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ABSTRACT: As part of our low-cost sensor network, we colocated multipollutant
monitors containing sensors for particulate matter, carbon monoxide, ozone,
nitrogen dioxide, and nitrogen monoxide at a reference field site in Baltimore, MD,
for 1 year. The first 6 months were used for training multiple regression models,
and the second 6 months were used to evaluate the models. The models produced
accurate hourly concentrations for all sensors except ozone, which likely requires

nonlinear methods to capture peak summer concentrations. The models for all five e e aamailea o oo o
pollutants produced high Pearson correlation coefficients (r > 0.85), and the 0 50 100
hourly averaged calibrated sensor and reference concentrations from the evaluation Reference NO (ppb)

period were within 3—12%. Each sensor required a distinct set of predictors to

achieve the lowest possible root-mean-square error (RMSE). All five sensors responded to environmental factors, and three sensors
exhibited cross-sensitives to another air pollutant. We compared the RMSE from models (NO,, O;, and NO) that used colocated
regulatory instruments and colocated sensors as predictors to address the cross-sensitivities to another gas, and the corresponding
model RMSEs for the three gas models were all within 0.5 ppb. This indicates that low-cost sensor networks can yield useable data if
the monitoring package is designed to comeasure key predictors. This is key for the utilization of low-cost sensors by diverse
audiences since this does not require continual access to regulatory grade instruments.
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1. INTRODUCTION information is provided by the manufacturer about how to
best convert the raw sensor data or to correct for interfering
environmental factors or cross-sensitivities to other pollutants.
Also, if the low-cost sensor produces concentrations, typically,
little information is provided about what steps were taken to
produce those values. An ongoing issue being discussed in the
sensor community is the acceptable level of data manipulation
or “postprocessing” that can be employed when correcting low-
cost sensor data.”'® Hagler et al.* emphasized that if data from
low-cost sensors are substantially manipulated, it changes from
being a true direct measurement to a predictive statistical
model. These results are still useful, but there needs to be
transparency about the postprocessing methodology. Concerns
also exist about “overfitting” the data, where the calibration
procedures and models are only appropriate for a specific
scenario or location and not applicable to other data sets.'* In
addition, advanced machine learning approaches have been
used to calibrate low-cost sensors, but the results are often

The expansion of low-cost sensors in recent years has enabled
opportunities for ambient air quality monitoring using highly
granular networks in urban environments.' > These low-cost
sensors have several advantages over traditional instrumenta-
tion, such as a substantially lower unit price, compact size,
portability, and the ability to capture high spatiotemporal
variability.”>*~* Traditionally, air quality measurements have
been collected with the federal reference method (FRM) or
federal equivalent method (FEM) instruments that have
undergone rigorous testing, and while the precision, accuracy,
and lifetime of low-cost sensors are less than those of FRM or
FEM, there are numerous benefits to deploying more, less
accurate sensor nodes compared to only a few highly accurate
instruments.' ~>* However, questions persist about the quality
of low-cost sensor data. These sensors often report a voltage or
resistance instead of a concentration, and it is up to the user to
convert the values to useable concentrations. Low-cost sensors
often have the added difficulty of needing unit-specific
correction factors (CFs), and the sensors are often responsive Received:  October 5, 2021
to numerous factors [e.g, other pollutants, temperature, Revised:  March 22, 2022
relative humidity (RH), and pressure].””"* Unit-specific CFs Accepted:  March 23, 2022
are often needed because the raw output values differ between Published: April 11, 2022
units, but the responses to an environmental factor are often

consistent between units. For many sensors, limited
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harder to interpret because the way that the data is handled is
not easily explained."*"°

Examples of calibration methods include exposing the
sensors to known concentrations in a controlled laboratory
setting or colocating the sensors with reference instruments at
a location with similar conditions as the intended measurement
location.”>*'*™"? Laboratory calibration allows for sensors to
be exposed to one pollutant or a mixture of pollutants in a
regulated environment, which can yield valuable insights into
the response of the sensor to those factors. However, a sensor
may be responsive to many pollutants, which may change as a
function of temperature and/or RH. It is often cost- and time-
prohibitive to collect data on every known pollutant’s cross-
sensitivity under a range of realistic environmental conditions.
Therefore, many low-cost sensors are colocated with high-
precision reference instruments at a field site to assess the
performance under ambient conditions.”'>'**°~** Govern-
mental reference field sites often have the added benefit of
operating instruments for several regulated pollutants,
permitting the comparison of the low-cost sensor data with
several pollutants to identify cross-sensitives. A low-cost sensor
must be evaluated for cross-sensitives since a sensor may
respond to other factors at an equal or greater magnitude,
potentially resulting in large errors if not accounted for in
postprocessing.'® To date, less is known about how effective
calibrations are when cross-sensitives are corrected using only
other low-cost sensors as predictors in direct comparison to
using reference data.

The Solutions to Energy, AiR, Climate, and Health
(SEARCH) Center has installed 45 low-cost multipollutant
monitors in Baltimore, Maryland, USA, where little is known
about the variability of air pollutants throughout the city.”**~*°
The central goal of this specific work was to identify the key
factors that influence the sensor responses for five low-cost
sensors [particulate matter smaller than 2.5 pum (PM,;),
carbon monoxide (CO), ozone (O;), nitrogen dioxide (NO,),
and nitrogen monoxide (NO)] that are installed in our
multipollutant monitors.” Specifically, we aim to identify the
environmental factors that influence the responses of each
sensor, identify cross-sensitivities to other common pollutants,
develop and apply multiple calibration models, and evaluate
the accuracies of calibration models with colocated sensor data
as predictors compared to calibration models utilizing
reference data as predictors.

2.1. Measurement Location. Data from two SEARCH
multipollutant monitors were used in this work. They were
concurrently installed at two Maryland Department of the
Environment (MDE) sites; one at Oldtown (ID = 245100040;
39.298056, —76.604722) in Baltimore City, Maryland, and one
at Essex (ID = 240053001; 39.310833, —76.474444) in
Baltimore County, Maryland (approximately 11 km east of the
Oldtown site). The Oldtown site was about S m above ground
level and 10 m from a major intersection.”’ The annual average
daily traffic count in 2017 was 11,351. The Essex site was
about 5 m above ground level and 5 m from a residential street.
The Essex site is categorized as suburban, with a lower traffic
count of 2190. Reference data from the PM, g instrument (Met
One BAM-1020) at the Oldtown site and CO (Teledyne API
300EU), Oy (Teledyne API model 400), NO, (Teledyne API
200EU), and NO (Teledyne API 200EU) at the Essex site
were used for comparison with the colocated sensor in these
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analyses. Both reference sites also measure meteorological
parameters (hourly averaged temperature, vector-averaged
wind speed, vector-averaged wind direction, atmospheric
pressure, RH, and precipitation). This manuscript focuses on
data collected from February 1, 2019, to February 1, 2020.

2.2. Sensors. Here the term monitor is used to describe a
multipollutant instrument that comprises multiple sensors,
while the term sensor is used to describe the individual sensing
components. The SEARCH monitor has been described in
detail by Buehler et al.” and in the Supporting Information.
Briefly, a suite of sensors is built into a multipollutant
stationary monitor that measures the concentrations of CO
(AlphaSense CO-A4 sensor), NO, (AlphaSense NO2-A43F),
NO (NO-A4), CO, (AlphaSense IRC-A1), O; (MiCS-2614),
methane (CH,, Figaro TGS 2600), particulate matter (PM;
Plantower PMS A003), RH (Sensirion SHT2S), and temper-
ature (T; Sensirion SHT2S). Since CO, and CH, are not
measured at the MDE sites, they were not considered here. In
this work, the uncorrected CO, NO,, and NO sensor (in
voltage) were the difference between the working electrode
and the auxiliary electrode, the ozone sensor was the resistance
directly reported by the sensor (ohms, ), and the
uncalibrated PM,s sensor used the built-in atmospheric
environment CF “atmos” since the manufacturer indicated it
was for outdoor environments. The electronics for the
multipollutant monitor were designed to have modularized
functions on each circuit board, and each sensor has a
designated analog circuitry to supply power, amplify signals,
and filter noise.” The SHT2S temperature/RH sensor was
located at the front of the gas manifold to measure the
conditions observed by the gas sensors, which will be offset but
dependent on the ambient conditions. For that reason, we used
this RH and temperature to calibrate these sensors. Measure-
ments were collected every 160 ms for each sensor, transmitted
as 10 s averages, and then the data were converted into 1 h
averages to correspond with the resolution of the available
reference data. In this manuscript, the term average refers to
the arithmetic mean. The monitor has separate inlets for
particles and gases. Owing to an inlet issue affecting the gas
sensors on the Essex monitor during the winter of 2019, the
0O;, NO,, and NO sensor data were unavailable between
December 20, 2019, and February 1, 2020. Therefore, the
analyses for these sensors end on December 19, 2019.

2.3. Multiple Linear Regressions. 2.3.1. Calibration
Model Development. To cover a range of concentrations and
environmental conditions in warm and cold seasons and
pollutant concentrations, the first 6 months (February 1 to July
31, 2019) were set aside as the “training period” for the
multiple regression models [multiple linear regression
(MLR)], and August 1, 2019, to February 1, 2020, was used
as the “evaluation period”. Hourly averages were used for all
data sets. A generic MLR model used to calibrate the low-cost
sensors is given by

referencep i ant (t)

= f, + B, *sensorp,jyen(t) + Z f *predictor, (t) "
1 1

where referencepjyy is the reference concentration at time ¢
for a given pollutant, f, is the constant intercept, f; is the
coefficient applied to the uncalibrated sensor value for a given
pollutant at time ¢, and S, is the coeflicient applied to
predictor,. Predictors that were considered in the models
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Figure 1. (A—D) Time series of the hourly averaged reference (black) and PM, s and CO sensor data from the training (uncalibrated data
displayed in red; left column) and evaluation (calibrated displayed in blue; right column) periods. The uncorrected CO sensor (in mV) is the
difference between the working electrode and the auxiliary electrode. (E,F) Scatterplots of the sensor vs reference data from the two periods. Note:
the raw sensor values shown here are specific to this individual sensor and not representative of all sensors of the same type, but the responses (e.g,,
reducing output because of exposure to a pollutant or changing environmental conditions) should be similar across different sensor of the same

type. The linear fits for the evaluation periods are displayed.

included: temperature, RH, PM,;, CO, O; NO,, NO, an
interaction term between the sensor and temperature, an
interaction term between the sensor and RH, time, an
interaction term between the sensor and time, daylight hours
(a binary variable which is 1 between 6 AM and 7 PM and 0
otherwise), and weekday (a binary variable i.e., 1 on Saturdays
and Sundays and 0 otherwise). If a sensor exhibited a cross-
sensitivity to another pollutant, two models were developed for
that sensor: (1) a calibration model with colocated reference
data as the cross-sensitive pollutant predictor and (2) a
calibration model with the uncalibrated colocated sensor data
as the cross-sensitive pollutant predictor. Only significant
predictors, defined here as p < 0.05, were retained in the final
model. If a predictor (e.g, RH) exhibited nonlinearity, the
predictor squared (RH?) was evaluated as a potential predictor.
If a predictor exhibited piecewise linear responses (also known
as a “broken arrow” response), a spline was introduced at the
median value. In the case where a global linear or quadratic fit
did not capture the relationship adequately, we used splines to
model nonlinearity/piecewise linearity. The knot was chosen
to be the median value of the predictor or some other value
that was at a clear change-point for the relationship. A
correlation matrix of the measured pollutant and environ-
mental conditions is shown in Table S1.

The final models were chosen based on the Akaike
information criterion (AIC) and Bayesian information
criterion (BIC).” When comparing models, the calibration
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model with the lowest BIC was selected. The AIC and BIC
penalize based on the number of parameters in the model;
thus, more parsimonious models have lower values and are
preferred. BIC introduces stronger penalties than the AIC,
which may help limit overfitting. If the BIC was similar
between the two models, the root-mean-square error (RMSE;
Equation 2) from the training period was used to identify the
better model.

N
RMSEz\/ Ly

The RMSE was calculated using eq 2, where reference; and
predicted; are the corresponding i-th 1 h-averaged concen-
trations from a training or evaluation period with N hourly
measurements. An RMSE value of 0 would indicate a perfect
agreement between the reference and sensor. We calculated
the percent bias with the following

reference. — predicted, )
i~ P i

N

2)

Y (predicted; — reference;)

percent bias = 100 X
Z reference,

()

After the final calibration model was selected for the training
period, the coeflicients were applied to the data from the
evaluation period, and the RMSE and r were calculated for the
out-of-sample period. All data analyses were conducted using
MATLAB 2019a and StatalC 16, and the nonlinear least-
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Table 1. Summarized Hourly Pollutant Concentrations and Calibration Model Performance during the Training and

Evaluation Periods”

Training Period Statistics

Evaluation Period Statistics

Average + Average +
Standard Median Standard Median RMSE
Deviation (5th—95th) RMSE r Deviation (5th—95th) (% bias) r
PM, 5 (ug/m’)
Reference 8.0 + 6.0 7.0 (1.0-18.0) 8.8 + 6.0 7.0 (1.0-19.0)
Uncalibrated Sensor 127 + 123 88 (1.0-37.5) 92 084 124 + 117 92 (1.0-37.4) 8.6 (43%)  0.80
Calibrated Sensor 8.0 + 5.4 66 (24-179) 28 089 8.0 + 5.0 69 (2.5-18.3) 34 0.85
(=10%)
CO (ppb)
Reference 234 + 144 197 (137—446) 282 + 248 203 (134—688)
Uncalibrated Sensor 0.51 0.84
Calibrated Sensor 234 + 128 199 (151-417)  60.5  0.90 297 + 238 218 (164—688) 58.9 0.97
(5.6%)
NO, (ppb)
Reference 79 + 7.9 5.0 (1.0-26.0) 8.1+ 7.0 5.0 (1.0-23.0)
Uncalibrated Sensor 0.71 0.68
Calibrated Sensor using Reference Data 81+73 5.9 (2.1-23.7) 33 091 7.8 + 5.7 5.9 (1.8—19.1) 3.5 0.88
for Pollutant Predictors (=9.0%)
Calibrated Sensor using Sensor Data for 79 +£ 71 5.9 (0.5-23.5) 3.6 0.90 9.4 + 5.8 7.6 (0.5-204) 3.6 (12%)  0.88
Pollutant Predictors
O; (ppb)
Reference 35.5 £ 15.7 36.0 (7.0—60.0) 28.5 + 149 28.0 (4.0—-56.0)
Uncalibrated Sensor 0.52 0.52
Calibrated Sensor using Reference Data 35.8 + 13.7 36.5 6.9 0.90 284 + 13.6 29.8 (7.0—55.8) 7.4 0.86
for Pollutant Predictors (10.5-58.1) (=7.1%)
Calibrated Sensor using Sensor Data for 35.6 + 13.6 36.1 (94-57.6) 7.1 0.90 283 + 155 26.6 (3.6—55.5) 7.0 0.89
Pollutant Predictors (—4.0%)
NO (ppb)
Reference 3.0 = 11.0 0.5 (0.1-11.2) 3.3 + 10.0 0.6 (0.1-16.5)
Uncalibrated Sensor 0.81 0.77
Calibrated Sensor using Reference Data 3.0 + 103 0.6 (0.01-12.3) 3.0 0.96 2.8 +83 0.5 (0.01-13.7) 33 0.96
for Pollutant Predictors (—15%)
Calibrated Sensor using Sensor Data for 3.0 + 10.0 0.6 (0.01-12.9) 3.4 0.95 33+78 0.8 (0.01-13.9) 32 0.97
Pollutant Predictors (=2.7%)
Temperature (°C)
Ambient Reference 15.1 + 9.7 16.6 13.0 + 10.2 11.6
(=0.5 to 29.4) (1.6 to 28.8)
Internal Sensor 20.8 + 10.9 21.8 (3.4—38.4) 19.2 + 10.6 18.0 (3.1-37.4)
RH (%)
Ambient Reference 61.8 + 19.9 61 (29-91) 654 + 17.6 66 (38—91)
Internal Sensor 49.8 + 16.0 49.4 524 + 13.8 534
(24.2-73.6) (30.4-73.0)

“In the case of NO,, O3, and NO, only periods when the predictors for both models were available were included in the summary values, which

allows for direct comparison.

squares fits were calculated using the curve fitting toolbox with
MATLAB 2019a.

2.3.2. Sensor Baseline Signal Drift. To assess sensor drift,
specifically, the change in baseline response over time, the
significance of the time predictor was evaluated when the
concentration was in the lowest quartile of concentrations for
each sensor. If the time predictor was significant, there existed
some baseline changes that were not accounted for by
differences in the other factors (e.g, temperature or other
pollutants). The conditions were comparable during both
winter seasons (e.g., the beginning and end of the data). The
data from the full year (February 1, 2019, to February 1, 2020)
from periods when the corresponding reference concentrations
were in the lowest quartile (e.g,, PM, ¢ < 4.0 ug/m?, CO < 167
ppb, O3 < 22, NO, < 3 ppb, NO < 0.2 ppb) was passed
through the final calibration model with and without time as a
predictor. The periods that fit these characteristics were spread
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throughout the year. For example, of the qualifying O; hours,
20% of the hours came from the winter months, 21% came
from the spring months, 25% came from the summer months,
and 24% came from the autumn months. Ideally, baseline
values would be assessed using periods when the concentration
is equal to zero, but this is only possible in a laboratory setting.
The average reference concentrations of PM, 5, CO, O3, NO,,
and NO during these periods were 2.4 ug/m’, 148, 12.8, 2.3,
and 0.1 ppb, respectively. For comparison, the reported limits
of detection for PM, 5, CO, O;, NO,, and NO are 1 ug/m?, 20
ppb, 10 ppb, 1 ppb, and 1 ppb, respectively (see SI materials
for further details).

3. RESULTS AND DISCUSSION

3.1. PM Sensor. The time series and scatterplots of the
uncalibrated PM, s sensor data from the training and the
calibrated sensor data from the evaluation period are shown in
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Table 2. Summary of the Predictors Used in the Regression Models Following the Structure of eq 17

Predictors in Final Model

PM, PM sensor* il RH'
CO CO sensor’ T" CO sensor—T
interaction
CO sensor—time
interaction
NO, (reference data) NO, sensor’ T RH
reference NO time
NO, NO, sensor’ T RH
(colocated sensors)
O3 sensor—T NO sensor NO sensor—T
interaction interaction
O (reference data) O, sensor #* T' O, sensor—T
interaction
3 O, sensor ** T' O; sensor—T
(colocated sensors) interaction
NO sensor NO sensor—T time
interaction
NO (reference data) NO sensor’ T NO sensor—T
interaction
NO NO sensor’ T NO sensor—T
(colocated sensors) interaction

PM sensor—RH PM sensor—T interaction
interaction
RH RH-T interaction time

NO, sensor—RH
interaction

NO, sensor—reference
Oj; interaction

reference O,

NO, sensor—RH O; sensor NO, sensor—Oj; sensor
Interaction interaction
time
RH? reference NO, time
RH? NO, sensor NO, sensor—time

interaction

NO sensor—reference
CO interaction

reference CO

NO sensor—CO sensor
interaction

CO sensor

“Predictors marked with * have been split into two coefficients at the median value. The predictor marked with * was split at 31 ug/m? and the
predictor marked with ** was split at 17 k€. Since the O;, NO,, and NO sensors exhibited cross sensitives to other common pollutants, we
produced model iterations that used reference data from the colocated regulatory monitors or data from other sensors colocated in the monitor for

comparison.

Figure 1A,B. The full-year time series of the uncalibrated and
calibrated PM, 5 sensor data are shown in Figure S1. Overall,
the uncalibrated Plantower PM, sensor data exhibited a
strong correlation with the reference instrument, but there
were many periods where the mass concentration was
overestimated, resulting in an RMSE of 9.2 and 8.6 ug/m’
for the training and evaluation periods, respectively (Figures
1A, S1, Table 1). During the training period, the hourly
averaged reference PM,; mass concentration was 8.0 + 6.0
(average + one standard deviation) ug/m® (range: 0.10—44.0
pg/m?), the uncalibrated sensor mass concentration was 12.7
+ 12.3 pg/m’, and the Pearson correlation coefficient (r) was
0.84 (Table 1). During the evaluation period, the average
reference PM,; mass concentration was 8.8 =+ 6.0 ptg/m3
(range: 0.10—47.50 ug/m?), the uncalibrated sensor mass
concentration was 12.4 + 11.7 ug/m?, and the corresponding r
value was 0.80. For comparison, the annual primary standard is
12.0 pg/m>, and the 24 h standard is 35 ug/m>.

The PM sensor was significantly impacted by both RH and
temperature (p < 0.001; Table 2), and the uncalibrated sensor
response, temperature, and RH values were the only
parameters needed to calculate the final concentrations
(Table 2). Introducing a spline into the sensor values (knot
at 31 ug/m?’) resulted in the best model, and the calibration
was improved by including the interaction terms for RH and
temperature with the sensor. The model was further improved
by including spline at the median temperature and RH values.
An example of the predictors used in the regression models
following the structure of eq 1 is shown in eq 4, where S,
Shighy Riows Rnighy Tiow and Ty are binary indicator variables.
The indicator variables will be set to either zero or one, so only
the applicable predictor would be used for a given time (e.g.,
when the PM sensor value is below 31 ug/m?® S, and Shigh
would be one and zero, respectively). Please note the
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numerical values may not be universally transferable, and the
betas should be derived with data for each sensor.

Reference PM, ((t) = —0.49 + 0.67*PM2.5,..(t)

>kSlow + 0-92*PM2'Ssensor(t)
*Spigh + 006" RH . (£)*Ry,.,
— 0.03*RH, g0 (£) *Rpign

—0.03*temperature,,, ... (t)* T,

+ 0.26*temperature ., (t)* Ty,
- 0.004*PM2.5sensor(t)*RHsensor(t)
— 0.001¥PM2.5, ()
*temperature, . (t)

(4)

Over the year, the ambient temperatures ranged between
—10 and 37 °C, and the ambient RH ranged between 14 and
96%. The PM sensor markedly overestimated the concen-
trations at a higher RH (e.g, >70%; Figure SIB) and, to a
lesser extent, at a low temperature (e.g, <5 °C; Figure S1A).
There was also a slight underestimation at low RH (<30%).
These trends were observed for both higher (PM, 5 > 30 ug/
m*) and lower (PM,5 < S pg/m®) mass concentrations. To
visualize how the low-cost sensors responded to a given
parameter, the sensor values were plotted as a function of
temperature and RH in Figure S1. Optical PM sensors are
known to overestimate mass concentrations at higher RHs due
to the uptake of water on the surface of PM, so the
overestimated concentration at high RH is likely due to
physical changes of the particles themselves instead of the
sensor responding to changes in RH directly.'”**** Since
PM,; is comprised of a broad range of compounds, it is
possible that compositional differences between seasons, rather
than actual temperature variations, produce the temperature
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dependence, but without speciated PM data, this could not be
evaluated further.*>*°

An evaluation was completed to determine if the PM sensor
exhibited a sensor baseline drift over the full-year period. Low-
cost PM sensors may exhibit drift due to aging of the electrical
components or PM accumulating within the sensor itself.*®
Taking temperature and RH into consideration, the PM,
sensor did not exhibit a significant drift (Table S2). When time
was included in the model, the time coefficient was very small
<0.01 (ug/m?)/day and not significant (p > 0.05), and the
RMSE was not improved by incorporating time. The
calibration model applied to the training period produced an
RMSE of 2.8 ug/m® and an r of 0.89 (Figure 1E, Table 1).
After the MLR was employed to calibrate the out of sample
sensor data (evaluation period), the averaged calibrated sensor
concentration was 8.0 + 5.0 ug/m?, which corresponded to an
RMSE of 3.4 pug/m’ an r of 0.85, and a percent bias of
—10.6%. The required accuracies of reference federal
equivalency methods are that the linear regression must have
aslope of 1 + 0.1, a y-intercept of 0 + S yg/m?, r > 0.97, and a
percent bias within +10% (40 CFR part 53, subpart C, Table
C-4; 40 CFR part 58).%*”* The recommended performance
metrics for PM, air sensors are a slope of 1.0 + 0.35, an
intercept of =S < b <5 /,tg/m3, an * of >0.70 (r = 0.83), and
an RMSE < 7 ,ug/m3.39

The Plantower sensor is becoming increasingly popular due
to the stability of the sensor, its consistent accuracy (when
calibrated), and compact size.'>'??*53%497% Geveral assess-
ments have been conducted using low-cost light scattering
particle monitors to evaluate their performances in different
environments, so the biases of this measurement method due
to RH, temperature, and particle composition are reasonably
characterized.”'>**3%*~* Several previous studies have
employed MLR to correct Plantower data’’~>* RH and
temperature were included in all the models in the previous
studies. Other predictors that were found to be significant in a
previous study were daytime (binary), weekend/weekday
(binary), operating time (time and since installation), and
sensor uptime (time since the last boot-up).”*~>* Many models
only included the sensor output, RH, and temperature as
predictors (without an interaction term or splines), but if only
these predictors were included for our dataset, the RMSE
during the evaluation period would increase to 5.24 ug/m?
and the r would be 0.83. Recent work has shown that
Plantower’s “atmospheric environment” CF produces a
nonlinear shift in PM, ¢ over 30 ug/m* (relative to CF = 1),
and we suspect that our model’s spline with a knot at 31 yug/m*
accommodates this change in the relationship. Thus, future
deployments may use the “CF = 1” settings to reach a similar
result and better performance without the requisite spline/
knot.”**° It has been shown that the bias may vary as a
function of the hour of the day, so including this as a predictor
may further improve the model RMSE (e.g,, including a CF for
each hour of the day).”> For example, an analysis completed at
the same site as this study found that this Plantower sensor was
more likely to underestimate the PM concentration overnight
around midnight and overestimate the PM concentration
during the day even after the data were corrected for RH and
temperature biases.”” However, this is likely due to changing
PM composition and not an intrinsic sensor bias for a given
hour. Compared to other low-cost sensors, the Plantower
generally exhibited comparable or higher correlations with
reference data and low limits of detection.'”*>***” Given the
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rapid development of PM sensors over the last few years, few
other studies have been able to assess the long-term
performance of the sensor.”””® The manufacturer reports a
lifetime of greater than 3 years, and a study that deployed four
Plantower sensors (though a previous sensor model) over 2
years reported that three out of the four sensors were working
correctly at the end of the study.”

3.2. CO Sensor. The time series of the uncalibrated CO
sensor data from the training and the calibrated sensor data
from the evaluation period are shown in Figure 1C,D along
with scatterplots, and the complete time series of both the
uncalibrated and calibrated sensor data are shown in Figure S2.
The uncalibrated CO sensor signal responds similarly to the
reference CO (Table 1; Figure 1C). Periods of high and low
values corresponded, but the magnitude of the uncalibrated
responses did not always align with that of the reference
instrument. During the training period, the hourly averaged
reference CO concentration was 234 + 144 ppb (range: 113—
1756 ppb), and the corresponding r value with the
uncalibrated sensor response was 0.51 (Figure 1F, Table 1).
We note that the raw sensor values shown in Figure 1 are not
representative or transferable across all CO sensors of the same
model. This also applies to the other gas sensor signals
discussed below and highlights the importance of sensor QA/
QC and calibration since sensors from the same batch may
inherently produce different baseline values or pollutant
response factors, though they will generally show similar
responses to pollutants or environmental conditions.>” During
the evaluation period, the average reference CO concentration
was 282 =+ 248 ppb. The reference concentration during the
evaluation period ranged between 103 and 2947 ppb. For
comparison, the 1 h standard for CO is 35 ppm.”® The
regulatory monitoring requirements for CO instruments are
precision and bias errors within 10%.%

The uncalibrated sensor voltage, temperature, RH, and time
parameters were used in the final model (Table 2). Separating
the sensor voltage and the temperature into two predictors at
the median and including interaction terms for time with the
sensor, temperature with the sensor, and RH with temperature
resulted in the best calibration model. To visualize how the
sensor responded to the environmental conditions, the sensor
values were plotted as a function of temperature and RH in
Figure S2. The CO sensor responded strongly to temperature
and modestly to RH. The response of the sensor was relatively
consistent between —10 and 15 °C, suggesting that lower
temperatures may not bias the results considerably (Figure
S2A). As the temperature increased above 20 °C, the CO
sensor exhibited an increasing response with increasing
temperature. These trends were observed at both higher and
lower reference CO concentrations. Low-cost electrochemical
sensors such as this one may respond strongly to environ-
mental conditions because the electrochemical reactions that
are used to determine the concentration may be influenced by
temperature or RH.®' While the overall dependence on RH
was minor, including this predictor notably increased the
accuracy of the peak wintertime periods (Figure S2B). When
NO was included as a predictor, it was significant and
improved model accuracy, but this was likely because the
reference NO and CO values exhibited a strong correlation (r
= 0.83, Table S1), potentially due to coemissions from
combustion-related sources in the region. Furthermore, NO
has bee(lzl previously reported to not be an interferant for this
sensor.
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Figure 2. Time series of the hourly averaged reference data (black) and NO,, O, and NO sensor data from the training (uncalibrated data shown
in red; left column) and evaluation (calibrated shown in blue; right column) periods. The uncorrected NO, and NO sensors (in mV) are the
difference between the working electrode and the auxiliary electrode.

When evaluating CO sensor baseline drift over the full-year 3.3. NO, Sensor. The time series of the uncalibrated NO,
period, the CO sensor did exhibit a significant drift (Table S2). sensor data from the training and the calibrated sensor data
When time and its interaction term with sensor voltage were from the evaluation period are shown in Figure 2A,B, and the
included in the model, the RMSE from the evaluation period full-year time series of the uncalibrated and calibrated NO,
was improved by 44.8 ppb. After the MLR was applied to the sensor data are shown in Figure S3. During the training period,
evaluation data, the averaged calibrated sensor concentration the hourly averaged reference NO, concentration was 7.9 =+
was 297 + 238 ppb, which corresponds to an RMSE of 58.9 7.9 ppb, and the corresponding r value with the uncalibrated
ppb, an r value of 0.97, and a percent bias of 5.6% (Figure 2F, sensor response was 0.71 (Figure 2, Table 1). The reference
Table 1). The calibration model applied to the training period concentration ranged between 0 and 57.5 ppb. During the
produced an RMSE of 60.5 ppb and an r of 0.90. evaluation period, the average reference NO, concentration

The CO-A4 sensor has been used in a variety of locations, was 8.1 & 7.0 ppb, which ranged between 0 and 38 ppb. The 1
including ambient, indoors, and industrial settings.lg‘%'&_64 h standard for NO, is 100 ppb, and the annual standard is 53
The CO sensor exhibited good correlations in all the ppb.*® The regulatory monitoring requirements for NO,
environments (>0.58), and the RMSE varied between about instruments are precision and bias errors within 15%.°
32—212 ppb, depending on observed concentrations and The final calibration models included the uncalibrated
averaging time of the sensor.”' %62 The highest RMSE was sensor response, temperature, RH, O;, NO, and time
observed in the region with the highest concentrations parameters (Table 2). Separating the sensor into two
(average: 575 ppb over 19 days in China), but this was predictors at the median and including interaction terms for
reported for a 1 min interval."® Castell et al. reported an RMSE RH and O; with the sensor resulted in the best model. If NO
of 170.99 ppb for 15 min-averaged CO data.” Our field results and O; are excluded from the model, the model RMSE from
were similar to a lab-based study assessing the sensor response the reference predictor model increases by about 1.6 ppb

to changing environmental conditions. In that study, a (compared to 3.3 ppb). If NO is excluded, the model RMSE
comparable sensor (CO-B4) was exposed to a wide range of increases by 0.2 ppb, and if O; is excluded, the model RMSE

environmental conditions in control laboratory conditions (6 increases by 1.0 ppb. Excluding O; as a predictor resulted in
RH levels from 10 to 85% with increasing steps of 15% and consistently overestimated daytime NO, concentrations. When
four temperature levels of 10, 25, 35, and 45 °C).°° The NO was removed from the model, the peak values were
authors also noted that the sensor responded to both RH and consistently underestimated during the winter months. To
temperature, and the temperature response was not linear at visualize how the sensor responded to these predictors, the
higher temperatures. sensor values were plotted as a function of temperature and
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Figure 3. Calibration model results using either hourly reference data or colocated sensors as predictors to correct from cross-sensitive pollutants
for (A) O, (B) NO,, and (C) NO sensors, shown in greater detail for September 2019. The blue line was calculated using reference data for the
predictors needed in the model (same as in Figure 2), and the red line was calculated by using data from other sensors colocated in the box. (D—F)
Scatterplots of the model results and the reference data from the full evaluation period. The linear fits for the evaluation periods are displayed.

RH in Figure S3. The most influential predictors, excluding the
sensor itself, were (O and NO concentrations, and temperature
and RH were significant but minor predictors. When
evaluating the NO, sensor for baseline drift and accounting
for the other predictors, the NO, sensor exhibited a drift of less
than 0.01 ppb/day (p = 0.03; Table S2). When time was
included in the model, the RMSE from the evaluation period
was improved by about 0.3 ppb.

Since the NO, sensor responded to interferant gases, two
models were evaluated: one with the colocated reference data
as predictors and one with the colocated raw sensor responses
as predictors. The colocated sensor model used two additional
predictors (the Os-temperature and NO-temperature inter-
action term) to account for the response to temperature by the
O; and NO sensors. Overall, the models with the colocated
reference data performed slightly better than with the
colocated sensors, but the differences between the RMSE
were small (0.3 ppb during the training period and 0.1 ppb
during the evaluation period). After the MLR models were
used to calibrate the evaluation period, the averaged calibrated
sensor concentration was 7.8 + 5.7 ppb (RMSE of 3.5 ppb; r =
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0.88; percent bias = —9.0%) for the calibration model with
colocated reference data and 9.4 + 5.8 (RMSE of 3.6 ppb; r =
0.88; percent bias = 11.5%) for the calibration model with
colocated sensor O; measurements. The MLR applied to the
training period produced an RMSE of 3.3 ppb (reference
model) and 3.6 ppb (sensor model) and similar r values (r =
0.91 and 0.90, respectively; Figure 3D). The time series of the
sensor data calibrated using the two different models from
September 2019 are shown in Figure 3A. Overall, both
calibration models appear to reproduce the diurnal trends on
almost all days.

In comparison with other field deployments using this
sensor, we observed comparable or better correlations in our
study [e.g, r = 0.83 (5 min),"® 0.88 (10 min),"" <0.7 (15
min),*” and 0.79 (1 h),°® but since the reported time intervals
ranged between S min and 1 h, it can be difficult to directly
compare with our study. The corresponding RMSE were 4.56,
8.3, 30.27 ppb, and not reported, respectively, in those studies.
For comparison, Bigi et al. compared the potential RMSE and
r* using MLR (predictors included T, RH, NO,, and NO),
support vector regression, and random forest using a data set
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comprised of 4 months of training and 4 months of the
deployment at an urban, heavily trafficked site.'' They
reported 10 min RMSE of 5.5, 4.6, and 4.4 ppb, respectively,
and they were able to better characterize the full concentration
range using the nonlinear methods. In another laboratory
study, when a similar sensor (NO,-B4) was tested in a wide
range of environmental conditions as described above, the
sensor was found to be sensitive to RH above about 55%.°
For lower RHs, the signal was stable, but as the RH increased,
the signal become nosier and overestimated the concentration.
They reported that the sensor responded strongly to high
temperatures (>45 °C), and the signal decreased with
increasing temperatures.

We found that O; was a significant predictor. The sensor is
designed to filter out O; before measuring NO,, and the filter
is rated to withstand 500 hr at 2 ppm. When the sensors were
evaluated prior to deployment in January 2019 in chamber
testing, the NO, sensor did not exhibit a response to Oj. It has
also been shown that as the NO, sensor ages, the built-in O,
scrubber can degrade, resulting in an increasing cross-
sensitivity to O3 and reduced sensor accuracy, and others
have seen variations in the efficacy of the ozone scrubber,
including ozone breakthrough and filter aging.m’67 Thus, we
considered in our model the possibility of continued cross-
sensitivity of the NO, sensor to ozone.

While we did not observe substantial deterioration in NO,
sensor performance over the evaluation period, the NO, sensor
performance should be continually evaluated. Castell et al.
reported that their NO, sensor did not exhibit a cross-
sensitivity to O3, whereas van Zoest et al. included Oj in their
MLR since it reduced the overall RMSE (predictors were NO,,
O,;, RH, T, wind speed, and wind direction).68’69 Several other
field deployments have reported a minor sensor drift after only
a few months.""”°

3.4. O; Sensor. The time series of the uncalibrated O,
sensor data from the training are shown with the calibrated
sensor data from the evaluation period in Figure 2C,D, while
the full annual time series of the uncalibrated and calibrated O,
sensor data are shown in Figure S4. During the training period,
the hourly averaged reference O; concentration was 35.5 =+
15.7 ppb, and the corresponding r value was 0.52 (Figure 2,
Table 1). The reference concentration ranged between 0 and
106.5 ppb. During the evaluation period, the hourly averaged
reference O; concentration was 28.5 + 14.9 ppb, and the
corresponding r value of the uncalibrated sensor response was
0.52. The 8 h standard for O, is 70 ppb.”® The regulatory
monitoring requirements for an O; instrument are precision
and bias errors within 7%. The recommended performance
metrics for Oj air sensors are a slope of 1.0 & 0.2, an intercept
of =5 <b <5 ppb, an ¥ of >0.80 (r =0.89), and an RMSE <
S ppb.

The final calibration models included the uncalibrated
sensor values, temperature, RH, NO,, and time predictors
(Table 2). Separating the sensor into two predictors and
including interaction terms for temperature with the sensor
resulted in the best model. The sensor exhibits a much higher
slope below about 17 k€ and then remains generally flat
(Figure S4G), so this was where the knot was placed. If NO,
was excluded, the colocated reference model RMSE increases
by 0.7 ppb (compared to 6.9 ppb). The O; sensor exhibited
the strongest responses to temperature, followed by NO, and
then RH. The output of the sensor notably decreases as the
temperature increases, which resulted in underestimating the
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true O concentration at high temperatures (Figure 3B). A
concentration of about 35 ppb corresponded to an average
value of about 780 k2 at 0 °C compared to about 162 k€2 at
40 °C (Figure SS). It is important to note when using this
sensor that high temperatures and high ozone concentrations
often coexist, which can result in the sensor values exhibiting
little change during increasing O; concentrations or even
decreasing values, driven by the change in temperature, not O,
concentration. When the uncalibrated O; sensor is plotted as a
function of RH or NO,, the visual trend suggests that O,
would be overestimated at lower values (Figure S4), but after
the temperature was taken into consideration, exposure to
increasing NO, and RH results in overestimating the O;
concentration. An evaluation was completed to determine if
the O; sensor exhibited a sensor baseline drift over the full-year
period. After accounting for the other predictors, the O; sensor
exhibited a drift of about —0.01 ppb/day using the colocated
reference model (p = 0.03; Table S2). When time was included
in the reference model, the RMSE from the evaluation period
was improved by 1.6 ppb.

Since the sensor responded to an interferant gas, models
with the colocated reference and colocated sensor data as
predictors were evaluated. The colocated sensor model
required additional predictors to correct for biases from the
raw NO, sensor data, so the colocated raw NO sensor
response, the NO,-time interaction, and NO-temperature
interaction terms were also included. Overall, the models
performed similarly. The differences between the RMSE were
small during the training period (the reference model RMSE
was better by 0.2 ppb) and evaluation periods (the colocated
sensor model RMSE was better by 0.4 ppb). After the MLR
models were used to calibrate the evaluation period, the
averaged calibrated sensor concentration was 28.4 + 13.6
(RMSE of 7.4 ppb; r = 0.86; percent bias = —7.1%) for the
colocated reference model and 28.3 + 15.5 (RMSE of 7.0 ppb;
r = 0.89; percent bias = —4.0%) for the colocated sensor
model. The MLR applied to the training period produced a
similar RMSE (reference model = 6.9 ppb; sensor model = 7.1
ppb) and r values (r = 0.90 and 0.90, respectively). The time
series of the calibrated sensor data using the two different
models from September 2019 are shown in Figure 3B. On
many of the evaluation days, the calibrated sensor reproduced
the temporal trends and concentrations, but both models
significantly underestimated the ozone concentration on the
day exhibiting the greatest concentration (e.g., September 16,
2019). Even if the model was refit to consider only August data
in the training period and the month of September as the
evaluation period, the model was unable to reproduce the peak
concentration on September 16th. To examine this further, if
we average the time points when the reference O; was greater
than 70 ppb, the average reference concentration was 78.2 ppb
compared to 57.7 for the colocated reference model and 61.9
for the colocated sensor calibration model. The sensor also
frequently overestimated the lower concentrations (Figure
3E). If we average the time points when the reference O; was
less than 20 ppb, the average reference concentration is 10.5
ppb compared to 15.6 for the colocated reference model and
10.1 for the colocated sensor model.

Ripoll et al. colocated 132 metal-oxide MICS 2614
(apportioned into 44 sensing devices) at reference stations in
Italy (4 stations) and Spain (S stations) for S months (May—
October).”" They reported a mean hourly averaged r* of 0.88
(r = 0.94) and RMSEs between 4.5 and 13 ppb. Similar to our
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data, the sensors were not able to capture the highest
concentrations and exhibited an upper limit of about 85 ppb.
When the authors tried to calibrate the data using MLR with
the raw sensor output, temperature, and RH as coeflicients,
they were unable to capture the peak concentrations; however,
a subset analysis indicated that nonlinear methods, such as
support vector regression, were more promising. They did not
observe sensor drift during the 5 month deployment. Buehler
et al. observed a similar negative temperature dependence in
the ozone sensor with temperature over a more narrow
temperature and ozone concentration range.9 When MICS-
2614 sensors were worn by 8 volunteers in Texas during the
daytime on the weekdays and weekends between January to
March, the sensors Eerformed best for concentrations between
20 and 100 ppb.”” The O; MICS-2614 has been less
commonly used than the AlphaSense Ox sensors in urban
applications. The two sensors can both yield useable data, but
they have different limitations. The Ox sensors exhibit a higher
NO, dependency and lower correlations but exhibit reasonable
measurements at higher concentrations.'®**”"”*> They also
exhibit a temperature dependence, but it increased the output
(similar to the CO sensor), which makes it less of an issue than
with the MICS sensor. The inability of this sensor to capture
peak concentrations during warm seasons may limit their use
in health-related research.

3.5. NO Sensor. The uncalibrated NO sensor data from
the training and the calibrated sensor data from the evaluation
period are shown in Figure 2EF, with the full data shown in
Figure S6. During the training period, the hourly averaged
reference NO concentration was 3.0 + 11.0 ppb (Table 1),
which ranged widely between 0 and 134 ppb. During the
evaluation period, the average reference NO concentration was
3.3 + 10.0 ppb (Table 1). The reference concentration during
the evaluation period ranged between 0 and 130 ppb.

The final calibration models included the uncalibrated
sensor output, temperature, CO, and time predictors (Table
2). Separating the sensor into two predictors at the median and
including interaction terms for temperature and CO with the
sensor resulted in the best model. RH was not significant and
did not improve the model. The response of the sensor was
relatively consistent below 20 °C, suggesting that lower
temperature may not bias the results considerably (Figure
S6C), and the sensor output decreased as the temperature
increased above about 20 °C. These trends were observed at
both higher and lower reference NO concentrations. Overall,
the sensor appeared to underestimate the true concentration
during periods of higher CO concentrations, and including the
reference CO concentration as a predictor in the colocated
reference model improved the RMSE by 0.79 ppb. The
improvement was more pronounced during periods of peak
NO concentrations. When evaluating sensor baseline drift over
the full-year period, the time coefficient (included in the
model) was very small <0.01 (ug/m?)/day and not significant,
and RMSE was not improved by incorporating time (Table
S2).

The calibration models with the colocated reference and
colocated uncalibrated sensor data as predictors were evaluated
to correct for cross-sensitivities to other gases. The time series
of the sensor data calibrated using the two different models
from September 2019 are shown in Figure 3C. Overall, the
models performed similarly, and the differences between the
RMSE were small during the training period (the reference
model RMSE was better by 0.4 ppb) and evaluation periods
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(the colocated sensor model RMSE was better by 0.1 ppb).
After the colocated reference model was applied to the
evaluation data, the averaged calibrated sensor concentration
was 2.8 + 8.3 ppb, with an RMSE of 3.3 ppb, an r value of
0.96, and a percent bias of —14.7% (Figure 3F). The higher
RMSE is driven by the underestimation of the peak NO values,
but 73% of the reference model hours were within +1 ppb.
The reference model applied to the training period produced
an RMSE of 3.0 ppb and an r of 0.96. After the colocated
sensor model was applied to the evaluation data, the averaged
calibrated sensor concentration was 3.3 + 7.8 ppb, with an
RMSE of 3.2 ppb, an r value of 0.97, and a percent bias of
—2.7%. The colocated model applied to the training period
produced an RMSE of 3.4 ppb and an r of 0.95. Overall, the
models reproduced the diurnal trends, but peak exposures were
sometimes underestimated.

We observed comparable correlations in our study to those
previously reported (e.g,, r = 0.92 (5 min),"* 0.97 (10 min)"’
in those studies). The corresponding RMSE from those studies
were 4.52 and 3.54, respectively. Bigi et al. also compared the
RMSE and r* of NO using MLR (predictors included T, RH,
NO,, and NO), support vector regression, and random
forest."' The reported 10 min RMSE were 8.3, 7.1, and 7.1
ppb, respectively. Interestingly, even the nonlinear models
were not able to reproduce all of the peaks on the most
polluted days.'' The underestimation of peak NO concen-
trations was also observed in other field studies."® When the
similar NO-B4 sensor was exposed to a range of six RH levels
and four temperatures in laboratory conditions, the sensor did
not exhibit a consistent trend with increasing RH.”® They
reported that the sensor responded strongly to increasing
temperatures. We note that we used the difference between the
working electrode and the auxiliary electrode for NO, NO,,
and CO to leverage the initial (partial) temperature correction
afforded by AlphaSense’s auxiliary electrode but show in
Figures S2, S3, and S6 that it is insufficient to overcome the
temperature effect, which is similarly shown by Cross et al. and
Tryner et al.'"®*® While our calibration model corrects for the
temperature influences, we note that future iterations should
test performance without the auxiliary electrode, especially at a
higher time resolution (<1 h), where lags in these responses to
temperature may introduce further deviations. A few studies
have reported a minor sensor drift, but a 22 month study
determined that the drift for the NO sensors was not
statistically significant.""”%”*

4. CONCLUSIONS

In this study, we assessed the colocated reference and low-cost
sensor data sets for five pollutants (PM, 5 CO, O3, NO,, and
NO) using MLR models to calibrate the data to identify key
parameters that need to be measured to develop accurate
calibration equations for multipollutant network data (e.g.,
SEARCH). We also evaluated using colocated low-cost sensors
to correct other sensors and how that compared to having the
reference data for the cross-sensitivity. This study demon-
strates that these low-cost sensors can characterize ambient
urban pollution over longer periods of time. All of the sensor
calibration models produced high Pearson correlation
coefficients (r) at the hourly resolution, and the averages of
the calibrated sensor and the reference data from the
evaluation period were within 12%. The PM,; CO, NO,,
O;, and NO sensors were trained using 6 months of data
collected over a wide range of temperature and RH conditions,
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resulting in RMSE values of 3.4 ug/m’® 58.9, 3.5, 7.4, and 3.3
ppb, respectively.

Each of the sensors required a distinct set of predictors to
achieve the lowest possible RMSE. All of the sensors
responded to environmental factors, such as temperature (all
five sensors) or RH (PM,, O;, NO,), and the O;, NO,, and
NO sensors exhibited cross-sensitives to another air pollutant.
The CO, O;, and NO, sensors exhibited some baseline drift
over the year, while the PM, and NO sensors were more
stable. The MLR models were generally able to characterize
the diurnal trend and concentration ranges of the sensor, but
nonlinear methods may be more appropriate for the ozone in
warm environments. Since the NO and Oj; sensors are unable
to capture peak concentrations during some environmental
conditions, caution should be used in health-related research
since short-term peak exposures can lead to a range of negative
health effects and premature mortality.”

One strength of deploying multipollutant monitors is that if
the interferants are known, the sensor data may be calibrated
with colocated sensors. This is particularly useful when
correcting data collected at locations away from reference
instruments, as is needed to improve the spatial resolution of
measurements, or when the interfering gas is less frequently
measured. This work was completed in a region that
experiences a wide range of environmental conditions over a
full year, which permitted us to assess the importance of each
predictor and can inform future users what sensors need to be
comeasured in other locations. We compared the RMSE from
models that used the colocated reference and sensor data for
the interferant gases. The O3, NO,, and NO colocated sensor
models produced RMSE within 0.5 ppb of the calibration
models utilizing reference data as predictors. This indicates
that low-cost sensor networks should be able to yield accurate
data if the monitoring package is designed to comeasure key
predictors that can be used to correct a sensor for known
biases (e.g., yield similar concentrations and diurnal patterns
and all percent bias were within 15%). This is key for the
utilization of low-cost sensors by diverse audiences since this
does not require continual access to regulatory grade
instruments or advanced machine learning approaches. We
chose to use MLR models for these low-cost sensors because
they may be more accessible to a wider range of sensor users,
as opposed to more complex machine learning models. We
also evaluated nonlinear components (i.e., quadratics and
splines) in the model, which has not commonly been done in
previous literature involving MLR and low-cost sensors. We
found this improved model RMSE and still maintains the lower
complexity of the MLR approach. Future work should focus on
the transferability of calibration from one sensor unit to
another unit and from one location to another.
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