
Ordering Operations for Generic Replicated Data
Types using Version Trees

Nazmus Saquib
Univ. of California, Santa Barbara

USA
nazmus@cs.ucsb.edu

Chandra Krintz
Univ. of California, Santa Barbara

USA
ckrintz@cs.ucsb.edu

Rich Wolski
Univ. of California, Santa Barbara

USA
rich@cs.ucsb.edu

Abstract
Data replication facilitates availability and recovery in a
distributed environment. However, concurrent updates to
multiple replicas result in divergence of data. Con ict-Free�
Replicated Data Types (CRDTs) are abstract data types that
provide a principled approach to asynchronously reconcile
this divergence. We propose a di erent perspective on the�
divergence of data,whereby we treat data divergences as
versions of the data. That is, instead of treating it only as a
problem that needs to be solved, we consider it also to be a
feature that provides a way to track versioning and evolution
of data.Versioning information is helpful in multiple sce-
narios, such as provenance tracking and system debugging.
Doing so allows us to leverage concepts such as the version
tree found in the literature for persistent (versioned) data
structures. We show that many techniques used in CRDTs
to order elements can be derived from version trees, which
predates CRDTs by more than 20 years. Using version trees
for maintaining order and append-only logs for storage, we
propose a method to ensure convergence of arbitrary data
types, while maintaining information related to the evolution
of data.

CCS Concepts:• Computing methodologies ! Distri-
buted algorithms.

Keywords:CRDT, data structure, replication, data version-
ing

ACM Reference Format:
Nazmus Saquib,Chandra Krintz,and Rich Wolski.2022.Order-
ing Operations for Generic Replicated Data Types using Version
Trees.In 9th Workshop on Principles and Practice of Consistency
for Distributed Data (PaPoC’22), April 5–8, 2022, RENNES, France.
ACM, New York, NY, USA, 8 pages. h ps://doi.org/10.1145/3517209.�
3524038

PaPoC’22,April5–8,2022,RENNES,France

©2022Copyrightheldbytheowner/author(s).

ACMISBN978-1-4503-9256-3/22/04.
https://doi.org/10.1145/3517209.3524038

1 Introduction
Distributed systems often replicate data for low latency and
high availability. The shared state among the replicas is main-
tained according to di erent system models. For example,�
strong consistency requires a replica to coordinate with other
replicas to execute an operation. Coordination increases la-
tency and an operation may fail as a result of a network
partition, preventing the necessary communication between
replicas. Weaker consistency models such as eventual con-
sistency enable replicas to execute an operation locally and
asynchronously propagate the operation to other replicas.
This results in lower latency but with a temporary divergence
in replica views that must be eventually reconciled.

Con ict-Free Replicated Data Types (CRDTs) [14, 20, 21]�
are abstract data types that provide a principled approach for
this asynchronous reconciliation. CRDTs support a weaker
model than strong consistency, namely, Strong Eventual Con-
sistency (SEC) [21]. SEC guarantees that whenever two repli-
cas receive the same set of updates, possibly in a di erent�
order, they reach the same state.

Broadly, there are two types of CRDTs: state-based and
operation-based (or op-based) [21]. In state-based CRDTs,
an operation is executed on the local replica state. A replica
periodically propagates its state to other replicas to achieve
consistency. A disadvantage of this approach is the commu-
nication overhead associated with shipping the full state,
which at times can be large.Apart from this, state-based
CRDTs require data type-speci c� merge function that pro-
vides a join for any pair of replica states, such that the set
of all states forms a semilattice. In op-based CRDTs, an op-
eration is executed on the local replica and the operation is
asynchronously propagated to other replicas. Although op-
based CRDTs do not communicate state, they require exactly-
once causal broadcast. Moreover, op-based CRDTs require
all operations on a data type to be commutative. Delta State
Con ict-Free Replicated Data Types (� X-CRDTs) [1] combine
the advantages of state-based and op-based CRDTs. Like the
state-based,X-CRDTs can tolerate unreliable networks and,
in particular, do not require exactly-once causal broadcast
as a communication network property. Moreover, like the
op-based approach, they do not require full replica state to
be communicated, but rather, they communicate only state
changes or “deltas”.

39

5IJTXPSLJTMJDFOTFEVOEFSB$SFBUJWF$PNNPOT"UUSJCVUJPO*OUFSOBUJPOBM-JDFOTF

PaPoC’22, April 5–8, 2022, RENNES, France N. Saquib et al

Due to the commutativity requirement of op-based CRDTs
and the join semilattice requirement of the state-based CRDTs,
often we must resort to using a restricted form of a data type
rather than the conventional one. For example, the CRDT
literature describes a number of variations for set, such as
a grow-only set (G-set) where elements can only be added,
two-phase set (2P-set) where a removed element cannot be
added later, etc. In general, CRDTs for custom data types [3]
have not been extensively studied in the literature, and the
use of such data types often requires ad-hoc solutions.

One way to guarantee consistency among replicas of an
arbitrary data type is to ensure all the replicas execute the
same set of operations in the same order. In fact, this is the
principle used in protocols such as Raft [12], which provides
strong consistency. However, in a weaker consistency model
where we allow the log of operations to diverge among the
replicas, this might entail extra work. Speci cally, we might�
need to rollback the log of operations up to a certain point,
introduce new operation(s), and re-execute the previously
rolled back operation(s).Figure 1 illustrates one such sce-
nario. We represent a replica with IDBas- B

and its log of
operations as ?!>6$ (- B). Let us assume- B

executed>?G
,

>?~, and>?I
in order (rst column).� Later on,- B

came to
know of operation>?G0 which must be executed after>?G

.
Therefore,- B

�rst rolls back the log of operations upto>?G
(second column), then executes the new operation>?G0 (third
column), and nally re-executes� >?~and>?I

(fourth column).
During the log rollback, the state changes resulting from the
rolled back operations (in this case>?~ and>?I

) must be
rolled back as well.

Merely applying a seemingly inverse operation might not
have the intended outcome of rolling back operations. For
example, roll back of an insertion into a binary search tree
cannot be performed by a corresponding deletion,as this
might result in a di erent tree structure than the one result-�
ing from the insertion operation not being executed in the
�rst place.Therefore,we need a mechanism to revert the
underlying data structure to a state where the rolled back
operations were not even applied, rather than executing oper-
ations that appear to negate the e ect of previous operations.�
One generic way to achieve this is to represent the state
of the underlying data type using append-only logs as well.
Then to ensure that the state of the underlying data type
is rolled back along with the log of operations, the replica
need only roll back entries from the tails of the logs used to
represent the state of the data type. A similar technique is
used for the move operation in a replicated tree data model
as well [8]. While representing states for simple data types
such as registers using logs is simple; more involved data
types such as linked lists and binary search trees require
complex algorithms [18].

The CRDT literature contains multiple works on maintain-
ing order in list or sequence such as a causal tree (CT) [5, 6],

Figure 1.Log rollback to reach correct order of operations
(from>?G ! >?~ ! >?I

to >?G ! >?G0 ! >?~ ! >?I
).

replicated growable array (RGA) [17, 20], LSEQ [11], Tree-
doc [15], and WOOT [13]. Most of these works were origi-
nally developed for collaborative text-editing environments.
However,we can use these algorithms to maintain an or-
dered list of operations (i.e.,?!>6$ (- B)) for arbitrary data
types as well.We show that RGA shares similarities with
version trees [4]. Version trees are tree data structures used
to record causal relationship in versioned data structures
(also known as persistent data structures). This implies that it
is possible to incorporate data versioning while maintaining
the order of operations.Data versioning has multiple use
cases, such as facilitating system debugging, e ciently an-�
swering temporal query, and tracking evolution of data [18].

In this work, we rst show how maintaining order of�
operations can lead to data versioning.At the same time,
we explain the principle which allows us to track versions
of arbitrary data types.Then, we show that version lists
(text representations of version trees) for versioned data
structures can use the same algorithm as RGA,a popular
algorithm to maintain order in list or sequence CRDTs. This
in turn implies any algorithm based on RGA has its root in
version trees.In essence,the principle used for maintain-
ing order in many list or sequence CRDTs lies in a 30 year
old work on versioned data structures; which, interestingly,
was formulated for a single-machine system with volatile
memory. As versioning information can be captured while
maintaining order of operations, this allows us to incorpo-
rate data versioning in our system without additional work;
thus facilitating system debugging,data provenance,and
e cient temporal query.�

2 Persistent Data Structures
Conventional data structures are ephemeral, i.e., an update
operation mutates the current state of the underlying data
structure,resulting in a new state.However,many appli-
cations in computational geometry [19, 22] and text edit-
ing [16] can bene t from data versioning.� Moreover,ver-
sioned data structures can facilitate system debugging and
e cient temporal query [18].�

In versioned data structures, an update operation results
in a new version of the data structure while keeping records

40

Ordering Operations for Generic Replicated Data Types using Version Trees PaPoC’22, April 5–8, 2022, RENNES, France

of all the previous versions. Versioned data structures are
also known as persistent data structures [4] in the litera-
ture. A versioned data structure is partially persistent if all
versions can be accessed but only the latest can be updated.
A versioned data structure is fully persistent if all versions
can be both accessed and updated. Although the literature
contains detailed descriptions of both speci c [�7, 10] and
generic [4] methods to make data structures persistent, in
this work we are more concerned with how a version stamp
is represented and ordered.

In persistent data structures, each version is tagged with
a monotonically increasing version stamp (an integer value).
The rst version of a data structure has the version stamp 1.�
Whenever an update operation is applied to the data struc-
ture resulting in a new version, the version stamp is incre-
mented by 1 and the new version is tagged with this incre-
mented value. Throughout this paper, we use version stamp
to refer to both the version of the underlying data structure
and the operation that resulted in that version. The intended
use will be clear from the context.

Although for partially persistent data structures this ver-
sioning scheme results in a natural linear order, fully persis-
tent data structures only have a partial order over the version
stamps. This partial ordering is de ned by a rooted� version
tree. Each node in a version tree contains a version stamp. A
directed edge from nodeDto nodeEdenotes that versionE
was obtained by updating versionD. The youngest child, i.e.,
the latest version among the children of a parent is always
placed at the leftmost position (cf. Figure 2). One way to im-
pose a total order on the partial order represented through a
version tree is to perform a preorder traversal and aggregate
the traversed nodes in a list,known as the version list.In
fact, we do not need to maintain the version tree explicitly
to create the version list. If we simply insert a new version

E immediately after its parentD in the list, it maintains the
preorder traversal, which can be proved using mathematical
induction [4]. This insertion scheme also implies that the
version list has a special property:for any versionD, the
descendants ofD in the version tree occur consecutively in
the version list, starting withD.

3 Version Trees as Replica States
The versioning scheme described in Section 2 can be used
to model the divergence (using version trees) and the subse-
quent convergence (using version lists) among replicas in a
distributed system. We consider a distributed system with#
replicas (nodes). Each replica is assigned a replica ID from a
set(where the elements in set can be sorted according to
some criteria, e.g., lexicographically. As we will see in Sec-
tion 3.1, it is crucial to have this sorting ability for achieving
consistency.

We assume that each replica- B, B2 (maintains a log of
operations ?!>6$ (- B) (cf. Section 1).?!>6$ (- B) implicitly

Figure 2.Example of two version trees. In the linear tree) 1,
a new version is obtained by always updating the latest ver-
sion. Tree) 2 illustrates a scenario where a new version can
be obtained by updating some previous version. Although
version 3 in) 2 was obtained by updating the then latest
version 2, version 5 was also created by updating version 2.
Note that as 5 is greater (younger) than 3, 5 is placed to the
left of 3. In general, the children of a node in a version tree
are arranged in descending order of their version stamps
from left to right. The corresponding version list of) 2 is

[1,2,5,6,3,4].

records a linear version tree (+) (- B)). Note that even if the
underlying data structure is not versioned (i.e., it is muta-
ble), we can still map the divergence and convergence using
version tree and version list respectively. In essence, we are
using the causal or happens-before relationship embedded
within the version tree/list to achieve consistency. This rela-
tionship will be present among the operations of any data
structure, irrespective of the data structure being ephemeral
or persistent.

We further assume that to achieve consistency, each replica
reads the OpLog of another replica at a regular interval and
performs a merge step. A merge step is always between two
replicas, one known as the source and the other known as
the reader. During a merge step, the reader incorporates all
the operations unknown to it but known to the source into
the reader’s OpLog. Note that a merge step is unidirectional,
i.e.,operations known to the reader but unknown to the
source are incorporated into the OpLog of the source dur-
ing some other merge step where the current source is the
reader. Once all replicas observe the full set of operations
and apply a consistent ordering scheme, the system achieves
consistency. As described in Section 3.3, the ordering scheme
involves implicitly creating a version tree from the OpLogs
of the source and the reader, followed by creating a linear
tree from a modi ed preorder traversal of the version tree,�
which we call InterleavedPreorder (cf. Section 3.2).

41

PaPoC’22, April 5–8, 2022, RENNES, France N. Saquib et al

Figure 3. InterleavedPreorder traversal.

3.1 Version Stamps
The version stamps described in Section 2 are monotonically
increasing. This is relatively simple to maintain in a single-
machine system. However, in a distributed system with mul-
tiple machines, it requires either a special sequencer node or
complex coordination to ensure that the next higher version
stamp is allotted to only one replica. Hence, we propose us-
ing a concatenation of a monotonically increasing counter
value (local to each replica) and the replica ID to represent
the version stamp. We represent the counter and the replica
ID of a version stampEBby .2> = 4EB D C Aand . 4?;820 EB A ⇡re-
spectively.We say version stampEB0 is less than version
stampEB1 (EB0 < EB1) if (i) the counter ofEB0 is less than that
of EB1 , or (ii) both the counters are the same but the replica
ID of EB0 is less than that ofEB1 .

When replica- B
executes a new operation in response

to a client (i.e.,a process that can send update/access re-
quest to any replica) request,- B

tags the operation with
version stampEB(. 4?;820 EB A ⇡= B) which is greater than
all other version stamps it has observed so far (operations
that happened before). Thus if operation>?0 happens before

>?1 , EB0 < EB1 whereEB0 andEB1 are the version stamps of
operations>?0 and>?1 , respectively. We further assume that
any version stamp is greater than the null version stamp, i.e.,
a version stamp having invalid/null values for counter and
replica ID elds. This form of version stamp is essentially�
the Lamport timestamp [9]. This allows us to generate ver-
sion stamps based only on local information without any
complex coordination, all the while capturing the causal or
happens-before relationship.

3.2 InterleavedPreorder Traversal
In this section,we de ne the interleavedPreorder traver-�
sal for trees with at most two branches.Trees with more
branches can be generalized from this construction, by “ at-�
tening” branches in pairs (cf. Section 3.4). Each node[in a
version tree contains three elds: (i) a version stamp� EB, (ii) a
left pointer, and (iii) a right pointer. We represent a eld�5 of
a node[as[.5. If a node has only one child, the left pointer
points to the child whereas the right pointer points to the
null nodeq.

To generate the InterleavedPreorder traversal list%!, we
�rst add allnodes up to the branching point in %!. We
maintain two pointers, one for the top of the left branch and
another for the top of the right branch, advancing them when
the corresponding nodes are incorporated in the%!. Next,
we start adding nodes from the left branch until we reach a
nodeG, such that the version stamp ofGis smaller than or
equal to that of the topmost node of the right branch. In case
the version stamps of the top of the branches are equal, we
advance both the pointers. Once the top of the right branch
has a greater version stamp than that ofG, we create an
intermediate tree where each node in the%! appears one
after another in a linear structure.The branch pointed to
by the right pointer becomes the new left branch and the
portion of the previous left branch starting fromGbecomes
the new right branch. We then perform InterleavedPreorder
traversal on this intermediate tree. This continues recursively
until we end up with a tree having only a single branch. A
linear traversal of this tree gives us the nal value of� %!.
Algorithm 1 presents the recursive procedure to populate

%!. The initial call to the procedure is made with a dummy

42

Ordering Operations for Generic Replicated Data Types using Version Trees PaPoC’22, April 5–8, 2022, RENNES, France

root [connecting two linear trees and an empty list_ where
the IPL is populated. Figure 3 illustrates InterleavedPreorder
traversal on a tree with two branches.

Algorithm 1 InterleavedPreorder Traversal

Require:VT node[, list_

Ensure:IPL is populated in_
1: procedure IPL(��������[, _)
2: if [= q then
3: return
4: end if
5: while[.;4 5 C< q ^ [. 86A C⌘= q do ùtraverse linear part
6: [[.;4 5 C
7: _.0??4=3([.EB)
8: end while
9: if [.;4 5 C= q ^ [. 86A C⌘= q then ùall nodes traversed

10: return
11: end if
12: [; [.;4 5 C
13: [A [. 86A C⌘
14: [. 86A C⌘= q
15: while[; < q ^ [A < q ^ [; .EB [A.EBdo ùadd from the

left branch until a version stamp is observed that is less than
that of the version stamp at the top of the right branch

16: [.;4 5 C= [;
17: [= [.;4 5 C
18: _.0??4=3([.EB)
19: if [; .EB= [A.EBthen
20: [A = [A.;4 5 C
21: end if
22: [; = [; .;
23: end while
24: [.;4 5 C= [A ùswap left and right branch for the next

recursive call
25: [. 86A C⌘= [;
26: ��������IPL([, _)
27: end procedure

3.3 Mapping Divergence/Convergence between
Replicas using Version Trees

An OpLog implicitly records a linear version tree. During a
merge step, the reader scans the OpLogs of both the source
and the reader from the top and skips over all the common
elements until it nds a mismatch. Note that although this�
can be optimized so that the reader does not have to scan
the logs from the top, we leave it out from our discussion as
it is not the primary focus of our current exposition. Once
it nds a mismatch, this indicates the occurrence of� concur-
rent operations, i.e., two operations that cannot be ordered
according to a happens-before relationship or causality. We
can consider the paths after this point of mismatch as two
branches of the version tree. In accordance with how version
trees are created, we put the branch containing the greater
version stamp at the top to the left of the branch containing

the smaller version stamp.After that, we perform an In-
terleavedPreorder traversal of this intermediate tree which
results in the nal merged version tree.�

Figure 4 illustrates how we can modelthe divergence
between two replicas as a version tree. In column (i),- ex-
ecutes two operations 1and 2 . In column (ii),- ⌫(reader)
performs a merge step with- (source). In this case, as the
version tree of the reader, i.e.,+) (- ⌫) is empty, it trivially
merges to that of the source. In column (iii), both- and- ⌫
independently execute two operations. Note how the version
stamps for these operations can be derived from local infor-
mation alone. In column (iv),- (reader) performs a merge
step with- ⌫(source).- skips over the rst two elements�
in +) (-) and+) (- ⌫) as the corresponding elements are
the same. However, after that+) (-) has 3 and+) (- ⌫)
has 3⌫. As 3⌫ >3 , the branch containing 3⌫is placed to
the left of the branch containing 3to create the intermedi-
ate tree+) 0(-). Finally, an InterleavedPreorder “ attening”�
of +) 0(-) results in+) (-). In column (v),- ⌫(reader)
performs a merge step with- (source). All the current ele-
ments in+) (- ⌫) are present in the same order from the top
in +) (-). Therefore,- ⌫skips over all these elements and
simply adds the rest of the elements from+) (-) to the tail
of+) (- ⌫). At this point, both- and- ⌫have observed the
same set of operations (order of observance was di erent)�
and have incorporated all these operations in the same order
(the nal order in OpLogs is the same), i.e., the system is in�
a consistent state. Note that even if the order of merge steps
was altered in columns (iv) and (v), we arrive at the same
�nal state as shown in column (v).

Although at rst sight,� it seems we could have used a
simple preorder traversal instead of the complex Interleaved-
Preorder traversal, this is not the general case. As an excep-
tion, we consider the version tree in Figure 3.A possible
sequence of actions that lead to the initial tree of Figure 3
is: (i)- executes 1,2 . (ii) - ⌫and- ⇠ (both separately as
the reader) merges with- (source). (iii)- , - ⌫and- ⇠exe-
cute 3 ,4 ; 3⌫,4⌫; and 3⇠,4⇠respectively. (iv)- ⌫(reader)
merges with- (source).(v) - (reader) merges with- ⇠
(source). (vi) Finally,- (reader) attempts to merge with- ⌫
(source). If we perform a simple preorder traversal, this re-
sults in duplicated operations for 3and 4 . Hence, we need
InterleavedPreorder traversal.

3.4 Convergence among More than Two Replicas
In a distributed system with more than two replicas, it might
appear that we can end up with a version tree with more
than two branches.However,from our discussion in Sec-
tion 3, we know that a merge step is performed among two
replicas at a time. Hence, while we can represent the state
of multiple replicas using a single version tree with two or
more branches, we can also represent incrementally updated
states as a sequence of version trees having at most two

43

PaPoC’22, April 5–8, 2022, RENNES, France N. Saquib et al

Figure 4.Merging version trees.(i) - executes operations.(ii) - ⌫merges with- . (iii) - and - ⌫executes operations
concurrently but independently. (iv)- merges with- ⌫. (v)- ⌫merges with- .

branches. In this case, the reader merges with replicas one-
by-one following some strategy (random, round-robin, etc.)
until it observes all the operations. At the start of each merge
step, the reader creates a version tree with two branches, one
branch being its own OpLog and the other being the remote
(i.e. source) OpLog.

Note that the convergence does not depend on the order in
which two replicas execute the merge steps. To understand
how InterleavedPreorder traversal results in a consistent
state of the underlying data structure once every operation
has been observed by all the replicas, we note a couple of
points. First, upon branching the version stamps in a version
tree are ordered arbitrarily but deterministically. This follows
from the construction of the version tree, where the branch
containing the greater version stamp at the top is placed to
the left of the branch containing the smaller version stamp
at the top. Second, InterleavedPreorder traversal does not
change any existing relative order of two version stamps
in a version tree (and thus the OpLog),it only imposes a
new order among version stamps that were not previously
ordered (i.e., version stamps in two di erent branches). This�
holds as the IPL includes all the nodes in the version tree
in order up to the branching point, upon which it includes
unique version stamps deterministically. Hence once all the
replicas have observed the same set of operations, the system
achieves consistency.

3.5 Supporting Generic Data Structures
Although InterleavedPreorder traversal facilitates the con-
sistent ordering of operations, we must rollback OpLog if

unknown operations have to be placed before the existing
ones (cf. Fig 1). This means that the underlying data structure
also needs to rollback its states which were obtained through
the application of the rolled back operations. Depending on
the exact data structure, rolling back state can be complex.
For example, an increment operation on a counter can be
rolled back by performing a corresponding decrement oper-
ation and vice versa. However, a binary search tree insertion
cannot always be rolled back by performing a corresponding
deletion,because the resulting tree structure might di er�
from the one that would have existed had the insert not
taken place at all.

One way to ensure the underlying data structure states can
also be rolled back is to represent the states using append-
only logs as well.While representing data types such as
registers and counters using logs can be relatively simple,
other data structures such as linked lists and binary search
trees require complex algorithms [18]. Once a data structure
is represented using logs,we must maintain a map from
the operations to the range of sequence numbers of the
log(s) used to represent the state of the data structure. Then
during rollback of the OpLog, we can use this map to perform
rollback on other log(s) as well.

As an example, let us assume that apart from appending
to the ?!>6$ (- B) for each operation,the underlying data
structure needs to perform one additional append to an auxil-
iary log, !>6DG (- B). Then to rollback the last=operations,
we must rollback the last=entries from both ?!>6$ (- B)
and !>6DG (- B). In practice, an operation might append to
more than one log and di erent operations might append�

44

Ordering Operations for Generic Replicated Data Types using Version Trees PaPoC’22, April 5–8, 2022, RENNES, France

to di erent sets of logs [� 18]. Hence this information must
be recorded in a map, where the key is the unique version
stampEBof the operation and the value is a list of tuples.
Each tuple contains the name of an auxiliary log and the
range of sequence numbers corresponding to the entries in
that log appended during the execution of operationEB.

4 Replicated Growable Arrays (RGA)
As an example of a CRDT used to maintain order in a list or
sequence, we review Replicated Growable Array (RGA) [17].
RGA uses the same algorithm of Causal Trees (CT) [5, 6]
as shown in [2]. We also explore the similarity between the
version tree approach and RGA (and thus other approaches
including CT and any method based on RGA). This reveals
that the principles used in these algorithms are the same
ones used in version trees, which predates these approaches
by more than 20 years.

RGA implements a sequence as a linked list. It supports
operations033 86' C⌘ (, 0G) to add element0 immediately af-
ter elementG [17, 20]. Elements can be uniquely identi-
�ed using timestamps which are ordered consistently with
causality. If a client invokes addRight operations twice at the
same place one after another, e.g.,033 86' C⌘ (, 0G) followed
by 033 86' C⌘ (, 1G); the latter insert occurs to the left of the
former and has a higher timestamp.

This is the exact same construction of%! from version
trees during a merge step as described in Section 3. To see
this, let us consider the OpLog of the reader as a linked list.
The OpLog of the source then implicitly provides a list of
addRight operations that need to be incorporated into the
OpLog of the reader. Speci cally, if element� Eimmediately
followsD in the OpLog of the reader, this translates to the
operation033 86' C⌘ (, D E). IfDandEare already present in the
OpLog of the reader one after another, nothing is changed.
This is equivalent to the case in IPL formation where the two
branches have the same elements (i.e., version stamps), in
which case values from only one branch is added to IPL but a
pointer for the other branch is advanced to avoid duplicates.
If Dis the last element of OpLog of the source,Ecan be simply
appended, e.g., transition of+) (- ⌫) from column (iv) to (v)
in Figure 4. However, if an elementF already exists afterD
(D < E) in the OpLog of the reader, we need to orderEandF
based on the value of the version stamps. As we place the
greater version stamp to the left of the smaller version stamp
at the branching point,the InterleavedPreorder traversal
places the greater version stamp to the left of the smaller
one in IPL; giving us the exact same order as in RGA. Hence,
the underlying algorithm of both RGA and IPL are the same.

5 Conclusion and Future Work
In this work, we showed how to order operations for generic
replicated data types using version trees. The key to support-
ing generic data types is to represent them using append-only

logs, which facilitates rollback of operations required while
achieving a consistent order. We also explore the similarities
between our approach and an existing approach to maintain
order in sequence or list CRDT. This implies that we can po-
tentially use versioning schemes while ordering operations,
which can provide multiple bene ts to the system including�
facilitating debugging, e ciently executing temporal query,�
and supporting data lineage. In the future, we plan to extend
this work by creating a portfolio of versioned data types that
can be represented using append-only logs.

Although we can guarantee convergence of an arbitrary
data structure by ordering operations,convergence itself
does not mean the user expectations on the semantics are
satis ed. As an example, the consistency of a conventional�
set can be achieved by consistent ordering of operations.
However, the consistency for the more constrained OR-set
following an add-wins strategy might violate the expected
semantics,as a delete can supersede a concurrent add if
the former is ordered after the latter following the strategy
described in Section 3.2.In the future, we plan to devise
mechanisms to respect the expectations on the semantics of
the underlying data structure as well.

Acknowledgments
This work has been supported in part by NSF awards CNS-
2107101, CNS-1703560, ACI-1541215.

References
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018.Delta

state replicated data types.J. Parallel and Distrib. Comput. 111 (2018),

162–173.

[2] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison,

Hongseok Yang, and Marek Zawirski. 2016.Speci cation and com-�
plexity of collaborative text editing. In Proceedings of the 2016 ACM

Symposium on Principles of Distributed Computing. 259–268.

[3] Kevin De Porre,Florian Myter, Christophe De Troyer,Christophe

Scholliers, Wolfgang De Meuter, and Elisa Gonzalez Boix. 2019. Putting

order in strong eventual consistency. In IFIP International Conference

on Distributed Applications and Interoperable Systems. Springer, 36–56.

[4] J.Driscoll, N. Sarnak,D. Sleator,and R.Tarjan.1989. Making data

structures persistent.J. Comput. Syst. Sci. 38, 1 (1989).

[5] Victor Grishchenko. [n. d.].Causal trees: towards real-time read-write

hypertext.

[6] Victor Grishchenko. 2010.Deep hypertext with embedded revision

control implemented in regular expressions. In Proceedings of the 6th

International Symposium on Wikis and Open Collaboration. 1–10.

[7] Robert T Hood and Robert C Melville. 1980.Real time queue operations

in pure Lisp.Technical Report. Cornell University.

[8] Martin Kleppmann, Dominic P Mulligan, Victor BF Gomes, and Alas-

tair R Beresford. 2020. A highly-available move operation for replicated

trees and distributed lesystems.�
[9] Leslie Lamport.2019. Time, clocks,and the ordering of events in

a distributed system. In Concurrency:the Works of Leslie Lamport.

179–196.

[10] Eugene W Myers. 1983.An applicative random-access stack.Informa-

tion processing letters 17, 5 (1983), 241–248.

45

PaPoC’22, April 5–8, 2022, RENNES, France N. Saquib et al

[11] Brice Nédelec,PascalMolli, Achour Mostefaoui, and Emmanuel

Desmontils. 2013.LSEQ: an adaptive structure for sequences in dis-

tributed collaborative editing. In Proceedings of the 2013 ACM sympo-

sium on Document engineering. 37–46.

[12] Diego Ongaro and John Ousterhout.2014. In search of an under-

standable consensus algorithm. In 2014{USENIX} Annual Technical

Conference ({USENIX} {ATC} 14). 305–319.
[13] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 2006.

Data consistency for P2P collaborative editing. In Proceedings of the

2006 20th anniversary conference on Computer supported cooperative

work. 259–268.

[14] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. 2019.Con ict-Free�
Replicated Data Types CRDTs. Springer International Publishing, Cham,

491–500. h ps://doi.org/10.1007/978-3-319-77525-8_185�
[15] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia.

2009. A commutative replicated data type for cooperative editing.

In 2009 29th IEEE International Conference on Distributed Computing

Systems. IEEE, 395–403.

[16] Thomas Reps, Tim Teitelbaum, and Alan Demers. 1983.Incremental

context-dependent analysis for language-based editors.ACM Trans-

actions on Programming Languages and Systems (TOPLAS) 5, 3 (1983),

449–477.

[17] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.

Replicated abstract data types: Building blocks for collaborative appli-

cations.J. Parallel and Distrib. Comput. 71, 3 (2011), 354–368.

[18] Nazmus Saquib, Chandra Krintz, and Rich Wolski. 2021.PEDaLS: Per-

sisting Versioned Data Structures. In 2021 IEEE International Conference

on Cloud Engineering (IC2E). IEEE, 179–190.

[19] Neil Sarnak and Robert E Tarjan. 1986.Planar point location using

persistent search trees.Commun. ACM 29, 7 (1986), 669–679.

[20] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.

2011.A comprehensive study of convergent and commutative replicated

data types.Technical Report RR-7506. Inria.

[21] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.

2011. Con ict-free replicated data types.� In Symposium on Self-

Stabilizing Systems. Springer, 386–400.

[22] Garret Frederick Swart. 1986.EFFICIENT ALGORITHMS FOR COM-

PUTING GEOMETRIC INTERSECTIONS (DECISION TREE, HIDDEN

LINE REMOVAL, GRAPHICS, COMPLEXITY).(1986).

46

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

