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Inferotemporal cortex (IT) in humans and other primates is topo-
graphically organized, containing multiple hierarchically-organized
areas selective for particular domains, such as faces and scenes.
This organization is commonly viewed in terms of evolved domain-
specific visual mechanisms. Here, we develop an alternative,
domain-general and developmental account of IT cortical organiza-
tion. The account is instantiated in Interactive Topographic Net-
works (ITNs), a class of computational models in which a hierarchy of
model IT areas, subject to biologically-plausible connectivity-based
constraints, learns high-level visual representations optimized for
multiple domains. We find that minimizing a wiring cost on spa-
tially organized feedforward and lateral connections alongside real-
istic constraints on the sign of neuronal connectivity within model
IT results in a hierarchical, topographic organization. This organi-
zation replicates a number of key properties of primate IT cortex,
including the presence of domain-selective spatial clusters prefer-
entially involved in the representation of faces, objects, and scenes,
columnar responses across separate excitatory and inhibitory units,
and generic spatial organization whereby the response correlation
of pairs of units falls off with their distance. We thus argue that topo-
graphic domain-selectivity is an emergent property of a visual sys-
tem optimized to maximize behavioral performance under generic
connectivity-based constraints.
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Inferotemporal cortex (IT) subserves higher-order visual abil-1

ities in primates, including the visual recognition of objects2

and faces. By adulthood in humans, IT cortex, and ventral3

temporal cortex more generally, contains substantial func-4

tional topographic organization, including the presence of5

domain-selective spatial clusters in reliable spatial locations,6

including clusters for faces (1–3), objects (4), buildings and7

scenes (5, 6), and words (7). Similar domain-level topographic8

properties have been found in rhesus macaque monkeys, in-9

cluding multiple regions of clustered face selectivity (8–10).10

Intriguingly, this selectivity is encompassed in a larger scale11

“mosaic” of category-selectivity, in which areas of category-12

selectivity themselves have further columnar clustering within13

them (11–13), and moreover, category-selectivity appears to14

exist as clusters within general dimensions of object space15

(14) spatially organized so as to smoothly map neuronal cor-16

relations over space (15), pointing to more general principles17

of organization beyond the domain level. In line with this18

idea, human IT cortex also exhibits larger-scale organization19

for properties such as animacy and real-world size (16, 17),20

and midlevel features characteristic of these properties and21

domains have been shown to account well for patterns of high-22

level visual selectivity (18). How these domain-level and more23

general facets of functional organization arise, how they are 24

related, and whether and in what ways they rely on innate 25

specification and/or experience-based developmental processes 26

remain contentious. 27

Recent work has demonstrated that the neural basis of 28

face recognition depends crucially on experience, given that 29

deprivation of face viewing in juvenile macaque monkeys pre- 30

vents the emergence of face-selective regions (19). Relatedly, 31

the absence of exposure to written forms through reading 32

acquisition precludes the emergence of word-selective regions 33

(20, 21). That there exists clustered neural response selectivity 34

for evolutionarily new visual categories such as written words 35

offers further evidence that the topographic development of 36

the human visual system has a critical experience-dependent 37

component (22, 23). In contrast with a system in which innate 38

mechanisms are determined through natural selection, this 39

experiential plasticity permits the tuning of the visual system 40

based on the most frequent and important visual stimuli that 41

are actually encountered, thereby enabling greater flexibility 42

for ongoing adaptation across the lifespan. 43

There is considerable computational evidence that 44

experience-dependent neural plasticity can account for the 45

response properties of the visual system at the single neuron 46

level. Classic work demonstrated that the statistics of natural 47

images are sufficient for learning V1-like localized edge-tuning 48
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within a sparse coding framework (24, 25). More recently,49

deep convolutional neural networks (DCNNs) trained on im-50

age classification have been successful in accounting for the51

tuning of neurons in V1, V2, V4, and IT in a hierarchically52

consistent manner, where deeper layers of the DCNN map53

onto later layers of the anatomical hierarchy (26, 27).54

Above the single-neuron level, considerable prior work has55

demonstrated that topographic organization in V1 may emerge56

from self-organizing, input-driven mechanisms (28–34) (for57

review, see 35). For example, the pinwheel architecture of58

spatially repeating smooth orientation selectivity overlaid with59

global retinotopy has been shown to be well-accounted for by60

Self-Organizing Maps (SOMs) (31, 32, 36).61

One notable application of an SOM to modeling high-62

level visual cortex by Cowell and Cottrell (37) demonstrated63

stronger topographic clustering for faces compared to other ob-64

ject categories (e.g., chairs, shoes), suggesting that the greater65

topographic clustering of faces in IT is due to greater within-66

category similarity among faces compared to these other cate-67

gories. This work provides a strong case for domain-general68

developmental principles underlying cortical topography in IT,69

but at least two important issues remain unaddressed. First,70

rather than only supporting discrimination of face from non-71

face categories (as in 37), face representations in humans (and72

likely non-human primates, though see (38)) must support the73

more difficult and fine-grained task of individuation; this task74

requires a “spreading transformation” of representations for75

different face identities (39, 40), which could could alter the76

feature space and its topographic mapping, and necessitate77

a more domain-specialized representation than that exam-78

ined by (37). Second, rather than a single face-selective area,79

IT cortex actually contains multiple hierarchically-organized80

face-selective regions with preferential inter-connectivity (41).81

Generally, SOMs are not well equipped to explain such hi-82

erarchical topographic interactions, as they are designed to83

map a feature space into a topographic embedding, but not to84

transform the feature space hierarchically in the way needed85

to untangle invariant visual object representation from the86

statistics of natural images (42). This suggests that SOMs are87

an incomplete model of topographic development in cortical88

networks.89

An alternative approach to studying topographic organi-90

zation involves incorporating distance-dependent constraints91

on neural computation within more general neural network92

models (43–46). Of particular interest is a hierarchical neu-93

ral network developed by Jacobs and Jordan (45) in which94

error-driven learning was augmented with a spatial loss func-95

tion penalizing large weights to a greater degree on longer96

versus shorter connections. This model was shown to develop97

topographic organization for ’what’ versus ’where’ informa-98

tion when trained with spatially segregated output units for99

the two tasks. Closely related work by Plaut and Behrmann100

(47) demonstrated that a similarly spatially-constrained model101

with biased demands on input (e.g., retinotopy) and output102

(e.g. left-lateralized language) could account for the organiza-103

tion of domain-specific areas in IT cortex, such as the foveal104

bias for words and faces, leftward lateralization of words, and105

rightward lateralization of faces (48–50).106

However, to date, none of these structurally-biased neural107

network models have been applied to large-scale sets of natu-108

ralistic images, the statistics of which are thought to organize109

high-level visual representations in IT cortex (51), and the 110

topography in these models (45, 47) has been analyzed at 111

a relatively coarse level. Nonetheless, this early work raises 112

the possibility that the application of distance-dependent con- 113

straints in a deep neural architecture trained on natural images 114

might provide a more comprehensive account of topographic 115

organization in IT. 116

Along these lines, Lee and colleagues (15) have recently 117

modeled the topography of IT cortex with Topographic Deep 118

Artificial Neural Networks (TDANNs) that are trained on a 119

large set of natural images using a correlation-based layout that 120

explicitly encourages units within a layer of the network to be 121

spatially nearer to units with correlated responses, and farther 122

from units with uncorrelated or anti-correlated responses. As 123

a result, the TDANN developed face-selective topography that 124

corresponded well with data from macaque monkeys. However, 125

this approach imposes topographic functional organization on 126

the network based on measured functional responses, rather 127

than deriving it from realistic principles of cortical structure 128

and function, such as constraints on connectivity. Moreover, 129

like the SOM, the TDANN can explain only within-area to- 130

pographic organization, and not spatial relationships between 131

areas, such as stream-like organization of multiple stages of 132

IT cortex (3, 52) and their embedding in a network coupled 133

with upstream and downstream cortical areas (48). Thus, the 134

question remains whether such basic structural principles can 135

account for the topographic organization of IT. 136

In the current work, we combined the approaches of task- 137

optimized DCNN modeling (15, 51) with flexible connectivity- 138

constrained architectures (45, 47) to develop a hierarchical 139

model of topographic organization in IT cortex. We imple- 140

mented a bias towards local connectivity through minimization 141

of an explicit wiring cost function (45) alongside a task per- 142

formance cost function. Intriguingly, we observed that this 143

pressure on local connectivity was, on its own, insufficient to 144

drive substantial topographic organization in our model. This 145

led us to explore two neurobiological constraints on the sign of 146

connectivity—strictly excitatory feedforward connectivity, and 147

the separation of excitation and inhibition—with the result 148

that both, and, particularly, excitatory feedforward connectiv- 149

ity, provided a powerful further inductive bias for developing 150

topographic organization when combined with a bias towards 151

local connectivity. Our results begin to shed light on the fac- 152

tors underlying hierarchical topographic organization in the 153

primate visual system. 154

Materials and Methods 155

The Interactive Topographic Network. We introduce the Interactive 156

Topographic Network (ITN), a framework for computational mod- 157

eling of high-level visual cortex, and specifically, it’s functional 158

topographic organization. ITN models are defined as neural net- 159

work models that are 1) optimized to perform naturalistic tasks 160

(following 53) and 2) connectivity-constrained in a biologically plau- 161

sible manner so as to give rise to functional organization (extending 162

previous work by 45, 47). In this work, we introduce a form of 163

ITN that is divided into three components: an encoder that ap- 164

proximates early visual cortex, interactive topography (IT) layers 165

that approximate inferotemporal cortex, and a readout mechanism 166

for one or more downstream tasks. The goal of the encoder is to 167

extract general visual features which describe the visual world along 168

dimensions that support a broad range of downstream readout tasks. 169

However, our main modeling focus is on the IT layers, which consists 170

of a series of pairs of recurrent layers that are subject to biological 171
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constraints. For computational simplicity, such constraints are not172

modeled in the encoder (but see Discussion for future directions).173

Encoder architecture and training. We used a ResNet-50 (54) encoder174

to allow the ITN to extract deep and predictive features of the175

trained inputs. The encoder is pre-trained on equal sized subsets176

of faces, objects, and scenes from the VGGFace2 (55), ImageNet177

(56), and Places365 (57) datasets, respectively, matched in terms178

of total training images. We reused the same subsets of faces and179

objects as in (58), and an additional scene domain was constructed180

to match the other two domains in total images. An initial learning181

rate of 0.01 was used, and this learning rate was decayed 5 times by182

a factor of 10 upon plateau of the validation error; after the fifth183

learning rate decay, the next validation error plateau determined184

the end of training. Stochastic gradient descent with momentum185

(ρ = 0.9) and l2 weight decay (λ = 0.0001) was used, with batch186

size of 256 on a single GPU.187

Recurrent neural network formulation of IT. Our model of IT extends188

the standard discrete-time Recurrent Neural Network (RNN) for-189

mulation common in computational neuroscience (e.g., 59). We190

begin with the continuous-time dynamics of units in an RNN layer,191

where x(a) is the vector of pre-activation activities in area a of IT,192

r(a) is the vector of post-activation activities in area a, b(a) is the193

vector of baseline activities in area a, τ is the scalar neuronal time194

constant, and W (a,b) is the matrix of weights from area a to area b:195

τ
dx

(a)
t

dt
= −x

(a)
t +W (a,a)r

(a)
t +W (a−1,a)r

(a−1)
t + b(a) [1]

where the activation function r
(a)
t = [x(a)

t ]+ is positive rectification,196

also called a Rectified Linear Unit (ReLU). Applying the Euler197

method to integrate this first-order ordinary differential equation,198

with time step size ∆t, and substituting α = ∆t
τ
, yields the discrete199

time update:200

x
(a)
t = (1− α)x(a)

t−1 + α

(
W (a,a)r

(a)
t−1 +W (a−1,a)r

(a−1)
t−1 + b(a)

)
[2]

When training models with separate excitatory and inhibitory201

units, we noted that training could be extremely unstable and202

typically required some mechanism for achieving stability. To this203

end, we adopted layer normalization (60), without the trainable204

scaling parameter that is sometimes used (see 60, for more details).205

We found layer normalization to be extremely effective in stabilizing206

models and encouraging well-distributed activations (Figure S38).207

Where µ(x) is the mean of x, and σ(x) is the standard deviation208

of x, and b is the learned bias term (moved outside of the layer209

normalization), the layer-normalized activities are given as:210

zt =
xt − µ(xt)
σ(xt)

+ b

r′t = [zt]+

Incorporating layer normalization into our update equation yields211

the final update equation:212

x
(a)
t = (1− α)z(a)

t−1 + α

(
W (a,a)r

′ (a)
t−1 +W (a−1,a)r

′ (a−1)
t−1

)
[3]

Extending the standard RNN framework with biological constraints.213

Here, we outline the major biological constraints implemented in214

this work.215

Spatial organization. An essential aspect of an ITN model is that216

each IT layer has a spatial organization (see also (15)). We chose217

to model layers as square grids, with each layer of the hierarchy218

of equal size (typically, a grid size length of 32, corresponding to219

a layer of 1024 units). We normalize the coordinates to lie in the220

range [0,1]. Each unit thus has a unique (x, y) coordinate which221

will be used to determine the distance-dependent network topology.222

In general, the specific choices about map spatial arrangement are223

not critical to the predictions of the model, but they can potentially224

be manipulated in certain ways in the service of other theoretical225

goals.226

Spatial connectivity costs. We impose distance-dependent con- 227

straints on connectivity through a cost on longer connections 228

throughout training. This basic formulation of the loss was in- 229

troduced by Jacobs and Jordan (45) as a way to induce spatially 230

organized task specialization, and was shown to do so in a simple neu- 231

ral network model trained on small-scale tasks. To our knowledge, 232

no other research has examined this loss in modern deep learning ar- 233

chitectures trained on natural images. We use a simple modification 234

of the original loss function, using the squared Euclidean distance 235

(Di,j)2 = ||ri − rj ||22 (in place of (Di,j)10 = ||ri − rj ||10
10 distance 236

(45)). By using the squared distance, we penalize longer connections 237

disproportionally compared to shorter connections. The spatial loss 238

on connections between areas a and b, L(a,b)
w , is given by: 239

L(a,b)
w =

∑
i,j

(
D(a,b)
ij

)2 (
W

(a,b)
ij

)2

1 +
(
W

(a,b)
ij

)2 [4]

The total spatial loss is the sum of the area-to-area spatial losses 240

Lw =
∑

a,b
L(a,b)
w , and is added to the task-based loss as L = 241

Lt + λwLw, on which gradient descent is performed. Additionally, 242

in contrast to (45), we choose a single λw parameter, rather than 243

varying it throughout training. For each architectural variant, 244

we chose the λw that maximized a metric of generic topographic 245

organization (Tg , Equation 7) 246

Connection noise. To approximate axon-specific variability in in- 247

stantaneous firing rate (61), we apply multiplicative noise on the 248

individual connections between neurons that is uniform over dis- 249

tance and layers. In practice, we find that connection noise helps 250

to regularize the activations in the network, encouraging a more 251

distributed representation that aids the formation of topography 252

across a range of models (see Figure S39 for evidence that it is 253

not absolutely necessary). Noise is sampled independently from 254

a Gaussian distribution N centered at 0 with variance σ2 at each 255

time step of each trial, and is squashed by a sigmoidal function 256

S(x) = 2
1+e−x , ensuring that the sign of each weight is not changed 257

and each magnitude does not change by more than 100%. Thus, 258

the noisy weight matrix W (a,b)
n from area a to area b on a given 259

trial and time step is: 260

W
(a,b)
n = S (N (0, σ)) ∗W (a,b) [5]

Sign-based restrictions on neuronal connectivity. Standard neural 261

networks gloss over a key detail of neuronal morphology—that single 262

neurons obey Dale’s Law, whereby all of their outgoing connections 263

are either excitatory or inhibitory (ignoring modulatory neurons and 264

other special, rare cases) (59). We employ this principle within our 265

framework by replacing the single sheet of unconstrained neurons 266

with parallel sheets of excitatory (E) and inhibitory (I) neurons. 267

The second sign-based restriction we implement is that between-area 268

interactions are carried out predominantly by excitatory pyramidal 269

neurons. Thus, we restrict between-area feedforward connectivity 270

to originate from the excitatory neurons only. In the main model, 271

both E and I neurons receive feedforward inputs. 272

IT architecture and training. The main ITN model consists of 3 IT 273

layers (pIT, cIT, aIT) with separate E and I populations, and 274

feedforward connections sent only by E units. To facilitate training 275

many models with fewer computational demands, the model is 276

trained using a fixed pre-trained ResNet-50 encoder on smaller 277

subsets of faces, objects, and scenes. Specifically, we created image 278

subsets equal to the size of the popular CIFAR-100 dataset but at 279

higher image resolution, containing 100 categories each with 500 280

training images and 100 validation images, resized to 112x112 pixels. 281

Thus, the combined dataset contained 300 categories with 150,000 282

training images and 30,000 validation images. The same learning 283

rate schedule as used for training the encoder was used. Stochastic 284

gradient descent with momentum (ρ = 0.9) was used, with batch 285

size of 1024 on a single GPU. In the main model, we used spatial 286

regularization with λw = 0.05, without additional weight decay on 287

IT connections. 288
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IT model variants. To better understand the relative importance of289

different aspects of model design that contribute to the development290

of topographic organization, we examine a variety of IT model291

variants containing different subsets of implemented constraints292

(Figure 6). Some of these models do not use separate populations293

of E and I units, but still restrict feedforward connectivity to be294

excitatory. In this case, we simply restrict the feedforward weights295

to be positive, despite the same neuron having both positive and296

negative lateral connections. In another case, separate populations297

of E and I units are both allowed to send feedforward projections. In298

yet another variant, we remove learned lateral connections entirely.299

This model is trained for a single time step, and the only recurrent300

computation is that of a single pass of layer normalization. Lastly,301

we explore a range of spatial regularization strengths.302

Analyses of trained models. After training, the responses in IT lay-303

ers are probed to investigate emergent task specialization and its304

topographic organization. We use three main approaches.305

Mass univariate analyses. The first analytic approach is the simple306

mass-univariate approach, in which each unit is analyzed separately307

for its mean response to each stimulus domain (objects, faces,308

scenes), using untrained validation images from the same categories309

used in training. In addition to computing the mean response to310

each domain, we compute selectivity, a ubiquitous metric used in311

neuroscience, to analyze how responsive a unit is to one domain312

compared to all others. We compare the responses of each domain313

versus the others using a two-tailed t-test, and given the test statistic314

t, the significance value p of the test, and the sign of the test statistic315

s = sign(t), we compute the selectivity as −s log(p).316

Searchlight decoding analysis. The second analysis approach is the317

multivariate searchlight analysis commonly used in fMRI (62), in318

which a pool of units are selected in a (circular) spatial window319

around each unit, and the accuracy for discriminating between320

different categories (e.g., hammer vs. screw-driver) in each domain321

(e.g., objects) is computed using the activations of only that pool of322

units; the mean accuracy value is assigned to the center unit, and323

the process is repeated for all units.324

Lesion analysis. To assess the causal role of certain units in the325

performance of specific tasks, we adopt a lesioning approach in326

which the activities of lesioned units are set to 0 at each time327

step. This effectively removes them from processing, allowing the328

network’s dynamics to unfold independently of these units. The329

effect of a lesion is measured by computing the accuracy following330

the lesion and relating that to the baseline accuracy.331

The first type of lesion we perform is a spatial or focal lesion332

in which a circular neighborhood of size p × n units is selected,333

where p is the fraction of units selected and n is the total number334

of units in the area where the lesion is performed. The lesion is335

centered on a unit ui,j either randomly or according to the peak of336

a specific metric such as selectivity. To lesion spatial neighborhoods337

corresponding to regions of high domain selectivity, we take the338

selectivity map, perform spatial smoothing, and select the unit u of339

peak smoothed selectivity.340

The second type of lesion sorts units according to a given selec-341

tivity metric irrespective of their spatial location. In this analysis,342

the p× n most selective units are chosen for a given lesion. This is343

done separately for the selectivity of each domain, as in the focal344

lesions. When the topography is smooth and the regions approxi-345

mately circular, the selectivity-ordered and focal lesions yield similar346

results. However, to the extent that the topography is not perfectly347

smooth or circular, the selectivity-ordered lesion may knock-out a348

more relevant set of units for a given task.349

Distance-dependent response correlation. We calculate the correla-350

tions of the responses of all pairs of units as a function of distance351

between them. Response correlation is computed for a given time352

step over a large number of images, either from all domains, or from353

each domain separately.354

Topographic organization summary statistics. We compute two met-355

rics of topographic organization—one indexing generic organization356

and the other, domain-level organization. The domain-level to-357

pography statistic Td is a measure of how much the alignment of358

domain-level selectivity vectors between pairs of units falls off with 359

distance. For a given layer l, cell type c, and neuron i, let us consider 360

a 3-D vector of selectivity values for each domain si. Using the 361

dot product si · sj between selectivity vectors of m =
(
p
2

)
pairs 362

of neurons (to allow for magnitude effects), standardized over all 363

neuron pairs as z(·), and assuming l and c are held constant, the 364

domain-topography statistic Td is then given as: 365

Td =
1
m

p∑
i,j

z(si · sj)
Di,j

[6]

The standardization ensures that the statistic is not inflated for 366

poorly trained networks with uniformly high correlation values 367

across unit pairs. Similarly, the generic topography statistic is a 368

measure of how much pairwise response correlation falls off with 369

distance. For a given layer l, cell type c, and neuron i, let us consider 370

a n-D vector of responses over n images si. The statistic Tg is then 371

given as: 372

Tg =
1
m

p∑
i,j

z(r(ai,aj))
Di,j

[7]

In the paper, we plot the Tg and Td values averaged over layers and 373

cell types. In supplementary material, we additionally plot values 374

per layer and cell type. 375

Analyzing spatial costs of trained networks. To understand the 376

wiring cost of certain trained models, we analyze the spatial cost of 377

a network, as given by Equation 4, as a function of architectural 378

parameters such as the spatial regularization strength λw. In one 379

analysis, we analyze only the feedforward spatial cost, which simply 380

requires summing spatial costs over pairs of areas a and b where 381

a 6= b. Similarly, to analyze only the recurrent spatial cost, we can 382

sum spatial cost over pairs of areas a and b where a = b. 383

Unweighted spatial cost of sparsified networks. While wiring cost in 384

an artificial neural network should depend to some extent on the 385

strength of connections—stronger connections may require greater 386

myelination, and strong connections in an artificial neural network 387

may correspond to a larger number of synapses in a biological 388

neural network—there is another notion of wiring cost whereby it 389

depends only on whether or not two neurons are connected. This 390

notion of wiring costs has been commonly applied to the study 391

of cortical areal layout and early visual cortical maps (e.g. 31, 63– 392

65). Moreover, the analysis of binary connectivity in thresholded 393

networks is also common in graph-theoretic analysis of brain data 394

(66). To analyze this notion of wiring costs, we pruned our trained 395

models to a desired connection sparsity level s, setting to 0 the 396

n×m× s connections with the smallest magnitude, where n and 397

m are the number of units in areas a and b . Sparsity was enforced 398

globally within IT and from IT to readout, rather than individually 399

for each set of connections. We then analyzed an unweighted wiring 400

cost L(a,b)
w,u that computes the mean of squared Euclidean distance 401

values between connected units i and j in areas a and b, given that 402

(a, b) are in the set of connected areas C: 403

L(a,b)
w,u =

1
nm (1− s)

∑
i,j

(
D(a,b)
ij

)2 (
W

(a,b)
ij 6= 0

)
[8]

404

Results 405

A connectivity-constrained model of ventral temporal cortex 406

produces hierarchical, domain-selective response topogra- 407

phy. We first present the results of simulations of a specific ITN 408

model (Figure 1A), which we will refer to as the main model or 409

E/I EFF RNN, to indicate that it possesses separate neurons 410

responsible for excitation and inhibition (E/I), a restriction 411

that feedforward connections are strictly excitatory (EFF), and 412

temporally recurrent processing is mediated through learned 413

lateral connections (RNN). These three factors—in addition to 414

the strength of the wiring cost penalty λw—will be of interest 415
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Fig. 1. The Interactive Topographic Network produces hierarchical domain-level organization. A. diagram of the Interactive Topographic Network (ITN). An ITN model consists
of three components: an encoder that approximates early visual processing prior to inferotemporal cortex, the interactive topography (IT) areas that approximate inferotemporal
cortex, and the readout mechanism for tasks such as object, scene, and face recognition. The architecture of each component is flexible. For example, a 4-layer simple
convolutional network or a deep 50-layer ResNet can be used as the encoder; whereas the former facilitates end-to-end training along with a temporally-precise IT model, the
latter supports better learning of the features that discriminate among trained categories. In this work, topographic organization is restricted to the IT layers. The figure depicts
the main version of the ITN containing three constraints: a spatial connectivity cost pressuring local connectivity, separation of neurons with excitatory and inhibitory influences,
and the restriction that all between-area connections are sent by the excitatory neurons. The final IT layer projects to the category readout layer containing one localist unit per
learned category, here shown organized into three learned domains. (Note that this organization is merely visual and does not indicate any architectural segregation in the
model. B. Domain selectivity at each level of the IT hierarchy. Selectivity is computed separately for each domain, and then binarized by including all units corresponding to
p < 0.001. Each domain is assigned a color channel in order to plot all selectivities simultaneously. Note that a unit can have zero, one, or two selective domains, but not
three, as indicated in the color legend. C. Detailed investigation of domain-level topography in aIT. Each heatmap plots a metric for each unit in aIT. The first column shows the
mean domain response for each domain, the second column shows domain selectivity, the third column shows the within-domain searchlight decoding accuracy, and the fourth
column shows the mean of weights of a given aIT unit into the readout categories of a given domain.

later as we uncover the key ingredients of developing topogra-416

phy. Additionally, this model uses a ResNet-50 encoder which417

is pre-trained on a large dataset including several categories418

from the domains of objects, faces, and scenes (each domain419

matched in total training images), and following pre-training,420

is used as a feature extractor that provides input to a 3-area IT421

containing containing separate posterior (pIT), central (cIT),422

and anterior (aIT) areas. The main model used a spatial cost423

parameter λw = 0.5 which was chosen to maximize a metric424

of domain-level organization (Figure 6).425

After training, the model performed well on each domain,426

reaching a classification accuracy of 86.4% on the face domain,427

81.8% on the object domain, and 65.9% on the scene domain428

(see Figure S1). Performance differences across domains are429

unlikely to be an artifact of the specific architecture as they430

can be seen across a variety of DCNNs, reflecting the intrinsic431

difficulty of each task given the variability within and between432

categories of each domain for the given image sets. 433

As can be seen in Figure 1B, the trained model exhibits 434

domain-level topographic organization that is hierarchically 435

linked across corresponding sectors of each layer. This re- 436

sult reflects the fact that the distance-dependent constraints 437

on feedforward connectivity pressured units that have mini- 438

mal between-area distances to learn a similar tuning, which 439

means that each layer is roughly overlapping in their respec- 440

tive (separate) 2D topography. The topographic organization 441

gets somewhat smoother moving from pIT to cIT, most likely 442

because units in cIT and aIT (but not pIT) have local feed- 443

forward receptive fields and thus greater constraint on local 444

cooperation. Further quantification of topographic organiza- 445

tion in each layer can be found in Figure S6. Overall, the 446

presence of domain-level topography—but not its particular 447

spatial arrangement—was robust to variation elicited by ran- 448

dom initialization of model parameters (Figure S23) (67). 449
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Fig. 2. E and I cells act as functional columns. Selectivity of cIT excitatory (E) units
(left columns), and inhibitory (I) units (middle column) for each domain (colored as
in Figure 1B), and histograms of response correlations between co-localized E and I
units over all images.

We next scrutinized the topography in aIT, where there450

are very smooth domain-level responses, and where we can di-451

rectly compare responses with those of the recognition readout452

mechanism. We computed mean domain responses, plotted453

in the first column of Figure 1C, and domain selectivity, plot-454

ted in the second column, which demonstrates corresponding455

topographic organization. We confirmed the functional sig-456

nificance of response topography by conducting a searchlight457

analysis inspired by multivariate approaches to analyzing func-458

tional magnetic resonance imaging (fMRI) data (62). We459

used searchlights containing the 10% (102) nearest units. The460

results of this analysis, shown in the third column of Figure461

1C, revealed topographic organization of information for dis-462

criminating between categories of each domain that is strongly463

correlated with the domain selectivity maps for each domain464

(all ps < 0.0001). Importantly, every searchlight contained465

information substantially above chance level for discriminating466

within each domain, pointing to partially distributed infor-467

mation despite topographic domain selectivity, in line with468

human and macaque neurophysiology (68, 69) (see Figure S3469

for comparisons of searchlight decoding accuracy for each unit470

across domains).471

To further confirm the functional significance of the topo-472

graphic organization, we analyzed the spatial organization of473

readout weights from aIT to the localist category readout layer.474

We evaluated whether each domain placed more weight in read-475

ing out from the units for which there was greater selectivity,476

by calculating the mean domain response weight for each unit,477

averaged over classes in each domain. This produced a map478

for each domain, shown in the last column of Figure 1C. We479

find a large positive correlation between the mean readout480

weight and the mean response for each domain (all rs>0.7, all481

ps< 0.0001), further demonstrating the functional significance482

of the response topography.483

Excitatory and inhibitory units operate as functional columns.484

In the main ITN model, the E cells serve as the principal485

neurons which exclusively project to downstream areas—thus,486

we have focused entirely on the E cells. The inhibitory (I)487

cells, in contrast, play a local role in processing, receiving488

inputs from and sending outputs to both E and I cells in the489

same cortical area. As all the neurons are subject to the same490

spatial constraint, we predicted that E and I neurons would491

have similar functional topographic organization. We show the492

topography of response selectivity of E and I neurons in area493

cIT in Figure 2. The neuron types demonstrate clearly similar494

functional topography, which we quantify at the columnar495

level of a pair of E and I units in the same location. We find496

Fig. 3. Lesion results in the ITN model. Each plot shows the relative effects of a
set of medium sized lesions (20% of aIT units) on recognition performance for each
domain, relative to the performance on the same domain in the undamaged model.
Error bars show bootstrapped 95% confidence intervals over trials; thus, the statistical
significance of a given lesion can be assessed by determining whether the confidence
interval includes 0. A. Damage from circular focal lesions centered on the peak of
smoothed selectivity for each domain. Left: results for a variety of lesion sizes. B.
Damage from selectivity-ordered lesions for each domain.

that such E-I columns have highly correlated activity, implying 497

specific functional coupling, as has been demonstrated in ferret 498

visual cortex (70), and in cortical columns more generally 499

(71). Inhibitory neurons in aIT yielded sparser selectivity and 500

therefore weaker, but similar, coupling with E units (Figure 501

S11). One reason I units in aIT may have sparser responses 502

is that the network discovers that it can reduce inhibitory 503

weights (and thereby spatial costs) here, as aIT units project 504

onto readout units subject to a squashing softmax nonlinearity. 505

E/I columnar organization was not found in a model trained 506

without the spatial constraint (Figure S12). 507

Effects of lesions indicate strong yet graded domain-level 508

specialization. We next performed a series of “lesion” anal- 509

yses in the model in order to compare with neuropsychological 510

data on face and object recognition (72–74). First, we per- 511

formed focal lesions, as would be experienced by most patients 512

with acquired brain damage. To simulate the impairment of 513

patients with maximally specific deficits, we centered circular 514

focal lesions of various sizes at the center of (smoothed) domain 515

selectivity. Performance following each lesion was measured 516

separately for each domain. 517

A subset of results of this lesion analysis using a medium 518

sized lesion are shown in Figure 3A, with complete results in 519

Figure S2. These focal lesions centered on each domain lead 520

to an especially severe deficit in recognition for that domain, 521

and milder but significant deficits for the other domains as 522

well. For such lesions, the deficit is significant for all domains 523

(all ps<0.05), and significantly stronger for recognition of the 524

target domain (all ps<0.05). 525

Are these more general effects of circumscribed lesions 526

on non-preferred domains the result of imperfect (patchy) 527

or non-circular topographic organization of an underlying 528

modular organization? To answer this question, we performed 529

selectivity-ordered lesions, in which units were sorted by their 530

selectivity for a given domain, and selected according to their 531

sorting index. Again, a subset of results is shown in Figure 532

3B with complete results across a broader range of lesion 533

sizes shown in Figure S2. The effects of damage in this case 534

are similar to those for focal lesions, with greater damage 535

to the domain on which sorting was performed, and smaller 536

but significant deficits to other domains (all ps<0.05). This 537

suggests that some but not all of the damage to the non- 538
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Fig. 4. Generic topographic organization beyond domain-selectivity emerges through task optimization under biologically-plausible constraints on connectivity. A. Distance-
dependent response correlation in macaque IT (reproduced from 15, per CC-BY-NC-ND license). B. Distance-dependent response correlation in the excitatory cells of each
layer, using images from all three domains (objects, faces, scenes). C. Distance-dependent response correlation in aIT using images from the object domain only, highlighting
within-domain generic functional organization.

preferred domain induced by focal lesions may be due to539

imperfect or non-circular topographic functional organization.540

Importantly, these more distributed effects of lesions indicate541

that the functional organization, while highly specialized, is not542

strictly modular; damage to those units purported to be a part543

of a given module (e.g. for face recognition) nevertheless affects544

object recognition (albeit to a weaker degree). Figures S3-S5545

provide additional data on the nature of domain specialization546

in the network.547

Domain selectivity exists within a broader organization sim-548

ilar to that of primate IT cortex. Previous empirical research549

has demonstrated that the response correlations between pairs550

of neurons fall off smoothly with increasing distance between551

the neurons (15, 75), as shown in Figure 4A. As discussed,552

this finding is the basis of TDANN models that explicitly553

fits the spatial layout of units to this relationship (15). We554

explored whether this relationship emerged naturally in our555

network due to its constrained connectivity, in line with the556

emergence of domain-selective topography. We thus computed557

the correlations among pairs of unit activations across images558

as a function of the distance between the units in each area.559

As shown in Figure 4B, there is, indeed, a smooth decay of560

response correlations with distance, matching the qualitative561

trend in the empirical data.562

This result is not simply due to differences between do-563

mains, as it is also found when examining responses to images564

within each domain separately (shown for objects in Figure565

4C). Along with previous results (15), our findings suggest566

that the domain-level topography may simply be a large-scale567

manifestation of a more general representational topography in568

which the information represented by neighboring units is more569

similar than that represented by more distal units. Our results570

demonstrate that this organization can arise under explicit571

wiring length and sign-based constraints on connectivity.572

Generic organization encompasses interpretable do-573

main-level and sub-domain level organization. Recently,574

Bao and colleagues (14) have provided evidence that IT575

cortex contains a map of object space that corresponds well576

to the first two principal components of high-level visual577

representations in an ImageNet-trained convolutional neural578

network, and that clusters in this object space corresponded579

to topographic clusters in IT cortex, including face-selective580

areas. We asked whether our network displayed a similar581

relationship. Similarly, we found that each domain lied in582

weakly overlapping clusters of this PC1–PC2 space, where 583

the first PC mostly separated faces and scenes, and the 584

second PC separated objects from faces and scenes (Figure 585

5A, left). When we visualized the weights of these two PCs, 586

we found that they were topographically organized (Figure 587

5B, right) and corresponded well to the large-scale domain 588

structure inherent to aIT (see contour lines and Figure 1). 589

Notably, relatively little within-domain clustering was seen 590

along the first two PCs, and higher dimensions were less 591

interpretable (Figure S20), and so, to seek finer-grained 592

organization, we opted to visualize the principal components 593

of activations to each domain separately, shown in Figure 594

5B. For each domain, we determined a within-domain 595

attribute that might induce further representational—and 596

thus, topographic—distinctions; we labeled whether the 597

faces were male or female, whether objects were animate or 598

inanimate, and whether scenes were indoors or outdoors. The 599

PC1–PC2 space of each domain appeared to discriminate 600

each attribute well but not necessarily exactly along either 601

component, so we fit a logistic regression over the first two 602

PCs to extract a line (2D hyperplane) in PC1–PC2 space 603

that best discriminated between exemplars of each attribute 604

type (i.e., y(x) = w1 × PC1(x) + w2 × PC2(x)); this led to 605

discriminability of 0.84 for gender, 0.92 for animacy, and 606

0.87 for scenes. We then visualized the topographic weights 607

from aIT onto these discriminating projections, revealing 608

striking topographic organization. In each case, there was 609

an ON-OFF weight pattern localized within the sector of 610

domain-selectivity, along with further, weaker weight outside 611

this sector—for example, orange-colored weight contributing 612

to the animate object attribute within the face-selective cluster 613

(Figure 5B, bottom center)—indicating graded contributions 614

of non-selective units. A complementary clustering analysis of 615

each domain yielded similar results, whereby categories with 616

different attributes clustered spatially (Figures S8-S10). 617

Sign-based constraints combine with wiring length con- 618

straints to produce topographic organization. Having estab- 619

lished that the main ITN architecture produces a host of 620

empirically grounded topographic organizational phenomena, 621

we next performed a constraint-removal analysis to deter- 622

mine which constraints—in addition to the bias towards lo- 623

cal connectivity—are necessary for the development of to- 624

pographic organization. We varied three binary constraints: 625

whether between-area feedforward connections were excitatory 626

only (EFF), whether the model employed separate E and I 627
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Fig. 5. Principal components analysis of activations. A. plots the PC1–PC2 space
and PC1 and PC2 component weights across images from all three domains. Dashed
lines on component weight plots show the contour of selectivity for each domain, using
selectivity maps smoothed with a local averaging kernel (5% nearest units) corre-
sponding to significance p<0.001. B. plots the PC1–PC2 space for responses to each
domain separately, and the weight visualization of a rotated axis in PC1–PC2 space
that maximized the discriminability of images according to a given sub-domain at-
tribute (gender for faces, animacy for objects, and indoor/outdoor for scenes). Dashed
lines show selectivity for the domain of interest, using selectivity maps smoothed with
a local averaging kernel (5% nearest units) corresponding to significance p<0.001.

unit populations within each area (E/I), and whether the628

model contained lateral (recurrent) connections within each629

area (RNN vs. FNN). We thus constructed seven architec-630

tures (the I units in the E/I-EFF-FNN model would exert631

no effect, making the E/I-EFF-FNN model equivalent to the632

EFF-FNN model). Each of these architectures was trained633

across a log-spaced range of λw values, and the generic topog-634

raphy, domain-level topography, performance, and wiring cost635

were analyzed (Figure 6). For each architecture, we selected636

an optimal λw, chosen to maximize the measure of generic637

topography (Equation 7) averaged over layers and celltypes,638

trained an additional instance of the architecture with this639

λw, and visualized the learned topography, shown in Figure640

6E. We found that models without sign constraints (RNN,641

FNN) produced only weak topography, uncharacteristic of642

primate IT cortex. In contrast, models with separate excita-643

tion and inhibition (E/I-RNN, E/I-FNN) produced somewhat644

greater topographic organization, and models with strictly645

excitatory feedforward connectivity (EFF-RNN, EFF-FNN)646

produced topographic organization equivalent to that of the647

main model (E/I-EFF-RNN). Moreover, temporal recurrence648

mediated through learned lateral connections was not nec-649

essary to develop topography. In terms of performance, we650

found that the accuracy of the various recurrent models was651

very similar, with a very small advantage for models in which652

feedforward connectivity was not constrained to be excitatory. 653

In contrast, accuracy for the feedforward models was reduced 654

more substantially (>4% points), pointing to a performance 655

benefit of the recurrent connections. Moreover, while wiring 656

cost (see next section) was determined much more by λw than 657

architecture (Figure 6D), we found that, for the same λw 658

across variants, the variants that developed clear domain-level 659

organization had the smallest wiring cost (Figure S36). 660

Lastly, we found that an identical set of models that did 661

not employ layer normalization typically were too unstable to 662

train, and those that did train performed worse and exhibited 663

weaker topography (see Figure S38 and associated text in 664

Supporting Information). The broad but untuned effect of 665

layer normalization thus appears to both stabilize activity and 666

introduce a global competition that contributes to topographic 667

organization.; 668

Overall, these results demonstrate the importance of sign- 669

based constraints for developing topography in the ITN frame- 670

work, and highlight that several model variants can produce 671

topographic organization and be used for different purposes 672

depending on the level of detail desired. More detailed analy- 673

ses for these variants is available in Supporting Information 674

(Figures S25-S32). 675

Networks can reduce spatial costs while maintaining perfor- 676

mance by increasing topographic organization. The optimiza- 677

tion problem of Equation 4 explicitly works to both maximize 678

visual recognition performance through a task-based loss term 679

Lt, and to minimize overall wiring cost through a connection- 680

based lost term Lw that scales with the square of connection 681

distance. To what extent does minimizing the wiring cost 682

term compromise performance? To answer this question, we 683

computed wiring costs for each architecture and λw discussed 684

in the previous section. We computed wiring cost in two ways. 685

The first way is by using the Lw term, which takes into account 686

both the length and strength of connections. The second way 687

is inspired by the wiring cost minimization framework (64), 688

which takes into account only the length of connections, as- 689

suming sparse connectivity. To compute this wiring cost Lw,u, 690

we sparsified the network to contain only the 1% strongest 691

connections (sparsity = 0.99), and took the averaged squared 692

distance of remaining connections (65, see Equation 8); this 693

sparsification introduces minimal performance deficits in the 694

main ITN model (Figure S7). The results, shown in Figure 695

6D, demonstrate that increasing the wiring cost penalty λw 696

by an order of magnitude decreased the first spatial cost Lw 697

by roughly an order of magnitude. Precisely, for the main 698

architecture, the log-log plot in Figure 6D (left) revealed a 699

power law relationship of the form y = Axm, wherem = −1.24 700

(p < 0.001). The unweighted wiring cost Lw,u similarly decays 701

roughly linearly on the log-log plot up to λw = 0.1, after 702

which Lw,u saturates and then rises for increasing values of 703

λw. Thus, an intermediate value of λw appears sufficient to 704

drive the network towards preferentially local connectivity, and 705

further increasing λw may minimize further the optimization 706

term Lw through other means, such as by further shrinking 707

small long-range weights and reducing participation at the 708

grid boundaries where mean connection lengths are longest 709

(see Figure S6). In contrast to the wiring costs, the final clas- 710

sification performance was only marginally affected by λw (for 711

main model: log-log slope m = −0.0016, p < 0.001, explained 712

variance r2 = 0.582; fit was not significantly better than log- 713
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Fig. 6. Topographic organization, performance, and wiring cost as a function of spatial regularization strength (λw) and architectural constraints. 7 architectures were tested,
sweeping all unique variations of models containing or not containing: separate excitation and inhibition (E/I), excitatory-only feedforward connectivity (EFF), and learned
lateral/recurrent connections (RNN vs. FNN); see panel D. for a model-by-model constraint breakdown. Note that all models contained a minimal form of recurrence induced by
the layer normalization operation. A. generic topographic organization summary statistic (Equation 7). B. domain-level topographic organization summary statistic (Equation 6).
C. final accuracy on validation images. D. two measures of wiring cost. Left: Lw (Equation 4), right: Lw,u (Equation 8). E. domain-level and generic topographic organization
visualizations for each architecture using the tuned value of λw that maximized Tg . Each model was tested using a different random initialization from the one used to tune λw .

linear regression, m = −0.0028, p < 0.001, explained variance714

r2 = 0.583). Last, increasing the wiring cost penalty gradually715

resulted in the emergence of domain-selective topographic orga-716

nization, along with generic topographic organization indexed717

by distance-dependent pairwise response correlations (see Fig-718

ure 6A,B, and Figure S6). Thus, models with a large wiring719

cost penalty perform similarly to models with unconstrained720

connectivity but achieve very small wiring cost, through the721

development of topographic functional organization.722

Discussion723

Is IT cortex a collection of independent, possibly hard-wired724

domain-specific modules, or a more general-purpose, interac-725

tive, and plastic system? A central goal of the current work726

was to determine whether seemingly domain-specific organi-727

zation can emerge naturally from domain-general constraints.728

The simulations we report demonstrate that many of the729

key findings thought to support a modular view of separable,730

innately-specified mechanisms for the recognition of different731

high-level domains (faces, objects, scenes) can be accounted732

for within a learning-based account operating under generic733

connectivity constraints (also see 23, 37, 76). By simulating a734

biologically plausible Interactive Topographic Network (ITN)735

model of IT without domain-specific innate structure, we found736

that we can “let the structure emerge” (77, 78). Specifically,737

we observed that the model developed largely domain-selective738

spatial clusters which contain preferential information for each739

domain, and which, when lesioned, produced largely (but not740

purely) specific deficits. 741

The equivalence of domain-general and domain-specific or- 742

ganization. Beyond domain-level spatially clustered organiza- 743

tion, the model exhibited a more generic form of topographic 744

organization, whereby nearby units had more correlated re- 745

sponses over images compared to more distant units, a rela- 746

tionship which has been demonstrated in macaque IT cortex 747

(15, 79). In concert with other modeling work (15) that pres- 748

sured neurons to obey this relationship as a proxy for wiring 749

cost, our work suggests that this generic spatial functional 750

relationship appears to both underly domain-level organiza- 751

tion and emerge from wiring cost minimization. Moreover, 752

we found that the principal components of image space were 753

mapped across each area of model IT, as in macaque IT 754

(14). That many of the hallmarks of domain-specificity can 755

be simulated in a domain-general experiential account, and 756

such domain-level organization exists within a more generic 757

organization, gives credence to domain-general accounts that 758

accommodate learned specialization (50, 80). 759

The importance of sign-based constraints alongside a mini- 760

mal wiring constraint. Importantly, wiring cost and multi-task 761

optimization (i.e., object, face, and scene image recognition), 762

by themselves, were not sufficient to produce substantial topo- 763

graphic organization (Figures 6, S32). However, we found that 764

two well-known biological details—excitatory-only between- 765

area communication, and separate excitatory and inhibitory 766
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neural populations—could induce greater topographic orga-767

nization in the context of wiring cost and task optimization.768

Notably, locally-biased excitatory feedforward connectivity769

provides an inductive bias that neighboring units should have770

positively correlated response properties, without specifying771

how correlated they should be. As widespread correlation772

impairs representational capacity, the network is encouraged773

to learn in a fashion whereby pairwise correlation of neural rep-774

resentations decays with distance, a hallmark of topographic775

organization (15, 75). Models with separate excitatory and776

inhibitory neurons—but no restriction on which neurons sent777

feedforward connections—produced greater topography rela-778

tive to non-sign-constrained models, but weaker topography779

than models with the feedforward excitation restriction. In-780

terestingly, the feedforward E/I variant (E/I-FNN) produced781

stronger topographic organization than the recurrent variant782

(E/I RNN). Lastly, future work examining other tasks (81, 82)783

and architectures (83–86) that place greater functional de-784

mands on lateral connectivity may find that local connectivity785

constraints would make a greater contribution to topographic786

organization.787

Comparison with other topographic algorithms. The Self-788

Organizing Map (SOM) (36) and other algorithms applied789

to early visual cortex topographic organization (28, 30) each790

implement a form of local cooperation alongside broader com-791

petition. Specifically, in the SOM, global competition is im-792

plemented by selecting a winning unit on each trial, and sup-793

pressing the responses of all other units, and local cooperation794

is mediated through Hebbian learning scaled by a Gaussian795

neighborhood around the winning unit. While the main ITN796

model is quite different from the SOM—employing error-driven797

rather than Hebbian learning, optimized rather than fixed lat-798

eral weights and RF sizes, hierarchical organization—one of the799

simple ITN variants can be seen as conceptually similar to the800

SOM, and this may provide insight into the minimal compo-801

nents of topographic development in ITN models. Specifically,802

we found that a feedforward model employing local excitatory-803

only between-area connections and lateral connectivity limited804

to the layer normalization operation (EFF-FNN) was capable805

of producing many of the hallmarks of topographic organiza-806

tion in the main model (Figures 6, S31). In EFF ITN models,807

including this variant, the local excitatory feedforward connec-808

tions (Figure 10) implement a form of local cooperation, ensur-809

ing that neighboring units are positively correlated; the layer810

normalization operation then implements a global competition811

by attempting to convert the distribution of pre-activations to812

a standard normal distribution, which leads to sparser activity813

following rectification (the degree of which can be controlled814

by each unit’s bias term), and ensures that units represent dif-815

ferent aspects of the feature space. Thus, layer normalization816

implements both competition and interactivity that, when817

combined with the local representational cooperation induced818

by local excitatory feedforward connections, leads to a smooth819

topographic organization whereby the unit feature tuning is820

systematically more similar for nearby units than for farther821

units. In recurrent ITN models, such as the main model, the822

learned lateral connections can adapt this competition and823

interactivity, allowing for increased performance (Figure 6C).824

Moreover, these learned lateral connections may contribute to825

competition through learned broad inhibition (Figure S17).826

Despite some conceptual similarities, there are some dis-827

tinct advantages to ITNs relative to SOMs and other previous 828

topographic mapping algorithms. First, ITNs are naturally 829

hierarchical, allowing for multiple interacting levels of topo- 830

graphically organized representations, rather than assuming a 831

single feature space to be arranged in a single topographic map. 832

This allows the ITN to account for the presence of multiple 833

domain-selective regions arranged in a stream from earlier to 834

later parts of IT (1, 3, 87, 88) and (in future work) to incor- 835

porate connectivity with upstream and downstream areas to 836

IT. Second, and relatedly, the connectivity constraints of the 837

ITN can be incorporated into generic task-optimized neural 838

networks, without requiring separate Hebbian updates to topo- 839

graphically organize the feature space following development of 840

the feature space (as in the SOM), yielding a functional rather 841

than purely organizational role for lateral connections. Lastly, 842

the ITN framework is very flexible, allowing for future research 843

to examine different encoders, different IT architectures and 844

topologies including more detailed modeling of neuronal cir- 845

cuitry, and different task training environments and readout 846

mechanisms, yielding promise for a variety of future directions. 847

Limitations and future directions. The current work only ad- 848

dresses the topographic organization of high-level represen- 849

tations, since the connectivity constraints were not applied 850

within the encoder model of early and mid-level vision. Mod- 851

eling topographic organization in convolutional layers is a 852

particular challenge for the ITN framework, as doing so over 853

both retinotopic location and stimulus features—well known 854

organizing principles of early visual cortex—would necessitate 855

that each channel have potentially different connections with 856

other channels across different retinotopic positions, precluding 857

the convolution. In point of fact, feature tuning in the brain is 858

not actually uniform across the visual field (89, 90), and thus 859

relaxing the convolution assumption has merits for advancing 860

visual computational neuroscience, and would enable more 861

detailed connectivity-based topographic modeling of early and 862

mid-level visual areas. It is now clear that convolution is not 863

strictly required – fully connected visual “Transformer” lay- 864

ers using multiplicative attentional interactions (91, 92) have 865

recently been shown to reach high performance without con- 866

volution. These architectures, and other biologically-plausible 867

variants, thus serve as an exciting opportunity to examine 868

topographic organization from connectivity-based constraints. 869

Relatedly, despite its strength in explaining hierarchical 870

topographic organization owing to between-area spatial con- 871

straints, the ITN is not yet able to satisfactorily explain cer- 872

tain aspects of hierarchical representational transformation— 873

specifically, increasing invariance to 3D rotation (14)—in con- 874

trast to the earlier convolutional layers of the encoder (Figures 875

S13-S14). This is related to the need to use non-convolutional 876

layers in model IT, rather than a result of the wiring or sign- 877

based constraints, as an RNN-ITN model with λ = 0 shows 878

the same plateau of representational invariance in the ITN 879

layers (Figure S15). Thus, our work should be seen as a 880

demonstration that within and between-area connectivity con- 881

straints can give rise to within and between-area topographic 882

organization, but future research will need to bridge the gap 883

to jointly explain the increasing invariance commonly seen in 884

standard convolutional neural networks. This again points to 885

the critical need for future work to extend the ITN framework 886

to more powerful computational architectures, training envi- 887

ronments, and learning rules (93), rather than relegating this 888
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computational power to a distinct encoder.889

We also discovered some differences between the overarching890

representational space of the ITN models and primate IT.891

Namely, while the main ITN trained to recognize categories892

from 3 domains (faces, objects, and scenes) mapped these893

domains smoothly, the representational space elicited by a894

set of artificial object stimuli was less cleanly topographically895

organized (Figure S20A). In contrast, an alternative ITN model896

trained only on ImageNet (general results shown in Figures897

S18, S19) mapped these objects in a smoother fashion more898

similar to primate IT (Figure S20B) (14). However, such a899

model cannot account for human expertise in face recognition900

(Figure S18B.). Thus, each image set is limited in its ability901

to fully explain the empirical data. Future work employing902

more naturalistic datasets in which faces appear in the context903

of individuals in scenes alongside demands for individuation904

may lead to the development of representations that can more905

fully capture both the large-scale organization and behavioral906

demands of primate vision. We also found that a weaker907

spatial penalty resulted in less patchy topography for images908

outside the distribution of training images, such as the stimuli909

of (14) (Figure S22). Thus, a more detailed comparison of910

how well different ITN models quantitatively and qualitatively911

explain IT cortex is an exciting line for future research.912

While our work advanced biological plausibility beyond913

previous works, by incorporating wiring constraints, the sep-914

aration of excitation and inhibition, and between-area exci-915

tatory connectivity, additional biological details are likely to916

be important to the computation and organization of the vi-917

sual cortex. Future work may seek to consider incorporating918

details such as E/I neuron ratio, E/I balance, variability in919

neuronal time constants, divisive vs. subtractive inhibitory920

cell types, etc. Notably, the layer normalization operation921

is similar to divisive normalization and its effects in activity922

stabilization and global untuned inhibition might be modeled923

in a biologically plausible fashion in future work.924

Lastly, we focused on constraints local to the IT circuit,925

demonstrating that they can give rise to the presence of bio-926

logically realistic domain-level clusters and global generic or-927

ganization. But in humans and non-human primates, domain-928

selective regions do not merely exist, but exist in consistent929

locations across individuals of a given species (3, 19, 48, 94, 95),930

albeit with modest yet reliable individual variability (96). The931

retinotopic organization of upstream early visual cortical ar-932

eas is thought to encourage foveally-biased cortex to support933

face representations, and peripherally-biased cortex to support934

scene representations (47, 97), and connectivity biases with935

downstream nonvisual areas is thought to play a further role936

in shaping the global organization of domain-selective areas937

in IT (47, 98–102). These biases, such as left-hemispheric938

language biases, other more fine-grained patterning of connec-939

tions with domain-relevant downstream areas (i.e., socially-940

responsive areas for faces, memory areas for scenes, motor941

areas for manipulable objects), and cross-modal map align-942

ment (23, 80) should be explored in future work to understand943

better the factors underlying IT organization both within and944

between hemispheres. We hypothesize that modeling long-945

range connectivity-based constraints with regions external to946

IT (e.g., 46, 47) (see also 103) in an extended ITN architecture947

containing two hemispheres, will give rise to reliable within-948

and between-hemisphere patterns of areal localization. Given949

that different initializations and architectural variants can 950

yield interesting individual representational differences in deep 951

learning models (67), we expect that a systematic study of 952

architectural variation in ITN models could lead to successful 953

quantitative accounting of individual differences in human 954

cortical topography and representation. 955

Conclusion. The Interactive Topographic Network framework 956

demonstrates that generic connectivity constraints can pro- 957

duce the central aspects of topographic organization in pri- 958

mate visual cortex. Extensions of the approach hold promise 959

in accounting for the systematic localization of domain special- 960

ization both within and between hemispheres. Code will be 961

made available upon publication at www.github.com/viscog- 962

cmu/ITN to develop and test further ITN models. 963
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