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Inferotemporal cortex (IT) in humans and other primates is topo-
graphically organized, containing multiple hierarchically-organized
areas selective for particular domains, such as faces and scenes.
This organization is commonly viewed in terms of evolved domain-
specific visual mechanisms. Here, we develop an alternative,
domain-general and developmental account of IT cortical organiza-
tion. The account is instantiated in Interactive Topographic Net-
works (ITNs), a class of computational models in which a hierarchy of
model IT areas, subject to biologically-plausible connectivity-based
constraints, learns high-level visual representations optimized for
multiple domains. We find that minimizing a wiring cost on spa-
tially organized feedforward and lateral connections alongside real-
istic constraints on the sign of neuronal connectivity within model
IT results in a hierarchical, topographic organization. This organi-
zation replicates a humber of key properties of primate IT cortex,
including the presence of domain-selective spatial clusters prefer-
entially involved in the representation of faces, objects, and scenes,
columnar responses across separate excitatory and inhibitory units,
and generic spatial organization whereby the response correlation
of pairs of units falls off with their distance. We thus argue that topo-
graphic domain-selectivity is an emergent property of a visual sys-
tem optimized to maximize behavioral performance under generic
connectivity-based constraints.

Inferotemporal cortex | Functional organization | Topography | Neural

network | Development

I nferotemporal cortex (IT) subserves higher-order visual abil-
ities in primates, including the visual recognition of objects
and faces. By adulthood in humans, IT cortex, and ventral
temporal cortex more generally, contains substantial func-
tional topographic organization, including the presence of
domain-selective spatial clusters in reliable spatial locations,
including clusters for faces (1-3), objects (4), buildings and
scenes (5, 6), and words (7). Similar domain-level topographic
properties have been found in rhesus macaque monkeys, in-
cluding multiple regions of clustered face selectivity (8-10).
Intriguingly, this selectivity is encompassed in a larger scale
“mosaic” of category-selectivity, in which areas of category-
selectivity themselves have further columnar clustering within
them (11-13), and moreover, category-selectivity appears to
exist as clusters within general dimensions of object space
(14) spatially organized so as to smoothly map neuronal cor-
relations over space (15), pointing to more general principles
of organization beyond the domain level. In line with this
idea, human IT cortex also exhibits larger-scale organization
for properties such as animacy and real-world size (16, 17),
and midlevel features characteristic of these properties and
domains have been shown to account well for patterns of high-
level visual selectivity (18). How these domain-level and more
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general facets of functional organization arise, how they are
related, and whether and in what ways they rely on innate
specification and/or experience-based developmental processes
remain contentious.

Recent work has demonstrated that the neural basis of
face recognition depends crucially on experience, given that
deprivation of face viewing in juvenile macaque monkeys pre-
vents the emergence of face-selective regions (19). Relatedly,
the absence of exposure to written forms through reading
acquisition precludes the emergence of word-selective regions
(20, 21). That there exists clustered neural response selectivity
for evolutionarily new visual categories such as written words
offers further evidence that the topographic development of
the human visual system has a critical experience-dependent
component (22, 23). In contrast with a system in which innate
mechanisms are determined through natural selection, this
experiential plasticity permits the tuning of the visual system
based on the most frequent and important visual stimuli that
are actually encountered, thereby enabling greater flexibility
for ongoing adaptation across the lifespan.

There is considerable computational evidence that
experience-dependent neural plasticity can account for the
response properties of the visual system at the single neuron
level. Classic work demonstrated that the statistics of natural
images are sufficient for learning V1-like localized edge-tuning
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demonstrate in computational simulations that the spatial clus-
tering of domains in late stages of the primate visual system
may arise from the demands of visual recognition under the
constraints of minimal wiring costs and biologically realistic
constraints on the sign of neuronal connections. The learned
organization of the model is highly specialized but not fully
modular, capturing many of the properties of organization in
primates. Our work is significant for cognitive neuroscience,
by providing a domain-general developmental account of topo-
graphic functional specialization, and for computational neuro-
science, by demonstrating how well-known biological details
can be successfully incorporated into neural network models in
order to account for critical empirical findings.

N.M.B., M.B., and D.C.P. conceived of the work. N.M.B. developed software and performed simula-

tions and data analyses. M.B. and D.C.P supervised the project. N.M.B. wrote the first draft of the
paper. N.M.B, M.B., and D.C.P. revised the paper.

The authors declare no competing interests.

F To whom correspondence should be addressed. E-mail: {blauch,behrmann}@cmu.edu

June 21,2022 | 1-12

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


https://www.biorxiv.org/content/10.1101/2021.05.29.446297

49
50
51
52
53

54

55
56
57
58
59
60

61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106

107

108

109

within a sparse coding framework (24, 25). More recently,
deep convolutional neural networks (DCNNs) trained on im-
age classification have been successful in accounting for the
tuning of neurons in V1, V2, V4, and IT in a hierarchically
consistent manner, where deeper layers of the DCNN map
onto later layers of the anatomical hierarchy (26, 27).

Above the single-neuron level, considerable prior work has
demonstrated that topographic organization in V1 may emerge
from self-organizing, input-driven mechanisms (28-34) (for
review, see 35). For example, the pinwheel architecture of
spatially repeating smooth orientation selectivity overlaid with
global retinotopy has been shown to be well-accounted for by
Self-Organizing Maps (SOMs) (31, 32, 36).

One notable application of an SOM to modeling high-
level visual cortex by Cowell and Cottrell (37) demonstrated
stronger topographic clustering for faces compared to other ob-
ject categories (e.g., chairs, shoes), suggesting that the greater
topographic clustering of faces in IT is due to greater within-
category similarity among faces compared to these other cate-
gories. This work provides a strong case for domain-general
developmental principles underlying cortical topography in IT,
but at least two important issues remain unaddressed. First,
rather than only supporting discrimination of face from non-
face categories (as in 37), face representations in humans (and
likely non-human primates, though see (38)) must support the
more difficult and fine-grained task of individuation; this task
requires a “spreading transformation” of representations for
different face identities (39, 40), which could could alter the
feature space and its topographic mapping, and necessitate
a more domain-specialized representation than that exam-
ined by (37). Second, rather than a single face-selective area,
IT cortex actually contains multiple hierarchically-organized
face-selective regions with preferential inter-connectivity (41).
Generally, SOMs are not well equipped to explain such hi-
erarchical topographic interactions, as they are designed to
map a feature space into a topographic embedding, but not to
transform the feature space hierarchically in the way needed
to untangle invariant visual object representation from the
statistics of natural images (42). This suggests that SOMs are
an incomplete model of topographic development in cortical
networks.

An alternative approach to studying topographic organi-
zation involves incorporating distance-dependent constraints
on neural computation within more general neural network
models (43-46). Of particular interest is a hierarchical neu-
ral network developed by Jacobs and Jordan (45) in which
error-driven learning was augmented with a spatial loss func-
tion penalizing large weights to a greater degree on longer
versus shorter connections. This model was shown to develop
topographic organization for ’what’ versus 'where’ informa-
tion when trained with spatially segregated output units for
the two tasks. Closely related work by Plaut and Behrmann
(47) demonstrated that a similarly spatially-constrained model
with biased demands on input (e.g., retinotopy) and output
(e.g. left-lateralized language) could account for the organiza-
tion of domain-specific areas in I'T cortex, such as the foveal
bias for words and faces, leftward lateralization of words, and
rightward lateralization of faces (48-50).

However, to date, none of these structurally-biased neural
network models have been applied to large-scale sets of natu-
ralistic images, the statistics of which are thought to organize
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high-level visual representations in IT cortex (51), and the
topography in these models (45, 47) has been analyzed at
a relatively coarse level. Nonetheless, this early work raises
the possibility that the application of distance-dependent con-
straints in a deep neural architecture trained on natural images
might provide a more comprehensive account of topographic
organization in IT.

Along these lines, Lee and colleagues (15) have recently
modeled the topography of IT cortex with Topographic Deep
Artificial Neural Networks (TDANNS) that are trained on a
large set of natural images using a correlation-based layout that
explicitly encourages units within a layer of the network to be
spatially nearer to units with correlated responses, and farther
from units with uncorrelated or anti-correlated responses. As
a result, the TDANN developed face-selective topography that
corresponded well with data from macaque monkeys. However,
this approach imposes topographic functional organization on
the network based on measured functional responses, rather
than deriving it from realistic principles of cortical structure
and function, such as constraints on connectivity. Moreover,
like the SOM, the TDANN can explain only within-area to-
pographic organization, and not spatial relationships between
areas, such as stream-like organization of multiple stages of
IT cortex (3, 52) and their embedding in a network coupled
with upstream and downstream cortical areas (48). Thus, the
question remains whether such basic structural principles can
account for the topographic organization of IT.

In the current work, we combined the approaches of task-
optimized DCNN modeling (15, 51) with flexible connectivity-
constrained architectures (45, 47) to develop a hierarchical
model of topographic organization in IT cortex. We imple-
mented a bias towards local connectivity through minimization
of an explicit wiring cost function (45) alongside a task per-
formance cost function. Intriguingly, we observed that this
pressure on local connectivity was, on its own, insufficient to
drive substantial topographic organization in our model. This
led us to explore two neurobiological constraints on the sign of
connectivity—strictly excitatory feedforward connectivity, and
the separation of excitation and inhibition—with the result
that both, and, particularly, excitatory feedforward connectiv-
ity, provided a powerful further inductive bias for developing
topographic organization when combined with a bias towards
local connectivity. Our results begin to shed light on the fac-
tors underlying hierarchical topographic organization in the
primate visual system.

Materials and Methods

The Interactive Topographic Network. We introduce the Interactive
Topographic Network (ITN), a framework for computational mod-
eling of high-level visual cortex, and specifically, it’s functional
topographic organization. ITN models are defined as neural net-
work models that are 1) optimized to perform naturalistic tasks
(following 53) and 2) connectivity-constrained in a biologically plau-
sible manner so as to give rise to functional organization (extending
previous work by 45, 47). In this work, we introduce a form of
ITN that is divided into three components: an encoder that ap-
proximates early visual cortex, interactive topography (IT) layers
that approximate inferotemporal cortex, and a readout mechanism
for one or more downstream tasks. The goal of the encoder is to
extract general visual features which describe the visual world along
dimensions that support a broad range of downstream readout tasks.
However, our main modeling focus is on the IT layers, which consists
of a series of pairs of recurrent layers that are subject to biological

Blauch et al.

110
111
12
13
114
15
116
17
118
19
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154

155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17


https://www.biorxiv.org/content/10.1101/2021.05.29.446297

172
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187

188
189
190
191
192
193
194
195

196
197
198
199
200

201
202
203
204
205
206
207
208
209
210

211
212

213
214
215

216
217
218
219
220

222
223
224
225
226

constraints. For computational simplicity, such constraints are not
modeled in the encoder (but see Discussion for future directions).

Encoder architecture and training. We used a ResNet-50 (54) encoder
to allow the ITN to extract deep and predictive features of the
trained inputs. The encoder is pre-trained on equal sized subsets
of faces, objects, and scenes from the VGGFace2 (55), ImageNet
(56), and Places365 (57) datasets, respectively, matched in terms
of total training images. We reused the same subsets of faces and
objects as in (58), and an additional scene domain was constructed
to match the other two domains in total images. An initial learning
rate of 0.01 was used, and this learning rate was decayed 5 times by
a factor of 10 upon plateau of the validation error; after the fifth
learning rate decay, the next validation error plateau determined
the end of training. Stochastic gradient descent with momentum
(p = 0.9) and 12 weight decay (A = 0.0001) was used, with batch
size of 256 on a single GPU.

Recurrent neural network formulation of IT. Our model of IT extends
the standard discrete-time Recurrent Neural Network (RNN) for-
mulation common in computational neuroscience (e.g., 59). We
begin with the continuous-time dynamics of units in an RNN layer,
where (%) is the vector of pre-activation activities in area a of IT,
(@) is the vector of post-activation activities in area a, b(%) is the
vector of baseline activities in area a, 7 is the scalar neuronal time
constant, and W () is the matrix of weights from area a to area b:

(@)
d
7—7$t

o — _w§a> + W<a‘a')’l’§a) + W(afl,a)rgafl) + b(a) [1]

where the activation function ria) = [xia)h is positive rectification,
also called a Rectified Linear Unit (ReLU). Applying the Euler
method to integrate this first-order ordinary differential equation,
with time step size At, and substituting o = %, yields the discrete
time update:

mg‘” =(1- a)xi‘?l + a (WW’“)TE‘?I + W(‘kl’“)riffll) + b(“>)
[2]

When training models with separate excitatory and inhibitory
units, we noted that training could be extremely unstable and
typically required some mechanism for achieving stability. To this
end, we adopted layer normalization (60), without the trainable
scaling parameter that is sometimes used (see 60, for more details).
We found layer normalization to be extremely effective in stabilizing
models and encouraging well-distributed activations (Figure S38).
Where p(z) is the mean of , and o(x) is the standard deviation
of &, and b is the learned bias term (moved outside of the layer
normalization), the layer-normalized activities are given as:

= & wxe) |y
o(zt)

= 2]+

Incorporating layer normalization into our update equation yields
the final update equation:

o9 = (1= slt v (WA £ WOt g

Extending the standard RNN framework with biological constraints.
Here, we outline the major biological constraints implemented in
this work.

Spatial organization. An essential aspect of an ITN model is that
each IT layer has a spatial organization (see also (15)). We chose
to model layers as square grids, with each layer of the hierarchy
of equal size (typically, a grid size length of 32, corresponding to
a layer of 1024 units). We normalize the coordinates to lie in the
range [0,1]. Each unit thus has a unique (z,y) coordinate which
will be used to determine the distance-dependent network topology.
In general, the specific choices about map spatial arrangement are
not critical to the predictions of the model, but they can potentially
be manipulated in certain ways in the service of other theoretical
goals.

Blauch etal.

Spatial connectivity costs. We impose distance-dependent con-
straints on connectivity through a cost on longer connections
throughout training. This basic formulation of the loss was in-
troduced by Jacobs and Jordan (45) as a way to induce spatially
organized task specialization, and was shown to do so in a simple neu-
ral network model trained on small-scale tasks. To our knowledge,
no other research has examined this loss in modern deep learning ar-
chitectures trained on natural images. We use a simple modification
of the original loss function, using the squared Euclidean distance
(Di,j)? = ||ri — 7113 (in place of (D; ;) = ||r; — r;]|33 distance
(45)). By using the squared distance, we penalize longer connections
disproportionally compared to shorter connections. The spatial loss

. a,b
on connections between areas a and b, EEU )

2 2
(a.0) (a:0)
2
i 1+(Wﬁ@)

The total spatial loss is the sum of the area-to-area spatial losses
Ly = Za bcif’b), and is added to the task-based loss as £ =

L+ 4+ ALy, on which gradient descent is performed. Additionally,
in contrast to (45), we choose a single A, parameter, rather than
varying it throughout training. For each architectural variant,
we chose the A\, that maximized a metric of generic topographic
organization (Ty, Equation 7)

, is given by:

ﬁ(a,b) —

w

(4]

Connection noise. To approximate axon-specific variability in in-
stantaneous firing rate (61), we apply multiplicative noise on the
individual connections between neurons that is uniform over dis-
tance and layers. In practice, we find that connection noise helps
to regularize the activations in the network, encouraging a more
distributed representation that aids the formation of topography
across a range of models (see Figure S39 for evidence that it is
not absolutely necessary). Noise is sampled independently from
a Gaussian distribution N centered at 0 with variance o2 at each
time step of each trial, and is squashed by a sigmoidal function

S(z) = 1_‘_’%, ensuring that the sign of each weight is not changed

and each magnitude does not change by more than 100%. Thus,
the noisy weight matrix WT(La’b) from area a to area b on a given
trial and time step is:

Wi = 8 (N(0,0)) x W@ [5]

Sign-based restrictions on neuronal connectivity. Standard neural
networks gloss over a key detail of neuronal morphology—that single
neurons obey Dale’s Law, whereby all of their outgoing connections
are either excitatory or inhibitory (ignoring modulatory neurons and
other special, rare cases) (59). We employ this principle within our
framework by replacing the single sheet of unconstrained neurons
with parallel sheets of excitatory (E) and inhibitory (I) neurons.
The second sign-based restriction we implement is that between-area
interactions are carried out predominantly by excitatory pyramidal
neurons. Thus, we restrict between-area feedforward connectivity
to originate from the excitatory neurons only. In the main model,
both E and I neurons receive feedforward inputs.

IT architecture and training. The main I'TN model consists of 3 IT
layers (pIT, cIT, alIT) with separate E and I populations, and
feedforward connections sent only by E units. To facilitate training
many models with fewer computational demands, the model is
trained using a fixed pre-trained ResNet-50 encoder on smaller
subsets of faces, objects, and scenes. Specifically, we created image
subsets equal to the size of the popular CIFAR-100 dataset but at
higher image resolution, containing 100 categories each with 500
training images and 100 validation images, resized to 112x112 pixels.
Thus, the combined dataset contained 300 categories with 150,000
training images and 30,000 validation images. The same learning
rate schedule as used for training the encoder was used. Stochastic
gradient descent with momentum (p = 0.9) was used, with batch
size of 1024 on a single GPU. In the main model, we used spatial
regularization with A, = 0.05, without additional weight decay on
IT connections.
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IT model variants. To better understand the relative importance of
different aspects of model design that contribute to the development
of topographic organization, we examine a variety of IT model
variants containing different subsets of implemented constraints
(Figure 6). Some of these models do not use separate populations
of E and I units, but still restrict feedforward connectivity to be
excitatory. In this case, we simply restrict the feedforward weights
to be positive, despite the same neuron having both positive and
negative lateral connections. In another case, separate populations
of E and I units are both allowed to send feedforward projections. In
yet another variant, we remove learned lateral connections entirely.
This model is trained for a single time step, and the only recurrent
computation is that of a single pass of layer normalization. Lastly,
we explore a range of spatial regularization strengths.

Analyses of trained models. After training, the responses in IT lay-
ers are probed to investigate emergent task specialization and its
topographic organization. We use three main approaches.

Mass univariate analyses. The first analytic approach is the simple
mass-univariate approach, in which each unit is analyzed separately
for its mean response to each stimulus domain (objects, faces,
scenes), using untrained validation images from the same categories
used in training. In addition to computing the mean response to
each domain, we compute selectivity, a ubiquitous metric used in
neuroscience, to analyze how responsive a unit is to one domain
compared to all others. We compare the responses of each domain
versus the others using a two-tailed ¢-test, and given the test statistic
t, the significance value p of the test, and the sign of the test statistic
s = sign(t), we compute the selectivity as —slog(p).

Searchlight decoding analysis. The second analysis approach is the
multivariate searchlight analysis commonly used in fMRI (62), in
which a pool of units are selected in a (circular) spatial window
around each unit, and the accuracy for discriminating between
different categories (e.g., hammer vs. screw-driver) in each domain
(e.g., objects) is computed using the activations of only that pool of
units; the mean accuracy value is assigned to the center unit, and
the process is repeated for all units.

Lesion analysis. To assess the causal role of certain units in the
performance of specific tasks, we adopt a lesioning approach in
which the activities of lesioned units are set to 0 at each time
step. This effectively removes them from processing, allowing the
network’s dynamics to unfold independently of these units. The
effect of a lesion is measured by computing the accuracy following
the lesion and relating that to the baseline accuracy.

The first type of lesion we perform is a spatial or focal lesion
in which a circular neighborhood of size p X n units is selected,
where p is the fraction of units selected and n is the total number
of units in the area where the lesion is performed. The lesion is
centered on a unit u; ; either randomly or according to the peak of
a specific metric such as selectivity. To lesion spatial neighborhoods
corresponding to regions of high domain selectivity, we take the
selectivity map, perform spatial smoothing, and select the unit u of
peak smoothed selectivity.

The second type of lesion sorts units according to a given selec-
tivity metric irrespective of their spatial location. In this analysis,
the p X n most selective units are chosen for a given lesion. This is
done separately for the selectivity of each domain, as in the focal
lesions. When the topography is smooth and the regions approxi-
mately circular, the selectivity-ordered and focal lesions yield similar
results. However, to the extent that the topography is not perfectly
smooth or circular, the selectivity-ordered lesion may knock-out a
more relevant set of units for a given task.

Distance-dependent response correlation. We calculate the correla-
tions of the responses of all pairs of units as a function of distance
between them. Response correlation is computed for a given time
step over a large number of images, either from all domains, or from
each domain separately.

Topographic organization summary statistics. We compute two met-
rics of topographic organization—one indexing generic organization
and the other, domain-level organization. The domain-level to-
pography statistic Ty is a measure of how much the alignment of
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domain-level selectivity vectors between pairs of units falls off with
distance. For a given layer [, cell type ¢, and neuron i, let us consider
a 3-D vector of selectivity values for each domain s;. Using the

P) pairs

dot product s; - s; between selectivity vectors of m = (2)

of neurons (to allow for magnitude effects), standardized over all
neuron pairs as z(-), and assuming ! and c are held constant, the
domain-topography statistic T, is then given as:

1w z(s; - 85)
Ty= ) = 6]

— 2%}
,J

The standardization ensures that the statistic is not inflated for
poorly trained networks with uniformly high correlation values
across unit pairs. Similarly, the generic topography statistic is a
measure of how much pairwise response correlation falls off with
distance. For a given layer [, cell type ¢, and neuron i, let us consider
a n-D vector of responses over n images s;. The statistic Ty is then
given as:

p
1 z(r(a;,a;
ngiz (r(ai, a;)) 7]
m 4— Dy j
,J
In the paper, we plot the T and Ty values averaged over layers and
cell types. In supplementary material, we additionally plot values

per layer and cell type.

Analyzing spatial costs of trained networks. To understand the
wiring cost of certain trained models, we analyze the spatial cost of
a network, as given by Equation 4, as a function of architectural
parameters such as the spatial regularization strength A,,. In one
analysis, we analyze only the feedforward spatial cost, which simply
requires summing spatial costs over pairs of areas a and b where
a # b. Similarly, to analyze only the recurrent spatial cost, we can
sum spatial cost over pairs of areas a and b where a = b.

Unweighted spatial cost of sparsified networks. While wiring cost in
an artificial neural network should depend to some extent on the
strength of connections—stronger connections may require greater
myelination, and strong connections in an artificial neural network
may correspond to a larger number of synapses in a biological
neural network—there is another notion of wiring cost whereby it
depends only on whether or not two neurons are connected. This
notion of wiring costs has been commonly applied to the study
of cortical areal layout and early visual cortical maps (e.g. 31, 63—
65). Moreover, the analysis of binary connectivity in thresholded
networks is also common in graph-theoretic analysis of brain data
(66). To analyze this notion of wiring costs, we pruned our trained
models to a desired connection sparsity level s, setting to 0 the
n X m X s connections with the smallest magnitude, where n and
m are the number of units in areas a and b . Sparsity was enforced
globally within IT and from IT to readout, rather than individually
for each set of connections. We then analyzed an unweighted wiring

cost z:ﬁ,j’,f) that computes the mean of squared Euclidean distance
values between connected units ¢ and j in areas a and b, given that
(a,b) are in the set of connected areas C':

mt g o (o) (w0 #0)

2]

£l@b)

Results

A connectivity-constrained model of ventral temporal cortex
produces hierarchical, domain-selective response topogra-
phy. We first present the results of simulations of a specific ITN
model (Figure 1A), which we will refer to as the main model or
E/I EFF RNN, to indicate that it possesses separate neurons
responsible for excitation and inhibition (E/I), a restriction
that feedforward connections are strictly excitatory (EFF), and
temporally recurrent processing is mediated through learned
lateral connections (RNN). These three factors—in addition to
the strength of the wiring cost penalty \,—will be of interest
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Fig. 1. The Interactive Topographic Network produces hierarchical domain-level organization. A. diagram of the Interactive Topographic Network (ITN). An ITN model consists
of three components: an encoder that approximates early visual processing prior to inferotemporal cortex, the interactive topography (IT) areas that approximate inferotemporal
cortex, and the readout mechanism for tasks such as object, scene, and face recognition. The architecture of each component is flexible. For example, a 4-layer simple
convolutional network or a deep 50-layer ResNet can be used as the encoder; whereas the former facilitates end-to-end training along with a temporally-precise IT model, the
latter supports better learning of the features that discriminate among trained categories. In this work, topographic organization is restricted to the IT layers. The figure depicts
the main version of the ITN containing three constraints: a spatial connectivity cost pressuring local connectivity, separation of neurons with excitatory and inhibitory influences,
and the restriction that all between-area connections are sent by the excitatory neurons. The final IT layer projects to the category readout layer containing one localist unit per
learned category, here shown organized into three learned domains. (Note that this organization is merely visual and does not indicate any architectural segregation in the
model. B. Domain selectivity at each level of the IT hierarchy. Selectivity is computed separately for each domain, and then binarized by including all units corresponding to
p < 0.001. Each domain is assigned a color channel in order to plot all selectivities simultaneously. Note that a unit can have zero, one, or two selective domains, but not
three, as indicated in the color legend. C. Detailed investigation of domain-level topography in alT. Each heatmap plots a metric for each unit in alT. The first column shows the
mean domain response for each domain, the second column shows domain selectivity, the third column shows the within-domain searchlight decoding accuracy, and the fourth
column shows the mean of weights of a given alT unit into the readout categories of a given domain.

later as we uncover the key ingredients of developing topogra-
phy. Additionally, this model uses a ResNet-50 encoder which
is pre-trained on a large dataset including several categories
from the domains of objects, faces, and scenes (each domain
matched in total training images), and following pre-training,
is used as a feature extractor that provides input to a 3-area IT
containing containing separate posterior (pIT), central (cIT),
and anterior (alT) areas. The main model used a spatial cost
parameter A\, = 0.5 which was chosen to maximize a metric
of domain-level organization (Figure 6).

categories of each domain for the given image sets.

As can be seen in Figure 1B, the trained model exhibits
domain-level topographic organization that is hierarchically
linked across corresponding sectors of each layer. This re-
sult reflects the fact that the distance-dependent constraints
on feedforward connectivity pressured units that have mini-
mal between-area distances to learn a similar tuning, which
means that each layer is roughly overlapping in their respec-
tive (separate) 2D topography. The topographic organization
gets somewhat smoother moving from pIT to cIT, most likely

After training, the model performed well on each domain, because units in cIT and alT (but not pIT) have local feed-

reaching a classification accuracy of 86.4% on the face domain,
81.8% on the object domain, and 65.9% on the scene domain
(see Figure S1). Performance differences across domains are
unlikely to be an artifact of the specific architecture as they
can be seen across a variety of DCNNSs, reflecting the intrinsic
difficulty of each task given the variability within and between
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forward receptive fields and thus greater constraint on local
cooperation. Further quantification of topographic organiza-
tion in each layer can be found in Figure S6. Overall, the
presence of domain-level topography—but not its particular
spatial arrangement—was robust to variation elicited by ran-
dom initialization of model parameters (Figure S23) (67).
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We next scrutinized the topography in alT, where there
are very smooth domain-level responses, and where we can di-
rectly compare responses with those of the recognition readout
mechanism. We computed mean domain responses, plotted
in the first column of Figure 1C, and domain selectivity, plot-
ted in the second column, which demonstrates corresponding
topographic organization. We confirmed the functional sig-
nificance of response topography by conducting a searchlight
analysis inspired by multivariate approaches to analyzing func-
tional magnetic resonance imaging (fMRI) data (62). We
used searchlights containing the 10% (102) nearest units. The
results of this analysis, shown in the third column of Figure
1C, revealed topographic organization of information for dis-
criminating between categories of each domain that is strongly
correlated with the domain selectivity maps for each domain
(all ps < 0.0001). Importantly, every searchlight contained
information substantially above chance level for discriminating
within each domain, pointing to partially distributed infor-
mation despite topographic domain selectivity, in line with
human and macaque neurophysiology (68, 69) (see Figure S3
for comparisons of searchlight decoding accuracy for each unit
across domains).

To further confirm the functional significance of the topo-
graphic organization, we analyzed the spatial organization of
readout weights from alT to the localist category readout layer.
We evaluated whether each domain placed more weight in read-
ing out from the units for which there was greater selectivity,
by calculating the mean domain response weight for each unit,
averaged over classes in each domain. This produced a map
for each domain, shown in the last column of Figure 1C. We
find a large positive correlation between the mean readout
weight and the mean response for each domain (all 7s>0.7, all
ps< 0.0001), further demonstrating the functional significance
of the response topography.

Excitatory and inhibitory units operate as functional columns.
In the main ITN model, the E cells serve as the principal
neurons which exclusively project to downstream areas—thus,
we have focused entirely on the E cells. The inhibitory (I)
cells, in contrast, play a local role in processing, receiving
inputs from and sending outputs to both E and I cells in the
same cortical area. As all the neurons are subject to the same
spatial constraint, we predicted that E and I neurons would
have similar functional topographic organization. We show the
topography of response selectivity of E and I neurons in area
cIT in Figure 2. The neuron types demonstrate clearly similar
functional topography, which we quantify at the columnar
level of a pair of E and I units in the same location. We find
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A. Circular focal lesions B. Selectivity-ordered lesions
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Fig. 3. Lesion results in the ITN model. Each plot shows the relative effects of a
set of medium sized lesions (20% of alT units) on recognition performance for each
domain, relative to the performance on the same domain in the undamaged model.
Error bars show bootstrapped 95% confidence intervals over trials; thus, the statistical
significance of a given lesion can be assessed by determining whether the confidence
interval includes 0. A. Damage from circular focal lesions centered on the peak of
smoothed selectivity for each domain. Left: results for a variety of lesion sizes. B.
Damage from selectivity-ordered lesions for each domain.

that such E-I columns have highly correlated activity, implying
specific functional coupling, as has been demonstrated in ferret
visual cortex (70), and in cortical columns more generally
(71). Inhibitory neurons in alT yielded sparser selectivity and
therefore weaker, but similar, coupling with E units (Figure
S11). One reason I units in alT may have sparser responses
is that the network discovers that it can reduce inhibitory
weights (and thereby spatial costs) here, as alT units project
onto readout units subject to a squashing softmax nonlinearity.
E/I columnar organization was not found in a model trained
without the spatial constraint (Figure S12).

Effects of lesions indicate strong yet graded domain-level
specialization. We next performed a series of “lesion” anal-
yses in the model in order to compare with neuropsychological
data on face and object recognition (72-74). First, we per-
formed focal lesions, as would be experienced by most patients
with acquired brain damage. To simulate the impairment of
patients with maximally specific deficits, we centered circular
focal lesions of various sizes at the center of (smoothed) domain
selectivity. Performance following each lesion was measured
separately for each domain.

A subset of results of this lesion analysis using a medium
sized lesion are shown in Figure 3A, with complete results in
Figure S2. These focal lesions centered on each domain lead
to an especially severe deficit in recognition for that domain,
and milder but significant deficits for the other domains as
well. For such lesions, the deficit is significant for all domains
(all ps<0.05), and significantly stronger for recognition of the
target domain (all ps<0.05).

Are these more general effects of circumscribed lesions
on non-preferred domains the result of imperfect (patchy)
or non-circular topographic organization of an underlying
modular organization? To answer this question, we performed
selectivity-ordered lesions, in which units were sorted by their
selectivity for a given domain, and selected according to their
sorting index. Again, a subset of results is shown in Figure
3B with complete results across a broader range of lesion
sizes shown in Figure S2. The effects of damage in this case
are similar to those for focal lesions, with greater damage
to the domain on which sorting was performed, and smaller
but significant deficits to other domains (all ps<0.05). This
suggests that some but not all of the damage to the non-
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Fig. 4. Generic topographic organization beyond domain-selectivity emerges through task optimization under biologically-plausible constraints on connectivity. A. Distance-
dependent response correlation in macaque IT (reproduced from 15, per CC-BY-NC-ND license). B. Distance-dependent response correlation in the excitatory cells of each
layer, using images from all three domains (objects, faces, scenes). C. Distance-dependent response correlation in alT using images from the object domain only, highlighting

within-domain generic functional organization.

preferred domain induced by focal lesions may be due to
imperfect or non-circular topographic functional organization.
Importantly, these more distributed effects of lesions indicate
that the functional organization, while highly specialized, is not
strictly modular; damage to those units purported to be a part
of a given module (e.g. for face recognition) nevertheless affects
object recognition (albeit to a weaker degree). Figures S3-S5
provide additional data on the nature of domain specialization
in the network.

Domain selectivity exists within a broader organization sim-
ilar to that of primate IT cortex. Previous empirical research
has demonstrated that the response correlations between pairs
of neurons fall off smoothly with increasing distance between
the neurons (15, 75), as shown in Figure 4A. As discussed,
this finding is the basis of TDANN models that explicitly
fits the spatial layout of units to this relationship (15). We
explored whether this relationship emerged naturally in our
network due to its constrained connectivity, in line with the
emergence of domain-selective topography. We thus computed
the correlations among pairs of unit activations across images
as a function of the distance between the units in each area.
As shown in Figure 4B, there is, indeed, a smooth decay of
response correlations with distance, matching the qualitative
trend in the empirical data.

This result is not simply due to differences between do-
mains, as it is also found when examining responses to images
within each domain separately (shown for objects in Figure
4C). Along with previous results (15), our findings suggest
that the domain-level topography may simply be a large-scale
manifestation of a more general representational topography in
which the information represented by neighboring units is more
similar than that represented by more distal units. Our results
demonstrate that this organization can arise under explicit
wiring length and sign-based constraints on connectivity.

Generic organization encompasses interpretable do-
main-level and sub-domain level organization. Recently,
Bao and colleagues (14) have provided evidence that IT
cortex contains a map of object space that corresponds well
to the first two principal components of high-level visual
representations in an ImageNet-trained convolutional neural
network, and that clusters in this object space corresponded
to topographic clusters in IT cortex, including face-selective
areas. We asked whether our network displayed a similar
relationship. Similarly, we found that each domain lied in
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weakly overlapping clusters of this PC1-PC2 space, where
the first PC mostly separated faces and scenes, and the
second PC separated objects from faces and scenes (Figure
5A, left). When we visualized the weights of these two PCs,
we found that they were topographically organized (Figure
5B, right) and corresponded well to the large-scale domain
structure inherent to alT (see contour lines and Figure 1).
Notably, relatively little within-domain clustering was seen
along the first two PCs, and higher dimensions were less
interpretable (Figure S20), and so, to seek finer-grained
organization, we opted to visualize the principal components
of activations to each domain separately, shown in Figure
5B. For each domain, we determined a within-domain
attribute that might induce further representational-—and
thus, topographic—distinctions; we labeled whether the
faces were male or female, whether objects were animate or
inanimate, and whether scenes were indoors or outdoors. The
PC1-PC2 space of each domain appeared to discriminate
each attribute well but not necessarily exactly along either
component, so we fit a logistic regression over the first two
PCs to extract a line (2D hyperplane) in PC1-PC2 space
that best discriminated between exemplars of each attribute
type (i-e., y(z) = w1 x PCi(z) + w2 X PC>(x)); this led to
discriminability of 0.84 for gender, 0.92 for animacy, and
0.87 for scenes. We then visualized the topographic weights
from alT onto these discriminating projections, revealing
striking topographic organization. In each case, there was
an ON-OFF weight pattern localized within the sector of
domain-selectivity, along with further, weaker weight outside
this sector—for example, orange-colored weight contributing
to the animate object attribute within the face-selective cluster
(Figure 5B, bottom center)—indicating graded contributions
of non-selective units. A complementary clustering analysis of
each domain yielded similar results, whereby categories with
different attributes clustered spatially (Figures S8-S10).

Sign-based constraints combine with wiring length con-
straints to produce topographic organization. Having estab-
lished that the main ITN architecture produces a host of
empirically grounded topographic organizational phenomena,
we next performed a constraint-removal analysis to deter-
mine which constraints—in addition to the bias towards lo-
cal connectivity—are necessary for the development of to-
pographic organization. We varied three binary constraints:
whether between-area feedforward connections were excitatory
only (EFF), whether the model employed separate E and 1

bioRXiv | 7

583

584

585

586

587

588

589

590

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

610

612
613
614
615
616

617

618

619

620

621

622

623

624

625

626

627



628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

652

A. Object, face, scene stimuli

component 1, var ex.=0.08008 component 2, var ex.=0.07056

o

[

Rotated PC-1, discriminability=0.91 Rotated PC-1, discriminability=0.89
—

Fig. 5. Principal components analysis of activations. A. plots the PC1-PC2 space
and PC1 and PC2 component weights across images from all three domains. Dashed
lines on component weight plots show the contour of selectivity for each domain, using
selectivity maps smoothed with a local averaging kernel (5% nearest units) corre-
sponding to significance p<0.001. B. plots the PC1-PC2 space for responses to each
domain separately, and the weight visualization of a rotated axis in PC1-PC2 space
that maximized the discriminability of images according to a given sub-domain at-
tribute (gender for faces, animacy for objects, and indoor/outdoor for scenes). Dashed
lines show selectivity for the domain of interest, using selectivity maps smoothed with
a local averaging kernel (5% nearest units) corresponding to significance p<0.001.

unit populations within each area (E/I), and whether the
model contained lateral (recurrent) connections within each
area (RNN vs. FNN). We thus constructed seven architec-
tures (the I units in the E/I-EFF-FNN model would exert
no effect, making the E/I-EFF-FNN model equivalent to the
EFF-FNN model). Each of these architectures was trained
across a log-spaced range of \,, values, and the generic topog-
raphy, domain-level topography, performance, and wiring cost
were analyzed (Figure 6). For each architecture, we selected
an optimal A, chosen to maximize the measure of generic
topography (Equation 7) averaged over layers and celltypes,
trained an additional instance of the architecture with this
Aw, and visualized the learned topography, shown in Figure
6E. We found that models without sign constraints (RNN,
FNN) produced only weak topography, uncharacteristic of
primate I'T cortex. In contrast, models with separate excita-
tion and inhibition (E/I-RNN, E/I-FNN) produced somewhat
greater topographic organization, and models with strictly
excitatory feedforward connectivity (EFF-RNN, EFF-FNN)
produced topographic organization equivalent to that of the
main model (E/I-EFF-RNN). Moreover, temporal recurrence
mediated through learned lateral connections was not nec-
essary to develop topography. In terms of performance, we
found that the accuracy of the various recurrent models was
very similar, with a very small advantage for models in which
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feedforward connectivity was not constrained to be excitatory.
In contrast, accuracy for the feedforward models was reduced
more substantially (>4% points), pointing to a performance
benefit of the recurrent connections. Moreover, while wiring
cost (see next section) was determined much more by A, than
architecture (Figure 6D), we found that, for the same Ay
across variants, the variants that developed clear domain-level
organization had the smallest wiring cost (Figure S36).

Lastly, we found that an identical set of models that did
not employ layer normalization typically were too unstable to
train, and those that did train performed worse and exhibited
weaker topography (see Figure S38 and associated text in
Supporting Information). The broad but untuned effect of
layer normalization thus appears to both stabilize activity and
introduce a global competition that contributes to topographic
organization.;

Overall, these results demonstrate the importance of sign-
based constraints for developing topography in the ITN frame-
work, and highlight that several model variants can produce
topographic organization and be used for different purposes
depending on the level of detail desired. More detailed analy-
ses for these variants is available in Supporting Information
(Figures S525-S32).

Networks can reduce spatial costs while maintaining perfor-
mance by increasing topographic organization. The optimiza-
tion problem of Equation 4 explicitly works to both maximize
visual recognition performance through a task-based loss term
L+, and to minimize overall wiring cost through a connection-
based lost term £, that scales with the square of connection
distance. To what extent does minimizing the wiring cost
term compromise performance? To answer this question, we
computed wiring costs for each architecture and A, discussed
in the previous section. We computed wiring cost in two ways.
The first way is by using the £, term, which takes into account
both the length and strength of connections. The second way
is inspired by the wiring cost minimization framework (64),
which takes into account only the length of connections, as-
suming sparse connectivity. To compute this wiring cost L, v,
we sparsified the network to contain only the 1% strongest
connections (sparsity = 0.99), and took the averaged squared
distance of remaining connections (65, see Equation 8); this
sparsification introduces minimal performance deficits in the
main ITN model (Figure S7). The results, shown in Figure
6D, demonstrate that increasing the wiring cost penalty A,
by an order of magnitude decreased the first spatial cost L.,
by roughly an order of magnitude. Precisely, for the main
architecture, the log-log plot in Figure 6D (left) revealed a
power law relationship of the form y = Ax™, where m = —1.24
(p < 0.001). The unweighted wiring cost L., similarly decays
roughly linearly on the log-log plot up to A, = 0.1, after
which L, ., saturates and then rises for increasing values of
Aw. Thus, an intermediate value of \,, appears sufficient to
drive the network towards preferentially local connectivity, and
further increasing \,, may minimize further the optimization
term L, through other means, such as by further shrinking
small long-range weights and reducing participation at the
grid boundaries where mean connection lengths are longest
(see Figure S6). In contrast to the wiring costs, the final clas-
sification performance was only marginally affected by A, (for
main model: log-log slope m = —0.0016, p < 0.001, explained
variance r? = 0.582; fit was not significantly better than log-
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the layer normalization operation. A. generic topographic organization summary statistic (Equation 7). B. domain-level topographic organization summary statistic (Equation 6).

C. final accuracy on validation images. D. two measures of wiring cost. Left: L., (Equation 4), right: L., . (Equation 8). E. domain-level and generic topographic organization

visualizations for each architecture using the tuned value of X, that maximized T;. Ea

linear regression, m = —0.0028, p < 0.001, explained variance
= 0.583). Last, increasing the wiring cost penalty gradually
resulted in the emergence of domain-selective topographic orga-
nization, along with generic topographic organization indexed
by distance-dependent pairwise response correlations (see Fig-
ure 6A,B, and Figure S6). Thus, models with a large wiring
cost penalty perform similarly to models with unconstrained
connectivity but achieve very small wiring cost, through the
development of topographic functional organization.

Discussion

Is IT cortex a collection of independent, possibly hard-wired
domain-specific modules, or a more general-purpose, interac-
tive, and plastic system? A central goal of the current work
was to determine whether seemingly domain-specific organi-
zation can emerge naturally from domain-general constraints.
The simulations we report demonstrate that many of the
key findings thought to support a modular view of separable,
innately-specified mechanisms for the recognition of different
high-level domains (faces, objects, scenes) can be accounted
for within a learning-based account operating under generic
connectivity constraints (also see 23, 37, 76). By simulating a
biologically plausible Interactive Topographic Network (ITN)
model of IT without domain-specific innate structure, we found
that we can “let the structure emerge” (77, 78). Specifically,
we observed that the model developed largely domain-selective
spatial clusters which contain preferential information for each
domain, and which, when lesioned, produced largely (but not
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ch model was tested using a different random initialization from the one used to tune A,,.

purely) specific deficits.

The equivalence of domain-general and domain-specific or-
ganization. Beyond domain-level spatially clustered organiza-

tion, the model exhibited a more generic form of topographic

organization, whereby nearby units had more correlated re-
sponses over images compared to more distant units, a rela-

tionship which has been demonstrated in macaque IT cortex

(15, 79). In concert with other modeling work (15) that pres-

sured neurons to obey this relationship as a proxy for wiring
cost, our work suggests that this generic spatial functional

relationship appears to both underly domain-level organiza-

tion and emerge from wiring cost minimization. Moreover,
we found that the principal components of image space were
mapped across each area of model IT, as in macaque IT
(14). That many of the hallmarks of domain-specificity can
be simulated in a domain-general experiential account, and
such domain-level organization exists within a more generic
organization, gives credence to domain-general accounts that
accommodate learned specialization (50, 80).

The importance of sign-based constraints alongside a mini-

mal wiring constraint. Importantly, wiring cost and multi-task
optimization (i.e., object, face, and scene image recognition),

by themselves, were not sufficient to produce substantial topo-

graphic organization (Figures 6, S32). However, we found that

two well-known biological details—excitatory-only between-

area communication, and separate excitatory and inhibitory
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neural populations—could induce greater topographic orga-
nization in the context of wiring cost and task optimization.
Notably, locally-biased excitatory feedforward connectivity
provides an inductive bias that neighboring units should have
positively correlated response properties, without specifying
how correlated they should be. As widespread correlation
impairs representational capacity, the network is encouraged
to learn in a fashion whereby pairwise correlation of neural rep-
resentations decays with distance, a hallmark of topographic
organization (15, 75). Models with separate excitatory and
inhibitory neurons—but no restriction on which neurons sent
feedforward connections—produced greater topography rela-
tive to non-sign-constrained models, but weaker topography
than models with the feedforward excitation restriction. In-
terestingly, the feedforward E/I variant (E/I-FNN) produced
stronger topographic organization than the recurrent variant
(E/I RNN). Lastly, future work examining other tasks (81, 82)
and architectures (83-86) that place greater functional de-
mands on lateral connectivity may find that local connectivity
constraints would make a greater contribution to topographic
organization.

Comparison with other topographic algorithms. The Self-
Organizing Map (SOM) (36) and other algorithms applied
to early visual cortex topographic organization (28, 30) each
implement a form of local cooperation alongside broader com-
petition. Specifically, in the SOM, global competition is im-
plemented by selecting a winning unit on each trial, and sup-
pressing the responses of all other units, and local cooperation
is mediated through Hebbian learning scaled by a Gaussian
neighborhood around the winning unit. While the main ITN
model is quite different from the SOM—employing error-driven
rather than Hebbian learning, optimized rather than fixed lat-
eral weights and RF sizes, hierarchical organization—one of the
simple ITN variants can be seen as conceptually similar to the
SOM, and this may provide insight into the minimal compo-
nents of topographic development in ITN models. Specifically,
we found that a feedforward model employing local excitatory-
only between-area connections and lateral connectivity limited
to the layer normalization operation (EFF-FNN) was capable
of producing many of the hallmarks of topographic organiza-
tion in the main model (Figures 6, S31). In EFF ITN models,
including this variant, the local excitatory feedforward connec-
tions (Figure 10) implement a form of local cooperation, ensur-
ing that neighboring units are positively correlated; the layer
normalization operation then implements a global competition
by attempting to convert the distribution of pre-activations to
a standard normal distribution, which leads to sparser activity
following rectification (the degree of which can be controlled
by each unit’s bias term), and ensures that units represent dif-
ferent aspects of the feature space. Thus, layer normalization
implements both competition and interactivity that, when
combined with the local representational cooperation induced
by local excitatory feedforward connections, leads to a smooth
topographic organization whereby the unit feature tuning is
systematically more similar for nearby units than for farther
units. In recurrent ITN models, such as the main model, the
learned lateral connections can adapt this competition and
interactivity, allowing for increased performance (Figure 6C).
Moreover, these learned lateral connections may contribute to
competition through learned broad inhibition (Figure S17).
Despite some conceptual similarities, there are some dis-
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tinct advantages to ITNs relative to SOMs and other previous
topographic mapping algorithms. First, ITNs are naturally
hierarchical, allowing for multiple interacting levels of topo-
graphically organized representations, rather than assuming a
single feature space to be arranged in a single topographic map.
This allows the ITN to account for the presence of multiple
domain-selective regions arranged in a stream from earlier to
later parts of IT (1, 3, 87, 88) and (in future work) to incor-
porate connectivity with upstream and downstream areas to
IT. Second, and relatedly, the connectivity constraints of the
ITN can be incorporated into generic task-optimized neural
networks, without requiring separate Hebbian updates to topo-
graphically organize the feature space following development of
the feature space (as in the SOM), yielding a functional rather
than purely organizational role for lateral connections. Lastly,
the ITN framework is very flexible, allowing for future research
to examine different encoders, different IT architectures and
topologies including more detailed modeling of neuronal cir-
cuitry, and different task training environments and readout
mechanisms, yielding promise for a variety of future directions.

Limitations and future directions. The current work only ad-
dresses the topographic organization of high-level represen-
tations, since the connectivity constraints were not applied
within the encoder model of early and mid-level vision. Mod-
eling topographic organization in convolutional layers is a
particular challenge for the ITN framework, as doing so over
both retinotopic location and stimulus features—well known
organizing principles of early visual cortex—would necessitate
that each channel have potentially different connections with
other channels across different retinotopic positions, precluding
the convolution. In point of fact, feature tuning in the brain is
not actually uniform across the visual field (89, 90), and thus
relaxing the convolution assumption has merits for advancing
visual computational neuroscience, and would enable more
detailed connectivity-based topographic modeling of early and
mid-level visual areas. It is now clear that convolution is not
strictly required — fully connected visual “Transformer” lay-
ers using multiplicative attentional interactions (91, 92) have
recently been shown to reach high performance without con-
volution. These architectures, and other biologically-plausible
variants, thus serve as an exciting opportunity to examine
topographic organization from connectivity-based constraints.

Relatedly, despite its strength in explaining hierarchical
topographic organization owing to between-area spatial con-
straints, the ITN is not yet able to satisfactorily explain cer-
tain aspects of hierarchical representational transformation—
specifically, increasing invariance to 3D rotation (14)—in con-
trast to the earlier convolutional layers of the encoder (Figures
S13-S14). This is related to the need to use non-convolutional
layers in model IT, rather than a result of the wiring or sign-
based constraints, as an RNN-ITN model with A = 0 shows
the same plateau of representational invariance in the ITN
layers (Figure S15). Thus, our work should be seen as a
demonstration that within and between-area connectivity con-
straints can give rise to within and between-area topographic
organization, but future research will need to bridge the gap
to jointly explain the increasing invariance commonly seen in
standard convolutional neural networks. This again points to
the critical need for future work to extend the ITN framework
to more powerful computational architectures, training envi-
ronments, and learning rules (93), rather than relegating this
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computational power to a distinct encoder.

We also discovered some differences between the overarching
representational space of the ITN models and primate IT.
Namely, while the main ITN trained to recognize categories
from 3 domains (faces, objects, and scenes) mapped these
domains smoothly, the representational space elicited by a
set of artificial object stimuli was less cleanly topographically
organized (Figure S20A). In contrast, an alternative ITN model
trained only on ImageNet (general results shown in Figures
S18, S19) mapped these objects in a smoother fashion more
similar to primate IT (Figure S20B) (14). However, such a
model cannot account for human expertise in face recognition
(Figure S18B.). Thus, each image set is limited in its ability
to fully explain the empirical data. Future work employing
more naturalistic datasets in which faces appear in the context
of individuals in scenes alongside demands for individuation
may lead to the development of representations that can more
fully capture both the large-scale organization and behavioral
demands of primate vision. We also found that a weaker
spatial penalty resulted in less patchy topography for images
outside the distribution of training images, such as the stimuli
of (14) (Figure S22). Thus, a more detailed comparison of
how well different ITN models quantitatively and qualitatively
explain IT cortex is an exciting line for future research.

While our work advanced biological plausibility beyond
previous works, by incorporating wiring constraints, the sep-
aration of excitation and inhibition, and between-area exci-
tatory connectivity, additional biological details are likely to
be important to the computation and organization of the vi-
sual cortex. Future work may seek to consider incorporating
details such as E/I neuron ratio, E/I balance, variability in
neuronal time constants, divisive vs. subtractive inhibitory
cell types, etc. Notably, the layer normalization operation
is similar to divisive normalization and its effects in activity
stabilization and global untuned inhibition might be modeled
in a biologically plausible fashion in future work.

Lastly, we focused on constraints local to the IT circuit,
demonstrating that they can give rise to the presence of bio-
logically realistic domain-level clusters and global generic or-
ganization. But in humans and non-human primates, domain-
selective regions do not merely exist, but exist in consistent
locations across individuals of a given species (3, 19, 48, 94, 95),
albeit with modest yet reliable individual variability (96). The
retinotopic organization of upstream early visual cortical ar-
eas is thought to encourage foveally-biased cortex to support
face representations, and peripherally-biased cortex to support
scene representations (47, 97), and connectivity biases with
downstream nonvisual areas is thought to play a further role
in shaping the global organization of domain-selective areas
in IT (47, 98-102). These biases, such as left-hemispheric
language biases, other more fine-grained patterning of connec-
tions with domain-relevant downstream areas (i.e., socially-
responsive areas for faces, memory areas for scenes, motor
areas for manipulable objects), and cross-modal map align-
ment (23, 80) should be explored in future work to understand
better the factors underlying IT organization both within and
between hemispheres. We hypothesize that modeling long-
range connectivity-based constraints with regions external to
IT (e.g., 46, 47) (see also 103) in an extended ITN architecture
containing two hemispheres, will give rise to reliable within-
and between-hemisphere patterns of areal localization. Given
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that different initializations and architectural variants can
yield interesting individual representational differences in deep
learning models (67), we expect that a systematic study of
architectural variation in I'TN models could lead to successful
quantitative accounting of individual differences in human
cortical topography and representation.

Conclusion. The Interactive Topographic Network framework
demonstrates that generic connectivity constraints can pro-
duce the central aspects of topographic organization in pri-
mate visual cortex. Extensions of the approach hold promise
in accounting for the systematic localization of domain special-
ization both within and between hemispheres. Code will be
made available upon publication at www.github.com /viscog-
cmu/ITN to develop and test further ITN models.
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