Ordering Operations for Generic Replicated Dat

Types using Version Trees

Nazmus Saquib Chandra Krintz Rich Wolski
Univ. of California, Santa Barbara Univ. of California, Santa Barbara Univ. of California, Santa Barbara
USA USA USA
nazmus@cs.ucsb.edu ckrintz@cs.ucsb.edu rich@cs.ucsb.edu
Abstract 1 Introduction

Data replication facilitates availability and recovery ina Distributed systems often replicate data for low latency and
distributed environment. However, concurrent updates to high availability. The shared state among the replicas is main-
multiple replicas result in divergence of data. Con@ict-Free tained according to di€erent system models. For example,
Replicated Data Types (CRDTs) are abstract data types thaktrong consistency requires a replica to coordinate with other
provide a principled approach to asynchronously reconcile replicas to execute an operation. Coordination increases la-
this divergence. We propose a di€erent perspective on théency and an operation may fail as a result of a network
divergence of datawhereby we treat data divergences as patrtition, preventing the necessary communication between
versions of the data. That is, instead of treating it only as areplicas. Weaker consistency models such as eventual con-
problem that needs to be solved, we consider it also to be a sistency enable replicas to execute an operation locally and
feature that provides a way to track versioning and evolution asynchronously propagate the operation to other replicas.
of data.Versioning information is helpful in multiple sce- This results in lower latency but with a temporary divergence
narios, such as provenance tracking and system debugging.in replica views that must be eventually reconciled.
Doing so allows us to leverage concepts such as the version Con€pict-Free Replicated Data Types (CRDTSs) [14, 20, 21]
tree found in the literature for persistent (versioned) data are abstract data types that provide a principled approach for
structures. We show that many techniques used in CRDTsthis asynchronous reconciliation. CRDTs support a weaker
to order elements can be derived from version trees, which model than strong consistency, namely, Strong Eventual Con-
predates CRDTs by more than 20 years. Using version treessistency (SECR[l]. SEC guarantees that whenever two repli-
for maintaining order and append-only logs for storage, we cas receive the same set of updates, possibly in a di€erent
propose a method to ensure convergence of arbitrary data order, they reach the same state.
types, while maintaining information related to the evolution Broadly, there are two types of CRDTs: state-based and
of data. operation-based (or op-based1]. In state-based CRDTs,

an operation is executed on the local replica state. A replica
CCS Concepts: Computing methodologies ! Distri- periodically propagates its state to other replicas to achieve
buted algorithms. consistency. A disadvantage of this approach is the commu-
nication overhead associated with shipping the full state,
which at times can be largeApart from this, state-based
CRDTs require data type-speci€pc merge function that pro-
ACM Reference Format: vides a join for any pair of replica states, such that the set
Nazmus SaquilChandra Krintz,and Rich Wolski2022.Order- of all states forms a semilattice. In op-based CRDTSs, an op-
ing Operations for Generic Replicated Data Types using Versioneration is executed on the local replica and the operation is
Trees.In 9th Workshop on Principles and Practice of Consistencyasynchronously propagated to other replicas. Although op-
for Distributed Data (PaPoC'22), April 5-8, 2022, RENNES, Franggsed CRDTs do not communicate state, they require exactly-
ACM, New York, NY, USA, 8 pages. h@ps://doi.org/10.1145/(35172(59{.'(:e causal broadcast. Moreover, op-based CRDTs require
3524038 all operations on a data type to be commutative. Delta State
Con®ict-Free Replicated Data Type€RDTs) 1] combine
the advantages of state-based and op-based CRDTs. Like the
@ @ state-basedyCRDTs can tolerate unreliable networks and,

in particular, do not require exactly-once causal broadcast

unication network property. Moreover, like the

KeywordsCRDT, data structure, replication, data version-
ing

5IJTXPSLJTMJDFOTFEVOEFSB$SFBUJWF$PNNPOT"UUSJCVUJPO*OUFSOBUJIQ?B@—.?DQ%’P h thev do not it full replica state fo
- r not r
PaPoC’22,April5-8,2022, RENNES, France Op-based approach, ey co ot require U™ rep

©2022Copyrightheldbytheowner/author(s). be communicated, but rather, they communicate only state

ACMISBN978-1-4503-9256-3/22/04. changes or “deltas”.
https://doi.org/10.1145/3517209.3524038

39

PaPoC’22, April 5-8, 2022, RENNES, France N. Saquib et al

Due to the commutativity requirement of op-based CRDTs -

and the join semilattice requirement of the state-based CRDT‘ 0Py 0Pz ‘ ‘ 0Py ‘ ‘ 0P

often we must resort to using a restricted form of a data type - opy opx" ij,-"
rather than the conventional one. For example, the CRDT ————— ! : N
literature describes a number of variations for set, such as 1_ e ‘__;'p?s_'___

a grow-only set (G-set) where elements can only be added, i i i ‘ op,
two-phase set (2P-set) where a removed element cannot be L
added later, etc. In general, CRDTs for custom data ty@les [(i) i (ii) i (i) | (iv)

have not been extensively studied in the literature, and the ' ' '

use of such data types often requires ad-hoc solutions. Figure 1:09 rollback to reach correct order of operations

One way to guarantee consistency among replicas of an (from >0 >2.1 5210501 5041 520 >?,)-
arbitrary data type is to ensure all the replicas execute the
same set of operations in the same order. In fact, this is the i
principle used in protocols such as Raff], which provides replicated growable array (RGA)T, 20, LSEQ11], Tree-
strong consistency. However, in a weaker consistency model d0C [18, and WOOT 13. Most of these works were origi-
where we allow the log of operations to diverge among the nally developed for collaborative tgxt-edmng e.nV|r9nments.
replicas, this might entail extra work. Speci€cally, we might However,we can use these algorithms to maintain an or-
need to rollback the log of operations up to a certain point, dered list of operations (i.ego/>6 (- 4) for arbitrary data
introduce new operation(s), and re-execute the previously yPes as wellWe show that RGA shares similarities with
rolled back operation(s)Figure 1 illustrates one such sce- Version treesy]. Ver3|o_n tree:s are tre(_a data structures used
nario. We represent a replica with |gas_ jand its log of to record causal relgtlonshlp in versioned da_ta' strqctures .
operations asgyg (- 4- Let us assume executeds (also kr_lown as persistent data struptures). ThIS |m_plle§ t_hat it
> andp in order (%rst columnlLater on,_ _came fo is possible to mcorp_orate data versioning while mglntalmng
know of oberation>?@ which must be executed after, the order of operatllgns.Data versioning ha§ multlplt_a use
Therefore,. B@rst rolls back the log of operations upsg . cases, such as facilitating system debuggmg, e@ciently an-
(second column), then executes the new opera;'g%(third swering temporal query, and tracking ev_olut_|o_n of dattf].
column), and @nally re-executgs and , (fourth column). In this work, we @rst show how maintaining order of
During the log rollback, the state changes resulting from the OPerations can lead to data versioningt the same time,
rolled back operations (in this case,_and »,) must be we explam the principle which allows us to trac_k versions
rolled back as well. of arbitrary data types.Then, we show that version lists

Merely applying a seemingly inverse operation might not (text representations of version tre_es) for versioned data
have the intended outcome of rolling back operations. For Structures can use the same algorithm as R@#popular -
example, roll back of an insertion into a binary search tree gorithm to maintain order in list or sequence CRDTs. This
cannot be performed by a corresponding deletiaas this in tu_rn implies any algorithm b:flse_d on RGA has |t_s rO(_)t in
might result in a di€perent tree structure than the one result- Version treesln essencethe principle used for maintain-
ing from the insertion operation not being executed in the ing order in many list or sequence CRDTs lies in a 30 year
@rst placeThereforewe need a mechanism to revert the old work on versioned data structures; which, interestingly,
underlying data structure to a state where the rolled back Was formulated for a single-machine system with volatile
operations were not even applied, rather than executing oper/Nemory. As versioning information can be captured while
ations that appear to negate the e€pect of previous operationgn@intaining order of operations, this allows us to incorpo-
One generic way to achieve this is to represent the state rate data_l versioning in our system without additional work;
of the underlying data type using append-only logs as well. thus facilitating system debuggingjata provenanceand
Then to ensure that the state of the underlying data type e@cient temporal query.
is rolled back along with the log of operations, the replica
need only roll back entries from the tails of the logs usedto 2 Persistent Data Structures
represent the state of the data type. A similar technique is Conventional data structures are ephemeral, i.e., an update
used for the move operation in a replicated tree data model operation mutates the current state of the underlying data
as well B]. While representing states for simple data types structure,resulting in a new state However,many appli-
such as registers using logs is simple; more involved data cations in computational geometry19, 22 and text edit-
types such as linked lists and binary search trees require ing [16] can bene€pt from data versioninlyloreover,ver-

complex algorithms [18]. sioned data structures can facilitate system debugging and
The CRDT literature contains multiple works on maintain- e€pcient temporal query [18].
ing order in list or sequence such as a causal tree (6;1§]] In versioned data structures, an update operation results

in a new version of the data structure while keeping records

40

Ordering Operations for Generic Replicated Data Types using Version Trees PaPoC’22, April 5-8, 2022, RENNES, France

of all the previous versions. Versioned data structures are T1 T2
also known as persistent data structured][in the litera-
ture. A versioned data structure is partially persistent if all
versions can be accessed but only the latest can be updated.
A versioned data structure is fully persistent if all versions
can be both accessed and updated. Although the literature
contains detailed descriptions of both speci€¢1[(] and
generic @] methods to make data structures persistent, in
this work we are more concerned with how a version stamp
is represented and ordered.
In persistent data structures, each version is tagged with
a monotonically increasing version stamp (an integer value).
The @rst version of a data structure has the version stamp 1.
Whenever an update operation is applied to the data struc-
ture resulting in a new version, the version stamp is incre- pigyre Zxample of two version trees. In the linear tne
mented by 1 and the new version is tagged with this incre- a new version is obtained by always updating the latest ver-
mented value. Throughout this paper, we use version stamp sion. Tree) 2 illustrates a scenario where a new version can
to refer to both the version of the underlying data structure be obtained by updating some previous version. Although
and the operation that resulted in that version. The intended version 3 in) 2 was obtained by updating the then latest
use will be clear from the context. version 2, version 5 was also created by updating version 2.
Although for partially persistent data structures this ver- Note that as 5 is greater (younger) than 3, 5 is placed to the
sioning scheme results in a natural linear order, fully persis- left of 3. In general, the children of a node in a version tree
tent data structures only have a partial order over the versionare arranged in descending order of their version stamps
stamps. This partial ordering is de€ned by a rooted versionfrom left to right. The corresponding version list 0}2 is
tree. Each node in a version tree contains a version stamp. A[1,25 6 3 4),
directed edge from nodgto node gdenotes that version=
was obtained by updating versignp The youngest child, i.e.,
the latest version among the children of a parent is always
placed at the leftmost position (cf. Figure 2). One way to im- records a linear version treg} (- 5)). Note that even if the
pose a total order on the partial order represented through a underlying data structure is not versioned (i.e., it is muta-
version tree is to perform a preorder traversal and aggregate ble), we can still map the divergence and convergence using
the traversed nodes in a lisknown as the version lisin version tree and version list respectively. In essence, we are
fact, we do not need to maintain the version tree explicitly using the causal or happens-before relationship embedded
to create the version list. If we simply insert a new version within the version tree/list to achieve consistency. This rela-
Ammediately after its parenjin the list, it maintains the tionship will be present among the operations of any data
preorder traversal, which can be proved using mathematical structure, irrespective of the data structure being ephemeral
induction [4]. This insertion scheme also implies that the or persistent.

(4]

(=]

o W e N e =
(e @ ferd m Jerd =

version list has a special propertyfor any version s the We further assume that to achieve consistency, each replica
descendants ofin the version tree occur consecutively in reads the OplLog of another replica at a regular interval and
the version list, starting with; performs a merge step. A merge step is always between two

replicas, one known as the source and the other known as

the reader. During a merge step, the reader incorporates all
3 Version Trees as Replica States the operations unknown to it but known to the source into
The versioning scheme described in Section 2 can be usedhe reader’s OpLog. Note that a merge step is unidirectional,
to model the divergence (using version trees) and the subsei.e.,operations known to the reader but unknown to the
guent convergence (using version lists) among replicas in a source are incorporated into the OpLog of the source dur-
distributed system. We consider a distributed system with ing some other merge step where the current source is the
replicas (nodes). Each replica is assigned a replica ID from areader. Once all replicas observe the full set of operations
set(where the elements in set can be sorted according to and apply a consistent ordering scheme, the system achieves
some criteria, e.g., lexicographically. As we will see in Secconsistency. As described in Section 3.3, the ordering scheme
tion 3.1, it is crucial to have this sorting ability for achieving involves implicitly creating a version tree from the OpLogs
consistency. of the source and the reader, followed by creating a linear

We assume that each replic% a/(maintains a log of tree from a modi®ed preorder traversal of the version tree,

operations o/ (- 3 (cf. Section 1)gv/56 - 3 implicitly which we call InterleavedPreorder (cf. Section 3.2).

41

PaPoC’22, April 5-8, 2022, RENNES, France N. Saquib et al

=

1A 1A 1A 1A 1A 1A
N 3 E N i3 E
2A 2A 2A 2A 2A 2A
A 3 T T N s N
(ac) 3B (sc) 3B (sc) (ac) (ac)
s ¢ —> i NS e —> s —> i
(4c) 4B (4c) 4B (4c) (ac) (4ac)
(3a) 3A (3a) (3a 3B (3a) 3B 3B
¥ b) b v ¥ v ¥
(an) 4A (4n) (an 4B (4n) 4B 4B
' ' v e T ¥
3A 3A 3A 3A
I 1 3 R
4A 4A 4A 4A
IPL: 1A, 2A IPL: 1A, 2A, 3C, 4C IPL: 1A, 2A, 3C, 4C, 3B, 4B IPL: 1A, 2A, 3C, 4C, 3B, 4B, 3A, 4A

Figure 3. InterleavedPreorder traversal.

3.1 Version Stamps 3.2 InterleavedPreorder Traversal
The version stamps described in Section 2 are monotonically In this section,we de€ne the interleavedPreorder traver-
increasing. This is relatively simple to maintain in a single- sal for trees with at most two branchedrees with more
machine system. However, in a distributed system with mul- branches can be generalized from this construction, by “@at-
tiple machines, it requires either a special sequencer node ortening” branches in pairs (cf. Section 3.4). Each npdea
complex coordination to ensure that the next higher version version tree contains three €elds: (i) a version stap(i) a
stamp is allotted to only one replica. Hence, we propose us-left pointer, and (iii) a right pointer. We represent a Qedti
ing a concatenation of a monotonically increasing counter a node; as; 5 If a node has only one child, the left pointer
value (local to each replica) and the replica ID to represent points to the child whereas the right pointer points to the
the version stamp. We represent the counter and the replica null node 4.
ID of a version stampepy £5 2> p-40ER A447.820€7 To generate the InterleavedPreorder traversal lig;, we
spectively.We say version stampegis less than version @rst add alhodes up to the branching point in o4 We
stamp ,_:5(EF< Eﬁ’ if (i) the counter of/_:5is less than that maintain two pointers, one for the top of the left branch and
of ER OF (ii) both the counters are the same but the replica another for the top of the right branch, advancing them when
ID of ggis less than that ofcg the corresponding nodes are incorporated in thg . Next,
When replica. gexecutes a new operation in response we start adding nodes from the left branch until we reach a
to a client (i.e.,a process that can send update/access re- node g such that the version stamp gfs smaller than or
quest to any replica) request, glags the operation with equal to that of the topmost node of the right branch. In case
version stampeg £5 447:820= 2 Which is greater than the version stamps of the top of the branches are equal, we
all other version stamps it has observed so far (operations advance both the pointers. Once the top of the right branch
that happened before). Thus if operat;qg happens before has a greater version stamp than that of; we create an
>?;» FR < £Epvhere gpand gpare the version stamps of intermediate tree where each node in thg, appears one
operationss, . and >7,, respectively. We further assume that after another in a linear structureThe branch pointed to
any version stamp is greater than the null version stamp, i.e.,by the right pointer becomes the new left branch and the
a version stamp having invalid/null values for counter and portion of the previous left branch starting frombecomes
replica ID €pelds. This form of version stamp is essentially the new right branch. We then perform InterleavedPreorder
the Lamport timestamp9]. This allows us to generate ver- traversal on this intermediate tree. This continues recursively
sion stamps based only on local information without any until we end up with a tree having only a single branch. A
complex coordination, all the while capturing the causal or linear traversal of this tree gives us the €nal value Q.
happens-before relationship. Algorithm 1 presents the recursive procedure to populate
9,4 The initial call to the procedure is made with a dummy

42

Ordering Operations for Generic Replicated Data Types using Version Trees PaPoC’22, April 5-8, 2022, RENNES, France

root / connecting two linear trees and an empty listvhere the smaller version stampAfter that, we perform an In-
the IPL is populated. Figure 3 illustrates InterleavedPreorder terleavedPreorder traversal of this intermediate tree which
traversal on a tree with two branches. results in the €nal merged version tree.

Figure 4 illustrates how we can modethe divergence
between two replicas as a version tree. In column (i)ex-
ecutes two operations 1and 2 . In column (ii),_ @(reader)
performs a merge step with (source). In this case, as the
version tree of the reader, i.q,), (- is empty, it trivially

Algorithm 1 InterleavedPreorder Traversal

Requ|reVT nodey, list
EnsureJPL is populated in

pro.:‘;:"":héna o Q,&@ OIPL(merges to that of the source. In column (iii), bath and _
' retﬂm € independently execute two operations. Note how the version

stamps for these operations can be derived from local infor-

2:

3:

4 endif ! :

5 while ;4 <@" [A86%€gdo uiraverse linearpart ~ mation alone. In column (iv), (reader) performs a merge
6: [[45C step with _ @;source)._ skips over the @rst two elements
I _.0?774=3[.EB in +) (-) and_) (. y as the corresponding elements are
8. end while the same. However, afterth,yazI - yhas3 and,) (.

O if/.4 =@" [AS63%€gthen (Allnodestraversed nhag 3 AS 35 3, the branch containing gis placed to

1o return the left of the branch containing 3to create the intermedi-

' endif ate tree,) 0). Finally, an InterleavedPreorder “@attening”

2 [[#45C of 1)0 results in In column (v) reader)

1 [[As63C) H G .a

14- [A%%q performs a merge step with _ (source). All the current ele-

15 whil g [4< g [.EB [4E@o ¢Add from the ments in,) (. are present in the same order from the top
left branc unt|I a version stamp is observed that is less than in +) (-). Therefore, @Fklps over all these elements and
that of the version stamp at the top of the right branch S|mply adds the rest of the elements fr -) to the tail

16: [A4 5=C of +) (- & At this point, both. and. chave observed the

17: [=].45C same set of operations (order of observance was di€perent)

18: _.0774=3[.58 and have incorporated all these operations in the same order

19: if [..£# [4£Ahen (the €nal order in OpLogs is the same), i.e., the system is in

g? [4=[a45C a consistent state. Note that even if the order of merge steps

22: e“_d 'f. was altered in columns (iv) and (v), we arrive at the same

23; em{l;v:ll{li;e @nal state as shown _in C_olumn (v).

26: [.4 5C4 swap left and right branch for the next _ Although at @rst S|ght!t seems we could have used a
recursive call simple preorder traversal instead of the complex Interleaved-

25 [48636 Preorder traversal, this is not the general case. As an excep-

2% VOOVOYGORIPL(tion, we consider the version tree in Figure 3\ possible

27: end procedure sequence of actions that lead to the initial tree of Figure 3

is: (). executes 12. (i) - &And. ..(both separately as
the reader) merges with (source). (iii). , - &And. exe-

cute3 4 Sg@and . 44 respectively. (iv) ®(reader

3.3 Mapping Divergence/Convergence between merges W|th (source)(v) . (reader) merges with

Replicas using Version Trees (source). (vi) Finally, (reader) attempts to merge with <
An OpLog implicitly records a linear version tree. During a (source). If we perform a simple preorder traversal, this re-
merge step, the reader scans the OpLogs of both the sourcesults in duplicated operations for 3nd 4 . Hence, we need
and the reader from the top and skips over all the common InterleavedPreorder traversal.
elements until it @nds a mismatch. Note that although this
can be optimized so that the reader does not have to scan
the logs from the top, we leave it out from our discussion as 3.4 Convergence among More than Two Replicas
it is not the primary focus of our current exposition. Once In a distributed system with more than two replicas, it might
it €»nds a mismatch, this indicates the occurrence of concurappear that we can end up with a version tree with more
rent operations, i.e., two operations that cannot be ordered than two branchesHowever,from our discussion in Sec-
according to a happens-before relationship or causality. We tion 3, we know that a merge step is performed among two
can consider the paths after this point of mismatch as two replicas at a time. Hence, while we can represent the state
branches of the version tree. In accordance with how version of multiple replicas using a single version tree with two or
trees are created, we put the branch containing the greater more branches, we can also represent incrementally updated
version stamp at the top to the left of the branch containing states as a sequence of version trees having at most two

43

PaPoC’22, April 5-8, 2022, RENNES, France N. Saquib et al

VI(Xa) VI(Xs) |VI(Xs) VI(X5) |VI(Xa) VI(X5) VI'(Xs) VI(Xz) VI(Xs) | VI(Xa) VI(X3)
(1A (1a) (1a) (1a) (1a) (1A) (1a) (1A (1a) (1A
I | | | | | | | | |
(2a) (2o) (2a) (2a] [2a) (2a) (2a) (oA (2a)] [2a)

(3a) 3B 3B (3A) 3B 3B 3B 3B

N | oo | | | |

(an) 4B 4B [4A) 4B 4B 4B 4B

| | i g I
[3A) [3A) 3A)

s s |
e (an) 4A

() (i) (iii) (iv)]

Figure gMerging version trees(i) . executes operationgii) . _merges with_ . (iii) . and_ cexecutes operations
concurrently but independently. (iv) merges with. @(V)- nerges with_

branches. In this case, the reader merges with replicas one-unknown operations have to be placed before the existing
by-one following some strategy (random, round-robin, etc.) ones (cf. Fig 1). This means that the underlying data structure
until it observes all the operations. At the start of each merge also needs to rollback its states which were obtained through
step, the reader creates a version tree with two branches, onghe application of the rolled back operations. Depending on
branch being its own OpLog and the other being the remote the exact data structure, rolling back state can be complex.
(i.e. source) OpLog. For example, an increment operation on a counter can be

Note that the convergence does not depend on the order inrolled back by performing a corresponding decrement oper-
which two replicas execute the merge steps. To understand ation and vice versa. However, a binary search tree insertion
how InterleavedPreorder traversal results in a consistent cannot always be rolled back by performing a corresponding
state of the underlying data structure once every operation deletion,because the resulting tree structure might di€per
has been observed by all the replicas, we note a couple of from the one that would have existed had the insert not
points. First, upon branching the version stamps in a version taken place at all.
tree are ordered arbitrarily but deterministically. This follows One way to ensure the underlying data structure states can
from the construction of the version tree, where the branch also be rolled back is to represent the states using append-
containing the greater version stamp at the top is placed to only logs as well. While representing data types such as
the left of the branch containing the smaller version stamp registers and counters using logs can be relatively simple,
at the top. Second, InterleavedPreorder traversal does not other data structures such as linked lists and binary search
change any existing relative order of two version stamps trees require complex algorithmd §. Once a data structure
in a version tree (and thus the OpLogit only imposes a is represented using logaye must maintain a map from
new order among version stamps that were not previously the operations to the range of sequence numbers of the
ordered (i.e., version stamps in two di€perent branches). Thislog(s) used to represent the state of the data structure. Then
holds as the IPL includes all the nodes in the version tree during rollback of the OpLog, we can use this map to perform
in order up to the branching point, upon which it includes rollback on other log(s) as well.
unique version stamps deterministically. Hence once all the As an example, let us assume that apart from appending
replicas have observed the same set of operations, the systetto the go/54 (- 3 for each operationthe underlying data
achieves consistency. structure needs to perform one additional append to an auxil-

iary log, DGI>§- 2 Then to rollback the lastoperations,
. . we must rollback the last_entries from both g5/55 (- 5

3.5 Supporting Generic Data Structures and pGr>4- o- In practice, an operation might append to

Although InterleavedPreorder traversal facilitates the con- more than one log and di€erent operations might append
sistent ordering of operations, we must rollback OpLog if

44

Ordering Operations for Generic Replicated Data Types using Version Trees PaPoC’22, April 5-8, 2022, RENNES, France

to di€perent sets of logsdl. Hence this information must logs, which facilitates rollback of operations required while
be recorded in a map, where the key is the unique version achieving a consistent order. We also explore the similarities
stamp £f the operation and the value is a list of tuples. between our approach and an existing approach to maintain
Each tuple contains the name of an auxiliary log and the order in sequence or list CRDT. This implies that we can po-
range of sequence numbers corresponding to the entries in tentially use versioning schemes while ordering operations,
that log appended during the execution of operatigs which can provide multiple bene@ts to the system including
facilitating debugging, e€ciently executing temporal query,
- and supporting data lineage. In the future, we plan to extend
4 Replicated Growable A."?Vs (R.GA.) this work by creating a portfolio of versioned data types that
As an example of a CRDT used to maintain order in a list or ;
. . can be represented using append-only logs.
sequence, we review Replicated Growable Array (RGA). [.
. Although we can guarantee convergence of an arbitrary
RGA uses the same algorithm of Causal Trees (X f] data structure by ordering operations;onvergence itself
as shown in £]. We also explore the similarity between the y 9 op & 9

. does not mean the user expectations on the semantics are
version tree approach and RGA (and thus other approachessatisi?ed As an example, the consistency of a conventional
including CT and any method based on RGA). This reveals ’ pie, y

that the principles used in these algorithms are the same set can be achieved by consistent ordering of operations.

. . ; However, the consistency for the more constrained OR-set
ones used in version trees, which predates these approaches . . . :
following an add-wins strategy might violate the expected
by more than 20 years.

RGA implements a sequence as a linked list. It supports semanticsgs a delete can supersede a cqncurrent add if
operations3315.se {0 add element) immediately af- the fo_rmer is orde_red after the latter following the stre}tegy
ter element 17, chl lements can be uniquely identi- descrlbgd in Section 3.2n the future_, we plan to dewse_
@©ecd using timestamps which are ordered consistently with mechanlsm_s to respect the expectations on the semantics of

; o . . . the underlying data structure as well.
causality. If a client invokes addRight operations twice at the
same place one after another, egg3 853273, pfollowed
by 033863 (23,)i the latter insert occurs to the left of the
former and has a higher timestamp. Acknowledgments

This is the exact same construction of,from version ~ This work has been supported in part by NSF awards CNS-
trees during a merge step as described in Section 3. To sed107101, CNS-1703560, ACI-1541215.
this, let us consider the OpLog of the reader as a linked list.

The OpLog of the source then implicitly provides a list of
addRight operations that need to be incorporated into the References

OpLog of the reader. Speci€@cally, if elerpgmimediately [1] Paulo Sérgio Aimeida, Ali Shoker, and Carlos Baquero. 2@idta

follows Din the OpLog of the reader, this translates to the state replicated data types.. Parallel and Distrib. Comput. 111 (2018),
i i 162-173.

operation 33 86%’57)elf pand gare already present in the e , _

OpLOg of the reader one after another, nothing is changed. [2] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison,

. .) . Hongseok Yang, and Marek Zawirski. 2018peci€cation and com-
This is equivalent to the case in IPL formation where the two plexity of collaborative text editing. In Proceedings of the 2016 ACM

branches have the same elements (i.e., version stamps), in Symposium on Principles of Distributed Computing. 259—268.
which case values from only one branch is added to IPL but a [3] Kevin De Porre,Florian Myter, Christophe De Troyer,Christophe
pointer for the other branch is advanced to avoid duplicates. Scholliers, Wolfgang De Meuter, and Elisa Gonzalez Boix. 2019. Putting

: . order in strong eventual consistency. In IFIP International Conference
I oS the last element of OpLOg of the SOupen be S|mply on Distributed Applications and Interoperable Systems. Springer, 36-56.

gppgnded, €.g., tranSit_ion QP (- @]from CO|Umr.‘ (iv) to (v) [4] J.Driscoll, N. Sarnak,D. Sleator,and R.Tarjan. 1989. Making data
in Figure 4. However, if an elemept already exists aftey structures persistentJ. Comput. Syst. Sci. 38, 1 (1989).
(D< é—in the OpLog of the reader, we need to or@nd/_— [5] Victor Grishchenko. [n. d.]Causal trees: towards real-time read-write

based on the value of the version stamps. As we place the _ hypertext.

. .] Victor Grishchenko. 2010Deep hypertext with embedded revision
greater version stamp to the left of the smaller version stamp control implemented in regular expressions. In Proceedings of the 6th

at the branching point,t_he InterleavedPreorder traversal International Symposium on Wikis and Open Collaboration. 1-10.
places the greater version stamp to the left of the smaller [7] Robert T Hood and Robert C Melville. 198Real time queue operations
one in IPL; giving us the exact same order as in RGA. Hence, inpure LispTechnical Report. Cornell University.

the underlying algorithm of both RGA and IPL are the same. [8] Martin Kleppmann, Dominic P Mulligan, Victor BF Gomes, and Alas-
tair R Beresford. 2020. A highly-available move operation for replicated

trees and distributed @lesystems.

5 COIIClI.ISiOI‘I and Future Work [9] Leslie Lamport.2019. Time, clocks,and the ordering of events in
a distributed system. In Concurrencythe Works of Leslie Lamport.

In this work, we showed how to order operations for generic 179-196

!'eP'icated_ data types U§in9 version trees. The_key to support-(1o; Eugene W Myers. 1983n applicative random-access stackaforma-
ing generic data types is to represent them using append-only tion processing letters 17, 5 (1983), 241—248.

45

PaPoC’22, April 5-8, 2022, RENNES, France N. Saquib et al

(1]

(2]

(3]

[14]

[15]

[16]

Brice Nédelec,PascalMolli, Achour Mostefaoui, and Emmanuel 449-477.
Desmontils. 2013LSEQ: an adaptive structure for sequences in dis- [17] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.
tributed collaborative editing. In Proceedings of the 2013 ACM sympo- Replicated abstract data types: Building blocks for collaborative appli-

sium on Document engineering. 37—46. cations.J. Parallel and Distrib. Comput. 71, 3 (2011), 354—368.

Diego Ongaro and John Ousterhou014. In search of an under- [18] Nazmus Saquib, Chandra Krintz, and Rich Wolski. 20Z8DalL_S: Per-
standable consensus algorithm. In 2QU4SENIX Annual Technical sisting Versioned Data Structures. In 2021 IEEE International Conference
Conference (USENIX} {ATC} 14). 305-319. on Cloud Engineering (IC2E). IEEE, 179-190.

Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 200619] Neil Sarnak and Robert E Tarjan. 198Blanar point location using
Data consistency for P2P collaborative editing. In Proceedings of the persistent search tree€Commun. ACM 29, 7 (1986), 669-679.
2006 20th anniversary conference on Computer supported cooperativik0] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.

work. 259-268. 2011.A comprehensive study of convergent and commutative replicated
Nuno Preguica, Carlos Baquero, and Marc Shapiro. 2Cch€pict-Free data typesTechnical Report RR-7506. Inria.

Replicated Data Types CRDTs. Springer International Publishing, Cham]21] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
491-500. h@ps://doi.org/10.1007/978-3-319-77525-8_185 2011. Con®ict-free replicated data typedn Symposium on Self-
Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. Stabilizing Systems. Springer, 386—400.

2009. A commutative replicated data type for cooperative editing. [22] Garret Frederick Swart. 1986FFICIENT ALGORITHMS FOR COM-
In 2009 29th IEEE International Conference on Distributed Computing PUTING GEOMETRIC INTERSECTIONS (DECISION TREE, HIDDEN
Systems. |EEE, 395-403. LINE REMOVAL, GRAPHICS, COMPLEXIT)986).

Thomas Reps, Tim Teitelbaum, and Alan Demers. 1&&3emental

context-dependent analysis for language-based editoAd€M Trans-

actions on Programming Languages and Systems (TOPLAS) 5, 3 (1983),

46

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

