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Abstract

Arguably the most fundamental question in the theory of generative adversarial networks
(GANS) is to understand to what extent GANs can actually learn the underlying distribution.
Theoretical and empirical evidence (see e.g. [ARZ18]) suggests local optimality of the empirical
training objective is insufficient. Yet, it does not rule out the possibility that achieving a true
population minimax optimal solution might imply distribution learning.

In this paper, we show that standard cryptographic assumptions imply that this stronger
condition is still insufficient. Namely, we show that if local pseudorandom generators (PRGs)
exist, then for a large family of natural continuous target distributions, there are ReLLU network
generators of constant depth and polynomial size which take Gaussian random seeds so that (i)
the output is far in Wasserstein distance from the target distribution, but (ii) no polynomially
large Lipschitz discriminator ReLU network can detect this. This implies that even achieving
a population minimax optimal solution to the Wasserstein GAN objective is likely insufficient
for distribution learning in the usual statistical sense. Our techniques reveal a deep connection
between GANs and PRGs, which we believe will lead to further insights into the computational
landscape of GANs.

Contents

1 Introduction 2
1.1 Related Work . . . . . . o 4

2 Technical Preliminaries 5
2.1 High-Dimensional Geometry Tools . . . . . . . . ... ... .. ... ... ... . 6
2.2 GANs and Pseudorandom Generators . . . . . . . . . . . ... 6
2.3 Boolean CircuitsS . . . . . . . . o s 8
2.4 Local Pseudorandom Generators . . . . . . . . . . . . . e 9
2.5 Diverse Distributions . . . . . . . . . 10

*This work was done while the first, second, and fourth authors were visiting the Simons Institute for the Theory
of Computing.

TEmail: sitanc@berkeley.edu Supported by NSF Award 2103300.

Email: jerrl@microsoft.com

$Email: yuanzhil@andrew.cmu.edu

TEmail: raghum@cs.ucla.edu Supported by NSF CAREER Award CCF-1553605.



3 Fooling ReLU Network Discriminators Does Not Suffice 13

3.1 Stretching Bits to Bits . . . . . . ... 13
3.2 From Binary Outputs to Continuous Outputs . . . . . . . . . .. ... ... ..... 16
3.3 From Binary Inputs to Continuous Inputs . . . . . . . ... ... ... .. ...... 19
4 Fooling ReLU Networks Would Imply New Circuit Lower Bounds 21
4.1 Average-Case Hardness and TCY . . . . . .. ... ... .. ... .. ... . ..... 21
4.2 Hardness Versus Randomness for GANs . . . . .. .. .. .. ... ... ....... 22
5 Experimental Results 25
6 Conclusions 26
A Deferred Proofs 30
A.1 Compositions of ReLU Networks . . . . . . . . . ... ... .. ... ... ..... 30
A.2 TImplementing Predicates as ReLU Networks . . . . . . ... ... ... ... ..... 30
A.3 Thresholds of Networks as Circuits . . . . . . . . . .. .. .. ... .. .. ...... 32

1 Introduction

When will a generative adversarial network (GAN) trained with samples from a distribution D
actually output samples from a distribution that is close to D? This question is one of the most
foundational questions in GAN theory—indeed, it was raised since the original paper introducing
GANs [GPAM™20]. However, despite significant interest, this question still remains to be fully
understood for general classes of generators and discriminators.

A significant literature has developed discussing the role of the training dynamics [LBCI17,
LMPS18, ARZ18, BGAT19, WAN19, TTT20, AZL21], as well as the generalization error of the
GAN objective [ZLZ 117, AGLT17, TTTV19]. In most cases, researchers have demonstrated that
given sufficient training data, GANs are able to learn some specific form of distributions after
successful training. Underlying these works appears to be a tacit belief that if we are able to achieve
the minimax optimal solution to the population-level GAN objective, then the GAN should be able
to learn the target distribution. In this work, we take a closer look at this assumption.

What does it mean to learn the target distribution? As a starting point, we must first
formally define what we mean by learning a distribution; more concretely, what do we mean when
we say that two distributions are close? The original paper of [GPAMT20] proposed to measure
closeness with KL divergence. However, learning the target distribution in KL divergence is quite
unlikely to be satisfied for real-world distributions. This is because learning distributions in KL
divergence also requires us to exactly recover the support of the target distribution, which we cannot
really hope to do if the distribution lies in an unknown (complicated) low-dimensional manifold.
To rectify this, one may instead consider learning in Wasserstein distance, as introduced in the
context of GANs by [ACB17], which has no such “trivial” barriers. Recall that the Wasserstein
distance between two distributions D, Dy over R? is given by

Wl (Db D2) = sup EDl [f] - EDQ [f] )
Lip(f)<1

where for any f: R? — R, we let Lip(f) denote the Lipschitz constant of f. That is, two densities
are close in Wasserstein distance if no Lipschitz function can distinguish between them. In this



work we will focus on Wasserstein distance as it is the most standard notion of distance between
probability distributions considered in the context of GANSs.

Note that if the class of discriminators contains sufficiently large neural networks, then minimax
optimality of the GAN objective does imply learning in Wasserstein distance. This is because we
can approximate any Lipschitz function arbitrarily well, with an exponentially large network with
one hidden layer (see e.g. [PMR"17]). Thus, in this case, minimizing the population GAN objective
is actually equivalent to learning in Wasserstein distance. Of course in practice, however, we are
limited to polynomially large networks for both the generator and the discriminator. This raises
the natural question:

Does achieving small error against all poly-size neural network discriminators imply that the
poly-size generator has learned the distribution in Wasserstein distance?

One might conjecture that this claim is true, since the generator is only of poly-size. Thus,
using a (larger) poly-size discriminator (as opposite to the class of all 1-Lipschitz functions) might
still be sufficient to minimize the actual Wasserstein distance. In this paper, however, we provide
strong evidence to the contrary. We demonstrate that widely accepted cryptographic assumptions
imply that this is in general false, even if the generator is of constant depth:

Theorem 1.1 (Informal, see Theorem 3.1). For anyn € N, let v, be the standard Gaussian measure
over R™. Assuming local pseudorandom generators exist, the following holds for any sufficiently
large m € Z, d,r < poly(m), and any diverse' target distribution D* over [0,1]% given by the
pushforward of the uniform distribution I, on [0,1]" by a constant depth ReL U network of polynomial
size/Lipschitzness:’

There exist generators G : R™ — RY computed by (deterministic) ReL U networks of constant
depth and polynomial size for which no ReLU network discriminator of polynomial depth, size, and
Lipschitzness can tell apart the distributions G(vy,) and D*, yet G(Vm) and D* are Q(1)-far in
Wasserstein distance.

While Theorem 1.1 pertains to the practically relevant setting of continuous seed and output
distributions, we also give guarantees for the discrete setting. In fact, if we replace D* and ~,, by
the uniform distributions over {£1}% and {£1}™, we show this holds for generators whose output
coordinates are given by constant-size networks (see Theorem 3.2).

We defer the formal definition of local pseudorandom generators (PRGs) to Section 2.4. We
pause to make a number of remarks about this theorem.

First, our theorem talks about the population loss of the GAN objective; namely, it says that
the true population GAN objective is small for this generator G, meaning that for every ReLLU
network discriminator f of polynomial depth/size/Lipschitzness, we have that

[E[f(D)] = E[f(G(ym))]] <

In other words, our theorem states that even optimizing the true population minimax objective is
insufficient for distribution learning. In fact, we show this even when the target distribution can
be represented perfectly by some other generative model.

!See Definition 9. In the discussion proceeding this definition, we give a number of examples making clear that
this is a mild and practically relevant assumption to make.

2When we say “polynomial,” we are implicitly referring to the dependence on the parameter m, though because
d,r are bounded by poly(m), “polynomial” could equivalently refer to the dependence on those parameters if they
exceeded m.



Second, notice that our generator is extremely simple: notably, it is only constant depth. On
the other hand, the discriminator is allowed to be much more complex, namely any RelLU network
of polynomial complexity. This discriminator class thus constitutes the most powerful family of
functions we could hope to use in practice. Despite this, we show that the discriminators are still
not powerful enough to distinguish the output of the (much simpler) generator from the target
distribution.

Third, our conclusions hold both for d > m and d < m, so long as the input and output
dimensions are related by polynomial factors.

Finally, we formally define the class of “diverse” target distributions for which our conclusions
hold in Section 2.5. We note that this class is quite general: for instance, it includes pushforwards
of the uniform distribution under random leaky ReLU networks (see Lemma 2.17).

GANs and Circuit Lower Bounds. At a high level, our results and techniques demonstrate
surprising and deep connections between GANs and more “classical” problems in cryptography
and complexity theory. Theorem 1.1 already shows that cryptographic assumptions may pose a
fundamental barrier to the most basic question in GAN theory. In addition to this, we also show
a connection between this question and circuit lower bounds:

Theorem 1.2 (Informal, see Theorem 4.2 and Remark 4.3). If one could explicitly construct gen-
erators G : R™ — R? for d = Q(mlogm) and unconditionally prove that no ReLU network dis-
criminator of constant depth, polynomial Lipschitzness, and size slightly super-linear in d can tell
apart the distributions G(I,,) and Iz with inverse polynomial advantage, then this would imply
breakthrough circuit lower bounds, e.g. TC? # NC!.

This complements Theorem 1.1, as it says that if we can construct generators of slightly super-
linear stretch which can provably fool even a very restricted family of neural network discriminators,
then we make progress on long-standing questions in circuit complexity. In other words, not only
does fooling discriminators not imply distribution learning by Theorem 1.1, but by Theorem 1.2,
it is extremely difficult to even prove that a candidate generator successfully fools discriminators
in the first place.

We believe that exploring these complexity-theoretic connections may be crucial to achieving a
deeper understanding of what GANs can and cannot accomplish.

Empirical Results. To complement these theoretical results, we also perform some empirical
validations of our findings (see Section 5). Our theorem is constructive; that is, given a local PRG,
we give an explicit generator which satisfies the theorem. We instantiate this construction with
Goldreich’s PRG with the “Tri-Sum-And” (TSA) predicate [Golll], which is an explicit function
which is believed to satisfy the local PRG property. We then demonstrate that a neural network
discriminator trained via standard methods empirically cannot distinguish between the output of
this generator and the uniform distribution. While of course we cannot guarantee that we achieve
the truly optimal discriminator using these methods, this still demonstrates that our construction
leads to a function which does appear to be hard to distinguish in practice.

1.1 Related Work

GANSs and Distribution Learning The literature on GAN theory is vast and we cannot hope
to do it full justice here. For a more extensive review, see e.g. [GSWT20]. Besides the previously
mentioned work on understanding GAN dynamics and generalization, we only mention the most
relevant papers here. One closely related line of work derives concrete bounds on when minimax



optimality of the GAN objective implies distribution learning [BMR18, Lial8, SULT18, USP19,
CLZZ20, SBD21]. However, the rates they achieve scale poorly with the dimensionality of the
data, and/or require strong assumptions on the class of generators and discriminators, such as
invertability. Another line of work has demonstrated that first order methods can learn very simple
GAN architectures in polynomial time [FFGT17, DISZ17, GHP*19, LLDD20]. However, these
results do not cover many of the generators used in practice, such as ReLU networks with > 1
hidden layers.

Local PRGs and Learning PRGs have had a rich history of study in cryptography and com-
plexity theory (see e.g. [Vadl2]). From this literature, the object most relevant to the present
work is the notion of a local PRG. These are part of a broader research program of building
constant parallel-time cryptography [AIKO06]. One popular local PRG candidate was suggested
in [Golll]. By now there is compelling evidence that this candidate is a valid PRG, as a rich
family of algorithms including linear-algebraic attacks [MST06], DPLL-like algorithms [CEMT09],
sum-of-squares [OW14], and statistical query algorithms [FPV18] provably cannot break it.

Finally, we remark that local PRGs and, relatedly, hardness of refuting random CSPs have
been used in a number of works showing hardness for various supervised learning problems [DV21,
DLSS14, Danl6, DSS16, ATK06, AR16]. We consider a very different setting, and our techniques
are very different from the aforementioned papers.

Roadmap In Section 2, we introduce notation and various technical tools, review complexity-
theoretic basics, describe the cryptographic assumption we work with, and formalize the notion
of “diverse target distribution” from Theorem 1.1. In Section 3 we prove Theorem 1.1, and in
Section 4 we prove Theorem 1.2. Then in Section 5, we describe our numerical experiments on
Goldreich’s PRG candidate. We conclude with future directions in Section 6 and collect various
deferred proofs in Appendix A.

2 Technical Preliminaries

Notation Denote by U, the uniform distribution over {#+1}", by =, the standard n-dimensional
Gaussian measure, and by I,, the uniform measure on [0, 1]". Given a distribution p, let p®™ denote
the product measure given by drawing n independent samples from p. Given distribution D over
R™ and measurable function G : R™ — RY, let G(D) denote the distribution over R? given by the
pushforward of D under G—to sample from the pushforward G(D), sample x from D and output
G(z). Given o : R — R and vector v € R?, denote by o(v) € R? the result of applying o entrywise
to v. To avoid dealing with issues of real-valued computation, let R, C R be the set of multiples
of 277 bounded in magnitude by 27.

Let 1,, denote the all-ones vector in n dimensions; when n is clear from context, we denote this
by 1. Given a vector v € R?, we let ||v|| denote its Euclidean norm. Given r > 0, let B(v,r) C R?
denote the Euclidean ball of radius r with center v. Given a matrix W, we let ||[W|| denote its
operator norm. Let opin (W) denote its minimum singular value.

1 >0
Define the function sgn(z) = ) v o Let ¢ : R — R denote the ReLU activation
- T <

#(2) = max(0,2). Let 1) : R — R denote the leaky ReLU activation 1 (z) = 2/2 + (1/2 — \)|z|.
Note that
Pa(2) = (1 = A)o(z) — Ap(=2).



2.1 High-Dimensional Geometry Tools

Theorem 2.1 (Kirszbraun extension). Given an arbitrary subset S C Rﬁ and f: S — R which is
L-Lipschitz, there exists an L-Lipschitz extension f : RY — R for which f(y) = f(y) for ally € S.

Fact 2.2. If gi1,..., g : R® = R are A-Lipschitz and h : R™ — R is A’-Lipschitz, then the function
z = h(g1(2),..., 9:(x))
is AN'\/r-Lipschitz.

Proof. For any x, 2, we have |gi(z) — gi(«')| < Allz— /||, s0 (S1_, (gi() — gi(2))>) "> < Az~
2'||. This implies that |h(g1(x),...,g-(z)) — h(g1 ('), ..., g- ()| < AN /7| — 2'|| as desired. O

Fact 2.3. The volume of a d-dimensional Buclidean ball of radius 1 is at most (18/d)%?.

Proof. Tt is a standard fact that the volume of the ball can be expressed as 2% - %. If d is
even, then d!! = 24/2. (d/2)! > 2%/2 . ¢ (Qd—e)d/2 > (d/e)¥?. If d is odd, then d!! = WQJ!C!IW >
c@fe) (d/e)¥/2. We conclude that the volume is at most (2me/d)¥? < (18/d)%/2. O

o(d)2¢)¥/2 2%

Lemma 2.4 (McDiarmid’s Inequality). Suppose F : {£1}" — {1} is such that for any x, 2’ €
{£1}" differing on exactly one coordinate, |F(x) — F(x')| < c. Then

82
P /(@) - EU@)] > 5] < exp (—2) .

o~ {E1}n nc?

Corollary 2.5. Given F : {£1}" — {£1} which is A-Lipschitz, define the random variable X =
F(U,). Then X — E[X] is AV2n-sub-Gaussian.

Proof. Because F' is Lipschitz, it satisfies the hypothesis of Lemma 2.4 with ¢ = A, so the corollary
follows by the definition of sub-Gaussianity. O

Theorem 2.6 (Theorem 1.1, [RV09]). Forn,d € N withn > d, let W € R"9 be a random matriz
whose entries are independent draws from N(0,1). Then for every e > 0,

P|owin(W) < e(v/n = VA = 1)| < (Ce)" " 4 e

for absolute constants C,c > 0.

2.2 GANs and Pseudorandom Generators

In this section we review basic notions about generative models and PRGs.

Definition 1 (ReLU Networks). Let Cr g4 denote the family of ReLU networks F' : R - R
of depth L and size S. Formally, F' € Cr, 54 if there exist weight matrices W1 € RF1xd W, ¢
Rk2xk1 , W € R¥>¥kL-1 gnd biases by € Rkl,bg € Rk2 . .,br, € R such that

F(z) 2 Wro(Wr_1¢ (- ¢(Wiz +b1)--+) +br_1) + bz,

and Ef:_ll k; = S, where recall that ¢ is the ReLU activation. We let Cz’gd be the subset of such
networks which are additionally A-Lipschitz and whose weight matrices and biases have entries in
R, — we will refer to T as the bit complexity of the network.



Remark 2.7. In Definition 1, if L = 1, then S = 0 and the definition specializes to linear functions.
That is, C] ’é\ ; is simply the class of affine linear functions F(z) = (w,z) +b for w € R? and b € R,
satisfying |lw|| < A.

The following allows us to control the complexity of compositions of ReLLU networks. We defer
its proof to Appendix A.1.

Lemma 2.8. Let J : R®* = R" be a function each of whose output coordinates is computed by some

. A A A
network in Cp''g o, and let f € C1's> . Then foJ € Cplg, for 7 = max(ri,72), A = AA2y/r,

L=1L1+ Lo, and S = (S1 + 1)r + Sa. Furthermore, for the network in Cz’gs realizing f o J, the
bias and weight vector entries in the output layer lie in R,,.

Next, we formalize the probability metric we will work with.

Definition 2 (IPM). Given a family F of functions, define the F-integral probability metric
between two distributions p,q by Wz (p,q) = sup se z|Ey~plf (¥)] — Ey~q[f(¥)]|. When F consists of
the family of 1-Lipschitz functions, this is the standard Wasserstein-1 metric, which we denote by
Wi.

The following standard tensorization property of Wasserstein distance will be useful:
Fact 2.9 (See e.g. Lemma 3 in [MR18]). If p,q satisfy W1i(p,q) < €, then W1(p®™, ¢®") < ey/n.

In the context of GANs, we will focus on discriminators given by ReLLU networks of polynomial
size, depth, Lipschitzness, and bit complexity:

Definition 3 (Discriminators). F* denotes the set of all sequences of discriminators fy : RT — R,
indexed by d from an infinite subsequence of N, whose size, depth, Lipschitzness, bit complezity
grow at most polynomially in d.

We now formalize the definition of GANs, which closely parallels the definition of PRGs.

Definition 4 (GANs/PRGs). Let € : N — [0,1] be an arbitrary function, and let {d(m)}men be
some sequence of positive integers. Given a sequence of seed distributions {Dp,},, over R™, a
sequence of target distributions {D(’;(m)} over RU™) ¢ family F of discriminators f : R4™ — R,
and a sequence of generators G, : R™ — RU™) e say that {Gy,} e-fools F relative to {D;;(m)}
with seed {D,,} if for all sufficiently large m,

E[f(Gm(Dm))] — E[f(D:Q(m))] <e(m) VfeF, f: RIM R

In this definition, if the discriminators and gemerators were instead polynomial-sized Boolean
circuits (see Section 2.3 below), we would refer to {G,,} as pseudorandom generators.

Remark 2.10. Tt will often be cumbersome to refer to sequences of target/seed distributions and
discriminators/generators as in Definitions 3 and 4, so occasionally we will refer to a single choice
of m and d even though we implicitly mean that m and d are parameters that increase towards
infinity. In this vein, we will often say that a single network f is in F*, though we really mean that
f belongs to a sequence of networks which lies in F*. And for distributions p, ¢ which implicitly
belong to sequences {pq}, {qq}, when we refer to bounds on Wxr+«(p, q) we really mean that for any
sequence of discriminators fq € F*, |E[fa(pa)] — E[fi(ga)]| is bounded.



2.3 Boolean Circuits

In the context of pseudorandom generators, the set of all polynomial-sized Boolean circuits is
the canonical family of discriminator functions to consider when formalizing what it means for a
generator to fool all polynomial-time algorithms.

Here we review some basics about Boolean circuits; for a more thorough introduction to these
concepts, we refer the reader to any of the standard textbooks on complexity theory, e.g. [AB09,
Sip96).

Definition 5 (Boolean circuits). Fiz a set G of logical gates, e.g. N,V,—. A Boolean circuit C
is a Boolean function {£1}"™ — {£1} given by a directed acyclic graph with n input nodes with
in-degree zero and an output node with out-degree zero, where each node that isn’t an input node is
labeled by some logical gate in G. Unless otherwise specified, we will take G to be {A,V,—}.

The size S of the circuit is the number of nodes in the graph, and the depth D is given by the
length of the longest directed path in the graph. The value of C on input x € {£1}" is defined in
an inductive fashion: the value at a node v in the graph is defined to be the evaluation of the gate
at v on the in-neighbors of v (as the graph is acyclic, this is well-defined), and the value of C' on x
is then the value of the output node.

We will occasionally also be interested in the number W of wires in the circuit, i.e. the number
of edges in the graph. Note that trivially

S<W+1. 1)

Definition 6 (P/poly). Given T : N — N, let SIZE(T'(n)) denote the family of sequences of Boolean
functions {f, : {£1}"™ — {£1}} for which there exist Boolean circuits {Cy} with sizes {Sn} that
compute {f,} and such that S, <T(n).

Let P/poly £ |J..; SIZE(n®). We refer to (sequences of) functions in P/poly as functions
computable by polynomial-sized circuits.

The following standard fact about bounded-depth Boolean circuits will make it convenient to
translate between them and neural networks.

Lemma 2.11 (See Theorem 1.1 in Section 12.1 of [Weg87]). For any Boolean circuit C' of size S
and depth D with gate set G, there is another circuit C' of size D - S and depth D with gate set
G which computes the same function as C but with the additional property that for any gate in C’,
all paths from an input to the gate are of the same length.

The upshot of Lemma 2.11 is that for any length ¢, we can think of the gates of C’ at distance
£ from the inputs as comprising a “layer” in the circuit.

A less combinatorial way of formulating the complexity class captured by polynomial-sized
circuits is in terms of Turing machines with advice strings.

Fact 2.12 (See e.g. Theorem 6.11 in [AB09]). A sequence of Boolean functions {f, : {£1}" —
{£1}} is in P/poly if and only if there exists a sequence of advice strings {«,}, where ay, € {£1}"
for a, < poly(n), and a Turing machine M which runs for at most poly(n) steps and, for any
n € N, takes as input any x € {£1}" and the advice string o, and outputs M(x,ay) = fn(z).

This fact will be useful for translating discriminators computed by neural networks into dis-
criminators given by polynomial-sized Boolean circuits.



2.4 Local Pseudorandom Generators

In the cryptography literature, it is widely believed that there exist so-called local PRGs capable of
fooling all polynomial-sized Boolean circuits and which are computed by local functions, i.e. ones
whose output coordinates are functions of a constant number of input coordinates [AIK06]. In our
proof of Theorem 1.1, we will work with this assumption.

Before stating the assumption formally, we first formalize what we mean by local functions:

Definition 7 (Local functions). A function G : {£1}™ — {+1}? is k-local if there exist func-
tions Pi,..., Py : {£1}* — {£1} and subsets Si,...,S; C [m] of size k for which G(z) =
(Pi(zs,), ..., Py(zs,)) for all z € {£1}™, where here xg, € {£1}* denotes the substring of =
indexed by S;.

We will sometimes refer to the functions P; as predicates.

Assumption 1. There exist constants ¢ > 1 and k € N for which the following holds. There
is a family of k-local functions {G,, : {£1}™ — {£1}™Y o for which d(m) > m¢ for all m
sufficiently large and such that {G,,} negl(m)-fools all polynomial-size Boolean circuits relative to
Ud(m) with seed Uy, for some negligible function negl : N — [0, 1].2

Assumption 1 is typically referred to as the existence of “PRGs in NC? with polynomial stretch.”
We note that this is a standard cryptographic assumption; indeed, this was one of the ingredients
leveraged in the recent breakthrough construction of indistinguishability obfuscation from well-
founded assumptions [JLS21].

One prominent candidate family of k-local functions satisfying Assumption 1 is given by Gol-
dreich’s construction [Golll]:

Definition 8 ([Golll]). Let H be a collection of d subsets S1,...,Sq of {1,...,m}, each of size k
and each sampled independently from the uniform distribution over subsets of {1,...,m} of size k.
Let P : {£1}* — {41} be some Boolean function.

Let Gpp : {£1}™ — {£1}? denote the Boolean function whose {-th output coordinate is com-
puted by evaluating P on the coordinates of the input indexed by subset Sy in H.

We will revisit Definition 8 in Section 5 where we empirically demonstrate that Goldreich’s
construction is secure against neural network discriminators.

Finally, we stress that as discussed in Section 1.1, there is significant evidence in favor of
Assumption 1 holding, in particular for Goldreich’s construction. It is known that a variety of rich
families of polynomial-time algorithms [MST06, CEMT09, OW14, FPV18] fail to discriminate, and
it is also known that a weaker variant of Assumption 1 in which the distinguishing advantage is only
at most inverse polynomial follows from a variant of Goldreich’s one-wayness assumption [Golll].

Why Not Just Assume PRGs? While Assumption 1 is widely believed, the reader may won-
der whether we can derive the results in this paper from an even weaker cryptographic assumption,
for instance the existence of PRGs [HILL99] (not necessarily computable by local functions). Un-
fortunately, the latter does not translate so nicely into generators computed by neural networks. In
particular, if one implements a generator computed by an arbitrary polynomial-sized Boolean cir-
cuit as a neural network of comparable depth, the Lipschitz-ness of the network will be exponential
in the depth (see Appendix A.2). In other words, the function family the generator comes from
would be strictly stronger than the one the discriminator comes from. This would be significantly
less compelling than our Theorem 1.1 which notably holds even when the former is significantly
weaker than the latter.

39 : N — Ry is negligible if for every polynomial p, g(n) < |1/p(n)]| for all sufficiently large n.



2.5 Diverse Distributions

Recall that the main result of this paper is to construct generators that look indistinguishable from
natural target distributions D* according to any poly-sized neural network, but which are far from
D* in Wasserstein. In this section we describe in greater detail the properties that these D* satisfy.

Definition 9. A distribution p over R is (N, B)-diverse if for any discrete distribution v on R?
supported on at most N points, Wi(u,v) > 5.

Note that Definition 9 is a very mild assumption that simply requires that the distribution
not be tightly concentrated around a few points. Distributions that satisfy Definition 9 are both
practically relevant and highly expressive. For starters, any reasonable real-world image distribution
will be diverse as it will not be concentrated around a few unique images.

We now exhibit various examples of natural distributions which satisfy Definition 9, culminating
in Lemma 2.17 which shows that random expansive neural networks with leaky ReLU activations
yield diverse distributions.

We first show that diverse distributions cannot be approximated by pushforwards of U,, if m
is insufficiently large. This follows immediately from the definition of diversity:

Lemma 2.13. For any 0 < § < 1, if D* is a (2™, B)-diverse distribution over R%, then for any
function G : {£1}™ — R4, W1 (G(Uy,), D*) > 5.

Proof. G(U,,) is a uniform distribution on 2™ points, with multiplicity if there are multiple points in
{£1}™ that map to the same point in R? under G, so the claim follows by definition of diversity. [

Next, we give some simple examples of diverse distributions.

Lemma 2.14 (Discrete, well-separated distributions). For any a > 0 and any N, N’ € N satisfying
N < N'. Let Q CR? be a set of points such that for any z,2' € Q, ||z — 2| > .. Then the uniform
distribution p on any N’ points from  is (N, 8)-diverse for § = a(1 — N/N').

Proof. Take any discrete distribution v supported on at most N points y1, ..., yyx in R%. Consider
the function f : R — R: for any y in the support of v, let f(y) = 0, and for any y not in the
support of v, let f(y) = 1. As a function from €2 to R, where €2 inherits the Euclidean metric, f is
clearly 1/a-Lipschitz over Q2. By Theorem 2.1, there exists a 1/a-Lipschitz extension f : R? - R
of f, and we have

E[f ()] = E[f @)l = [ELf(w)]] = 1 = N/N',
so Wi(p,v) > 1— N/N' as desired. O

To show that certain continuous distributions are diverse, we use the basic observation that
diversity follows from certain small-ball probability bounds.

Definition 10. For a distribution D over R?, define the Lévy concentration function Qp(r) £
sup,segd Penp|llz — 2| < 7).

Lemma 2.15. If a distribution D over R? satisfies Qp(r) < a, then D is (N,7(1 — Na))-diverse.

Proof. Take any N points z1,...,zy € R? By the bound on Qp(r), the union S of the balls
of radius r around these points has Lebesgue measure at most Na. Define the function f :
{z1,...,28} U (RHNS) — {0,1} to be zero on {z1,...,2x} and one on RY\S. This function is
1/r-Lipschitz on its domain, so by Theorem 2.1 there is an extension f’ : R? — R of f which

10
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remains 1/r-Lipschitz on its domain. Define the function f*(z) = |f(z)|. Note that for p the
uniform distribution on {z1,...,2x},

[ELf ()] - E[f(D)]] = [E[f(D)]| = 1 = Na,
so we conclude that Wi (u, D) > r(1 — Na). O
Lemma 2.16 (Uniform distribution on box). Iy is (IV,1/2)-diverse for N < %(d/18)d/2.

Proof. By Fact 2.3, Qr,(r) < (187?/d)#¥?. Taking r = 1 and applying Lemma 2.15 allows us to
conclude that Wi (g, I;) > 1 — N(18/d)%?, from which the lemma follows. O

Finally, we show that pushforwards of the uniform distribution over [0, 1]? by random expansive
leaky ReLU networks are also diverse. Note that such networks can be implemented as ReL.U
networks, so our main Theorem 1.1 applies to such target distributions.

Lemma 2.17 (Random expansive leaky ReLU networks). For ko,...,k; € N satisfying k; >
L.1k;_1 for all i € [L], let W1 € RF>ko W, ¢ RF2Xk1 W € RFLXFL-1 be random weight
matrices, where every entry of W, is an independent draw from N(0,1/k;). For the function
F : RFo — RFL given by F(x) & Wrin (Wr_1tx (- oa(Wiz) - -)), where ix(z) = Pa(z) =
z2/24(1/2—X)|z| is the leaky ReLU activation, F(Iy,) is (2™, B)-diverse for m = (ko/2)log(ko/2) —
kr/1.1 —1 and B = O(N\)Y with probability at least 1 — exp(—Q(d)).

For example, if \, L = O(1), then F(Iy,) is (2%kologko) Q(1))-diverse for ko sufficiently large.

We will prove this inductively by first arguing that pushing anticoncentrated distributions
through leaky ReLU (Lemma 2.18) or through mildly “expansive” random linear functions (Lemma 2.19)
preserves anticoncentration to some extent:

Lemma 2.18. Let 0 < A < 1/2. If a distribution D over R satisfies Qp(r) < o, then the pushfor-
ward D' £ (D) also satisfies Qp(Ar) < 2%, where here 1(---) denotes entrywise application
of the leaky ReLU activation.

Proof. Consider any ball B(v, Ar) in R?. Take any orthant Kg of R%, given by points whose i-th
coordinates are nonnegative for ¢ € S and negative for ¢ € S. Let Bg be the intersection of B with
this orthant. Then 1 ' (Bg) consists of points z € Kg for which

> Az =)+ (1= Nz —)? < N2 (2)
icS i¢S

We can rewrite the left-hand side of (2) as

A2Y (z = vid)? + (L= A2 (e = v/ (1= 0)? 2 W%z = w(5)%,

icS igs
where in the last step we used A < 1/2 and define the vector v° € R? by

R RZ 0 i€S
WS- igst

In other words, ¢ ! (Bg) is contained in Kg N B(v(S),r). In particular,

U3 (B) €| JKs N B(S),r),
S

0 Pypr[z € B] < 2% a by a union bound. O
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Lemma 2.19. Suppose n,d € N satisfy n > (14 7)d for some v > 0. Let W € R™*? be a matriz
whose entries are independent draws from N'(0,1/n). If a distribution D over R satisfies QD(T) <

a, then for the linear map f : x — Wz, the pushforward D' = f(D) satisfies Qpr ( ST )) <«
with probability at least 1 — exp(—(yd)).

Proof. By Theorem 2.6, for any € > 0 we have that op,;,(W) > e- <1 — 4/ d;1> with probability at

least 1 — (Ce)"~4+! — e=e". Taking € = 1/2C and noting that 1 — /<21 > 1+ , we conclude that

P Umin(W) > 7

= 2(1"'7)] > 1 —exp(—Q(vd)).

Condition on this event. Now for any v € R", if we write v as Wy + u* where p is orthogonal to

the column span of W, then |[Wz — v||? = HW(ZL‘ — w)||2 + [[t]|?. So |[Wz —v| < ﬁ implies
that |W(x — p)|| < 51 1+,y) But because opin (W) > ﬁ, we conclude that ||z — u|| < r, from
which the lemma follows. 0

We are now ready to prove Lemma 2.17:

Proof of Lemma 2.17. By Lemma 2.15 it suffices to bound the Lévy concentration function. We
will induct on the layers of F. For i € [L], let F?) denote the sub-network

Withx (Wr_19x (- - oa(Waz) -+ +)),

and let D; denote the pushforward F() (I,), which is a distribution over R*. We would like to

apply Lemma 2.19 to each of the weight matrices W1y, ..., W, so condition on the event that the

lemma holds for these matrices, which happens with probability at least 1 — L exp(—Q(yd)).
Recalling from Fact 2.3 that Qp, (r) < (1872 /ko)*0/? for any r > 0, we get from Lemma 2.19

applied to W that Qp, (ﬁ) < (1872 /ko) o/,
Suppose inductively that we have shown that Qp,(r;) < «; for some 7, > 0. Then by
Lemma 2.18 and Lemma 2.19 applied to weight matrix W, 1, we conclude that

AT

i = 2Ry 3
2(1_’_’}/) i+1 ( )

Qpyyy (riv1) < aiyr for ripg =

Unrolling the recursion (3), we conclude that Qp, (rr) < ay, for

RV Mo\ A
L= (2(1+v)) = (2(1+7)> = <2‘e1/v>

;= 2k'1+“‘+k'L—1(187a2/k0)k0/2 < 2]%/7(187'2/]{0)]"’0/2, (4)

where the inequality in (4) follows from the fact that ky +---+ k1 < kr_1(1+1/v) < kp/v. By
Lemma 2.15, F'(I,) = Dr, is (N,r(1 — Nay))-diverse. The lemma follows by taking r = 1/3 and
9m — N =1/2ar. O
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3 Fooling ReLU Network Discriminators Does Not Suffice

In this section we will show that even though a generative model looks indistinguishable from
some target distribution D* according to any ReLU network in F*, it can be quite far from D*
in Wasserstein. We begin by describing a simple version of this result over discrete domains in
Section 3.1. In Section 3.2 we extend this to target distributions over continuous domains, but
where the generator still takes in a discrete-valued seed. Finally, in Section 3.3 we give a simple
reduction that extends these results to give generators that take in a continuous-valued random
(Gaussian) seed, culminating in the following main result:

Theorem 3.1. Let {H,,}m be a sequence of generators Hy, : R"™ — R for r(m), d(m)
poly(m) whose output coordinates are computable by networks in CZZEZ))ZQIEZ;,T(M for'(m),A'(m)
poly(m). Suppose that Hpy, (I, (p)) is (2, (1))-diverse.

Fiz any € : N — [0, 1] satisfying e(m) > max(negl(m),exp(—O(m)). Under Assumption 1, there
is a sequence of generators G, : R™ — RU™) such that for all m sufficiently large:

<
<

!

1. FEvery output coordinate of Gy, is computable by a network in ngm for

7 = max(O(log(A'(m) - m - d(m)/e(m))), 7' (m), O(1))
A = O(X(m)’poly(m)/e(m))
L=1L"(m)+0(1)
S = O(r(m)log(1/e(m))) + 3m + S'(m)
2. Wr=(Gm(ym), Hm(Ip(m))) < €(m) - poly(m)
8. WGy Hon(Tyony)) > (1),
Note that a natural choice of parameters for H,, would be
7'(m) < O(logm), A'(m),S'(m),1/e(m) < poly(m), L'(m)<O(1).

(In fact, the poly(m) factor in bullet point 2 simply comes from the Lipschitzness of H,,, so e(m)
only needs to scale inversely in this quantity for Wz« to be small.) Altogether, we conclude that
G.’s output coordinates are computable by constant-depth ReL U metworks with polynomial size
and Lipschitzness and logarithmic bit complexity 7.

3.1 Stretching Bits to Bits

As a warmup, in this subsection we prove the following special case of Theorem 3.1 when the target
distribution and seed distribution are discrete.

Theorem 3.2. Under Assumption 1, for any constant ¢ > 1, there is a sequence of generators
G : R™ — RU™) for d(m) > m¢ such that for all m,

1. Every output coordinate of Gy, is computable by a network in ngm for T, A, L, S = O.(1)
2. W]:* (Gm(Um), Ud(m)) < negl(m)
3. Wi(Gm(Un), Ugmy) > Q(1).
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We emphasize that in this discrete setting, our quantitative guarantees are even stronger: all
parameters T7,A, L, S of the generator are constant, and no polynomial-sized ReLU network can
distinguish between G, (Up,) and Ug(,) with even non-negligible advantage.

As discussed in the introduction, a basic but important building block in the proof of Theo-
rem 3.2 is the connection between local PRGs and generative models computed by neural networks
of constant depth/size/Lipschitzness. We begin by elaborating on this connection and showing that
any predicate {+1}* — {+1} can be implemented as a network in Cz’f;d where 7, A, L, S = Og(1).

Lemma 3.3. For any function P : {£1}* — {&1}, there is a collection of k weight matrices
Wi, ..., Wy with entries in Ro,) for which

P(z) = Wio(- - ¢(Wiz)---) (5)
for all x € {£1}*, and for which ||[W|| < O(1). Furthermore, the size of the network on the
right-hand side of (5) is at most O(2F - k).

This construction was given in Lemma A.2 of [CKM20]; in Appendix A.2 we include a proof for
completeness to make explicit the norm bound and dependence on k. As an immediate consequence,
we get:

Corollary 3.4. For any k € N and any k-local function G : {0,1}™ — {0,1}¢, every output
coordinate of G can be computed by a networks in ngm form=0(k),A =exp(O(k)),L =k, S =
O(2FE).

Before we use this to prove Theorem 3.2, we need an extra technical ingredient to formalize the
fact that a discriminator given by a ReLU network of polynomially bounded complexity yields a
discriminator computable by a polynomial-sized Boolean circuit. The idea is that if Wr- is large so
that there exists some ReLLU network discriminator, then because the input to the discriminator is
sufficiently well concentrated, some affine threshold of the ReLU network can distinguish between
the two distributions. Moreover as we show in Lemma A.2 in Appendix A.3, such thresholds can
be computed in P/poly.

Lemma 3.5. Given independent X and Y such that E[Y] — E[X] = «a and for which X — E[X]
and Y — E[Y] are o2-sub-Gaussian, there exists a threshold t € [E[X] — O(o\/log(a/|a])), E[Y] +

O(a+/log(o/[a]))] for which |P[X > ] — P[Y > #]| > min (1/2, §(|ay/a)).

To prove Lemma 3.5, we will need the following helper lemma about means of truncations of
sub-Gaussian random variables:

Lemma 3.6. If Z is 02-sub-Gaussian and mean zero, then for any interval I = [a,b] witha < 0 < b,
we have |E[Z - 1[Z ¢ 1]]| < O(b— a + o) - exp(— min(—a, b)?/20?).

Proof. Define the random variable Z’ = Z - 1[Z & I]. Then by integration by parts,
E[Z') < E[Z -1[Z > b]]

- /oo P[Z’ > t]dt
0
=bP[Z > ] +/ P[Z > t]dt
b

< bexp(—b?/20%) + O(o - exp(—b*/25?))
< O(b+0) - exp(—b*/20?).
and similarly, E[Z] > E[Z - 1[Z < —a]] > O(a — o) - exp(—b?/20?), completing the proof. O
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We now complete the proof of Lemma 3.5.

Proof of Lemma 3.5. Without loss of generality we can assume that E[X] = 0 and E[Y] = a. If
a > co for some sufficiently large absolute constant, then we can simply take ¢ = «/2 and get that
|P[X > t] —P[Y > t]| > 1/2. Now suppose a < co, and let I = [—r,r + o] for r = o4/log(Co/a)
for some large constant C' > 0. Note that by this choice of r,

rexp(—r®/20%) < O(a),

where the constant factor can be made arbitrarily small by picking C sufficiently lage. Define the
random variables X' £ X -1[X € I[] and Y’ 2 Y - 1[Y € I]. Then

a=E[Y]-EX]|=EY']-EX'|+E[Y -1]Y €I]] - E[X - 1[X € I]]. (6)
By Lemma 3.6,
E[X -1[X ¢ I]] < O2r + a+ o) - exp(—(r + a)?/20%) < O(r) - exp(=1?/20%) < O(a)  (7)
and similarly

EY -1]Y ¢ )| <E[Y] - P[Y € I] + O(2r + a + o) - exp(—(r + a)?/20?).
< 2aexp(—1r%/20%) 4+ O(r) - exp(—(r + )?/20?) < O(a). (8)

Additionally, we have

a~+r 0
E[X/] — E[Y’] = / (‘by/(?l) — @X/(z))dz — / (@X/(Z) — q)y/ (Z))ClZ (9)
0 -«
where ®7(z) denotes the cdf at z of random variable Z. Putting (6), (7), (8), (9) together, we
conclude that

a+r 0
min (/ (Py/(2) — <I>X/(z))dz,/ (Px/(z) — @y/(z))dz> > Qa),
0 —a
where the constant factor can be made arbitrarily close to 1/2 by making C sufficiently small. By
averaging, we conclude that there exists ¢ € [—«, a + r| for which

|P[X' > t] — PY' > t]| > Q(a/7).

But P[X ¢ I],P[Y ¢ I] < O(exp(—r?/20%)) < O(a/r), where the absolute constant can be made
arbitrarily small by making C sufficiently small. The claim follows by a union bound, recalling the
definition of X', Y”. ]

We are now ready to prove Theorem 3.2:

Proof. The parameter m will be clear from context in the following discussion, so for convenience
we will refer to d(m) and G,, as d and G. Let k, P, G be such that the outcome of Assumption 1
holds, and negl(-) denote the function indicating the extent to which G fools poly-sized circuits. By
Corollary 3.4, every output coordinate of G is computable by a network in Cz{;m for 7 =0O(k),A =
exp(O(k)),L = k,S = O(2"k).

We first check that W1 (G(Uy,),Uy) > 1/3. Note that G(U,,) has support of size 2™. In
Lemma 2.14 we can take u = Uy and conclude that p is (2™, 2(1—2m~%))-diverse, so W1 (G (Un,), Ug) >
2(1 —2m=4) = 2(1 — 2 ™) > 1.
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It remains to check that G fools F* relative to Uy. Suppose to the contrary that there exists
some f € F* and absolute constant a > 0 for which |E[f(G(Un))] — E[f(Uq)]| > 1/d*. We will
argue that this implies there is a poly-sized circuit C : {£1}¢ — {£1} distinguishing G(U,,) from
Ug.

First note that for any threshold ¢t € R,, by Lemma A.2 there is a Turing machine M, :
{£1}¢ — {41} that computes y +— sgn(f(y) —t) with 7 bits of advice. So if there existed a
threshold ¢ € R for which

[EM(G(Un))] - EIM(Ug)]] > 1/d”, (10)

for some constant @’ > 0, then by Fact 2.12, there would exist a Boolean circuit C' distinguishing
G(Uy,) from U, with non-negligible advantage, contradicting Assumption 1 and concluding the
proof.

We will apply Lemma 3.5 to show the existence of such a threshold ¢. Specifically, define
random variables X = f(G(Up)) and Y = f(Uy). By Corollary 2.5 applied to the poly(d)-
Lipschitz function f : {#1}¢ — {#1}, Y — E[Y] is poly(d)-sub-Gaussian. And recalling that
G e ngm for A = exp(O(k)), we can apply Corollary 2.5 to the poly(d) - O(1)-Lipschitz function
foG : {£1}™ — {41} to conclude that X —E[X] is o3-sub-Gaussian for ¢ £ poly(m)-exp(O(k)) =
poly(d). By Lemma 3.5, there exists a threshold ¢ for which the left-hand side of (10) exceeds
min(1/2,Q(n"%/c)), which is not negligible.

It remains to verify that ¢ has bit complexity at most poly(d). As the entries in the weight
matrices and biases in f all have bit complexity poly(d) and f has size and depth poly(d), f(y)
has bit complexity poly(d) for any y € {+1}?. Similarly, the entries in the weight matrices and
biases in G all have bit complexity O(k) = O(1), so f(G(z)) has bit complexity poly(d) for any
x € {£1}™. By the bound on ¢ in Lemma 3.5 and our bound on o above, ¢ therefore also has
poly(d) bit complexity. O

3.2 From Binary Outputs to Continuous Outputs

In this section we show how to extend Theorem 3.2 to the setting where the target distribution
D* is a pushforward of the uniform distribution on [0,1]". At a high level, the idea will be to
post-process the output of the generator constructed in Theorem 3.2. Roughly speaking, we take
weighted averages of clusters of output coordinates from the generator in Theorem 3.2 and pass
these averages through the pushforward map defining D*. Formally, we show:

Theorem 3.7. Let {H,,}m be a sequence of generators H,, : R™™ — RU™) for r(m),d(m) <
poly(m) whose output coordinates are computable by networks in Czl,((z))gigzgr(m) for ' (m),AN'(m) <
poly(m). Suppose that Hy, (1)) is (2, €2(1))-diverse.

Fiz any € : N — [0, 1] satisfying e(m) > max(negl(m), exp(—O(m)). Under Assumption 1, there
is a sequence of generators G, : R™ — R sych that for all m sufficiently large:

1. Every output coordinate of Gy, is computable by a network in C};’g’m for
7 = max(O(log(1/e(m))), 7' (m), O(1))
A =0O(A'(m)) - poly(m)
L=1L'"(m)+0(1)
S = O(r(m) - log(1/¢(m))) + S'(m)

2. Wre(Gm(Um), Hn (I (m))) < €(m) - poly(m)
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3. Wl(Gm(Um)aﬂm(Ir(m))) > Q(U

Theorem 3.7 retains many of the nice properties of Theorem 3.2, e.g. it can tolerate distin-
guishing advantage e(m) which is negligible, at the mild cost of an extra logarithmic dependence
on 1/e(m) in the bit complexity 7. And as with Theorem 3.1, if the networks H,, are of constant
depth, the resulting generators G,, are also of constant depth.

To prove Theorem 3.7, we begin by showing that for any pair of distributions which are close
under the Wr metric for some family of neural networks F, their pushforwards under a simple

generative model will still be close under the Wz metric for some slightly weaker family of networks
F'.

Lemma 3.8. Fiz parameters A,A' > 1. Let F = CZ’/;S. If Wx(p, q) < € for some distributions p, q
on R*, then for any J : R® — R" each of whose output coordinates is computed by a function in
CE’,{XS,’S for some L' < L and S' < 5=2=L we have Wx/(J(p), J(q)) < 2eA'\/7 for F' = CE;AL,S,,’T
where 7' = 7 — [logy A\/T| and 8" =S —r(S"+1).

Proof. Suppose to the contrary that there existed some function f € F’ for which

IELf(J(p)] — ELf(J(q))]] > 2¢- A",

By Lemma 2.8 and our choice of S”, the composition fo.J : R® — R can be computed by a network
in ng/; VT Wwhose bias and weight vector entries in the output layer lie in R,.

We first show why this would lead to a contradiction. Consider the function h £ % - fod for
C = 2Mos2 AVl c [\ 20,

which can be computed by taking the network computing f o J and scaling the bias and weight
vector in the output layer by C. Note that this scaling results in bias and weight vector entries in
the output layer for h with bit complexity 7’ + [logy A’\/r] = 7. Furthermore, h is AN /7 /C < A-
Lipschitz, so h € ng s On the other hand, we would have

[E[R(p)] — E[R(q)]] > 2¢A’V/r/C > e,
yielding the desired contradiction of the assumption that Wx(p, q) < e. O

Now recall that in Theorem 3.2, we exhibited a GAN which is close in Wz« to Us. Using
Lemma 3.8, we can show that a certain simple pushforward of this GAN will be close in Wz+ to the
uniform distribution over [0,1]" for r slightly smaller than s. The starting point is the following:

Fact 3.9. For any 0 < e <1 and n > logy(1/e), let h : R™ — R be given by h(z) = (w,z + 1) for
w=(1/4,1/8,...,(1/2)"*") and 1 the all-1’s vector. Then Wi(h(Uy),I1) < e.

Proof. Note that h(U,) is the uniform distribution over multiples of 1/2™ in the interval [0,1).
Given any such multiple z, let p, denote the uniform distribution over [z,z + 1/2™). One way of
sampling from I is thus to sample z from h(U,,) and then sample from p,.

Now consider any 1-Lipschitz function f : R — R. Note that for any 2’ in the support of p.,
If(z) — f(2)] <1/2™ < e. We have

<e€

[ELf(h(Un))] = ELf(ID)]] =

g | E (16~ 1)

2nh(Un) [ #/~p2

as desired. ]
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By leveraging Lemma 3.8 and Fact 3.9, we can get an approximation to the uniform distribution
over [0, 1]" out of the uniform distribution over {£1}°:

Lemma 3.10. Suppose ¢ > 0 satisfies log(1/¢) < poly(s). If a distribution D over R® satisfies
Wr+(D,Us) < e, then for r = s/[log(1/€)],* there is a function J : R® — R" each of whose output
coordinates is computed by a function in Cf&gga/e))’o(l) such that Wr-(J(D), I,,) < € - poly(r).

Proof. Let n = [log(1/€)]. For every i € [r], define S; £ {(i —1)-n+1,...,i-n}. Take J to be
the linear function where for every i € [r], the i-th output coordinate of J is the linear function
which maps y € R® to (w;,y + 1) where w; is zero outside of S; and, over coordinates indexed by
S;, equal to the vector (1/4,...,1/2""1). Note that each output coordinate of .J is computed by a
function in C%rls’o(l).

By Fact 3.9 and Fact 2.9,

Wr=(J(Us), Ir) < poly(r) - Wi(J(Us), Ir) < poly(r) - e.

On the other hand, by Lemma 3.8 and the fact that the union of Cz:gl%gffr‘/ﬂ’[x over T,A, L, S =
poly(s) is still 7*, we conclude that

W= (J(D), J(Us)) < O(ev/r),
from which the lemma follows by triangle inequality. O

By further combining Lemma 3.8 and Lemma 3.10, we can thus extend the latter from the
uniform distribution on [0, 1]" to simple pushforwards thereof.

Lemma 3.11. Under the hypotheses of Lemma 3.10, for any d < poly(s) and any function H :
R" — R each of whose output coordinates is computed by a function in Cz,’g, . for 7" < poly(s),
there is a function J' : RS — R? each of whose output coordinates is computed by a function in

Cm(Ooz (/DTN gyey that W (J'(D), H(I,)) < e’ - poly(s).
Proof. Let J : R® — R” be given by Lemma 3.10. We know that Wx-(J(D), ) < e - poly(r).
By Lemma 3.8 applied to these two distributions and the generator function H, together with

the fact that the union of Cng}oﬁiﬁgl’f) g over A, LS = poly(s) is still 7*, we thus have that

W (H(J(D)), H(I,)) < O(eN'v/d) - poly(r) = €A’ - poly(s).
We will thus take J’ in the lemma to be H o J. By Lemma 2.8, each output coordinate of .J' is

max(O(log(1/€)),7"),0(A’Vd)

L'+1,7+8",s as claimed. O

computed by a function in C

So for any pushforward H(I,) of the uniform distribution on [0,1]", Lemma 3.11 lets us take
the GAN given by Theorem 3.2 and slightly post-process its output so that it is close in Wz to
H(I,). We are now ready to prove Theorem 3.7:

Proof of Theorem 3.7. The parameter m will be clear from context in the following discussion,
so for convenience we will refer to r(m),d(m),e(m), Hy,, Gy, as r,d, e, H,G, and similarly for the
network parameters 7/, A’, L', S’.

It is easy to verify condition 3 before we even define G: because G(Uy,) is a uniform distribution
on 2™ points (with multiplicity) and H(I,) is (2™, €Q(1))-diverse, W1(G(Un,), H(I;)) > Q(1) as
claimed.

“We will assume for simplicity that this is an integer, though it is not hard to handle the case where [log(1/¢)]
does not divide s.
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Let s = r - [log(1/€)]. As we are assuming € > exp(—O(m)), s < r-m = m¢ for some constant
¢ > 1. If s < m, then define G’ : R™ — R® to be the map given by projecting to the first
s coordinates so that G'(U,,) and Us are identical as distributions. Otherwise, take G’ to be the
generator G : R™ — R constructed in Theorem 3.2, recalling that Wr« (G’ (U, ), Us) < negl(m) < e.

Next, by applying Lemma 3.11 to D= G'(Up,), we get a function J' : R® — R? each of whose

max(O(log(1/e€)),m"),0(A'Vd) such that

output coordinates is computed by a function in C;, 1SS

W, (J'(G'(Um)), H(I;)) < A" poly(m) < € poly(m), (11)

where the second step follows by our assumption on A’.

We will take G £ J'oG’. (11) establishes condition 2 of the theorem. Finally, by Lemma 2.8, ev-
ery output coordinate of G' can be realized by a network in ng ., for 7 =max(O(log(1/€)),7',0(1)),
A =0(NVds) =0(N) -poly(m), L=L +0(1),and S = O(s) +r + 5" = O(s) + S’ (where we
used the fact that r = s/[log(1/€)] < s). This establishes condition 1 of the theorem. O

3.3 From Binary Inputs to Continuous Inputs

In Theorem 3.7, we have shown how to go from Uy, to any simple pushforward Hy,(I,(y,) of the
uniform distribution over [0, 1]’”(7"). Here we complete the proof of our main result, Theorem 3.1,
by giving a simple reduction showing how to use Gaussian seed v, instead of discrete seed U,,. At
a high level, the idea will be to pre-process the inputs to the generator constructed in Theorem 3.7
by appending appropriate activations at the input layer. We will need the following elementary
construction.

Lemma 3.12. For any § for which 1/§ € R., the function he : R — [0, 1] defined by

-1 z<-¢
he(z) = §2/€ |z <€
1 x>¢
can be represented as a network in CQT:QI’/E.
Proof. Note that
he(x) = o(x/§ +1) — p(x/ — 1) — 1, (12)

so we can take weight matrices

_ (/¢ _
W1(1/§> Wy = (1 -1)
and biases by = (1,—1) and bp = —1. Note that he is 1/¢-Lipschitz. We conclude that he €
T71/£
Col't- O
The function he will let us approximately convert from ~,, to Up,. Specifically, the following
says that if we want to approximate the output distribution of the generator in Theorem 3.7 using

Gaussians instead of bits as seed, it suffices to attach entrywise applications of h¢ at the input
layer:
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Lemma 3.13. Let Go : R™ — R? have output coordinates computable by networks in CL///’ gx -

For any € > 0, let & = ¢/ <A” (2/7r)m3d> and let & be the multiplicative inverse of [1/¢'].
The function G : R™ — R? given by G(x) = Go(he(z)), where he(x) denotes entrywise applica-
tion of he defined in Lemma 3.12, satisfies that 1) each of the output coordinates of G is computable

by a network in ngm for the parameters = max(7", O(log(A"md/e))), A = O(A"*m2Vd/e),
L=L"+2,and S=3m+ 5", and 2) W1(Go(Un),G(ym)) < €

Proof. We first verify that Wi(Go(Up,), G(7m)) < €. Take any 1-Lipschitz function f. Note that
we can sample from U, by sampling a vector g from ~,,, applying h¢ entrywise to g, and replacing
each resulting entry of he(g) by its sign; importantly, the last step only affects entries i € [m] for
which |g;| < &.
We will define £ to be the event that |g;| > £ for all ¢ € [m], noting that
PE>1—-m- P [lg| <& >1-—mé\/2/m.

g~N(0,1)

We can thus write

[ELf(Go(Um))] = ELf(G(vm))]|
E [(f(Golhe(9))) — F(G(9)) - LIET + (f(Golsgnlhe(9)))) — F(G(9))) - LE]]

g~Tm

E [(f(Go(sen(he(9)))) — f(Go(he(9)))) - L[EC]). (13)

g~Tm

By Fact 2.2, f o Gy is A”+/d-Lipschitz. Furthermore, because he(g) € [—1,1]™, [sgn(he(g)) —
he(g)|| < /m. We can thus upper bound (13) by

< AN'Vmd - PIEF) < N'éN/(2/m)mBd < €

so W1 (Go(Up), G(vm)) < € as desired.

It remains to bound the complexity of G. For any i € [d], we can apply Lemma 2.8 with f given
by the i-th output coordinate of Gy and J given by the map which applies h¢ to every entry of the
input. We thus conclude that G € CL 5.m for 7 = max(7",logy(1/€)) = max(r”, O(log(A"md/e))),

A=N'm/¢€ =O0N*m2Vd/e), L=L"+2,5 =3m+ 5" as claimed. O

Remark 3.14. Note the only fact we use about 7, in the proof of Lemma 3.13 is that outside of
an event with probability O(m&), he(vm) is uniform over {£1}™. In particular, the same would
hold for any product measure each of whose coordinates is symmetric and anticoncentrated around
zero. For instance, up to a constant factor in ¢, Lemma 3.13 also holds with ~,, replaced by I,,,.

We are now ready to prove Theorem 3.1:

Proof of Theorem 8.1. As in the proof of Theorem 3.7, the parameter m will be clear from context
in the following, so for convenience we will drop m from subscripts and parenthetical references.

Substitute the generator constructed in Theorem 3.7, call it Gy, into Lemma 3.13; we will take
the G resulting from the lemma to be the generator G in the theorem statement.

Recall from Theorem 3.7 that each output coordinate of Gy is computable by a network
in CL/; gx for 77 = max(O(log(1/¢)),7",0(1)), A" = O(A'poly(m)), L" = L' + O(1), §" =
O(rlog(1/€))+ 5. So by Lemma 3.13, every output coordinate of G is computable by a network in
CL{; for 7 = max(7", O(log(A'md/¢))) = max(O(log(Amd/e)), ', 0(1)), A = O(A"*m2Vd/e) =

O(AN?poly(m)/e), L=L"+2=L +O(1), and S = 3m + S” = O(rlog(1/¢)) + 3m + S". O
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4 Fooling ReLU Networks Would Imply New Circuit Lower Bounds

In this section we show that even exhibiting generators with logarithmic stretch that can fool all
ReLU network discriminators of constant depth and slightly superlinear size would yield break-
through circuit lower bounds.

First, in Section 4.1 we review basics about average-case hardness and recall the state-of-the-art
for lower bounds against TC®. Then in Section 4.2 we present and prove the main result of this
section, Theorem 4.2.

4.1 Average-Case Hardness and TC’

One of the most common notions of hardness for a class of functions F is worst-case hardness, that
is, the existence of functions which cannot be computed by functions in F.

Definition 11 (Worst-case hardness). Given a class of Boolean functions F, a sequence of func-
tions fn : {£1}" — {£1} is worst-case-hard for F if for every f : {£1}" — {£1} in F, there is
some input x € {£1}" for which f(x) # fn(z).

A more robust notion of hardness is that of average-case hardness, which implies worst-case
hardness. For any f, € F, rather than simply require that there is some input on which f and
fn disagree, we would like that over some fixed distribution over possible inputs, the probability
that f and f, output the same value is small. Typically, this fixed distribution is the uniform
distribution over {£1}", but in many situations even showing average-case hardness with respect
to less natural distributions is open.

Definition 12 (Average-case hardness). Given a class of Boolean functions F, a function € : N —
[0,1/2), and a sequence of distributions {Dy,}, over {£1}", a sequence of functions f, : {£1}" —
{£1} is (1/2 + €(n))-average-case-hard for F with respect to {D,} if for every f: {£1}" — {£1}
mn F,
P [f(z) = fula)] < 5 +e(n).
x~Dp, 2

By a counting argument, for any reasonably constrained class F there must ezist functions
which are worst/average-case hard for F. A central challenge in complexity theory has been to
exhibit explicit hard functions for natural complexity classes. In the context of this work, by explicit
we simply mean that there is a polynomial-time algorithm for evaluating the function.

The complexity class we will focus on in this section is TC?, the class of constant-depth linear
threshold circuits of polynomial size:

Definition 13 (Linear threshold circuits). A linear threshold circuit of size S and depth D is any
Boolean circuit of size S and depth D whose gates come from the set G of all linear threshold
functions mapping x € {£1}" to sgn({w,z) — b) for some arity n € N, vector w € R", and bias
beR. TCY is the set of all linear threshold circuits of size poly(n) and depth O(1).

The best-known worst-case hardness result for TC? is that of [IPS97] who showed:

*Sometimes TC? is defined with the gate set taken to consist of {A,V,—} and majority gates, though these two
classes are equivalent up to polynomial overheads [GHR92, GK98]. Moreover, because a circuit of size S and depth
D using the latter gate set is clearly implementable by a circuit of size S and depth D using the former gate set, so
our lower bounds against the former gate set immediately translate to ones against the latter.
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Theorem 4.1 ([IPS97]). Let f, : {£1}" — {£1} be the parity function on n bits. For any depth

14co~P

D > 1, any linear threshold circuit of depth D must have at least n wires, where ¢ > 0 and

0 > 1 are absolute constants.

In [CSS16] this worst-case hardness result was upgraded to an average-case hardness result with
respect to the uniform distribution over the hypercube. Remarkably, this slightly superlinear lower
bound from [IPS97] has not been improved upon in over two decades!

We remark that the discussion about lower bounds for threshold circuits is a very limited
snapshot of a rich line of work over many decades. We refer to the introduction in [CT19] for a
more detailed overview of this literature.

4.2 Hardness Versus Randomness for GANSs

For convenience, given sequences of parameters D(m), S(m) € N (these will eventually correspond
to the depth and size of the linear threshold circuits against which we wish to show lower bounds)
let

A Hpoly(d),poly(d)
Ca(D,S) £ Cg([y)),?)dr—)&-(ay(S),d’

This will comprise the family of ReLU network discriminators that we will focus on. We now show
that if one could exhibit generators that can provably fool discriminators in C4(D,S), then this
would translate to average-case hardness against linear threshold circuits of depth D and size D.
Formally, we show the following:

Theorem 4.2. There is an absolute constant ¢ > 0 for which the following holds. Fix sequences
of parameters D(m), S(m) € N. Suppose there is an explicit’ sequence of generators G, : R™ —
RU™) for d(m) > emlogm such that ch(m)(p(m),g(m))(Gm(Im),Id(m)) < €(m) for some e(m) >
1/poly(m) and such that each output coordinate of Gy, is computable by a network in F*, then there
exists a sequence of functions hq(p,) : {£1}4M) 5 {41} in NP which are (1/2+ e(m)/2+m~20m)-
average-case-hard with respect to some sequence of explicit distributions {Dp,} for linear threshold
circuits of depth D(m) and size S(m).

Remark 4.3. In particular, this shows that if we could exhibit explicit generators fooling all dis-
criminators given by neural networks of polynomial Lipschitzness/bit complexity of depth D(m)
and size O(d(m)+eP(=P(m) ™)) “then by (1) we would get new average-case circuit lower bounds
for TC?. In fact it was shown by [CT19] that such a result would imply TC® % NC!, which would
be a major breakthrough in complexity. This can be interpreted in one of two ways: 1) it would be
extraordinarily difficult to show that a particular generative model truly fools all constant-depth,
barely-superlinear-size ReLLU network discriminators, or 2) gives a learning-theoretic motivation for
trying to prove circuit lower bounds.

Regarding the proof of Theorem 4.2, note that the statement is closely related to existing well-
studied connections between hardness and randomness in the study of pseudorandom generators. In
fact, readers familiar with this literature will observe that Theorem 4.2 is the GAN analogue of the
“easy” direction of the equivalence between hardness and randomness: an explicit pseudorandom
generator that fools some class of functions implies average-case-hardness for that class.

In order to leverage this connection however, we need to formalize the link between GANs (over
continuous domains) and pseudorandom generators (over discrete domains) in the next lemma. It
turns out that in the preceding sections we already developed most of the ingredients for establishing
this connection.

5By explicit, we mean that we are provided a way to evaluate these functions in polynomial time.
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Lemma 4.4. Suppose there is an explicit sequence of generators Gy, : R™ — RU™) such that
ch(m>(D(m)75(m))(Gm(Im),Id(m)) < e(m) for some e(m) = 1/poly(m) and such that each output
coordinate of G, is computable by a network in F*. Then there is an explicit sequence of pseu-
dorandom generators G', : {£1}"™ — {+1}4™) for n(m) = O(mlogm) that 2¢(m)-fool linear
threshold circuits of depth D(m) and size S(m).

Proof. As in the proofs of the theorems from Section 3, the parameter m will be clear from context,
so we will drop m from subscripts and parenthetical references.

Recall the function he from Lemma 3.12; we will take £ = ¢/poly(m). Also define n =
©(log(m/e)) and recall from the proof of Lemma 3.10 the definition of the linear function J :
R™ — R™: for every ¢ € [m], the i-th output coordinate of J is the linear function which maps
x € R™ to (w;,z + 1), where w; is zero outside of indices {(i — 1) -n +1,...,7-n} and equal to
the vector (1/4,1/8,...,1/2""1) on those indices.

Given generator G fooling Cg, we will show that the Boolean function G’ : {£1}™" — {£1}¢
given by

G'=h¢oGolJ
is a pseudorandom generator that fools TC? circuits. To that end, suppose there was a TCY circuit
[ {£1}® — {£1} for which |E[f(G"(Upmn))] — E[f(Ua)]| > 2¢. We will show that this implies the
existence of a ReLU network f" € C4(D, S) for which |E[f(G(In))] — E[f'(1a)]| > €.

Our proof proceeds in three steps: argue that

L. fohe €Cy(D,S)
2. E[f(Uqg)] = E[f(he(1a))]

3. E[G'(Umn)] = E[f(he(G(In)))]

Note that 2 and 3, together with the fact that f is a discriminator for G/, imply that f/ £ f o k¢
is a discriminator for GG. 1 then ensures that this discriminator is a ReLU network with the right
complexity bounds, yielding the desired contradiction.

To show step 1, we will show that f can be computed by a network in Cg‘g%ggl’g 0(5;53) and then
apply Lemma 2.8 and Lemma 3.12. Suppose the threshold circuit computing f has depth D, where
D is some constant. Recall from Lemma 2.11 that we may assume, up to an additional blowup in
size by D, that the constant-depth threshold circuit C' computing f is comprised of layers S1,...,Sp
such that S; consists of all gates in C' for which any path from the inputs to the gate is of length i.

Let k; denote the number of gates in S; (where kp = 1), and for each j € [k;], suppose
the linear threshold function computed by the j-th gate in S; is given by sgn((w; ;,-) — b; ;) for
w;j € R¥-1. As each linear threshold takes at most poly(d) bits as input, we can assume without
loss of generality that b; ; and the entries of w; ; lie in R, for 7 = poly(d). For this 7, note that for
any w € RE b € R,z € {£1}F,

sgn((w,:c> —b) = h&’ ((w,x> —b),

for some &' = 1/poly(d), where hy po1y(a)(-) is the function defined in Lemma 3.12, and recall from
the proof of Lemma 3.12 that it can be represented as a two-layer ReLU network via (12). For

every i € [D], we can thus define two weight matrices ng) € R%Fixki-1 and Wl@) € RFix2ki 1y

— zl — 1 =10 0 0 0
o ow —
) 0 0 1 —1 0 0
! ¢ ! :
— Wik T 0 0 0 0 1 -1
_ w%kl _
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and biases b\") € R% and b'? € R by

bV =(1,-1,1,-1,...,1,-1) b =(~1,...,-1)

so that for all z € {+1}9,
o) = W (W6 (o6 (Wi (Wil 460 4 42) ) o) )

The entries of the weight matrices and bias vectors are clearly in Ry (q), and because each hg
is poly(d)-Lipschitz and there are D = O(1) layers in the circuit, the function in (14) is poly(d)-
Lipschitz as a function over R%. The size and depth of the network are within a constant factor
of the size S and depth D of the circuit. Lemma 2.8 and Lemma 3.12 then imply that f o h¢ has
depth ©(D) and size 3d+©O(S), as well as Lipshitzness and bit complexity polynomial in m because
€ > 1/poly(m) so that £ > 1/poly(m). Therefore, f o he € C4(D, S).

To show step 2, recall from Lemma 3.13 and Remark 3.14 that Wi (U, he(I,)) < €/poly(m).
Recalling that f is poly(d) = poly(m)-Lipschitz, we obtain the desired inequality |E[f(Uq)] — E[f(he(1q))]]| <
€/2. Here the factor of 1/2 is an arbitrary small constant coming from taking the poly(m) in the
definition of ¢ sufficiently large.

Finally, to show step 3, recall by Fact 3.9 that W1 (J(Upy), Im) < €2/poly(m) by our choice of
n = O(log(m/e)) (the €2 comes from taking the constant factor in the definition of n sufficiently
large). By applying Fact 2.2 to fohe and G, we know that the composition fohg oG is poly(m)/e-
Lipschitz. It follows that |E[G'(Upn)] — E[f(he(G(Im)))]| < €/2. The factor of 1/2 is an arbitrary
small constant coming from taking the constant factor in the definition of n sufficiently large.

Putting everything together, we conclude by triangle inequality that

[E[f(G(Im))] — E[f(1a)]] > €,
a contradiction. ]

The following lemma gives the standard transformation from pseudorandom generators to
average-case hardness. We include a proof for completeness.

Lemma 4.5 (Prop. 5 of [Vio09]). Suppose the sequence of functions Gy, : {1} — {£1}4™)
€(m)-fools a class of Boolean functions F. Define the function hgy) : {£1}4) 5 {41} by

Bt (2) 1 exists y € {£1}™ such that G(y) = x
m xr) = - )
d(m) —1 otherwise

Let Dy be the distribution over {£1}4) given by the uniform mizture between Ud(m) and G(Un).
Then the sequence of functions {haay)} is (1/2+ € (m))-average-case-hard for F with respect to

{Damy} for € (m) = e(m)/4+ gm—d(m)—1

Proof. As usual, we will omit most subscripts/parentheses referring to the parameter m. Let
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f:{£1}¢ — {£1} be any function in F. Then
PIF(D) = ha(D)] = 5 PIF(Ua) = haU)] + 3 BLF(G(Un)) = ha(G(U)]

(BL (U) = 0] + Plha(Us) = 1]) + ~ PL(G(U)) = 1]

- 2
PL(Ua) = 0] +279) 4+ 2 BUI(G(Un)) = 1]
< 5 (BUAWD) = 0+ 27 + 2 BLF() = 1 +¢/2)

A
NN NCRRE NCR R R ORI
S

+ 2m—d—1

+

€
4
where in the second step we used a union bound and the fact that h(G(Up,)) is deterministically 1
by construction, in the third step we used the fact that P[hg(Uy)] < 2™~ because there are at most

2™ elements in the range of GG, and in the fourth step we used the fact that G e-fools functions in
F. -

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.4, we can construct out of the generators G, an explicit se-
quence of pseudorandom generators that stretch ©(mlogm) bits to d(m) > ¢ - mlogm bits and
2¢(m)-fool linear threshold circuits of size S(m) and depth D(m). The theorem follows upon
substituting this into Lemma 4.5, which implies (1/2 + € (m))-average-case-hardness for such
circuits with respect to the explicit distributions Dy,,) defined in Lemma 4.5, where €(m) =
e(m) /2 4 20(mlogm)=dim)=1 — ¢(1m) /2 4+ m~%"™) provided the absolute constant ¢ is sufficiently
large.

Finally, note that the average-case-hard functions hg(,) we get from Lemma 4.5 are in NP
because given an input x and a certificate y, one can easily verify whether G(y) = x. O

5 Experimental Results

To empirically demonstrate the existence of a constant depth generator that can fool polynomially-
bounded discriminators, we evaluated the generator G given by Goldreich’s PRG [Golll] (see
Definition 8) with input dimension m = 50, output dimension d = 200, and predicate P : {1}° —
{£1} given by the popular TSA predicate, namely P(x1,...,25) = x1 - T2 - 3 - (x4 A x5). This is
the smallest predicate under which Goldreich’s candidate construction is believed to be secure.

The target distribution D* is the uniform distribution Usgg over {£1}2%°. As we prove in
Lemma 2.14, U, is sufficiently diverse that Wi (G(Uy,),Uq) > Q(1). We trained four different
discriminators given respectively by 1, 2, 3,4 hidden-layer ReLLU networks, where each hidden layer
is fully connected with dimensions 200 x 200, to discriminate the output of the generator G(U,,)
from the target distribution Uy. We used the Adam optimizer with step size 0.001 over the DCGAN
training objective, with batch-size 128. As we can see in Figure 1, the test loss E[—log(D(X))] +
E[—log(l — D(G(#)))] — 2log(2) stays consistently above zero, indicating that the discriminator
can not discriminate the true distribution from the generator output, even though the Wasserstein
distance between these two distributions is provably large.
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Figure 1: Test loss (E[—log(D(X))]+E[—log(1—D(G(z)))]—2log(2)) over course of training. Discriminators
cannot distinguish generator output from true distribution, though Wasserstein provably large.

6 Conclusions

In light of the obstructions presented in this paper, what are natural next steps for the theory of
GANs? Here, we offer a couple of thoughts and possible future directions.

One limitation of our Theorem 1.1 is that it holds for a specific generator. Of course, it is quite
unlikely that we will ever encounter such a generator through natural GAN training. One way
to circumvent our lower bound is to argue that the training dynamics of the generator may have
some regularization effect which allows us to avoid these troublesome generators, and which allows
GANS to learn distributions in polynomial time.

Another orthogonal perspective is that our results suggest that perhaps statistical learning is
too strong of a goal. If our GAN is indeed indistinguishable from the target distribution to all
polynomial time algorithms, then not only should the output of the GAN be sufficient for humans,
but it should also be sufficient for all downstream applications, which presumably run in polynomial
time. This raises the intriguing possibility that the correct metric for measuring closeness between
distances in the context of GANs should inherently involve some computational component (e.g.
in the sense of [DKR21]) as opposed to the purely statistical metrics generally considered in the
literature. That said, our Theorem 4.2 suggests that there are still natural complexity-theoretic
barriers to working with such a learning goal.

Acknowledgments The authors would like to thank Boaz Barak, Adam Klivans, and Alex
Lombardi for enlightening discussions about local PRGs.
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A Deferred Proofs

A.1 Compositions of ReLU Networks

Here we give a proof of Lemma 2.8.

Proof. Suppose that the i-th output coordinate of J is computed by a neural network with weight

; i . (@) . i .
matrices Wgz) € Rkﬁ)xs, . ,W(L? € R"FL1-1 and biases b(f) € ng), ey b%) e R.

1

Define the (37, k:gz)) X s weight matrix W7 by vertically concatenating the weight matrices

ng), . ,WY). For every 1 < j < Ly define the (3;_, k:](-l)) x (3 kj(l_)l) weight matrix W by
diagonally concatenating the weight matrices Wj(-l), . ,WJ(-T). Similarly, define the r x (37, k(L?)
matrix W, by diagonally concatening the column vectors W(Lll), e ,W(Lrl). For the bias vectors in

these layers, for every 1 < j < L; define b; to be the vector given by concatenating bg.l), e ,bg-r).
Now suppose that f is computed by a neural network with weight matrices Wy, 11 € RFL1+1X7
., Wpri4r, € R*FLi+L2-1 and biases br,+1 € RFL1+1 .,br,+1, € R. Then by design, for any

y € R® we have

F(J(Y) = Wi, d(Wrip,16( - ¢(Wiy +01) - ) +bry 4 0,-1) + bLy 1L

This network has depth L1 + Ly and size

Li—1 r ) L1+ L2
SIS et Y k=St S =5
j=1 i=1 j=L1+1

The bit complexity of the entries of the weight matrices and biases are obviously bounded by
max(7y,72), and the Lipschitzness of the network is bounded by AjAs+/r by Fact 2.2. O

A.2 Implementing Predicates as ReLU Networks

Here we give a proof of Lemma 3.3.

Proof. Consider the Fourier expansion F(z) = > gcpy F[S] [Licgzi- We show how to represent
each Fourier basis function [],.q2; as a ReLU network with at most % layers. Observe that for
any 1,z € {£1},

x1 - w3 = (21 + 12) + G(—21 — 22) — P(02) — H(—22), (15)

which is a two-layer neural network of size 4 whose two weight matrices have operator norm at
most 3. Suppose inductively that for some 1 < m < n, there exist weight matrices W/, ..., W/,
for which [[", 2; = W], ¢(--- ¢(W}x)---) for all z € {£1}*, that this network has size 4m, and
that [[", [W!] < 6™.

We now show how to compute H?Sl z;. Define W/ by adding the m-th standard basis vector
as a new row at the bottom of W/. For every 1 < i < m, define W/ to be the matrix given by
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appending a column of zeros to the right of W7 and then a new row at the bottom consisting
of zeros except in the rightmost entry. Note that |[W”||; = max(1,|W/||). Define the network
Fr :RF = R2 by F,(2) = W2 (- p(WHz)---).

Letting v, e € R? be the vectors (1,1) and (0, 1), we can use (15) to conclude that

m+1 m m
H T; = ¢ (H i + fL’mH) + ¢ (- Hivz - l‘m+1> — ¢(Tm+1) — A(=Tm1)
i=1 1=1

i=1
= 0(v' Fin(2)) + ¢(—0" Fin(2)) — d(e' Fru(2)) — d(—e' Fin(2)).
We can thus write []7+! z; as the ReLU network

m—+1
H Ti = W%—&-l?b(' - p(Wi'z)--) (16)
i=1

where

v W
—v T W
eTW"
—eTW"
Note that the entries of any W/ are in {0, £1} and thus have bit complexity at most 2. Additionally,
Wil <2, Wi < 3[|[W7 || = 3 - max(L, [[W7, ), and [[W{|| = max(1, [W5|) for all 1 <i <m,
so [T/H[W?|| < 6™+, Furthermore, the size of the network in (16) is 4m + 4. This completes
the inductive step and we conclude that any Fourier basis function [[;cg2; can be implemented
by an |S|-layer ReLU network with size 4|S| and the product of whose weight matrices’ operator
norms is at most 65,

In particular, as the biases in the network are zero, we can rescale the weight matrices so they
have equal operator norm, in which case they each have operator norm at most O(1) and entries
n RO(k)

Finally note that because the Fourier coefficients are given by E[F(x)][[;cq®:], they are all
multiples of 1/2* and thus have bit complexity O(k). The proof follows from applying Lemma A.1
to these Fourier basis functions and A given by the Fourier coefficients of P, as [|[A|| = ||P||=1. O

W= (1,1,-1,-1), W} = W =W! v1<i<m.

The above proof required the following basic fact:

Lemma A.l. Let 7,7 € N, and let A\ € R”. Given neural networks Fi,...,F. : R* = R each

with L layers and whose weight matrices {ng)}, ceey {WET)} have operator norm bounded by some
R > 0 and entries in R/, their linear combination ), \iF; is a neural network with L layers,
size given by the sum of the sizes of I, ..., F,, and weight matrices W1, ..., W, with entries in
Ro(r4ry and satisfying [[W1|| < Ry/r, [Wr|| < R|[M[], and [Wi| < R for all 1 <i < L. Here
A € R” is the vector with entries \;.

Proof. Denote the i-th weight matrix of F}; by ng ). Define W/ to be the vertical concatenation

of ng), . ,WY), and for every 1 < ¢ < L, define W; to be the block diagonal concatenation of
W(I), . ,Wzm. Finally, define W, to be the row vector given by the product

2

w0 0
\T o w® ... o
: 0 .0

0 0o - WY
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For all 1 < i < L, [W;]| < max;e(,[W®|, and additionally [W1||> < S7_[|[W{ |2 and [W ]| <
Al masx ey [ W 0

A.3 Thresholds of Networks as Circuits

In the proof of Theorem 3.2, we also need the following basic fact that signs of ReLLU networks can
be computed in P/poly.

Lemma A.2. For any f € F*, there is a Turing machine that, given any input y, outputs sgn(f(y))
after poly(d) steps.

Proof. Recall that the weight matrices W1,..., W of f have entries in R; for 7 = poly(d). So
for any 1 < ¢ < L, diagonal matrices Dy € {0,1}*>F . D, 1 € {0,1}Fe-1>ke-1 and vector
y € {£1}%, every entry of the vector

WDy 1 (Wy_1Dyo(-+- (Wiy+b1)--+)+be—1) + bg

has bit complexity bounded by

-1
log, (z 290 ] kr) = O(t7 + 5) = poly(d),
i=1

where in the second step we used that log(k;) < k; for all i € [¢ — 1]. So for any input to f, every
intermediate activation has poly(d) bit complexity.

The Turing machine we exhibit for computing sgn(f(y)) will compute the activations in the
network layer by layer. The entries of W1y + by can readily be computed in poly(d) time. Now
given the vector of activations

v=Wo(--- d(Wiy+b1)---) + b

for some ¢ > 1 (where v is represented on a tape of the Turing machine as a bitstring of length
poly(d)), we need to compute Wyi1¢(v) + bsy1. The ReLU activation can be readily computed
in poly(d) time, so in poly(d) additional steps we can form this new vector of activations at the
(¢+1)-layer. So within S poly(d) = poly(d) steps the Turing machine will have written down f(y)
(represented as a bitstring of length poly(d)) on one of its tapes, after which it will return the sign
of this quantity. m
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