimated based on published

studies, and are complemented via sensitivity analysis; see Table 1.

As input, deterministic pool design models, D-S and D-J, require a point estimate of the un-

known prevalence rate, p0, and robust pool design models, M-S and M-J, require an estimate of

the upper bound of the support, pUB (Theorems 1 and 2). We use the four optimization models to

develop pool designs under accurate (perfect information) and inaccurate (imperfect information)

model input scenarios (Table 1) at a testing budget of B = $8, 160, and evaluate their performance
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via a Monte-Carlo simulation study, which is described in detail below. To this end, we construct

the true support of WNV prevalence based on WNV surveillance data from various parts of the

Mid-South region of the United States during the 2002-2005 period, where WNV transmission

was the most intense during the outbreak from 2002 to 2003 [24], and WNV-infected mosquito

prevalence was reported to be as high as 8.76% in Tennessee Valley [12]In the Monte-Carlo sim-

ulation, we use a true upper bound, pUB = 0.09, true lower bound, pLB = 0.003 (based on [43]),

and consider that P ∼ Uniform (pLB, pUB) = (0.003, 0.09), hence has a true mean of 0.0465 (the

distribution information is not needed for optimization models). On the other hand, we develop

optimal pool designs based on three scenarios, obtained by varying the upper bound, pUB, used by

the tester (Table 1): the pUB = 0.09 case corresponds to the accurate model input scenario, and the

pUB ∈ {0.03, 0.15} cases correspond to the inaccurate model input scenarios; for each scenario, we

derive the point estimate required by the deterministic models, D-S and D-J, as p0 =
1
2(pLB+pUB),

using pLB = 0.003.

Table 1: Data and data sources used in the numerical study.

Cost Parameters (Source)
cf $72 [25]
cv $4 [25]

Simulation Parameters Model Input Scenarios
pLB 0.003 not needed
pUB 0.09 {0.03, 0.09, 0.15}
p0 N/A 1

2 (pLB + pUB) (derived based on pLB = 0.003)
Benchmark Design (Source) Benchmark Budget (Source)
(m,n) = (50, 30) [43] B = $8, 160 [25,43]

The Monte-Carlo simulation performs 20,000 replications for each of the three scenarios. Specif-

ically, for each scenario, we first determine the optimal pool designs for each of the D-S, D-J, M-S,

and M-J Models for a testing budget of B = $8, 160, based on the inputs provided in Table 1. To

obtain an optimal integer number of pools in D-J and M-J, we utilize Theorem 1 repeatedly within

a branch and bound algorithm implemented in MATLAB. Then, in each simulation replication,

we use the Monte-Carlo-based random number generator in MATLAB, and randomly generate a

realization of P from Uniform(0.003, 0.09) (Table 1), which we denote by p. Based on the gener-

ated value of p, we then randomly generate the carrier status of each subject, i.e., specimen from

a mosquito (for m∗ × n subjects for D-S and M-S Models, and m∗ × n∗(m∗) subjects for D-J and

M-J Models), where each specimen is infected with WNV with probability p, and infection-free
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with probability 1-p. These specimens are then randomly assigned to the testing pools. If a pool

contains at least one infected specimen, then the pool’s test outcome will be positive; and otherwise,

the pool’s test outcome will be negative. For each replication, we compute: the MLE of prevalence

(p̂, Eqn. (1)), asymptotic variance (σ2(m∗, n∗; p), Eqn. (2)), and the MSE and percent relative

bias of the prevalence estimate (rBias(%)), given by:

MSE = (p̂− p)2, and rBias(%) = 100×
⃓⃓⃓⃓
p̂− p

p

⃓⃓⃓⃓
.

These performance metrics are commonly used in the statistics literature to evaluate the efficiency

of an estimator (e.g., [29, 30, 61]). Table 2 reports the performance metric in the form, average

± half width of the 95% confidence interval (CI), over 20,000 replications for the accurate and

inaccurate input scenarios.

5.2 Pool Design Comparison

Table 2 reports the performance metrics in the form, average ± half width of the 95% confidence in-

terval (CI), over 20,000 replications for the accurate and inaccurate input scenarios. We summarize

the findings from the numerical study below.

• Joint Pool Design: Not surprisingly, jointly selecting m and n in an optimal manner can

substantially improve estimation accuracy, compared to the setting where the number of

pools (n) is fixed a priori. While this improvement happens for all three scenarios, it is more

pronounced when the fixed number of pools is small (e.g., 20), and the tester underestimates

the prevalence (pUB = 0.03); for example, for this scenario (n = 20, pUB = 0.03), joint

pool design reduces the MSE more than ten-fold for the deterministic model (from 0.485 to

0.0424), and more than five hundred-fold for the robust model (from 0.485 to 8.64 × 10−4).

Also observe that the benchmark design, (m = 50, n = 30), i.e., thirty pools of size fifty,

corresponds to the optimal solution for D-S and M-S only when pUB = 0.03, that is, the

underestimation scenario, and in general, performs rather poorly compared to the optimal

pool designs. To see this, consider the accurate input case (i.e., pUB = 0.09): when n is set

to 30, it becomes inefficient to use the full budget (which allows a maximum pool size of 50)

for both D-S and M-S; instead it is better to use pool sizes of 33 and 17, respectively for D-S
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and M-S, thus leaving some unused budget, which could have been used to test more pools

had the number of pools, n, not been fixed. On the other hand, when the fixed number of

pools is relatively large with respect to the testing budget (e.g., n = 100), the optimization

models, D-S and M-S, do not have much flexibility, and choose the maximum feasible pool

size as the optimal pool size, i.e., m∗ = 2, independent of the model inputs.

• Robust Pool Design: Considering joint pool design, when the model input, pUB, is in-

accurate, the robust model, M-J, proves to be especially robust, in terms of minimizing the

estimation error (i.e., MSE and rBias), especially when pUB is an underestimate of the true

upper bound of (pUB = 0.03) – similarly, p0 is an underestimate of the true mean of P . In

this case, M-J performs substantially better than D-J. However, when pUB is an overestimate

of the true upper bound (pUB = 0.15), M-J becomes overly conservative and underperforms

in comparison to D-J, but with only a slight reduction in performance. Consequently, when

the inputs for pool design models are uncertain, M-J performs well and produces an accurate

estimate of the prevalence rate.

When estimating the prevalence of emerging and/or seasonal diseases, the distribution and

support of P are highly uncertain at the outset, and thus input parameters to pool design models

are likely to be inaccurate. It is in these realistic cases that the joint pool design models, D-

J and M-J, perform significantly better than their single-variable counter-parts, D-S and M-S.

Further, between the joint models, the robust model, M-J, often leads to lower MSE and relative

bias, compared to the deterministic model, D-J, even when the input is highly inaccurate. These

findings have important implications for designing surveillance studies of emerging and seasonal

infectious infections.

6 Conclusions and Future Research Directions

We develop and study deterministic and robust pool design optimization models for prevalence

estimation under limited resources in two settings: when the number of pools is fixed exogenously

(due, for example, to limited number of testing kits), and when both the pool size and the number

of pools are jointly optimized. Our analysis indicates that joint pool design fits especially well with
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prevalence estimation of emerging or seasonal diseases, such as Zika, West Nile virus, or COVID-19

infections, for which initial information, prior to testing, is often highly unreliable. We establish key

structural properties of optimal pool designs for the different models, and show that the optimal

testing pool design for each model follows a threshold-type policy, contributing to the existing

literature of testing pool design. Our case study, on estimating the prevalence of West Nile virus in

mosquitoes, further underscores the value of robust pool designs, especially for emerging or seasonal

diseases.

As immediate, and important, extensions of our study, one can relax some of our modeling

assumptions, including that the screening test is perfectly reliable. If the screening test has less

than perfect specificity and/or specificity, one needs to consider both the number of infected spec-

imens in the pool and the bio-marker concentration of each infected specimen, which varies with

the stage of the infection, to determine the test outcome, similar to [40, 41]. Further, because

the joint robust (min-max) model tends to be overly conservative in cases where model inputs are

overestimates, other robust pool design models, such as regret-based models, can be investigated.

Another interesting research direction is to study optimal sequential (multi-stage) pooling strate-

gies, and their benefit, for prevalence estimation. We study resource (testing budget) allocation

for the prevalence estimation of a single disease in a specific region. In practice, health policy

makers may need to allocate their testing budget to prevalence estimation activities for a number

of diseases in a specific region, or in various regions, each potentially having a different prevalence

rate of the disease in question. Therefore, extending our models to study pool design optimization

and budget allocation for prevalence estimation for multiple diseases or multiple regions is an im-

portant research direction. Additionally, practitioners may need to select a screening test, among a

set of commercially available tests, including combo tests, i.e., tests that can simultaneously detect

a number of diseases. Thus, another interesting future research direction is to study the problem

of test selection and pool design for prevalence estimation of multiple diseases. It is our hope that

the proposed pool design models spur further research in academia, and our insights and principles

on testing pool design have an impact on surveillance studies in practice.
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Appendix

Appendix A: Summary of Notation

Decision Variables

m Pool size, i.e., number of specimens in each pool
n Number of testing pools (parameter in the single-variable models;

decision variable in the joint models)

Random Variables

P True (unknown) prevalence rate of the disease (with realization p)

P̂ Maximum likelihood estimator (MLE) of P (with realization p̂)
T (m,n; p) Number of positive-testing pools among n pools,

each containing m specimens, given a true prevalence rate of p

Objective Function and Performance Metrics

σ2(m,n; p) Asymptotic variance of P̂ for pool design (m,n), given a true prevalence rate of p

MSE(P̂ ,m, n; p) Mean square error of P̂ for pool design (m,n), given a true prevalence rate of p

rBias(%) = 100
(︂⃓⃓⃓

p̂−p
p

⃓⃓⃓)︂
Relative bias of p̂ (in percentage), given a true prevalence rate of p

Model Parameters

p0 An initial point estimate of P
pLB Lower bound of P
pUB Upper bound of P
cf Fixed testing cost per pool tested
cv Variable testing cost per specimen tested
B Testing budget

B: Supporting Results

The following results establish key properties of the asymptotic variance function in the exogenous

number of pools and endogenous number of pools settings, respectively.

Lemma 6. For any n ∈ Z+, σ2(m,n; p) has the following properties:

1. For m ≥ 2, σ2(m,n; p) increases as p increases, ∀p < 1.

2. σ2(1, n; p)increases as p increases, ∀p < 1
2 .

3. σ2(m,n; p) decreases as n increases.

4. σ2(m,n; p) is strictly convex in m.

Lemma 7. σ2(m,n∗(m); p) has the following properties:

1. For m ≥ 2, σ2(m,n∗(m); p) increases as p increases, ∀p < 1.

2. σ2(1, n; p) increases as p increases, ∀p < 1
2 .

3. σ2(m,n∗(m); p) is strictly convex in m, ∀p < 1
3 .
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Appendix C: Proofs

Proof of Lemma 1: To simplify the notation, we represent πS
0 (m1,m2) as π0.

Part 1. By Definition 1 and Proposition 1, π0 is the unique solution to:

1− (1− π0)
m1

nm2
1(1− π0)m1−2

=
1− (1− π0)

m2

nm2
2(1− π0)m2−2

⇔

(︄
1

1− π0

)︄m1−2

− (1− π0)
2 =

(︂m1

m2

)︂2[︄(︄ 1

1− π0

)︄m2−2

− (1− π0)
2

]︄

⇔

(︄
1

1− π0

)︄m1

= 1 +
(︂m1

m2

)︂2[︄(︄ 1

1− π0

)︄m2

− 1

]︄
.

Part 2. Define θ(m1,m2) ≡ 1 − π0, for m1,m2 ∈ Z+ : m1 < m2. Then, θ(m1,m2) ∈ (0, 1).

First, note that the equation provided in Part 1 is equivalent to:

(1− π0)
m2 = (1− π0)

m2−m1

(︂ m2
2

m2
2 −m2

1

)︂
−
(︂ m2

1

m2
2 −m2

1

)︂
. (6)

a. Proof that πS
0 (m1,m2) is decreasing in m1:

Taking the derivative of the RHS of Eqn. (6) with respect to m1 yields:

∂

∂m1

{︃
(1− π0)

m2−m1

(︂ m2
2

m2
2 −m1

2

)︂
−
(︂ m1

2

m2
2 −m1

2

)︂}︃
=− [θ(m1,m2)]

m2−m1 log[θ(m1,m2)]
(︂ m2

2

m2
2 −m2

1

)︂
+

2m1m
2
2

(m2
2 −m2

1)
2
[(θ(m1,m2))

m1−m2 − 1] > 0,

which follows because θ(m1,m2) < 1 and m1 < m2, and hence, we have that log(θ(m1,m2)) < 0

and (θ(m1,m2))
m1−m2 > 1. Therefore, the RHS of Eqn (6) is increasing in m1. Then, the LHS of

Eqn. (6) must also increase in m1 to preserve the equality, which in turn implies that θ(m1,m2) is

increasing in m1, and, equivalently, π
S
0 (m1,m2) is decreasing in m1.

b. Proof that πS
0 (m1,m2) is decreasing in m2:

We prove this result by contradiction. Assume, to the contrary, that πS
0 (m−2,m) > πS

0 (m−2,m−1)

for some m ∈ Z+ : m > 2. From Part 1, we have that πS
0 (m − 1,m) < πS

0 (m − 2,m), ∀m ∈ Z+ :

m > 2. Therefore, we have two cases:

Case 1. πS
0 (m− 2,m− 1) < πS

0 (m− 1,m) < πS
0 (m− 2,m):

Consider any p ∈
(︂
πS
0 (m − 1,m), πS

0 (m − 2,m)
)︂
. Since πS

0 (m − 2,m − 1) < πS
0 (m − 1,m) (by
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assumption of this case), p > πS
0 (m − 2,m − 1). Therefore, by Proposition 1, σ2(m − 2, n; p) <

σ2(m−1, n; p). Further, since πS
0 (m−1,m) < p < πS

0 (m−2,m), by Proposition 1, σ2(m−1, n; p) <

σ2(m,n; p), and σ2(m,n; p) < σ2(m − 2, n; p), leading to a contradiction, i.e., σ2(m − 2, n; p) <

σ2(m,n; p) and σ2(m− 2, n; p) > σ2(m,n; p). Hence, Case 1 is not possible.

Case 2. πS
0 (m− 1,m) < πS

0 (m− 2,m− 1) < πS
0 (m− 2,m):

Consider any p ∈
(︂
πS
0 (m − 2,m − 1), πS

0 (m − 2,m)
)︂
. Since πS

0 (m − 2,m − 1) > πS
0 (m − 1,m)

(by assumption of this case), p > πS
0 (m − 1,m). Therefore, by Proposition 1, σ2(m − 1, n; p) <

σ2(m,n; p). Further, since πS
0 (m−2,m−1) < p < πS

0 (m−2,m), by Proposition 1, σ2(m−2, n; p) <

σ2(m− 1, n; p), and σ2(m,n; p) < σ2(m− 2, n; p), leading to a contradiction, i.e., σ2(m− 2, n; p) >

σ2(m− 1, n; p), and σ2(m− 2, n; p) < σ2(m− 1, n; p). Hence, Case 2 is not possible.

From Cases 1 and 2, it follows that πS
0 (m− 2,m) < πS

0 (m− 2,m− 1), ∀m ∈ Z+ : m > 2.

Part 3. As a result of Part 2, πS
0 (m− 1,m) > πS

0 (m− 1,m+1) > πS
0 (m,m+1), completing the

proof.

Proof of Lemma 6:

Part 1. From Eqn. (2), we can derive:

∂

∂p
σ2(m,n; p) =

1

nm2

[︂ m− 2

(1− p)m−1
+ 2(1− p)

]︂
> 0 ∀m ≥ 2 and p < 1,

and the result follows.

Part 2. From the derivation in Part 1, it follows that ∂
∂pσ

2(1, n; p) = 1 − 2p > 0, ∀p < 1
2 , and

the result follows.

Part 3. Since σ2(m,n; p) = 1−(1−p)m

nm2(1−p)m−2 , the result trivially follows.

Part 4. We have the following derivatives:

∂

∂m
σ2(m,n; p) =

−2

m3(1− p)m−2
− log(1− p)

m2(1− p)m−2
+

2(1− p)2

m3
, and

∂2

∂m2
σ2(m,n; p) =

6

m4

{︃
m− 2

(1− p)m−1
+ 2(1− p)

}︃
+

m(m− 2) log2(1− p)− 2m log(1− p) + 4(m− 2) log(1− p)− 4

m3(1− p)m−1
.

(7)
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Consider the following:

∂

∂p

(︂ ∂2

∂m2
σ2(m,n; p)

)︂
=

6(m− 2) + 12m4(1− p)m +m2(m− 2)[log(1− p)]2 − log(1− p)(8m− 2m2)− 4m

m4(1− p)m−1
. (8)

To find the root of ∂
∂p

(︂
∂2

∂m2σ
2(m,n; p)

)︂
, we define x ≡ log(1 − p), and solve the following

quadratic equation:

m2(m− 2)x2 − 2m(4−m)x− 4m+ 6(m− 2) + 12m4(1− p)m = 0,

where ∆ = b2 − 4ac = m2[48m4(1 − p)m(2 − m) − 4m2 + 32m − 32] < 0, ∀m ∈ R+. Thus, the

quadratic equation has no real root. Further, ∂
∂p

(︂
∂2

∂m2σ
2(m,n; p)

)︂⃓⃓⃓
p=0

= 12m4+2m−12
m4 > 0, ∀m ≥ 1.

Therefore, ∂2

∂m2σ
2(m,n; p) starts out as a positive function in p, and is increasing in p, ∀m ≥ 1,

p ∈ (0, 1). Hence, ∂2

∂m2σ
2(m,n; p) > 0, ∀m ≥ 1 and p ∈ (0, 1), which implies that σ2(m,n; p) is

strictly convex in m, ∀m ≥ 1 and p ∈ (0, 1).

Proof of Lemma 2: The results follow because, by Lemma 6, σ2(m,n; p) is decreasing in n, for

any given m ∈ Z+. Thus, in order to minimize σ2(m,n; p), for any given m ∈ Z+, n∗(m) = B
cf+cvm

,

completing the proof.

Proof of Proposition 2: For any m1,m2 ∈ Z+ : m1 < m2, we study the ratio σ2(m1,n∗(m1);p)
σ2(m2,n∗(m2);p)

,

which, from Lemma 2, equals:

σ2(m1, n
∗(m1); p)

σ2(m2, n∗(m2); p)
=

(︄
cf + cvm1

cf + cvm2

)︄(︂m2

m1

)︂2{︄(1− p)m2−2
[︁
1− (1− p)m1

]︁
(1− p)m1−2

[︁
1− (1− p)m2

]︁}︄ , where

lim
p→0

σ2(m1, n
∗(m1); p)

σ2(m2, n∗(m2); p)
=

cfm2 + cvm1m2

cfm1 + cvm1m2
> 1 (by L’Hospital’s Rule and since m2 > m1 ≥ 1), and

lim
p→1

σ2(m1, n
∗(m1); p)

σ2(m2, n∗(m2); p)
= 0.

Further, from [37], the ratio
(︂
m2
m1

)︂2{︃ (1−p)m2−2
[︁
1−(1−p)m1

]︁
(1−p)m1−2

[︁
1−(1−p)m2

]︁}︃ is decreasing in p, ∀m1,m2 ∈ Z+ :

m1 < m2. Thus, the result follows.

Proof of Lemma 3:

Part 1. To simplify the notation, we represent πJ
0 (m1,m2) as π0. From Definition 2 and Propo-
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sition 2, π0 is the unique solution to:

(︄
cf + cvm1

B

)︄(︄
1− (1− π0)

m1

m2
1(1− π0)m1−2

)︄
=

(︄
cf + cvm2

B

)︄(︄
1− (1− π0)

m2

m2
2(1− π0)m2−2

)︄

⇔

(︄
1

1− π0

)︄m1−2

− (1− π0)
2 =

(︂m1

m2

)︂2(︂cf + cvm2

cf + cvm1

)︂[︄(︄ 1

1− π0

)︄m2−2

− (1− π0)
2

]︄

⇔

(︄
1

1− π0

)︄m1

= 1 +
(︂m1

m2

)︂2(︂cf + cvm2

cf + cvm1

)︂[︄(︄ 1

1− π0

)︄m2

− 1

]︄
.

Part 2. We first show that πJ
0 (1,m) is decreasing in m, ∀m ∈ Z+ : m ≥ 2. By Part 1 of this

lemma (with proof above), ∀m ∈ Z+ : m ≥ 2, πJ
0 (1,m) is the unique solution to:

πJ
0 (1,m) =

(︄
cf + cvm

cf + cv

)︄{︄
1−

(︁
1− πJ

0 (1,m)
)︁m

m2
(︁
1− πJ

0 (1,m)
)︁m−1

}︄
. (9)

Taking the derivative of the RHS of Eqn. (9) with respect to m yields:

∂

∂m
RHS =

(︄
1

cf + cv

)︄[︄(︄
−2cf − cvm

m3

)︄(︄
1(︁

1− πJ
0 (1,m)

)︁m−1 −
(︁
1− πJ

0 (1,m)
)︁)︄

+

(︄
cf + cvm

m2

)︄(︄
− log

(︁
1− πJ

0 (1,m)
)︁(︁

1− πJ
0 (1,m)

)︁m−1

)︄]︄
> 0,

where the last inequality follows because m ≥ 2, leading to
cf+cvm

m2 ≥ 2cf+cvm

m3 ; and because log
(︁
1−

πJ
0 (1,m)

)︁
< −1, ∀πJ

0 (1,m) < 2
3 (by Lemma 1), leading to

− log
(︁
1−πJ

0 (1,m)
)︁(︁

1−πJ
0 (1,m)

)︁m−1 > 1(︁
1−πJ

0 (1,m)
)︁m−1 −

(︁
1−

πJ
0 (1,m)

)︁
. Thus the RHS of Eqn. (9) is increasing in m. Further, the RHS of Eqn. (9), which

equals B
cf+cv

σ2(m,n∗(m), πJ
0 (1,m)), is also increasing in πJ

0 (1,m). Thus, πJ
0 (1,m) must decrease

as m increases so as to preserve the equality in Eqn. (9).

We are now ready to show that πJ
0 (m1,m2) is decreasing in each of m1 and m2, ∀m1,m2 ∈ Z+ :

m1 < m2.

a. Proof that πJ
0 (m1,m2) is decreasing in m1:

The proof follows by induction and contradiction. To this end, we first show that πJ
0 (2,m2) <

πJ
0 (1,m2), ∀m2 > 2. Suppose, to the contrary, that πJ

0 (2,m2) > πJ
0 (1,m2). Since πJ

0 (1,m2) <

πJ
0 (1, 2), ∀m2 > 2, there are two cases:

Case 1. πJ
0 (2,m2) > πJ

0 (1, 2): By Proposition 2, we have that ∀p ∈
(︁
πJ
0 (1,m2), π

J
0 (1, 2)

)︁
, σ2(1, n∗(1); p) <
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σ2(m2, n
∗(m2); p) < σ2(2, n∗(2); p), and σ2(1, n∗(1); p) > σ2(2, n∗(2); p), leading to a contradiction.

Case 2. πJ
0 (1,m2) < πJ

0 (2,m2) < πJ
0 (1, 2): By Proposition 2, we have that ∀p ∈

(︁
πJ
0 (1,m2), π

J
0 (2,m2)

)︁
,

σ2(1, n∗(1); p) < σ2(m2;n
∗(m2); p) < σ2(2, n∗(2); p) (since m2 > 2), but since πJ

0 (2,m2) < πJ
0 (1, 2)

(by assumption of this case), we also have that σ2(2, n∗(2); p) < σ2(1, n∗(1); p) (by Proposition 2),

leading to a contradiction.

Thus, it follows that πJ
0 (2,m2) < πJ

0 (1,m2). It then follows, by induction, that πJ
0 (m2 − 1,m2) <

· · · < πJ
0 (2,m2) < πJ

0 (1,m2).

b. Proof that πJ
0 (m1,m2) is decreasing in m2:

From Part a, we have that ∀m2 ∈ Z+, πJ
0 (m2 − 1,m2) < πJ

0 (m2 − 2,m2). We want to show

that πJ
0 (m2 − 2,m2 − 1) > πJ

0 (m2 − 2,m2). Suppose, to the contrary, that πJ
0 (m2 − 2,m2 − 1) <

πJ
0 (m2 − 2,m2). We have the following cases:

Case 1. πJ
0 (m2 − 2,m2 − 1) < πJ

0 (m2 − 1,m2):

By Proposition 2, ∀p ∈
(︁
πJ
0 (m2−1,m2), π

J
0 (m2−2,m2)

)︁
, σ2(m2−1, n∗(m2−1); p) < σ2(m2, n

∗(m2); p) <

σ2(m2 − 2, n∗(m2 − 2); p), and σ2(m2 − 2, n∗(m2 − 2); p) < σ2(m2 − 1, n∗(m2 − 1); p), leading to a

contradiction.

Case 2. πJ
0 (m2 − 1,m2) < πJ

0 (m2 − 2,m2 − 1) < πJ
0 (m2 − 2,m2):

By Proposition 2, ∀p ∈
(︁
πJ
0 (m2 − 2,m2 − 1), πJ

0 (m2 − 2,m2)
)︁
, σ2(m2 − 2, n∗(m2 − 2); p) <

σ2(m2 − 1, n∗(m2 − 1); p) < σ2(m2, n
∗(m2); p), but σ

2(m2, n
∗(m2); p) < σ2(m2 − 2, n∗(m2 − 2); p),

leading to a contradiction.

Thus, it follows that πJ
0 (m2 − 2,m2 − 1) > πJ

0 (m2 − 2,m2).

Part 3. From Part 2, πJ
0 (m− 1,m) > πJ

0 (m− 1,m+ 1) > πJ
0 (m,m+ 1), and the result follows.

This completes the proof.

Proof of Lemma 4: Recall that γ =
cf
cv
. From Part 1 of Lemma 3, we have the following:

m2
2(1− πJ

0 (m1,m2))
m2
[︁
1− (1− πJ

0 (m1,m2))
m1
]︁

m2
1(1− πJ

0 (m1,m2))m1
[︁
1− (1− πJ

0 (m1,m2))m2
]︁ = cf + cvm2

cf + cvm1
=

γ +m2

γ +m1
= 1 +

(m2 −m1)

γ +m1
.

Note that
m2

2(1−πJ
0 (m1,m2))m2

[︁
1−(1−πJ

0 (m1,m2))m1

]︁
m2

1(1−πJ
0 (m1,m2))m1

[︁
1−(1−πJ

0 (m1,m2))m2

]︁ is decreasing in πJ
0 (m1,m2) (from Liu et al [37])

and is constant in γ, while 1 + (m2−m1)
γ+m1

is decreasing in γ (since m2 > m1) and is constant in

πJ
0 (m1,m2). Thus, as γ increases, πJ

0 (m1,m2) also increases. Further, we observe that when
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cv = 0, i.e., when γ → ∞, πJ
0 (m1,m2) → πS

0 (m1,m2). Since πJ
0 (m1,m2) is increasing in γ,

πJ
0 (m1,m2) < πS

0 (m1,m2).

Proof of Lemma 7: Parts 1 and 2. Observe that σ2(m,n∗(m); p) =

(︄
cf+cvm

B

)︄(︄
σ2(m,n;p)

n

)︄
. Then,

the proof follows directly from Lemma 6.

Part 3. σ2(m,n∗(m); p) can be expressed as follows:

σ2(m,n∗(m); p) =
1

B

{︄
cf

[︄
1− (1− p)m

m2(1− p)m−2

]︄
+ cv

[︄
1− (1− p)m

m(1− p)m−2

]︄}︄

=
1

B

[︄
1

(1− p)m−2
− (1− p)2

]︄(︄
cf
m2

+
cv
m

)︄
.

Let g(m; p) ≡ Bσ2(m,n∗(m); p). We have the following:

∂

∂m
g(m; p) =

[︄
− log(1− p)

(1− p)m−2

]︄(︄
cf
m2

+
cv
m

)︄
+

[︄
1

(1− p)m−2
− (1− p)2

]︄(︂−2cf
m3

− cv
m2

)︂
, and

∂2

∂m2
g(m; p) =

[︄[︁
log(1− p)

]︁2
(1− p)m−2

]︄(︄
cf
m2

+
cv
m

)︄
+ 2

[︄
log(1− p)

(1− p)m−2

]︄(︄
2cf
m3

+
cv
m2

)︄

+

[︄
1

(1− p)m−2
− (1− p)2

]︄(︄
6cf
m4

+
2cv
m3

)︄
.

We now show that ∂2

∂m2 g(m; p) > 0, ∀m > 0 and ∀p ∈ (0, 13). Noting that (1− p)m−2 > 0, ∀m > 0

and p ∈ (0, 13), and multiplying ∂2

∂m2 g(m; p) by
{︁
(1− p)m−2

}︁
yields the following :

h(m; p) =
(︂
log(1− p)

)︂2(︄ cf
m2

+
cv
m

)︄
+ 2 log(1− p)

(︄
2cf
m3

+
cv
m2

)︄
+
[︁
1− (1− p)m

]︁(︄6cf
m4

+
2cv
m3

)︄
.

∂

∂p
h(m; p) =

−2 log(1− p)

1− p

(︄
cf
m2

+
cv
m

)︄
− 2

1− p

(︄
2cf
m3

+
cv
m2

)︄
+ (1− p)m−1

(︄
6cf
m3

+
2cv
m2

)︄
.

Note that the sign of ∂
∂ph(m; p) equals the sign of the following function:
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−2 log(1− p)

(︄
cf
m2

+
cv
m

)︄
− 2

(︄
2cf
m3

+
cv
m2

)︄
+ (1− p)m

(︄
6cf
m3

+
2cv
m2

)︄

= −2 log(1− p)cv
m

+
1

m2

(︂
− 2cf log(1− p)− 2cv + 2cv(1− p)m

)︂
+

cf
m3

(︂
− 4 + 6(1− p)m

)︂
> 0,

where the last inequality follows because cf > cv and log(1−p) < 0, ∀p ∈
(︂
0, 13

)︂
. Thus, ∂2

∂m2 g(m; p)

is increasing in p, ∀m > 0 and ∀p ∈
(︂
0, 13

)︂
. At p = 0, ∂2

∂m2 g(m; p) =
6cf
m4 + 2cv

m3 > 0. Thus,

∂2

∂m2 g(m; p) > 0, ∀m > 0 and ∀p ∈
(︂
0, 13

)︂
. This completes the proof.

Proof of Theorem 1: By Properties 1 and 2, and Lemmas 1 and 3, we have that πX
0 (m,m+1) ≤

πX
0 (m − 1,m), ∀m ∈ Z+ : m > 2, X ∈ {S, J}. Then, we have that σ2(m,n; p) < σ2(k, n; p),

∀k ∈ Z+ : k ̸= m, if and only if πX
0 (m,m + 1) < p < πX

0 (m − 1,m). If p = πX
0 (m,m + 1), then

σ2(m+ 1, n; p) = σ2(m,n; p), and, if p = πX
0 (m− 1,m), then σ2(m,n; p) = σ2(m− 1, n; p).

As a result, we have the following:

· · · πS
0 (m + 1,m + 2) < p < πS

0 (m,m + 1) πS
0 (m,m + 1) < p < πS

0 (m − 1,m) πS
0 (m − 1,m) < p < πS

0 (m − 2,m − 1) · · ·

σ2(m + 1, n; p) < σ2(k, n; p), σ2(m,n; p) < σ2(k, n; p), σ2(m − 1, n; p) < σ2(k, n; p),

∀k ∈ Z+ : k ̸= m + 1 ∀k ∈ Z+ : k ̸= m ∀k ∈ Z+ : k ̸= m − 1.

Then, if πS
0 (m,m + 1) < p < πS

0 (m − 1,m), then m is the unique optimal solution to D-S. If

p = πS
0 (m,m+ 1), then m and m+ 1 are both optimal, and, if p = πS

0 (m− 1,m), then m− 1 and

m are both optimal for D-S.

For D-J, we have the following:

· · · πJ
0 (m + 1,m + 2) < p < πJ

0 (m,m + 1) πJ
0 (m,m + 1) < p < πJ

0 (m − 1,m) πJ
0 (m − 1,m) < p < πJ

0 (m − 2,m − 1) · · ·

σ2(m + 1, n ∗ (m + 1); p) < σ2(k, n∗(k); p), σ2(m,n∗(m); p) < σ2(k, n∗(k); p), σ2(m − 1, n∗(m − 1); p) < σ2(k, n∗(k); p),

∀k ∈ Z+ : k ̸= m + 1 ∀k ∈ Z+ : k ̸= m ∀k ∈ Z+ : k ̸= m − 1.

Then, if πJ
0 (m,m + 1) < p < πJ

0 (m − 1,m), then m is the unique optimal solution to D-J. If

p = πJ
0 (m,m+ 1), then m and m+ 1 are both optimal, and, if p = πJ

0 (m− 1,m), then m− 1 and

m are both optimal for D-J. This completes the proof.

Proof of Lemma 5: By Lemmas 6 and 7, m′ is the unique solution to the first-order condition:
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−2

(m′)3(1− p0)m
′−2

− log(1− p0)

(m′)2(1− p0)m
′−2

+
2(1− p0)

2

(m′)3
= 0, for D-S, and(︄

cf
(m′)2

+
cv
m′

)︄[︄
− log(1− p0)

(1− p0)m
′−2

]︄
−

(︄
2cf
(m′)3

+
cv

(m′)2

)︄[︄
1

(1− p0)m
′−2

− (1− p0)
2

]︄
= 0, for D-J,

which are respectively equivalent to:

m′ =
2[(1− p0)

m′ − 1]

log(1− p0)
, for D-S, and

m′ =

(︂
1 +

cf
cf+cvm′

)︂
[(1− p0)

m′ − 1]

log(1− p0)
, for D-J.

This completes the proof.

Proof of Theorem 2: From Lemmas 6 and 7, since σ2(m,n; p) and σ2(m,n∗(m); p) are increas-

ing in p, maxp∈[pLB ,pUB ]

{︁
σ2(m,n; p)

}︁
≡ σ2(m,n; pUB), and maxp∈[pLB ,pUB ]

{︁
σ2(m,n∗(m); p)

}︁
≡

σ2(m,n∗(m); pUB). Thus, the results follow.

Proof of Corollary 1: The results for D-X, X ∈ {S, J}, follow from Theorem 1; and the results

for M-X, X ∈ {S, J}, follow from Theorem 2.

Proof of Corollary 2: Recall that γ =
cf
cv
. From Lemma 3, we have the following:

m2
2(1− πJ

0 (m1,m2))
m2
[︁
1− (1− πJ

0 (m1,m2))
m1
]︁

m2
1(1− πJ

0 (m1,m2))m1
[︁
1− (1− πJ

0 (m1,m2))m2
]︁ = cf + cvm2

cf + cvm1
=

γ +m2

γ +m1
= 1 +

(m2 −m1)

γ +m1
.

Note that
m2

2(1−πJ
0 (m1,m2))m2

[︁
1−(1−πJ

0 (m1,m2))m1

]︁
m2

1(1−πJ
0 (m1,m2))m1

[︁
1−(1−πJ

0 (m1,m2))m2

]︁ is decreasing in πJ
0 (m1,m2) (from Liu et al [37])

and is constant in γ, while 1 + (m2−m1)
γ+m1

is decreasing in γ (since m2 > m1) and is constant in

πJ
0 (m1,m2). Thus, as γ increases, πJ

0 (m1,m2) also increases, and πS
0 (m1,m2) is independent of γ.

The results then follow from Theorems 1 and 2, and Corollary 1.
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