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Abstract—We introduce Canal, a programmable, topic-based,
publish/subscribe system that is designed for multi-tier cloud
deployments (e.g. edge-cloud, multi-cloud, IoT-cloud, etc.). Canal
implements a triggered computational (i.e. “serverless”) pro-
gramming model and provides developers with a uniform and
portable programming interface. To achieve scalability and
reliability, Canal combines the use of a distributed hash table
(DHT) and replica consensus protocol to distribute and replicate
functions, state, and data. Canal also decouples replica place-
ment from the DHT topology to allow developers to optimize
function placement for different objectives. We evaluate Canal
using a real-world multi-tier IoT deployment and we use Canal
to compare placement strategies, end-to-end performance, and
failure recovery using both benchmarks and a real-world IoT-
edge application. Our results show that Canal is able to achieve
both low latency and reliability in this setting.

Index Terms—publish/subscribe, serverless, data-driven appli-
cations, IoT, edge computing

I. INTRODUCTION

With the emergence of the Internet of Things (IoT) and
edge-based cloud computing, data-driven applications have
become increasingly powerful. By leveraging IoT deployments
across tiers (sensors-edge-cloud), developers are able to collect
a wider range of sensor data and perform more advanced
analytics and machine learning “near” where data is generated,
while enabling decision support and intelligent actuation and
control of a vast array of objects in the world around us.

Technologically, designers of IoT deployments often envi-
sion a scalable data management infrastructure in the form of a
publish-subscribe (pub/sub) framework [1]–[3] that locates and
matches data publishers with interested data subscribers. These
systems provide discovery services and a higher-level, more
abstract messaging pattern than direct point-to-point messag-
ing or network multicast. Consumers express their interest by
subscribing to data carrying certain attributes (content-based)
or explicitly labeled by category (topic-based). Producers label
data and forward it to data brokers, which implement data
discovery by subscribers, and route data to them.

Pub/sub systems typically do not implement a computa-
tional model that supports processing “in stream.” Devel-
opers must implement their own functionality in separate
frameworks, manage failures, and optimize applications and
deployments manually. This latter limitation is particularly
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challenging because pub/sub systems intentionally abstract
away locality information associated with subscribers and
publishers. Thus there is no way for developers to intelligently
“place” their application functionality in ways that exploit
locality for either reliability or performance optimization, both
of which are critical for IoT applications that consume battery
power or that require low-latency response at the edge.

To address these issues, we present Canal. Canal is a
portably programmable, reliable, distributed, pub/sub system
for multi-scale IoT deployments that includes both in-stream
computational functionality and locality management capabili-
ties. Canal implements the serverless computing programming
model but adds to this model data discovery and reliable data
persistence implemented via strongly-consistent replication.
Canal developers implement applications as a set of inde-
pendent functions (uploaded to the distributed system) that
subscribe to data topics from producers. Canal invokes the
functions asynchronously when data to which they have been
subscribed becomes available.

To implement scalable and reliable data discovery and data
persistence in the same framework, Canal couples a distributed
hash table (DHT) for fast, robust lookup with consensus-based,
strongly consistent data replication. Canal replicates topic
data, application functions, and DHT state to facilitate fault
tolerance efficiently. Developers use a uniform and portable
programming interface (API) to implement functions, manage
their placement, and control the performance/reliability trade-
off as required by their applications.

We empirically evaluate Canal using multi-scale cloud en-
vironments consisting of edge clouds and a large-scale private
cloud from a working IoT deployment currently in use. Our
evaluation shows that applications can be easily deployed in
Canal and tuned to meet different performance, availability,
and reliability requirements.

II. RELATED WORK

While pub/sub systems have been widely studied, their role
in distributed and heterogeneous, IoT- and cloud-based settings
has been the focus of recent research. MQTT is a lightweight,
topic-based, pub/sub protocol designed for message exchange
between devices. MQTT employs a centralized design with
which publishers and subscribers connect via a data broker. A
single broker server routes data from publishers to subscribers
based on topic interest. MQTT-SN [1] extends of MQTT for
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Fig. 1: The system overview of Canal.

use by sensor networks. To reduce power consumption for
messaging, MQTT-SN decreases message payload and topic
name size, and uses UDP to transfer messages.

RabbitMQ [3] is a broker system that supports MQTT client.
In RabbitMQ, brokers host “exchanges” that route messages to
in-memory message queues for consumption. RabbitMQ pro-
vides high availability and reliability via replication. Apache
Kafka [2] is a data stream processing platform that focuses on
maximizing throughput. Kafka partitions and replicates topics
to tolerate faults and balance load. Flume [4] and Facebook
Scribe [5] are similar systems that manage log data.

The paradigm of integrating data processing capabilities
into brokers is sometimes referred to publish-process-subscribe
pattern [6], [7]. A common strategy for implementing this
pattern leverages external systems such as Apache Storm,
Spark, or Flink [8] to extend pub/sub with data processing
capabilities. Such linking unfortunately requires that both data
ingress (e.g. Kafka) and processing be deployed, managed,
and configured separately, which is complex and error prone.
Canal is unique in that we co-design and seamlessly couple
messaging, portable data-driven computation, and data persis-
tence within a single wide-area distributed system.

Hermes [9] and Scribe [10] are peer-to-peer pub/sub sys-
tems. They use a distributed hash table (DHT) to cluster
brokers and handle more data streams. P2S [11] is similar
but uses Paxos to replicate broker data for fault tolerance and
availability. DHT protocols such as Pastry [12] and Tapestry
[13] approach the locality problem via routing mechanisms.
The routing mechanisms in these systems increase the proba-
bility of routing distance minimization between nodes that are
“near-by” in terms of network latency. While sharing the same
motivation with these systems, Canal differs in that it allows
users to specify the data placement and replication strategy.

III. DESIGN AND IMPLEMENTATION

Canal implements topic-based publish/subscribe messag-
ing, event-triggered computation, distributed discovery, and
strongly-consistent data replication. Fig. 1 illustrates the Canal
system. A Canal deployment is a cluster of geo-distributed,
virtual nodes organized as a DHT to facilitate distributed
lookup. Nodes service client requests and host topics that

are published by clients. Canal routes published data to
subscribers and exports an API that clients use to create,
access, and publish data according to topic.

Canal is unique in that it also embeds “in-stream” dis-
tributed application execution to automate data-driven re-
sponse, analysis, and computation. Specifically, Canal im-
plements the serverless programming and deployment model
(also known as function-as-a-service) [14], [15]. The serverless
model is well suited to our setting in that it is event-based,
scalable, and tolerant to intermittent connectivity. Using this
model, programmers write simple event handlers (i.e., applica-
tion functions), which are invoked by the platform in response
to an event.

In Canal, events correspond to topic publish operations.
Developers use Canal function templates to construct their
applications and the Canal client API to register and deploy
their applications. Functions can access topic data, process
and analyze data from multiple topics, and publish new data
to geo-distributed topics, when they execute. That is, Canal
couples serverless FaaS programming with pub/sub for data
management to create a new, high-level, scalable program-
ming technology for IoT. To do so, Canal defines the following
core system abstractions.

• Topic: A topic is an object that encapsulates data el-
ements of the same type. Each element in a topic is
identified by a strictly increasing index.

• Function: A function is an event handler implemented
by an application that Canal executes in response to a
publish event on a topic to which it has subscribed.

• Node: A node consists of one or more physical or virtual
machines, which service client requests and host topics
that are published and subscribed to by applications and
clients.

• Replica: A replica is a copy of a topic and its functions.
For redundancy and parallelism, each node can imple-
ment multiple replicas.

Each topic in Canal is implemented as an append-only log
of data values that is fixed-size and automatically aged and
garbage collected. Past data can be retrieved for processing
(up to the configurable length of the log history); append-only
storage also reduces contention overhead and enhances data
durability since data elements within a topic are immutable.
Canal maintains the list of functions subscribed to each topic
and triggers all subscribed functions when data is published
to a topic.

Functions can retrieve the most recent version of the topic
or a previous version, if available, via its index. This index is
returned upon a publish (an append) and the history can be
scanned using it via the client API. We describe the Canal
storage and replication model in more detail in Section III-B.

Topics and functions can be placed on any node in a Canal
cluster. This flexibility enables developers to optimize their
applications in different ways, e.g. for locality (co-locating
functions and topics) or for resilience (geo-distributing repli-
cas). For example, a machine learning application that sub-
scribes to IoT devices for its input data may wish to place



the IoT topics near where the data are generated, and place
the functions that perform more heavyweight computation on
more powerful nodes at the edge or in the cloud.

To enhance availability and reliability, a node can also
implement multiple replicas. All the topics and functions as
well as the topic lookup entries stored in a node are replicated.
A group of replicas in a node uses a consensus protocol to
elect a leader. The leader is responsible for all the queries and
requests from other nodes. If the leader fails, a new leader is
elected among the remaining working replicas and assumes
the leader role. We detail how Canal manages and uses data
replicas in Section III-B.

Beyond hosting data and functions, nodes handle client
queries and publish requests. Clients specify topics, which
Canal uses to identify hosting nodes using distributed lookup.

A. The Canal Runtime and Lookup System

For serverless computation and persistent logs, Canal uses
CSPOT, an open source, distributed serverless runtime sys-
tem that executes event-triggered functions across multi-scale,
heterogeneous devices without modification [16]. CSPOT im-
plements FaaS semantics coupled with an intrinsic log data
structure that is storage persistent.

Canal achieves scalable, distributed lookup (for clusters in
which nodes can join and leave dynamically) by extending
protocols from Chord [17] using CSPOT. Chord is a scalable
peer-to-peer lookup protocol that implements a distributed
hash table (DHT). It provides one simple operation – mapping
a key and its value to a node – but it does so in a way that is
robust with respect to wide-area network and node failure.

The topology of the DHT cluster is structured as a ring.
Each node in a Chord ring is equivalent to a Canal node and
Canal uses the Chord protocol to maintain the integrity of the
ring. When joining a cluster, each node gets an m-bit identifier
by hashing the unique name or IP address of the node using
SHA-1.The protocol places the node, ordered by its identifier,
on a ring with a circular key space of 2m . When inserting or
querying about a key, the key is hashed again with SHA-1 to
compute its identifier k. The protocol uses the key’s identifier
to decide which node is responsible for storing the key-value
pair. Once the identifier is acquired, the protocol forwards the
query to the node whose identifier is equal to or immediately
after k, i.e. the successor of k (denoted by successor(k)).

For scalability, a node maintains only a subset of successor
addresses in an address table. A node with identifier n main-
tains the addresses of its immediate successors (we use three
herein). Each node also maintains m pointers (called fingers)
to other nodes in the ring. The i th finger in an address table is
denoted as f inger(i) and it is defined by sucessor(n+2 i−1 ).
Upon receiving a query of target key k, a node n checks
if its immediate successor is the successor of k by testing
if k ∈ (n, successor] . If so, it answers the query with the
successor’s address, where the value of key k can be found. If
the node’s immediate successor is not the successor of k, the
node passes the query to the closest preceding node of k in the
finger list. The query is passed along the ring in this way until

it reaches a node who can answer the query. This protocol is
proven to be scalable such that in a Chord cluster with N
nodes, each node need only store O(log(N )) addresses, and
a query can be answered in O(log(N )) communications.

Chord maintains the ring relationship between nodes using
a stabilization protocol. When node n joins the cluster, it
queries the cluster to find its own successor. Once the
query is answered, Canal inserts node n into the ring ahead
of successor(n) by notifying successor(n) about its new
successor. After being notified, successor(n) adds node n
as its predecessor. The next time successor(n)’s old pre-
decessor sends a heartbeat to successor(n), it learns that
a new node was inserted and updates its successor from
successor(n) to node n, which completes the “stabilization”
process. Each node in the ring sends a heartbeat message to
its successor. When node n leaves the cluster, its predecessor
predecessor(n) learns this fact via the failed attempt to send
the heartbeat. In this case, predecessor(n) uses the next
successor as its immediate successor and sends a heartbeat to
its new successor. When successor(n) receives the heartbeat
from predecessor(n), it learns that n has left and updates its
predecessor to predecessor(n).

When a topic is created, Canal hashes the topic name for use
as a lookup key. The address of the node that hosts the topic
is stored in the successor of the topic name hash. This design
allows Canal to decouple data placement from address lookup,
making application deployment strategies more flexible while
achieving a fast, logarithmic querying time.

B. Replication and the Canal Data Model

Chord’s DHT design provides a simple way to replicate
data for fault tolerance. When a key-value pair is stored in
a node, it is replicated to immediate successors of the node.
Because nodes are connected and ordered as a ring, when a
node leaves the cluster unwillingly due to failure, its successor
will assume the node’s position on the ring and take over
the responsibility of the departing node. When the departing
node’s successor does so, it has a data replica and thus it
can serve queries seamlessly without performing any data
migration. Canal uses this mechanism to replicate the address
information and subscription lists for topics.

However, this mechanism cannot support the data in topics
or application functions. On a DHT ring, nodes are randomly
ordered by their identifier hash. In essence, replicating data
to a node’s successors is replicating data to random nodes
in the cluster geographically. This works well for replicating
lightweight key-value pairs such as topic address and subscrip-
tion list, but it is inefficient for large data objects. In addition,
random replication precludes exploiting data locality.

Our approach extends RAFT [18] (a consensus algorithm
for implementing strong consistency) with locality optimiza-
tions and then uses RAFT as the storage mechanism for
managing the DHT state and topic data. Canal also extends
the Chord protocols to take advantage of the RAFT locality
optimizations. RAFT uses a consensus algorithm and leader
election to manage a replicated log among the members of a



“RAFT cluster.” Our approach to using RAFT for scalable data
persistence equates each Canal node in the DHT with a RAFT
cluster. Thus, unlike in the original Chord implementation
where each DHT node is identified by network address, our
approach encodes RAFT replica information into each Chord
successor, predecessor, and f inger node identifier. We then
modify the Chord protocol to use this information to access
persistent state from the most up-to-date RAFT replica.

C. Canal’s DHT Implementation

RAFT provides a simple leader election algorithm to guar-
antee that there is only one leader at any time. Only the leader
responds to client requests and appends entries to its log.
RAFT implements a strong leader approach in that the leader
actively replicates its log to the other members (followers).
If a follower receives conflicting entries from the leader,
it overwrites its own log with the entries from the leader.
Followers never ask the leader to resolve the conflict and the
leader never rewrites its own log. Once the leader confirms a
log entry is replicated to a majority of replicas, it commits the
entry and notifies its followers.

We divide time into RAFT terms across each RAFT cluster
(recall that there is one RAFT cluster defined for each Canal
node in the Canal DHT), and define a random timeout for
each. If a follower does not hear from the leader by the
timeout, the follower promotes itself as a leader candidate
and starts a new term. The candidate starts an election by
requesting votes from all the members in its cluster. According
to the RAFT protocol, each member can only vote for one
candidate in each term, and it can only vote for a candidate
if the candidate has more up-to-date entries than its own. If
a candidate’s vote requests are accepted by the majority of
members (itself included), it is promoted and becomes the
leader. This algorithm guarantees that only members with most
up-to-date log entry will be elected as new leader, so that the
committed log entries are never rewritten. After an election
is complete, each replica in the RAFT cluster agrees on the
leader for the cluster.

All DHT queries and client requests to publish to a topic
or read data must be answered by the RAFT leader that
represents the Canal node during the current term . Canal
records the replica host addresses for each host in the RAFT
cluster associated with each Canal node. When a Canal node
joins the DHT ring and triggers the stabilization process, it is
updated with the RAFT replica host addresses associated with
its successor in the DHT ring, and similarly, with the replica
addresses associated with its predecessor. It then queries one
replica in the successorRAFT cluster to determine the current
leader to be used whenever that successor is contacted when
implementing the Chord protocol. Similarly, it determines the
current leader for its predecessorand the Canal nodes listed
in its finger table.

If a leader fails, the node becomes unavailable temporarily
until a new leader is elected among working RAFT replicas.
Any attempt to contact RAFT replica during leader election
stalls until the election is complete. A Canal node discovers

a new leader in another Canal node’s RAFT cluster when
an attempt to contact that leader fails. In the event that a
Canal node fails to contact the leader of another Canal node’s
RAFT cluster, it will query the other replicas in that cluster to
determine the current (possibly new) leader. If leader election
is in progress, the discovery request stalls and may eventually
time out. Otherwise, the replica responds with the current
leader’s host address and the Canal node uses that address
as the new leader until the next leader change.

Additionally, Canal uses RAFT to replicate each Canal
node’s DHT successorlist as a way of ensuring that a RAFT
leadership change does not trigger a DHT ring restabilization.
The successor list changes only when Canal nodes join or
leave the DHT ring. By replicating this state, a Canal node
can always discover the current leader of its successorRAFT
cluster once the ring is stabilized.

In the case when the majority of replicas fail, the node
leaves the Canal cluster and Canal triggers a DHT restabi-
lization. When/If the node recovers from failure and becomes
available again, it will try to send a heartbeat to its last known
successor. This will also cause Canal to initiate DHT ring
stabilization, which will enable the node to rejoin the cluster.

D. Canal Data Management

Since a node can host multiple topics, Canal uses a single
data object to store the data from all topics the node hosts.
However, as described previously, the persistent objects in our
serverless runtime are append-only logs. To support this and
multi-topic objects (that are replicated), Canal employs a map-
ping object per topic. This object records the index of the data
element when published, in the multi-topic data object. When
a data element is published to a topic, Canal encapsulates it
with its topic name and appends to the multi-topic data object.
When the entry is replicated and committed, each committing
replica checks which topic the entry belongs to and writes the
index of the committed entry to the topic’s mapping object.
When a client reads data in the topic by index, Canal first
checks the topic’s mapping object to get the index of the
data element in the multi-topic data object. It then reads and
returns the data element from the data object. Only the multi-
topic data object is replicated (i.e. managed) by the RAFT
algorithm. Mapping objects are indirectly (and automatically)
replicated since each replica updates its mapping object when
a data element is committed.

E. Canal API and Data Publishing

Canal exports a simple client API for publish/subscribe
operations. The client API provides the following functions:

• create topic(topic name):
Create a topic topic name on the calling node.

• subscribe(topic name, function name):
Subscribe the function function name on the calling node
to the topic topic name.

• publish(node, topic name, data):
Publish data to topic name.



• latest index(node, topic name):
Get the latest index of published data in topic name.

• get(node, topic name, index):
Get the data in topic name by its index.

A node in a Canal cluster calls create topic() to create
a topic and store its address in the DHT. create topic()
also creates the topic mapping object as described in the
previous section. A node can also call subscribe() to subscribe
a function to a topic. There must be a binary file named
function name on the calling node for the call to succeed.
The binary function can be written and compiled using the
provided toolchain and it should follow the Canal function
template: f unction name(topic name, index, data) . func-
tion name can be any UNIX-style filename. topic name, in-
dex, and data will be filled in by the Canal runtime when the
function is triggered.

Any client can use publish(), latest index(), and get() to
publish or read data. All of these operations take an optional
node parameter to specify the address of the node that should
receive the request. The node address can be the address of a
leader or follower replica of any node in the Canal cluster. It
does not have to be the node hosting the topic, as the topic
name will be used to query the actual address of the topic.
The node parameter can be omitted if the calling client is a
node itself in the Canal cluster.

When a client requests a node to publish data to a topic, the
node (referred to as the publishing node) queries the Canal
ring by topic name to determine where the topic data are
hosted; it uses this information to acquire the subscription list
for the topic. The query is answered with the addresses of all
the replicas of the node hosting the topic (the topic node). The
publishing node then appends the data element to the multi-
topic data object of the topic node as described in the previous
section. Once the data element is committed using the RAFT
algorithm, the topic node notifies the publishing node and the
later triggers the functions on the subscription list to consume
the published data.

IV. EVALUATION

In this section, we evaluate the performance of Canal
using different replica placement strategies. Specifically, we
instrument its processing pipeline (which include Chord and
RAFT extensions) and employ a series of benchmarks and a
wide range of testing configurations using the resources from
a working IoT deployment.

We deploy Canal clusters with different configurations
using virtual machine (VM) instances on three private and
edge clouds, called Campus, Lab, and Farm. Each cloud runs
Eucalyptus v4.2.2, which is API-compatible with AWS EC2
and S3. Campus is a shared, private cloud located on the UCSB
campus connected via 10Gb Ethernet. It is part multi-campus
cloud federation [19] that consists of 1400 cores and 30TBs of
storage. Lab is an edge cloud located in the authors’ research
lab that consists of 9 Intel Next Units of Computing (NUC)
devices connected via a gigabit switch. Farm is also a NUC-
based edge cloud sited on a remote research reserve roughly

Campus Farm

Lab

715 Mb/s
93 Mb/s

93 Mb/s

941 Mb/s* 481 Mb/s*
748 Mb/s*

Fig. 2: Bandwidth across our multi-cloud, experimental deployment as mea-
sured by iperf. *’d measurements show the bandwidth between instances
within the same cloud.

50 miles from the campus. Locally, the NUCs that comprise
the Farm cloud are interconnected by a gigabit switch (with
far less bisection bandwidth than Lab) but traffic to and from
the site must traverse a 100 Mb (and often lossy) microwave
link connecting the site to campus.

Each VM instance has 2 cores; Campus instances have 1GB
memory while Lab and Farm instances have 4GB memory.
During our experiments we observe that Canal uses very little
memory and, as such, instance memory size does not signif-
icantly impact performance or our results. This deployment
consisting of two edge clouds (Farm at the remote site and
Lab on campus) and a large private cloud that is used to
process camera trap wildlife images. Fig. 2 shows the average
bandwidth between clouds in this study, as measured by iperf.
For our experiments, we configure Canal with 8 Canal nodes.
Each Canal node implements a RAFT cluster with 3 replicas.
Each RAFT replica is hosted by a single cloud VM (i.e. the
full deployment is 24 VMs.)

Note that co-locating geographically all of the RAFT repli-
cas within the same cloud associated with any single Canal
node within the same cloud speeds the RAFT consensus
protocol, but creates the possibility for DHT ring churn. In
particular, when the microwave link fails, the Farm cloud
is completely disconnected, thus all Canal nodes completely
hosted in that cloud drop from the ring and Canal restabilizes
using the nodes hosted in Lab and Campus. Alternatively,
when the replicas are geographically distributed, the loss of all
nodes at one site (typically the Farm cloud due to the failure
of the microwave link) does not cause a ring restabilization.
Rather, after leader election for any leaders that were lost,
the system continues using the remaining replicas without a
Chord stabilization phase. We investigate this trade-off more
quantitatively in Subsection IV-E.

Thus we focus on two placement strategies. The colocated
strategy puts all RAFT replicas associated with a Canal node
in the same cloud. Alternatively, the distributed strategy
places one replica from each Canal node in each of the 3
clouds. In this way, we can detail the trade-off between DHT
restabilization overhead inherent in thecolocatedstrategy with
delays introduced by RAFT leader-election prevalent in the
distributed strategy.

Moreover, since the leader of RAFT cluster is in charge
of replicating data, handling Chord queries, and function
subscription, Canal is more sensitive to RAFT leader failure



than follower failure. We have extended RAFT for Canal so
that it will elect leaders so that it is locality-aware as a way
of introducing locality control into the protocol. Using this
Canal feature we compare the distributed Canal strategy
when all of the RAFT leaders are in the Lab cloud (denoted
distributed Lab) to putting all of them in the less reliable
Farm cloud (denoted distributed Farm ). We omit the other
configuration combinations due to space constraints.

A. Publish Benchmark

To evaluate the performance of Canal, we implement a
simple benchmark using the Canal client API. We start a
Canal cluster and create a test topic of size 8KB on one node
(referred as the topic node). The data published to the test
topic is replicated among the topic node’s three replicas, either
distributed or colocateddepending on the configuration. We
create a test function that records a timestamp and returns,
which we subscribe to the test topic. The function is triggered
(recording a timestamp) each time new data is published to
the test topic.

We use a simple client, which calls publish() , to publish
data to the test topic at a fixed rate. We experiment with
different publishing rates and run each test for 10 minutes.
Finally, in the following experiments, we place the client,
topic, and function on the same node.

Fig. 3a shows the average publishing latency for different
publishing rates. Surprisingly, distributing the replicas across
the wide-area network links (including the slow microwave
link) degrades publication performance only slightly compared
to colocating them. However, the much slower internal net-
work switch in the Farm introduces a large negative perfor-
mance impact when the RAFT leaders are hosted there, as
illustrated in Fig. 3b.

The difference shown in these graphs indicates the impor-
tance of locality in an IoT setting. In particular, without the
ability to determine a preference for RAFT leader placement
(one of the enhancements to RAFT that Canal makes), the
relative publication throughput difference is dramatic.

Fig. 4 shows the latency a client experiences when calling
publish() , waiting for data replication and the subscribing
function to complete (i.e. the earliest moment after publication
that the data is available to a subscribing function). The
latencies when the workload is light (API functions are called
and measured sequentially without overlapping) and when
the benchmark is publishing data at the cluster’s maximum
publishing rate are both shown.

This experiment shows that when the RAFT leader is in
a cloud with high availability and connected with a high
performance network (Lab), the colocated configuration has
a slightly lower latency than its distributed counterpart. At
the maximum publishing rate, the publishing latencies of
colocatedLab is 616 milliseconds, 175 milliseconds lower
than the distributed Lab configuration (791 ms). However,
when the RAFT leader is sited in a less capable edge cloud
(Farm), colocatedFarm does not achieve the same advantage.
In the colocatedFarm configuration, because all replicas are

under stress from internal Canal function invocations, repli-
cation, and request responses, the latency is higher than in
distributed Farm configuration, where followers do not slow
down the overall system.

B. Subscriber Latency

We next evaluate the latency experienced by a subscriber
when extracting data from a topic. With the same setup, this
experiment sequentially calls get() on the test topic 10000
times. We compute average get() latency as the total time
of benchmark divided by the 10000 which we present in
Table I. The results indicate that the performance of get() is
affected only by the network performance and not by the data
publishing rate. In the best case where the client and the topic
leader reside on the same instance, it takes 10 milliseconds
on average to get data. When a slow network involved (e.g.
Farm cloud), the worst case is more than 50 milliseconds on
average for a get to complete.

TABLE I: get() latency

Leader Client location
location Campus Lab Farm
Campus 23 ms ∗ 45 ms 55 ms

Lab 10 ms ∗ 50 ms
Farm 25 ms∗

∗ Client and topic leader is on the same instance.

C. Data Availability

Recall that each Canal node is functional as long as a
majority of its RAFT replicas are available and connected (we
do not yet have a protocol in place for accessing and manag-
ing stale data in disconnected replicas). As Fig. 3a shows,
replica placement can have a dramatic effect on throughput.
In this subsection we look at the effect of placement on data
availability.

To do so, we analyze a trace of a working application 1 and
hypothesize that there are two clouds: a public cloud aand an
edge cloud. We artificially induce failures into the trace and
observe how many of the requests (either publication or sub-
scription) cannot be satisfied. We use 99.99%availability for
the public cloud (taken from typical public cloud SLAs [21]
) and vary the availability of the edge cloud. Note that these
error rates grossly overestimate true cloud availability in all
cases. Thus our results are conservative.

With all replicas located in the public cloud, the appli-
cation would experience no failures even with only 99.99%
availability. Putting 1 replica in on the edge (to improve
publication latency) still results in 99% of the application
requests succeeding even when the edge cloud’s availability is
on 90%but results in all requests being satisfied when the edge
is 98% available – far less available than in practice. Thus the
geodistributed strategy described previously both yields good
performance and excellent data availability.

1We implement a temperature prediction application described in [20] to
evaluate Canal in real world scenario. The source code of Canal and evalu-
ation application can be found at https://github.com/MAYHEM-Lab/cspot/.
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D. Comparing Canal to MQTT

We next compare the performance of Canal to MQTT, the
most commonly used topic-based publish/subscribe protocol
in IoT. To setup a wide area distributed environment, we use
RabbitMQ with MQTT client to deploy a broker network.
RabbitMQ enhances the availability and reliability of MQTT
brokers by supporting clustering and federation. A RabbitMQ
cluster is a group of brokers whose status is replicated using
the RAFT algorithm. When the leading broker fails, another
broker is elected and takes over. A federation is formed via
multiple clusters in a wide area. Once registered, clusters share
and access the topics in other clusters in the federation.

RabbitMQ recommends forming a cluster with a group of
brokers connected with strong network. In the following test,
we use six Campus instances to create two clusters (three
instances per cluster) and form a federation of two clusters. We
use Paho asynchronous MQTT library to implement consumer
and producer clients in C. The consumer client is placed in one
cluster, while the producer client is in the other. QoS level is
set to 1 (at least once delivery) as RabbitMQ does not support
QoS level 2 (note that Canal supports QoS level 2 in these
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Fig. 5: The throughput comparison of RabbitMQ with MQTT and Canal.

experiments). The consumer continuously consumes messages
sent by the producer and the producer continuously publishes
of fixed size (8KB). To determine the maximum throughput,
we increase the number of messages the producer publishes
per second until RabbitMQ starts buffering.

We compare the throughput of RabbitMQ 3.8.14 with
MQTT clients to that of our system. Since RabbitMQ does
not persist the data once the message is delivered, a process
failure causes data loss. Thus we use CSPOT’s append-only
data object to persist messages to storage once they are
received by the consumer client. When a consumer client
receives a message, it writes it to all brokers’ CSPOT objects.
Since RabbitMQ only supports QoS level 1, we do not
replicate the data. However, it does show how data persistence
affects the performance. In addition, even though one can
implement application logic in consumer client, we trigger a
separate function for each received message to measure the
performance impact of event-based (i.e. serverless) function
invocation.

Fig. 5 shows the throughput comparison. Without persisting
data or triggering functions, RabbitMQ can route 243 mes-
sages per second. When storing data to CSPOT to increase data



reliability, it can route 230 messages per second. If triggering
functions, it can handle 175 messages per second. Compared
to RabbitMQ federation, Canal can process 260 messages
per second using the same instances and network, with data
persistence (via CSPOT). If we remove the function triggering
from Canal, it can route 416 messages per second to the
topic. Since data persistence is core to the Canal design and
implementation, we are not able to strip it for comparison.

E. Failure Recovery

As described previously, Canal uses RAFT replicas to
avoid Chord ring restabilization. To determine the relative
performance of each approach, we deployed Canal and Chord
in the Campus cloud (to maximize Chord’s performance
during restabilization which is dominated by message latency)
and compare Chord restabilization to Canal leader discovery
after a node loss. The average Canal discovery time over
1000 artificially induced node failures is 667 milliseconds
compared to an average of 1627 milliseconds for each Chord
restabilization.

Moreover, Chord relies on randomized node placement in
the DHT ring to avoid the effects of correlated failure. Each
node requires a “chain” of successors so that it can reestablish
the ring during stabilization. However, if all nodes in the
chain are disconnected or down (e.g. they are all within
a single geographic location that has become disconnected
from the other sites), Chord cannot restabilize. With 3 sites
and 8 nodes per site in our setting, each DHT node would
require 9 successors in the chain to guarantee that at least one
successor is located in a geographically remote location. In the
experiment described above, we configured each DHT node
with a chain of length 1 (to maximize Chord performance)
however the chain needs to be rebuilt during restabilization
thereby increasing the time to stability as a function of its
length. Thus a pure Chord implementation in our setting would
likely be significantly slower.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a distributed publish/subscribe sys-
tem called Canal, that is straightforward to program and that is
reliable and performant in IoT settings. Like a traditional topic-
based publish/subscribe system, Canal supports data delivery
by topic subscription. Unique to Canal, consumers of topics
are triggered functions that react to data and perform a series
of tasks. Canal uses a DHT as a scalable pub/sub brokerage for
data stored in RAFT clusters that replicate the data. Through
modifications to the Chord DHT and RAFT protocols, we
enable developers to use this architecture to exploit locality
in distributed IoT settings. We evaluate the system using
benchmarks and a real-world IoT application in a production
IoT deployment. Our work shows that Canal is fast, stable,
and reliable.

As part of future directions, we are extending the system
with intelligent load balancing and high-level language support
for functions. We are also working on “autotuning” capabil-

ities to optimize Canal performance and reliability in each
deployment.
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