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SUMMARY

For multivariate spatial Gaussian process models, customary specifications of cross-covariance
functions do not exploit relational inter-variable graphs to ensure process-level conditional inde-
pendence between the variables. This is undesirable, especially in highly multivariate settings,
where popular cross-covariance functions, such as multivariate Matérn functions, suffer from
a curse of dimensionality as the numbers of parameters and floating-point operations scale up
in quadratic and cubic order, respectively, with the number of variables. We propose a class
of multivariate graphical Gaussian processes using a general construction called stitching that
crafts cross-covariance functions from graphs and ensures process-level conditional independence
between variables. For the Matérn family of functions, stitching yields a multivariate Gaussian
process whose univariate components are Matérn Gaussian processes, and which conforms to
process-level conditional independence as specified by the graphical model. For highly multivari-
ate settings and decomposable graphical models, stitching offers massive computational gains
and parameter dimension reduction. We demonstrate the utility of the graphical Matérn Gauss-
ian process to jointly model highly multivariate spatial data using simulation examples and an
application to air-pollution modelling.

Some key words: Conditional independence; Covariance selection; Graphical model; Matérn Gaussian process.

1. INTRODUCTION

Multivariate spatial data abound in the natural and environmental sciences when studying fea-
tures of the joint distribution of multiple spatially dependent variables (see, e.g., Cressie & Wikle,
2011; Wackernagel, 2013; Banerjee et al., 2014). The objectives are to estimate associations over
spatial locations for each variable and associations between the variables. Let y(s) be a g x 1
vector of spatially indexed dependent outcomes within any location s € D € R? for d = 2 or
3. A multivariate spatial regression model on our spatial domain D specifies a univariate spatial
regression model for each outcome,

yi(s) = xi()" i + wils) +€i(s) (=1,2,...,q;5€D), (D
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where y;(s) is the ith element of y(s), x; (s) is a p; x 1 vector of predictors, f; is the p; x 1 vector of
slopes, each w;(s) is a spatial process, and €;(s) is the random noise in outcome i, independently
distributed as N (0, tl.z). We customarily assume that w(s) = {wi(s), wa(s),...,wy ()} is a
multivariate Gaussian process specified by a mean of zero and a cross-covariance function that
introduces dependence over space and between the ¢ variables. The cross-covariance is a matrix-
valued function C = (Cjj) : D x D — R9*? with Cji(s,s") = cov{w;(s), w;(s")} for any pair
of locations (s, s’). Cross-covariance functions must ensure that for any finite set of locations
S = {s1,...,8,} the ng x ng matrix C(S,S) = {C(s;, s;)} is positive definite.

Valid classes of cross-covariance functions have been comprehensively reviewed in Genton &
Kleiber (2015). Of particular interest are multivariate Matérn cross-covariance functions (Gneit-
ing et al., 2010; Apanasovich et al., 2012), where the marginal covariance functions for each
w;(s) and the cross-covariance functions between w;(s) and w;(s") are Matérn functions. In its
most general form, a multivariate Matérn cross-covariance function is appealing as it ensures that
each univariate process is a Matérn Gaussian process with its own range, smoothness and spatial
variance, although the parameters need to be constrained to ensure positive definiteness of the
cross-covariance function.

In this paper we focus on the increasingly commonplace highly multivariate setting with a
large number of dependent outcomes, say ¢ ~ 107 or more, at each spatial location. While
substantial attention has been paid to spatial data with a massive number of locations, i.e., large
n, see, e.g., Heaton et al., 2019, for a review, the highly multivariate setting poses separate
computational challenges. Likelihoods for popular cross-covariance functions, such as multi-
variate Matérn cross-covariances, involve O(g?) parameters and O(g>) floating-point operations.
Optimizing over or sampling from high-dimensional parameter spaces is inefficient even for
modest values of n. Illustrations of multivariate Matérn models have typically been restricted to
applications with g < 5.

In nonspatial settings, Gaussian graphical models are extensively used as a dimension reduc-
tion tool to parsimoniously model conditional dependencies in highly multivariate data. However,
popular spatial cross-covariance functions such as the multivariate Matérn functions are not
endowed with any exploitable graphical structure for scalable computation; nor do they adhere
to posited conditional independence relations between the outcomes, as are often introduced for
high-dimensional outcomes (Cox & Wermuth, 1996). One contribution of this work is the develop-
ment of multivariate Gaussian processes that conform to process-level conditional independence
posited by an inter-variable graph over ¢ dependent outcomes while attending to scalability
considerations for large ¢.

To adapt graphical models to multivariate spatial process-based settings, we generalize notions
of process-level conditional independence for discrete time series (Dahlhaus, 2000; Dahlhaus &
Eichler, 2003) to continuous spatial domains. We define multivariate graphical Gaussian processes
that satisfy process-level conditional independence as specified by an inter-variable graph. We
focus on graphical Gaussian processes with properties deemed critical for handling multivariate
spatial data. Specifically, we seek to retain the flexibility to model and interpret spatial properties
of'the random field for each variable separately. Except for multivariate Matérn cross-covariances,
most multivariate covariance functions fail to retain this property.

We address and resolve problems in constructing spatial processes that retain marginal prop-
erties and are also graphical Gaussian processes. For example, while the existing multivariate
Matérn models preserve the univariate marginals as Matérn Gaussian processes, we show in § 3.1
that no parameterization of the multivariate Matérn cross-covariance function yields a graphical
Gaussian process. On the other hand, work done to date on graphical multivariate discrete time
series models has not attempted to preserve marginal properties and has benefited from the regular
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discrete setting of equispaced time-points, in both nonparametric (Dahlhaus, 2000; Dahlhaus &
Eichler, 2003; Eichler, 2008) and parametric (Eichler, 2012) analysis. We resolve both of these
issues for irregular spatial data.

Our development relies on the seminal work of Dempster (1972) on covariance selection, which
ensures the existence of multivariate distributions that retain univariate marginals while satisfying
conditional independence relations specified by an inter-variable graph. Although covariance
selection can facilitate approximate likelihood-based inference for graphical vector autoregressive
models (Eichler, 2012) by exploiting the expansion of the inverse spectral density matrix of
VAR (p) models in terms of the inverse covariance matrices over finite time-lags, such finite-lag
representations do not typically hold for spatial covariance functions over D C R¥.

One of the key contributions of the present work is to identify the construction of a marginal-
retaining graphical Gaussian process as a process-level covariance selection problem. We
use covariance selection on the spectral density matrix to prove existence, uniqueness and
information-theoretic optimality of a marginal-retaining graphical Gaussian process. We then
introduce a practical method for approximating this optimal graphical Gaussian process by stitch-
ing Gaussian processes together using an inter-variable graph. Stitching relies on the orthogonal
decomposition of a Gaussian process into a fixed-rank predictive process (Banerjee etal., 2008) on
a finite set of locations and a residual process. We show how to endow the predictive process with
the desired conditional independence structure via covariance selection, and use componentwise-
independent residual processes to create a well-defined multivariate Gaussian process that exactly
preserves both dependencies modelled by the graph and the marginal distributions on the entire
domain. Stitching with Matérn Gaussian processes yields a multivariate graphical Matérn Gauss-
ian process with a tractable likelihood for irregular spatial data such that (i) each outcome process
is endowed with the original Matérn Gaussian processes, (ii) process-level conditional indepen-
dence modelled by the graph is retained, and (iii) cross-covariances for variable pairs included
in the graph are exactly or approximately Matém.

We also demonstrate computational scalability with respect to ¢g. We show that for decompos-
able graphical models, stitching facilitates drastic dimension reduction of the parameter space and
fast likelihood evaluations by obviating large matrix operations. Additionally, stitching makes
graphical models amenable to parallel computing, so that a chromatic Gibbs sampler can be
employed for delivering efficient fully model-based Bayesian inference. We further show how
our framework can be adapted to deliver inference for an unknown inter-variable graph, model
spatial time series, and model multivariate spatial factor models.

2. METHOD

2.1. Process-level conditional independence and graphical Gaussian processes

We define process-level conditional independence for a multivariate Gaussian process w(-) =
{Wi(),...,wg()}" over D. We adapt the analogous definition for multivariate discrete time
series in Dahlhaus (2000) to a continuous-space paradigm. Let V = {l,...,q}, B C V and
wg(D) = {wi(s) : k € B, s € D}. Two processes w;(-) and w;(-) are conditionally independent
given the processes {wi(-) : k € V \ {i,j}} if covizip(s),zp(s")} = 0 for all 5,5' € D and
B = V\ {i,j}, where z;g(s) = wi(s) — E{wi(s) | o ({w;(s") : j € B, s’ € D})}, with o () denoting
the usual o-algebra generated by its argument. Let Gy, = (), Ey) be a graph, where Ey is a
prespecified set of edges between pairs of variables. We now define a graphical Gaussian process
with respect to, or conforming to, Gy as follows.
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DEFINITION 1 (Graphical Gaussian process). 4 g x 1 Gaussian process w(-) is a graphical
Gaussian process with respect to a graph Gy = (V, Ey) if the univariate Gaussian processes
w;(+) and w;(-) are conditionally independent for every (i,j) & Ey. We denote such a process by
GGP(Gy).

Any collection of ¢ independent Gaussian processes will trivially constitute a graphical Gauss-
ian process with respect to any graph Gy. More pertinent is the ability of a graphical Gaussian
process to approximate a full nongraphical Gaussian process. This is particularly relevant for
inference because the full Gaussian process is computationally intractable for large g. Theorem 1
shows that, given a graph Gy, and a multivariate Gaussian process with cross-covariance func-
tion C, there exists a unique and information-theoretically optimal graphical Gaussian process
in the class of all GGP (Gy). Proofs of all theoretical results are provided in the Supplementary
Material.

THEOREM 1. Let Gy = (V, Ey) be any given graph and C = (Cy) a q X q stationary cross-
covariance function. Let FF(w) = {fjj(w)} be the spectral density matrix corresponding to C at
frequency w, and assume that f;;(-) is square-integrable for all i.

(1) There exists a unique q X 1 GGP(Gy) w(-) with cross-covariance function M = (M;;) such
that My; = Cj; for i = j and for all (i,j) € Ey.

(ii) If F(w) denotes the spectral density matrix of w(-) and F is the set of spectral density
matrices of all possible GGP(Gy), then

F() = argmin / dkL {F (@) | K (@) do,
K()eF Jo

where dxi (F||K) = tt(K~'F) + log det(K) is the Kullback—Leibler divergence between
two positive-definite matrices F and K.

Theorem 1 shows that the optimal graphical Gaussian process approximating a Gaussian
process, given a graph, needs to exactly preserve the marginal distributions of the univariate
processes, which is also critical to retaining the interpretations of the spatial properties of each
univariate surface. This optimal graphical Gaussian process also preserves cross-covariances for
variable pairs included in Gy,. Theorem 1, however, is of limited practical value, because it does not
provide a convenient way of constructing cross-covariances. We develop a practical method that
involves stitching ¢ univariate random fields to construct marginal-preserving graphical Gaussian
processes for modelling irregular spatial data.

2.2. Stitching of Gaussian processes

Given any Gy and a cross-covariance function C, we seek a multivariate Gaussian process
w(-) that fulfils the following conditions.

Condition 1. The process exactly preserves the marginal distributions specified by C, i.e.,
Wl'(') ~ GP(O, Cii) for all ;.

Condition 2. 1t is a GGP(Gy), i.e., satisfies process-level conditional independence according
to Gy.

Condition 3. It exactly or approximately retains the cross-covariances specified by C for pairs
of variables included in Gy; that is, for (i,/) € Ey, cov{w;(s), w;(s)} = Cj;(s,s").
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Fig. 1. Stitching Gaussian processes: (a) realizations of four univariate Gaussian processes; (b) realization of a mul-
tivariate (four-dimensional) graphical Gaussian process created by stitching together the four univariate Gaussian
processes from (a) using the strong product graph over the four variables and three locations.
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Figure 1 visually illustrates the stitching of univariate Gaussian processes to build a graphical
Gaussian process w(-) satisfying Conditions 1-3 above. Panel (a) shows realizations of four
univariate Matérn Gaussian processes w;(-) (i = 1,...,4), each with a different smoothness and
spatial range. Panel (b) shows a multivariate graphical Gaussian process constructed by stitching
together the four processes in (a) using a path graph as Gy with £y, = {(Z,i+1) : i = 1,2,3}. We
begin our construction on £, a finite, but otherwise arbitrary set of locations in D, such as the three
locations in Fig. 1(b). We first ensure that w(£) = {w1 (L), ..., w,(£)}" satisfies Conditions 1-3
when the domain is restricted to £. This is achieved by stitching together the variables at the three
locations in £ such that there is a thread between two variable-location pairs if and only if there
is an edge between the two corresponding variables in V. We then stitch the remaining surfaces
independently so that each has the same distribution as the corresponding univariate surface in
Fig. 1(a), and conforms to the graph at the process level. This is akin to stitching the four surfaces
together at the locations £, while exactly preserving each univariate surface. The graph edges
serve as the threads holding the surfaces together.

Turning to the formal development, we first create w(L), the realization of our target process
w(-) on L that satisfies Conditions 1-3 on £. Combining the three requirements, we model
w(L) ~ N{0, M (L, L)}, seeking a positive-definite matrix M (L, £) such that

Condition 4. M;(L,L) = C;;(L, L) foralli =1,...,q, to satisfy Condition 1;

Condition 5. (M (L, E)_l)ij = 0 for all (i,j) ¢ Ey, to satisfy Condition 2;

Condition 6. M;(L, L) = Cy(L, L) for all (i,j) € Ey, to satisfy Condition 3.

The existence of such a matrix M (L, £) is a covariance selection problem (Dempster, 1972).

Lemma 1 (Covariance selection, Dempster, 1972). Givenagraph G = (S, E) and any positive-
deﬁnzte matrix F = (Fy) indexed by S x S, there exists a unique positive-definite matrix
(Frs) such thath = Fys forr = s or for (r,s) € E and (F D, = 0 for (r,s) ¢ E.

To ensure that the covariances and cross-covariances are preserved over £ for all i and all
(i,j) € Ey, and that the conditional independence between elements of w(L) is inherited from
Gy, w(L) needs to conform to a graph with edges between variable-location pairs as in Fig. 1.
Formally, let G = (L, E) be the complete graph on the set of locations £. The variable-location
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graph from Fig. 1(b) is the strong product graph Gy X G,. Here, Gy X G;, = (V x L, Eyxr),
where V x L = {(i,]) :i € V, [ € L} and Ey comprises edges between vertex pairs (i, /) and
(i’,1') based on the following strong product adjacency rules: either i = i’ and (/,/") € E., or
[=1and (i,i") € Ey, or (i,i’) € Ey and (I,!') € E.

Applying Lemma 1 with the vertex set S = V x L, positive-definite matrix F = C(L, £)
and graph Gy X G; ensures the existence and uniqueness of a positive-definite matrix F =
M (L, L) satisfying Conditions 4—6 above. In practice, M (L, £) can be obtained using an iterative
proportional scaling algorithm (Speed & Kiiveri, 1986; Xu et al., 2011).

Condition 5 only ensures conditional independence of the process restricted to L. Process-level
conditional independence over the entire domain D follows from the subsequent extension in (2),
as proved in Theorem 2. Having constructed the finite-dimensional distribution of w(£) from
Gy X G, we now suitably extend it to a well-defined multivariate Gaussian process w(-) over
the domain D, which conforms to the conditional dependencies implied by Gy). We make use of
the following well-known decomposition of a Gaussian process w;(-) as the sum of a finite-rank
predictive process wi(-) = E{w;(-) | w;(£)} and an independent residual process z;(-) (Banerjee
et al., 2008; Finley et al., 2009):

wi(s) = wi(s) +zi(s) = Cii(s, £)Cii(L, L) 'wi(L) + zi(s), se€D\L, 2)

where each z;(-) is a zero-centred Gaussian process, independent of w(L), with the valid
covariance function Cjjj2(s,s") = Cii(s,s") — Cii(s, £)C;; YL, £)Cu(L,s).

The first part of stitching ensures that w(£) conforms to Gy, when restricted to £. The next
result establishes process-level conditional independence for the stitched predictive process.

LEMMA 2. The predictive process w*(-) = {w{(-),..., W;(-)}T is a GGP(Gy) on D.

We now use (2) to extend the finite-rank graphical Gaussian process w*(-) to a full-rank
graphical Gaussian process w(-) over the entire domain D. We construct z;(-) ~ GP(0, Cjjj ) such
thatz;(-) L z;(-) foralli & jand z;(-) L w(£) forall i. Independence between the z;(-) and w(L),
and the marginal covariance of z;(-) specified below (2), ensure that each w;(-) on D is exactly
GP(0, Cj;). However, independence between the z;(-) for each i is a novel choice which ensures
that the conditional independence relations in Gy are extended from the finite set £ to the spatial
process over D. We prove this formally in Theorem 2.

THEOREM 2. Given a cross-covariance function C and an inter-variable graph Gy, stitching
creates a valid multivariate graphical Gaussian process w(-) with a valid positive-definite cross-
covariance function M such that the following hold:

(1) wi(-) ~GP(0,Cy), i.e, Mji(s,s") = Cii(s,s') for all s,s' € D and for eachi =1,...,q;
(i) w(-) is a GGP(Gy) on D;
(iii) if'(i,j) € Ey, then My (s,s") = Cj;(s,s") for all 5,s" € L.

Stitching produces a multivariate Gaussian process w(-) that exactly satisfies Conditions 1
and 2. Regarding Condition 3, we point out some differences between the graphical Gaussian
process ensured by Theorem 1 and the one produced by stitching. For pairs of variables (i, /) € Ey,
the cross-covariance for the former is exactly the same as the given cross-covariance Cj; on the
entire domain D, whereas for the latter we have M;; (s, s = Cij (s,s") for locations in £. For a
pair s, s’ ¢ L, it is straightforward to verify that

Mij(s,s") = Cii(s, £)Ci(L, L)™' M (L, L) Cy(L, L)' Cj(L, 5. 3)
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Stitching thus produces a computationally feasible graphical Gaussian process with the desired
full-rank marginal covariance and process-level conditional independence, at the expense of
allowing a fixed-rank cross-covariance. Choosing £ to be reasonably dense, or well spaced, in
D, we have Mj;(s,s') ~ Cj;(s,s') for (i,j) € Ey ands,s” € D\ L. Hence, Condition 3 is satisfied
exactly on £ and approximately on D \ L for the stitched Gaussian process.

3. HIGHLY MULTIVARIATE GRAPHICAL MATERN GAUSSIAN PROCESSES
3.1. Incompatibility of multivariate Matérn cross-covariances with graphical models

Theorems 1 and 2 establish, respectively, the existence and construction of a marginal-
preserving graphical Gaussian process given any valid cross-covariance C and any inter-variable
graph Gy. We are particularly interested in developing a novel class of multivariate graphical
Matérn Gaussian processes that are GGP(Gy), such that each univariate process is a Matérn
Gaussian process. This is appealing for inference, as we retain the ability to interpret the para-
meters for each univariate spatial process. We achieve this by stitching, which is necessary
because, as we argue below, no nontrivial parameterization of the existing multivariate Matérn
Gaussian process yields a graphical Gaussian process.

The isotropic multivariate Matérn cross-covariance function on a d-dimensional domain is
Cij(s,s") = o;Hjj(ls — s'Il) with H;;(-) = H(-| vj;, ¢;;), where H denotes the Matérn correlation
function (Apanasovich et al., 2012). If 6;; = {0, vjj, ¢;;}, then for a multivariate Matérn Gaussian
process the ith individual variable is a Matérn Gaussian process with parameters 9;;. This is an
attractive property because it endows each univariate process with its own variance o;j;, smoothness
v;; and spatial decay ¢;;. Another nice property is that under this model, ¥ = (0;) = cov{w(s)}
is the covariance matrix for w(s) within each location s. The cross-correlation parameters vj;
and ¢;; for i & j are generally hard to interpret, especially since v; does not correspond to
the smoothness of any surface. Recent work of Kleiber (2017) on the concept of coherence has
somewhat facilitated interpretation of these parameters. The parsimonious multivariate Matérn
model of Gneiting et al. (2010) can be regarded as a special case of this general specification
with vij = (vii + v],)/Z and bij = .

To ensure a valid multivariate Matérn cross-covariance function, it is sufficient to constrain
the intrasite covariance matrix ¥ = (oj;) to be of the form (Apanasovich et al., 2012, Theorem 1)

I {5+ v +d)} D(vy)
2A 4+vii+vy

d
(]Sl] r (Uij + 5)

where Ay > 0 and B = (b;) is positive definite. This is equivalent to X being constrained as
¥ = {B O (y;)}, where the y;; are constants that collect the terms in (4) involving only v; and
¢ij, and © denotes the Hadamard product. Similarly, the spectral density matrix takes the form
F(w) = [B © {gjj(w)}], where the g;;(w) are functions involving the parameters ¢;; and v;;. The
matrix elements b;; are the O(q?) parameters, free of ¢;j or v;;, that are constrained to ensure that B
is positive definite. Process-level conditional independencies introduce zeros in the inverse of the
spectral density matrix for stationary processes, see, e.g., Theorem 2.4 in Dahlhaus, 2000. This
implies that for any parameterization of the multivariate Matérn Gaussian process as a graphical
Gaussian process, we need {F' (w)_l},-j = 0 for every (i,j) ¢ Ey and almost all w. From the
Hadamard product F'(w) = [B © {g;j(w)}], it is clear that zeros in B~ ! or 7! do not generally
imply zeros in F~!(w) for the multivariate Matérn Gaussian process. An exception occurs when
each component is posited to have the same smoothness v and the same spatial decay parameter

“)

Uij:bij
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¢, whence both ¥ and F(w) become proportional to B. In this case, zeros in B~', specified
according to Gy, will correspond to zeros in £~ and F~!(w), yielding a graphical Gaussian
process with respect to Gy. However, assuming that v; = v and ¢;; = ¢ for all (i,/) implies
that the univariate Gaussian processes have the same smoothness and rate of spatial decay, which
is restrictive. Beyond this separable model there is, to the best of our knowledge, no known
parameter choice for the multivariate Matérn Gaussian process that will allow it to be a GGP(Gy).

3.2. Computational considerations for stitching

Stitching univariate processes corresponding to a valid multivariate Matérn cross-covariance
C and a graph Gy yields a multivariate graphical Matérn Gaussian process such that (i) the
univariate processes are exactly Matérn, (ii) the multivariate process conforms to process-level
conditional independence relations as specified by Gy, and (iii) the cross-covariances for pairs
of variables in Gy are exactly or approximately Matérn; see (3). Foreachi = 1,2,...,¢q let D;
be the set of n; locations where the ith variable has been observed. The joint probability density
of w;(D;) and w(L) is specified by w(L) ~ N{0, M (L, L)} and

wiDy) | w(L) ™ N{Ci(Dy, £)Ci (L, L)~ Wi(L), Cie D1 D)} G =1,....q). )

The covariance matrix for {w;(D;) : i = 1,...,q} | w(L) is block-diagonal with variable-specific
blocks and is cheap to compute if all the n; are small. If some of the »; are large, we can use
one of the several variants of scalable Gaussian processes for a very large number of locations
(Heaton et al., 2019). For example, a nearest-neighbour Gaussian process (Datta et al., 2016)
yields a sparse approximation of Cj;z(D;, D;) with linear complexity, but the joint distribution
still preserves the conditional independence implied by Gy .

When q is large, {w;(D;) : i =1,...,q} | w(L) in (5) has ¢ conditionally independent factors
and is easy to compute in parallel. However, the likelihood for w(£) ~ N{0,M (L, L)} is the
bottleneck in this highly multivariate case. In particular, two challenges arise for large g. As dis-
cussed earlier, the multivariate Matérn C required for stitching needs to constrain B = (b;;) to be
positive definite on an O(¢?)-dimensional parameter space. Searching in such a high-dimensional
space is difficult for large ¢, and verifying positive definiteness of B incurs an additional cost
of 0(¢%) flops. Second, evaluating w(£) ~ N{0, M (L, L)} involves matrix operations for the
ng x ng matrix M (L, £). While the precision matrix, M (£, £)~', is sparse because of Gy, its
determinant is usually not available in closed form and the calculation can become prohibitive
even for small n.

3.3. Decomposable variable graphs

To facilitate scalability in highly multivariate settings, we consider decomposable inter-variable
graphs. For Gy = (V, E) and a triplet (4, B, O) of disjoint subsets of V, O is said to separate A
from B if every path from 4 to B passes through O. If V = 4 U BU O and O induces a complete
subgraph of V, then (4, B, O) is said to decompose Gy. The graph Gy is said to be decomposable
if it is complete, or if there exists a proper decomposition (4, B, O) into decomposable subgraphs
G4uo and Gpuo. Several naturally occurring dependence structures, such as low-rank dependence
and autoregressive dependence, correspond to decomposable graphs; see § 4. More generally, if
a graph is nondecomposable, it can be embedded in a larger decomposable graph. Hence, it is
common to assume decomposability in graphical models (see, e.g., Dobra, 2003; Wang & West,
2009), since fitting Bayesian graphical models is cumbersome for nondecomposable graphs
(Roverato, 2002; Atay-Kayis & Massam, 2005).
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For stitching of Matérn Gaussian processes using decomposable graphs, we can significantly
reduce the dimension of the parameter space, storage requirements and computational burden.
Let Ki,...,K, be a sequence of subsets of the vertex set VV for an undirected graph Gy. Let
Fn=K U---UK, and S, = F,—1 N K,,. The sequence {K,,} is said to be perfect if (i) for
every [ > 1 there is an m < [ such that §; C Kj,;; and (ii) the separator sets S, are complete for
all m. If Gy is decomposable, then it has a perfect clique sequence (Lauritzen, 1996) and the joint
density of w(£) can be factorized as follows.

COROLLARY 1. If Gy has a perfect clique sequence {Ki,K»,...,K,} with separators
{S2,...,Sm}, then the graphical Gaussian process likelihood on L can be decomposed as

1 _ felwk,, (L)}
e _feiws, (L)}

where f4 denotes the density of a Gaussian process over L with covariance function A € {M, C}.

Juiw(L)} =

(6)

Corollary 1 helps us manage the dimension and constraints of the parameter space and the
computational complexity of stitching. For an arbitrary Gy, the parameter space for the stitching
covariance function M is the same as the parameter space {0; : 1 < i,j < g} for the original
covariance function C. For a decomposable Gy the likelihood (6), and in turn the stitched graphical
Gaussian process, is specified only by the parameters {6;; : i = jor (i,j) € Ey}. Therefore,
the dimension of the parameter space reduces from O(qzl) to O(JEy| + q), where |Ey| is the
number of edges in Gy, which is small for sparse graphs. When using a multivariate Matérn
cross-covariance C for stitching, the parameter space for B in the stitched graphical Matérn
Gaussian process is the intersection of the parameter spaces of the low-dimensional clique-
specific multivariate Matérn covariance functions Cg,,. .., Ck,. Hence, the parameter space
becomes {b;; : i = jor (i,j) € Ey}, and needs to satisfy the constraint that Bx, = (b;;); jek; 1s
positive definite for all / = 1,...,p. This reduces the computational complexity of parameter
constraints from O(g>) to at most O(p*g*>), where ¢* is the largest clique size and p* is the
maximum number of cliques sharing a common vertex. The precision matrix of w(L) satisfies
(Lauritzen, 1996, Lemma 5.5)

P P
_ — VXL _ VXL
MO =Y Cmoal = 2 ACsma) ™
m=1 m=2

where for any symmetric matrix 4 = (a;;) with rows and columns indexed by i/ C V x L, AV*E
denotes a |V x L] x |V x L| matrix such that (AVXE)U- = a; if (i,j) € U and (AVXE)U- =0
otherwise. From (6) and (7) we see that the stitching likelihood evaluation avoids the large matrix
M (L, L), and that all matrix operations are limited to the submatrices of M (L, L) corresponding
to the cliques K;, X G, and separators S, X G. The entire process requires at most O(pn>g*>)
flops and O(pn?q*?) storage, where p is the length of the perfect ordering. Table 1 summarizes
these gains from stitching with decomposable graphs.

The computational efficiency of stitching is clear from the above discussion. In addition, the
following result shows that the graphical Gaussian process likelihood obtained from stitching
yields unbiased estimating equations for all parameters included, i.e., all marginal and cross-
covariance parameters for any pairs of variables included in Gy, under model misspecification
when the data are generated from a multivariate Matérn Gaussian process, but are modelled as a
graphical Matérn Gaussian process with a decomposable Gy,.
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Table 1. Properties of any q-dimensional multivariate Matérn Gaussian process of Gneiting

etal. (2010) or Apanasovich et al. (2012), and a multivariate graphical Matérn Gaussian pro-

cess stitched using a decomposable graph Gy with largest clique size g* (typically ¢* < q),
length of perfect ordering p, and maximal number of cliques p* sharing a common vertex

Model attributes Multivariate Matérn ~ Multivariate Graphical Matérm
Number of parameters 0% O(|Ev| +9)
Parameter constraints o) Of{p*(g**)} (worst case)
Storage on*q?) O(pn*q*?) (worst case)
Time complexity on’q®) O(pnq*3) (worst case)
Conditionally independent processes No Yes

Univariate components are Matérn Gaussian processes Yes Yes

PROPOSITION 1. Let w(-) ~ GP{0, C(-,-)}, where C is a valid q x g multivariate Matérn cross-
covariance function with parameters {0;; : 1 < 1,j < q}, and fyr{w(L)} denotes the multivariate
graphical Matérn Gaussian process likelihood (6) from stitching using a decomposable graph
Gy. Then E[d log fir{w(£)}/06;;] = 0 for any i = j or (i,j) € Ey.

3.4. Chromatic Gibbs sampler

With a valid process specification for w(-), we formulate (1) as a hierarchical model over the
n observed locations in S and sample from the posterior distribution derived from

P(B,7,0) x N{w(8)|0,Cy(S,8)} x [ [N{y(s)) | X (s)B + w(s)), De}, ®)
j=1

where X(s;) is a ¢ x (3.7, p;) diagonal matrix diag{x;(s)",x2(s)",...,x4(s)™}, B =
(BL. B BT, w(S) = {w(s)T,w(s2)" ..., w(sn)}', Dy = diag(ef,73,...,77), 0 is the
set of parameters in the cross-covariance function, and p(8, t,0) is a prior distribution on the
model parameters. Besides the computational benefits described in Table 1, stitched graphical
Gaussian process models are also amenable to parallel computing. In a Bayesian implementa-
tion of a stitched graphical Gaussian process model, described in the Supplementary Material,
we can exploit the graph Gy and deploy a chromatic Gibbs sampler (Gonzalez et al., 2011)
to simultaneously update batches of random variables in parallel. Let n; be the vector group-
ing variable-specific parameters, i.e., regression coefficients, spatial parameters, noise variance
and latent spatial random effects. Under a graph colouring of Gy, n; and 5y can be updated
simultaneously if i and i’ share the same colour, as illustrated in Fig. 2(a).

This brings the number of sequential steps in sampling the 7; from ¢ down to the chromatic
number x (Gy ). We can also employ a chromatic sampling scheme for the b;;, but using a different
graph. We exploit the fact that the parameters b;; and b belong to the same factor in (6) for
a pair of edges (i,/), and (i’,j’) in Ey, if and only if the variables {i,/,i’,j’} belong to the same
clique. Thus, if Ge(Gy) = (Ey, E*) denotes this graph on the set of edges Ey, i.e., there is an
edge ((i,)), (i’,j")) in this new graph Gg(Gy) if {i,i’,],j’} are in some clique K of Gy, then we
can batch the updates of the b;; based on the colouring of the graph Gz (Gy); see Fig. 2(b). The
number of such sequential batch updates will be the chromatic number x{Gr(Gy)}, a potentially
drastic reduction from |Ey| sequential updates for b;;.
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(b)

000 O ®o 0 4
e © @

Fig.2. Chromatic sampling for a graphical Gaussian process with a gem graph between five variables: (a) gem graph
and colouring used for chromatic sampling of the variable-specific parameters; (b) colouring of the corresponding
edge graph Gz (Gy) used for chromatic sampling of the cross-covariance parameters b;;.

4. EXTENSIONS
4.1. Factor models

The construction of a graphical Gaussian process and its implementation described in § 2 and
§ 3 assume a known graphical model. In this section we describe different ways of choosing or
estimating the graph, and provide extensions of graphical Gaussian processes to model different
spatial and spatiotemporal structures.

In many multivariate spatial models, the inter-variable graphical model arises naturally and
is decomposable. A large subset of multivariate spatial models are process-level factor models,
emerging from more general linear models of coregionalization, where each of the ¢ observed
univariate processes is a weighted sum of » < ¢ latent univariate factor processes with the weights
being component-specific (Schmidt & Gelfand, 2003; Gelfand et al., 2004; Wackernagel, 2013).
In general, a linear model of coregionalization can be expressed as

wi(s) = Y ai($)fi(s) + &(s), ©

J=1

where each fj(-) is a latent factor process such that /'(-) = {fi(-),...,f-(-)}" is a multivariate
Gaussian process, the a;;(-) are component-specific weight functions, and the &;(-) are independent
processes representing the idiosyncratic spatial variation in w;(-) not explained by the latent
factors. If ¢ is large, choosing » < ¢ in (9) also facilitates dimension reduction (Lopes et al.,
2008; Ren & Banerjee, 2013; Taylor-Rodriguez et al., 2019; Zhang & Banerjee, 2021). We next
show that any linear model of coregionalization can be formulated as a graphical Gaussian process
with a decomposable graph on the elements of w(-) and f'(-).

PRrROPOSITION 2. Consider the linear model of coregionalization (9), where f(-) is an r x 1
multivariate Gaussian process with a complete graph between component processes and the &;(-)
are independent univariate Gaussian processes. Then (Wi, wa, ..., Wg,f1,. .., 17" is a graphical
Gaussian process on vertices {1,...,q + r} and a decomposable graph {(i,j) : i € 1,...,
(q+r;je(@+D,....(q+r;j+i}

Proposition 2 implies that the assumption of multivariate dependence induced through factor
processes can be translated into a decomposable graph between the observed and factor processes.
Hence, graphical Gaussian processes can be adopted as a richer alternative to the linear model
of coregionalization. While the linear model of coregionalization forces all processes w;(-) to
have the smoothness of the roughest f;(-) (Genton & Kleiber, 2015), the graphical Gaussian
process enables us to model and interpret the spatial smoothness of each component process,
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(a) (b)

Fig. 3. Decomposable graphs for (a) a full-rank linear model of coregionalization, with two observed (red) and two
latent (blue) processes; (b) a low-rank linear model of coregionalization, with five observed (red) processes and one
latent (blue) process.

for example with the graphical Matérn Gaussian process. The complete graph between the r
component processes of f(-) can be assumed without loss of generality, as even in the case of
a sparse graph between latent factors, such as when the factors are independent processes, they
will generally be conditionally dependent given the observed processes w(-), thereby yielding
the same joint graph. Because » « g, this joint graph of observed and latent processes will still
be sparse even after considering all possible edges between latent processes. Figure 3 illustrates
two examples of decomposable graphs arising from linear models of coregionalization.

An alternative approach to linear models of coregionalization builds multivariate spatial pro-
cesses by sequentially modelling a set of univariate Gaussian processes conditioned on some
ordering of the ¢ variables (Cressie & Zammit-Mangion, 2016). A sparse partial ordering can
facilitate dimension reduction for large ¢. This approach does not attempt to preserve marginals or
introduce process-level conditional independence. However, a partial ordering yields a directed
acyclic graph, which, when moralized, produces an undirected graph that can be used in our
stitched graphical Gaussian processes.

4.2. Nonseparable spatial time series modelling

Graphical Gaussian processes are natural candidates for nonseparable in space-time, and non-
stationary in time, modelling of univariate or multivariate spatial time series. Consider a univariate
spatial time series modelled as a Gaussian process {w(s,?)} for s € D evolving over a dis-
crete set of time-points € 7 = {1,2,...,T}. We envision this as a 7 x 1 Gaussian process
w(s) = {wi(s),...,wr(s)}T, where w;(s) = w(s, ). Temporal evolution of processes is often
encapsulated using a directed acyclic graph, which, when moralized, produces an undirected
graph G7 over 7. We can then recast the spatial time series model as a 7 x 1 graphical Gaussian
process with respect to G7. A multivariate Matérn cross-covariance used for stitching will produce
a graphical Gaussian process, where each w;(-) is a Matérn Gaussian process with parameters
0. Time-specific process variances and spatial parameters enrich the model without imposing
stationarity of the spatial process over time and space-time separability (Gneiting, 2002).

Any autoregressive structure over time corresponds to a decomposable moralized graph G7.
For example, the AR(1) model corresponds to a path graph with edges {(¢,t+1) : t = 1,...,T—1},
q¢* = 2 and p* = 2. An AR(2) model is specified by the directed acyclic graph t — 2 — ¢ and
t—1— tforallt € {3,..., T}, which, when moralized, yields a sparse decomposable graph G
with ¢* = 3, see Fig. 8 in the Supplementary Material. Hence, Corollary 1 offers computational
gains for graphical Gaussian process models for autoregressive spatial time series. An added
benefit of using the graphical Gaussian process is that the autoregression parameters need not be
universal, but can be time-specific, thus relaxing another restrictive stationarity condition.
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A graphical Gaussian process allows the marginal variances and autocorrelations of the pro-
cesses to vary over time and to be estimated in an unstructured manner. However, more structured
temporal models for stochastic volatility can easily be accommodated by a graphical Gaussian
process if forecasting the process at a future time-point is of interest. This can be achieved by
adding a model for the time-specific variances, such as the log-Ar(1) model considered in a 1993
unpublished paper by E. Jacquier, N. Polson and P. E. Rossi from the University of Chicago.
Bayesian estimation of these model parameters has been discussed in Jacquier et al. (2002), and
can be seamlessly incorporated into our Bayesian framework for estimation of graphical Gaussian
process parameters.

Multivariate spatial time series can also be modelled using graphical Gaussian processes. We
envision ¢ variables recorded at 7 time-points, resulting in g7 observations. We now specify
Gyx7 on the variable-time set. Common specifications for multivariate time series, such as
graphical vector autoregressive structures (Dahlhaus & Eichler, 2003), will yield decomposable
Gy 1. For example, consider the nonseparable graphical vector autoregressive model of order 1
with ¢ = 2, specified by the directed acyclic graph (1, — 1) — (1,7), (1, — 1) — (2,¢) and
(2,t — 1) — (2,1). This yields a decomposable Gy .7, also with ¢g* = 3; see the Supplementary
Material for details.

4.3. Graph estimation

In §4.1 and §4.2 we presented settings in which the decomposable graph for a graphical
Gaussian process arises naturally. For gridded spatial data, one can use a spatial graphical lasso
to estimate the graph from the sparse inverse spectral density matrix (Jung et al., 2015), and then
plug in the estimated graph for subsequent estimation of graphical Gaussian process likelihood
parameters. For irregularly located spatial data, we now extend our framework in (8) to make
inference about the graphical model itself along with the graphical Gaussian process parameters,
by adapting a Markov chain Monte Carlo sampler for decomposable graphs (Green & Thomas,
2013).

The junction graph G of a decomposable Gy is a complete graph with the cliques of Gy as
its nodes. Every edge in the junction graph is represented as a link, which is the intersection of
the two cliques joined by the edge, and can be empty. A spanning tree of a graph is a subgraph
comprising all the vertices of the original graph and is a tree, i.e., an acyclic graph. Suppose
that a spanning tree J of the junction graph of G satisfies the following property: for any two
cliques C and D of the graph, every node in the unique path between C and D in the tree contains
C N D. Then J is called the junction tree for the graph Gy ; see Thomas & Green (2009, Fig. 2)
for an illustration. A junction tree exists for Gy if and only if Gy is decomposable. Also, a
decomposable graph can have many junction trees, but each junction tree represents a unique
decomposable graph. This allows us to transform a prior on decomposable graphs into a prior
on the junction trees. If u{Gy(J)} is the number of junction trees for the decomposable graph
Gy corresponding to J, then a prior 7 on decomposable graphs gives rise to a prior 7 on the
junction trees, 7 (J) = 7 {Gy(J)}/u{Gy(J)}. In our application, we assume 7 to be uniform over
all decomposable graphs with a prespecified maximum clique size, i.e., 7 (J) o 1/u{Gy(J)}.

With junction trees constituting a representative state variable for the graph, the jumps are
governed by constrained addition or deletion of single or multiple edges so that the resulting
tree is also a junction tree for some decomposable graph. Each graph corresponds to a different
graphical Gaussian process model using a specific subset of the cross-covariance parameters.
To embed the sampling of this graph within the Gibbs sampler, jumps between graphs need
to be coupled with introduction or deletion of cross-covariance parameters, depending on the
addition or deletion of edges. We use the reversible jump Markov chain Monte Carlo algorithm of

220z 2unp Lz uo Josn AJeuqr [BSIPSIA UDIOM ‘OUIDIPSIAl JO AJOISIH JO 8inisu| Aq 9816119/ L 90GESE/ABWOIL/EE0 L 0 /10P/3I0E-90UBAPE/JOWOIG/LLO0d"dNO"0ILLISPEOE//:SARY WO.) PAPEOIUMOQ


https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab061#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab061#supplementary-data

14 D. DEY, A. DATTA AND S. BANERJEE

(a) (b)
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Fig. 4. Comparison of induced graphs for three processes obeying a path graph, from the marginalized model and the

latent model: (a) graphical Gaussian process on the latent process; (b) graphical Gaussian process on the response

process. Blue edges indicate the dependencies modelled, and red edges represent the marginal dependencies induced
from the model construction.

Barker & Link (2013) to carry out sampling of the graph and cross-covariance parameters; the
details are given in the Supplementary Material.

4.4. Asymmetric covariance functions

Our examples of stitching have primarily involved the isotropic multivariate Matérn cross-
covariances. Symmetry implies Cj;(s,s") = C,-j(s/ ,s) for all {i,j,s,s’}, and is not a necessary
condition for validity of a cross-covariance function. An asymmetric cross-covariance function
(Apanasovich & Genton, 2010; Li & Zhang, 2011) C can be specified in terms of a symmetric
cross-covariance C via Cl-‘]’- (s,8") = Cg. (s—s) = Cjj{s —s'+(a;—aj)}, wherethea; i = 1,...,q)
are distinct variable-specific parameters. Stitching works with any valid cross-covariance func-
tion, and if C¢ is used for stitching then the resulting graphical cross-covariance M¢ will also be
asymmetric, satisfying M (s, s = G (s,s") forall (i,j) € Ey and s,s’ € L.

4.5. Response model

In the Supplementary Material we outline a Gibbs sampler for the multivariate spatial linear
model in (1), where the latent ¢ x 1 process w(s) is modelled as a graphical Gaussian process. If
|L| = n, then the algorithm needs to sample approximately O(ng) latent spatial random effects
w(L) at each iteration.

A popular way of estimating spatial process parameters in (1) is to integrate out the spatial
random effects w(L), and directly use the marginalized likelihood for the response process
y() = p1(),...,y4()}7, which is also a multivariate Gaussian process. However, modelling
w(-) as a graphical Gaussian process does not guarantee that the marginalized y(-) will be a
graphical Gaussian process. We demonstrate this in Fig. 4(a) with a path graph Gy between
three latent processes wi(-), wa(-) and w3 (-). The response processes y;(-) = w;(-) + €;(-) have
complete graphs. This is because cov(y) = cov(w) + cov(e) and the zeros in cov(w)~! do not
correspond to zeros in cov(y) ~!. Hence, the modelling of the latent spatial process as a graphical
Gaussian process and the subsequent marginalization are inconvenient because the marginalized
likelihood for y will not factorize like (6).

Instead, we can directly create a graphical Gaussian process for the response process by
stitching the marginal cross-covariance function cov{y(s),y(s + h)} = C(h) + D(h) using Gy,
where D(h) = diag(rlz, o THI(h = 0) is the diagonal white-noise covariance function. With a
Matérn cross-covariance C, the resulting graphical Gaussian process model for y(-) endows each
univariate Gaussian process y;(-) with mean x;(-)" 8; and retains the marginal covariance function
Cii(h) + ‘L’l-zl (h = 0), i.e., Matérn plus a nugget. The cross-covariance between y;(-) and y;(-) is
also Matérn for (i,j) € Ey and locations in L. For (i,7) ¢ Gy, the response processes y;(-) and
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Table 2. Different simulation scenarios for the comparison of methods

Setting ¢ Graph Gy, B Nugget Locations Data model Fitted models
1A 5 Gem, Fig.2(a) Random No Same locations for all variables GM GM, MM, PM
1B 5 Gem, Fig.2(a) Random No Same locations for all variables MM GM, MM, PM
2A 15 Path bi_1,i =p; Yes Partial overlap in locations for variables GM GM, PM
2B 15 Path bi_1,; =p; Yes Partial overlap in locations for variables MM GM, PM
3A 100 Path bi_1,i = p; Yes Partial overlap in locations for variables GM GM
3B 100 Path bi_1,i =p; Yes Partial overlap in locations for variables MM GM

MM, the multivariate Matérn model of Apanasovich et al. (2012) with v; = v; = v; = 1/2, A4 = 0 and ¢12/ =
(P2 + q);) /2; GM, the graphical Matérn, with the graphical Gaussian process model on the latent process, stitched
using MM; PM, the parsimonious multivariate Matérn model of Gneiting et al. (2010).

¥;j(+) will be conditionally independent. We outline the Gibbs sampler for this response graphical
Gaussian process in the Supplementary Material.

The response model drastically reduces the dimensionality of the sampler from O(ng + |Ey|)
for the latent model to O(g + |Ey|). What we gain in terms of convergence of the chain is traded
off against interpretation of the latent process. As seen in Fig. 4(b), using a graphical model on
the response process leads to a complete graph among the latent process. If, however, condi-
tional independence on the latent processes is not absolutely necessary, then the marginalized
graphical Gaussian process model provides a pragmatic alternative approach to modelling highly
multivariate spatial data.

5. SIMULATIONS
5.1. Known graph

We conduct multiple simulation experiments to compare three models: (i) the parsimonious
multivariate Matérn model of Gneiting et al. (2010); (ii) the multivariate Matérn model of
Apanasovich et al. (2012) with v; = v; = v; = 1/2, Ay = 0 and (,bl%. = (qbl.zi + ¢;)/2;
and (iii) the graphical Matérn, with the graphical Gaussian process model on the latent process,
stitched using the multivariate Matérn model (ii).

We consider the six settings in Table 2. In Settings 1A, 2A and 3A we generate data from
the graphical model. Setting 1A has ¢ = 5 and uses a gem graph. For Setting 2A, we consider
q = 15 outcomes and use a path graph, while Setting 3A is a highly multivariate case with
g = 100 outcomes and a path graph. Settings 1B, 2B and 3B are the same as Settings 1A, 2A
and 3A, respectively, except that we generate data from the multivariate Matern model. Thus the
scenarios 1A, 2A and 3A correspond to correctly specified settings for the graphical Gaussian
process, while scenarios 1B, 2B and 3B are misspecified examples in which data are generated
from the multivariate model. In all scenarios, we generate data at n = 250 locations uniformly
chosen over a grid. We simulate one covariate x;(s;) for each variable j, generated independently
from an N (0,4) distribution, and generate the true regression coefficients B; from Un(—2, 2) for
ji=12,...,q.

The ¢;; and oy; are equispaced numbers in (1, 5), while the b;; are chosen as in Table 2. For all
of the candidate models, each component of the g-variate process is a Matérn Gaussian process.
Following the recommendation outlined in Apanasovich et al. (2012), the marginal parameters 6;;
for the univariate Matérn processes are estimated a priori using only the data for the ith variable.
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Fig.5. Performance of the graphical Matérn model under misspecification: estimates of the cross-covariance param-

eters oj;¢; = I'(1/2)by;, (i,j) € Ey, for Settings (a) 1B, (b) 2B and (c) 3B, with the pink lines in (a) and (b) indicating

the true parameter values; (d) median root mean square predictive error, RMSPE, for the graphical, multivariate,
parsimonious and independent Matern Gaussian process models for Setting 1B.

We use the R (R Development Core Team, 2022) package BRISC (Saha & Datta, 2018) for
estimation.

To compare estimation performance, we focus primarily on the cross-covariance parameters
by for (i,]) € Ey, as they specify the cross-covariances in stitching. Specifically, we compare the
estimates of 0;,¢p;; = I'(1/2)b;;, which are the b;; values rescaled so that they are on the same scale
as the marginal microergodic parameters o;;¢;;. Model evaluations under the correctly specified
settings, namely 1A, 2A and 3A, are provided in the Supplementary Material, showing that the
graphical Gaussian process accurately estimates cross-covariance parameters for all the edges
in the graph in all three scenarios. In Fig. 5, panels (a), (b) and (c) evaluate the estimates of the
graphical model for the misspecified settings 1B, 2B and 3B, respectively. For Setting 1B we
see that the multivariate and graphical Matern models produce reasonable estimates of the true
cross-covariance parameters, whereas the estimates from the parsimonious model are biased and
more variable. For Setting 2B the estimates of the parsimonious model are once again biased,
while the graphical model is more accurate.
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For the highly multivariate settings 3A and 3B, neither the parsimonious nor the multivariate
Matern model can be implemented because B involves 4950 parameters and likelihood evaluation
requires inverting a 25000 x 25000 matrix in each iteration. We therefore compare only the
estimates from the graphical Gaussian process with the truth. In Figure 5(c) we show that the
graphical Gaussian process performs well in the highly multivariate setting with misspecification,
i.e., Setting 3B, with the graphical model once again accurately estimating all the b;; for (i, /) € Ey.
These simulations under misspecification confirm the accuracy of the graphical Gaussian process
in estimating b;; for the multivariate Matern model for pairs (i, /) included in the graph, and their
results align with the conclusion from Proposition 1.

We further evaluate the impact of misspecification on the predictive performance. Figure 5(d)
plots the root mean square predictive error based on hold-out data for Setting 1B. In addition
to the models listed in Table 2, we consider a model where each component Gaussian process
is an independent Matérn Gaussian process, which serves as a reference for the effect of not
modelling dependence. We find that the graphical Matern model performs competitively with
the multivariate Matern model, i.e., the correctly specified model, yielding nearly identical root
mean square predictive errors for all five variables. The parsimonious model has higher root mean
square predictive errors for variables 1 and 3, and the independent model is, unsurprisingly, the
least accurate. Additional analyses and discussions can be found in the Supplementary Material.

5.2. Unknown graph

We also evaluate our model in the situation where the graph is unknown and is sampled using
the reversible jump Markov chain Monte Carlo sampler described in §4.3. We consider the
simulation scenarios of Settings 1A and 2A from Table 2, where the true multivariate process is a
graphical Matérn process. We assess the accuracy of inference about the graphical model and the
estimates of the cross-covariance parameters. We visualize the estimated edge probabilities for
Setting 2A in Fig. 6(a). The blue edges represent the true edges, while the red ones correspond
to false edges. The width of each edge is proportional to the posterior probability of selecting
that edge. We see that most of the false edges have narrow width, indicating their low selection
probability. We report the top 20 probable edges estimated by our model in the Supplementary
Material, and observe that our approach ranks all the 14 true edges higher than any of the false
edges in terms of marginal probability. Figure 6(b) shows that the cross-covariance parameters
corresponding to true edges are also estimated correctly. The results for Setting 1A are similar
and are presented in the Supplementary Material.

6. SPATIAL MODELLING OF A PM> 5 TIME SERIES

We demonstrate application of a graphical Gaussian process to nonstationary and nonseparable
modelling of spatial time series. We model daily levels of fine particulate matter, PM; 5, measured
at monitoring stations in 11 states across the northeastern U.S.A. and Washington, D.C., over a
three-month period from 1 February to 30 April 2020. The data are available from the website of
the United States Environmental Protection Agency.

We selected n = 99 stations with at least two months of measured data for both 2020 and
2019. Meteorological variables such as temperature, barometric pressure, wind speed and relative
humidity are known to affect PM; 5 levels. Since not all of the pollutant monitoring stations
measure all of these covariates, we collected data from the NCEP North American Regional
Reanalysis database, and merged them with the available weather data to impute daily values of
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Fig. 6. Performance of the graphical Gaussian process with unknown graph in Setting 2A: (a) marginal edge proba-

bilities estimated from the reversible jump Markov chain Monte Carlo sampler, where blue edges represent true edges

and red edges indicate nonexistent ones, and edges are weighted in proportion to the estimated posterior selection

probabilities; (b) graphical model estimates of the cross-covariance parameters b;; corresponding to true edges when
the graph is unknown, with horizontal pink lines indicating the true values.

these covariates at pollutant monitoring locations using multilevel B-spline smoothing. Moreover,
to adjust for baseline PM, s levels, for each station and day in 2020, we included as a baseline
covariate a seven-day moving average of the PM; s data for that station centred on the same
day in 2019. We adjust for weekly periodicity of PMj 5 levels by subtracting day-of-the-week-
specific means from raw PMj 5 values. Following § 4.2, we treat the spatial time series at n = 99
locations and 7" = 89 days as a highly multivariate, in this case 89-dimensional, spatial dataset.
Neither the parsimonious Matérn nor the multivariate Matérn model is implementable as they
involve 892 /2 a2 4000 cross-covariance parameters and, 99 x 89 ~ 9000, 9000 x 9000 matrix
computations in each iteration.

We use a graphical Matérn Gaussian process with an AR(1) graph based on exploratory analysis
that revealed autocorrelation between pollutant processes on consecutive days after adjusting for
covariates. The marginal parameters for day ¢ are oy, ¢ and r,z. The autoregressive cross-
covariance between days ¢ — 1 and ¢ is b;— ;. Hence, a graphical Gaussian process provides
the flexibility to model nonseparability across space and time, time-varying marginal spatial
parameters, and autoregressive coefficients.

We first present a subgroup analysis that partitions 89 days’ worth of data into six fortnights.
The data for each fortnight are only 14- or 15-dimensional, and so we are able to analyse each
chunk separately using the parsimonious Matérn model. Figure 7(a) plots the hold-out root
mean square predictive error, and reveals that the graphical and parsimonious models have very
similar predictive performance when each fortnight of data is analysed separately. We analyse the
full dataset using the graphical Gaussian process model, as other multivariate Matérn Gaussian
processes such as the parsimonious model are precluded by the highly multivariate setting. The
graphical Gaussian process model involves only 88 cross-covariance parameters. Since the largest
clique size in an AR(1) graph is 2, the largest matrix we need to deal with for the data at 99 stations
is only 198 x 198. We also consider spatiotemporal models that can model nonstationary and
nonseparable relationships in the data. Gneiting (2002) developed general classes of nonseparable
spatiotemporal models. However, those models assume a stationary temporal process. More
importantly, the likelihood for this model would involve a dense 9000 x 9000 matrix over the set
of all space-time pairs, and is generally impracticable for modelling long spatial time series.

For the full analysis, we compare the graphical Gaussian process with a spatial dynamic
linear model (Stroud et al., 2001; Gelfand et al., 2005) that, like the graphical Gaussian process,
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Fig. 7. Analysis of PM, s time series: (a) daily root mean square predictive error, RMSPE, for the six fortnightly
analyses; (b) daily root mean square predictive error for the full analyses; (c) estimates of the time-specific process
variances on the log scale; (d) estimates and credible intervals of the cross-correlation parameters 7;,_;, which cor-
respond to the cross-covariances b;,_1; (e) estimates of the residual spatial processes from the graphical model after
adjusting for the covariates and baseline, for the first two weeks of February and last two weeks of April.
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can parsimoniously model the temporal evolution using an AR(1) structure, and allows for both
nonseparability and time-specific parameters. We use the SpDynLm function available in the
spBayes package; see the Supplementary Material for details. We see from Figure 7(b) that the
predictive performance of the two models is similar with respect to both point predictions and
interval predictions. Figure 7(c) plots variance estimates on the log scale for the latent processes
over time. The implementation in spBayes uses the customary random walk prior to model the
AR(1) evolution. This forces the marginal variances to be monotonically increasing, resulting in
unrealistically large variance estimates for later time-points. The estimates from the graphical
Gaussian process show substantial variation over time, with generally a decreasing trend from
February to April. The estimates and credible intervals for the auto-correlation parameters 7,1,
i.e., normalized b;,_1, from the graphical Gaussian process are presented in Fig. 7(d). There
is large variation in these estimates over time, with many spikes indicating high positive auto-
correlation. Quantitatively, 95% Bayesian credible intervals for 40 of the 88 r,,_; estimates
from the graphical model, i.e., about 45% of them, exclude 0, providing strong evidence in
favour of nonstationary auto-correlation across time. SpDynLm does not have an analogous
auto-correlation parameter and therefore cannot be compared in this regard.

The estimated average residual spatial surface, yp(s) = (1/|P|) X_,cpi(s) — x; (S)T,ét}, is
depicted in Fig. 7(e) for two choices of the time period P, namely the first two weeks of February
2020 on the left, and the last two weeks of April 2020 on the right. These two periods represent the
beginning and end of the total time period of our study, and also correspond to before and during
the lockdowns imposed in the northeastern U.S.A. due to COVID-19. We observe a slight decrease
in the magnitude of the residual process from February, which has a median across locations of
0.181, to April, with a median across locations of 0.164; this suggests a decrease in PM5 5 levels
over this period, even after accounting for the meteorological covariates and the previous year’s
level as baseline. The residuals for April also showed much less variability than in February,
suggesting a decrease in the latent process variance over time. This agrees with the estimates
of o4 from the graphical Gaussian process in Fig. 7(c), and contradicts the strongly increasing
variance estimates from SpDynLm; see the Supplementary Material for further discussion.

7. DISCUSSION

The high-dimensional problem addressed in this article takes into account a large number of
variables, and is distinctly different from prior work on high-dimensional problems referring to
the massive number of spatial locations. A direction for future research might be to simultaneously
address the problems of large n and large ¢ by extending stitching to nearest-neighbour location
graphs with sparse variable graphs. Relaxing the assumption of linear covariate effects x| 8; in
(1) is also worth pursuing, as discussed recently in Saha et al. (2021). A multivariate analogue
of this would benefit from the sparse precision matrices available from stitching (7). Finally, the
idea of stitching can be transferred to the discrete spatial setting to create multivariate analogues
of the interpretable directed acyclic graph autoregressive models of Datta et al. (2019), where
stitching would preserve the property of univariate marginals being exactly directed acyclic graph
autoregressive distributions.
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SUPPLEMENTARY MATERIAL

Supplementary Material available at Biometrika online includes proofs of the theoretical
results, computational details and additional data analyses.
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