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ABSTRACT
Spatial linear mixed-models, consisting of a linear covariate effect and a Gaussian process (GP) distributed
spatial random effect, are widely used for analyses of geospatial data. We consider the setting where
the covariate effect is nonlinear. Random forests (RF) are popular for estimating nonlinear functions but
applications of RF for spatial data have often ignored the spatial correlation. We show that this impacts
the performance of RF adversely. We propose RF-GLS, a novel and well-principled extension of RF, for
estimating nonlinear covariate effects in spatial mixed models where the spatial correlation is modeled
using GP. RF-GLS extends RF in the same way generalized least squares (GLS) fundamentally extends
ordinary least squares (OLS) to accommodate for dependence in linear models. RF becomes a special case
of RF-GLS, and is substantially outperformed by RF-GLS for both estimation and prediction across extensive
numerical experiments with spatially correlated data. RF-GLS can be used for functional estimation in other
types of dependent data like time series. We prove consistency of RF-GLS for β-mixing dependent error
processes that include the popular spatial Matérn GP. As a byproduct, we also establish, to our knowledge,
the first consistency result for RF under dependence. We establish results of independent importance,
including a general consistency result of GLS optimizers of data-driven function classes, and a uniform
law of large number under β-mixing dependence with weaker assumptions. These new tools can be
potentially useful for asymptotic analysis of other GLS-style estimators in nonparametric regression with
dependent data.
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1. Introduction

Geo-referenced data, exhibiting spatial correlation, are com-
monly analyzed in a mixed-model framework consisting of a
fixed-effect component for the covariates and a spatial random-
effect (Banerjee, Carlin, and Gelfand 2014). If Y , X, and �,
respectively, denote the response, the D-dimensional vector of
covariates, and the spatial location, then the spatial linearmixed
model can be expressed as Y = X�β + w(�) + error. The
linear regression term x�β parsimoniously models the fixed
covariate effectm(x) = E(Y |X = x), while the spatial random
effect w(�) is often modeled flexibly using Gaussian Processes
(GPs) that encode the dependence in the data across locations.
The mixed model allows for inference on the covariate effect
as the estimate of β , while adjusting for the spatial depen-
dence via w. At the same time, it leverages the conveniences
of a GP to seamlessly predict the outcome at a new location
via kriging. This flexibility has made the spatial linear mixed
model with GP-distributed random effects the flag-bearer in
geo-statistics.

This article focuses on applications where the linearity
assumption for the covariate effect m(x) is inappropriate. We
consider the spatial nonlinear mixed-effect model Y = m(X) +
w(�) + error. A nonlinear m(x) can be modeled in terms of
splines or other basis function expansions, while still model-
ing the spatial effect using GP. However, smooth and contin-
uous basis functions are not ideal for modeling nonsmooth
and possibly discontinuous (like piecewise constant) covariate
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effects. Also, basis functions on multi-dimensional covariate
domains experience curse of dimensionality even for only
3 or 4 covariates as the knots are usually too far apart to
adequately represent the covariate space (Taylor and Einbeck
2013).

Random forest (RF) (Breiman 2001) estimates nonlinear
regression functions using an ensemble of nonsmooth, data-
adaptive family of basis functions, which have more expressive
powers than traditional fixed basis methods (Lin and Jeon 2006;
Scornet 2016). RF has become one of the most popular method
for flexible nonlinear function estimation, with wide applica-
tions in different scientific and engineering fields.While RFhave
also been used for a number of geospatial applications (Ahi-
jevych et al. 2016; Di et al. 2019; Lim et al. 2019; Viscarra Rossel,
Webster, and Kidd 2014; Fayad et al. 2016), most of the afore-
mentioned work do not make procedural considerations for the
RF algorithm to address the spatial correlation in the data. This
is fundamentally at odds with the tenets of spatial modeling
where the spatial correlation is explicitly accommodated using
GP-distributed random effects.

Very little attention has been paid to how ignoring this
spatial correlation affects function estimation using RF. The
criterion (loss function) used to recursively split the nodes
of decision trees of RF is essentially an ordinary least-square
(OLS) loss. It is well known that OLS is suboptimal for depen-
dent data as it ignores data correlation. Also, RF creates and
consolidates the trees using “bagging” (bootstrap aggregation)

© 2021 American Statistical Association
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(Breiman 1996). As spatial data are correlated, this resam-
pling violates the assumption of independent and identically
distributed (iid) data units, fundamental to bootstrapping. We
provide empirical evidence that these limitations manifest in
inferior estimation/prediction performance of RF under spatial
dependence.

There have been two ways of accounting for spatial depen-
dence in RF. The first approach performs spatial adjustment
through kriging after fitting an RF without accounting for the
spatial dependence. For prediction at new locations, it uses
the spatial mixed model framework to combine this vanilla RF
estimate of the covariate effect m(X) with kriging from the GP
part (using the residuals from the RF fit) (Fayad et al. 2016; Fox,
Ver Hoef, and Olsen 2020). This is referred to as RF residual
kriging (RF-RK). The other approaches attempt to explicitly
use spatial information in RF. The spatial RF (RFsp) of Hengl
et al. (2018) adds all pairwise spatial-distances as additional
covariates. Georganos et al. (2019) proposed geographically
local estimation of RF. These approaches abandon the spatial
mixedmodel framework, only focusing onprediction,modeling
the response as a joint function g of the covariates and the
locations, that is, E(Y) = g(X, �), and are thus not able to isolate
or estimate the covariate effect m(x). Also, to our knowledge,
there is no asymptotic theory justifying these approaches.

In this article, we bridge the gap between spatial mixed-
effect modeling using GP and regression function estimation
using RF by proposing a well-principled rendition of RF to
explicitly incorporate the spatial correlation structure implied
by GP. This enables using RF for estimating a nonlinear covariate
effect in the spatial mixed-effect model while explicitly accounting
for spatial correlation via the GP-distributed random effects.Our
approach is motivated by the fact that in a GP-based spatial
linear mixed model, marginal likelihood maximization for β

is equivalent to a generalized least-square (GLS) optimization.
Under data dependence, GLS is more efficient than OLS for
linear regression, leading to better finite sample performance.

GLS has been previously used for parameter estimation in
nonlinear regression under data dependence (Kimeldorf and
Wahba 1971; Diggle and Hutchinson 1989). Since regression
with polynomials, splines or other known basis functions are
essentially linear in the parameters, the extension of these
approaches to a GLS-style quadratic form global optimization
is immediate and the solution is available in closed form. How-
ever, RF uses basis functions obtained by a data-adaptive, greedy
algorithm, so a GLS formulation for estimating the regression
part using RF in a spatial GP regression is not immediate and
has not been explored before.

An observation, central to our GLS extension of regression
trees and forests is that to split a node of a decision tree in RF,
the local (intra-node) loss can be equivalently represented as a
global (in all nodes)OLS linear regression problemwith a binary
design matrix. The subsequent node representative assignment
is simply the OLS fit given the chosen split. For dependent data,
we can replace this OLS step with a GLS optimization problem
at every node split and grow the tree accordingly. The node
representatives also become the GLS fits instead of node means.
The globalGLS loss-based splitting and fits thus use information
from all current nodes as is desirable under data-dependence
and are more efficient than the OLS analogs.

Our GLS-style RF also naturally accommodates data resam-
pling or sub-sampling used for creating a forest of trees. The
key observation for this is that in a linear regression between
response Y and covariates X, the GLS loss with covariance
matrix �0 coincides with an OLS loss with Ỹ = �

−1/2
0 Y, X̃ =

�
−1/2
0 X. Thus GLS can be thought of as OLS with the decorre-

lated responses Ỹ. Analogously, we introduce resampling after
the decorrelation in our algorithm, essentially resampling the
uncorrelated contrasts Ỹ instead of the correlated outcomes Y.

We refer to our method as RF-GLS and present a com-
putationally efficient algorithm for implementing it. RF-GLS
reduces exactly to RF when the working correlation matrix
used in the GLS-loss is the identity matrix. For spatial mixed
model regression, RF-GLS estimates the nonlinear covariate
effect while using the GP to model the spatial random effect.
Hence, traditional spatial tasks like kriging (spatial predictions)
can be performed easily. For large spatial data, RF-GLS also
avoids onerous big GP computations by harmonizing with the
nearest neighbor GPs (Datta et al. 2016a) to yield an algorithm
of linear time-complexity.

We show that RF-GLS has distinct advantages over compet-
ingmethods for both estimation and prediction. For estimation,
RF-GLS, accounting explicitly for the spatial correlation via GLS
loss, provides improved estimates of the covariate effectm(X) in
a wide range of simulation scenarios over RF which completely
ignores the spatial information. Other methods like RFsp do
not even produce a separate estimate of the covariate effect
and cannot be considered for the task of estimation. For pre-
diction, RF-GLS outperforms both RF-RK and RFsp. RF-GLS
conveniently uses the spatialmixedmodel frameworkwhere the
structured spatial dependence is parsimoniously encoded via
GP. Methods like RFsp abandon this mixed-model framework
and uses a large number of additional distance-based covariates
in RF. A downside to this unnecessary escalation of the prob-
lem to high-dimensional settings is that the several additional
distance-based covariates far outnumber the true set of covari-
ates thereby biasing the covariate selection at eachnode-splitting
toward the spatial covariates. This leads to poor prediction
performance of RFsp when the spatial noise is small relative to
the covariate signal. On the other hand, when the spatial noise
is large, RF-RK, estimating the covariate effect m(X) without
accounting for the spatial dependence, performs substantially
poorly while RFsp (dominated by spatial covariates) performs
comparably to RF-GLS. RF-GLS performs best at all ranges of
the covariate-signal-to-spatial-noise-ratio (SNR), where each of
RF-RK and RFsp suffers at opposite ends of this SNR spectrum
(see Figure 3).

1.1. Theoretical Contributions

Another major contribution of this article is a thorough theo-
retical analysis of RF-GLS under dependent error processes like
GP. For iid data, Scornet et al. (2015) proved the consistency
of Breiman’s RF, which allows the node splitting and node rep-
resentation to be based on the same data. The other strand of
RF theory consider “honest” trees (Mentch and Hooker 2016;
Wager and Athey 2018) which use disjoint data subsets for
splitting and representation. To our knowledge, study of RF
under dependent processes has not been conducted in either
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paradigms. RF-GLS, like Breiman’s RF, uses the same data
for partitioning and node representation. Hence we adopt the
framework of Scornet et al. (2015) to study consistency.

Our main result (Theorem 3.1) proves RF-GLS is L2 con-
sistent if the error process is absolutely-regular (β-) mixing
(Bradley 2005). As corollary, we prove RF-GLS is consistent for
nonlinear mean estimation in the spatial mixed model regres-
sion under the ubiquitous Matérn family of covariance func-
tions. As a byproduct of the theory, we also establish consistency
of the vanilla CART (Breiman et al. 1984) and of RF under β-
mixing error processes. To our knowledge, this is the first result
on consistency of these procedures under dependence.

The theoretical analysis, besides being novel in terms of
establishing consistency for forest estimators under depen-
dence, required addressing several new challenges that do not
arise for the analysis of classic RF for iid settings. These compli-
cations were introduced by the global GLS-style quadratic loss
and the dependent errors.We summarize the new contributions
here:

1. Limits of GLS regression-trees: Node splitting and node rep-
resentation in regression trees of classic RF uses local (intra-
node) sample means and variances which trivially asymptote
to their population analogs. For RF-GLS, to adjust for data
correlation, we use a global GLS (quadratic form) loss for
node-splitting and the set of node representatives is the global
GLS estimate. Both steps now depend on data from all nodes
(weighted by their spatial dependence) and their asymptotic
limits are non-trivial. We meticulously track these data-
weights from all nodes when splitting a given node to show in
Lemma 2.1 and Theorem 2.1 that the RF-GLS split-criterion
and node representatives converge to the same desirable local
population limits as in RF while being empirically more
efficient under dependence. These findingsmay seem similar
to the well-known fact that GLS and OLS estimates both
converge to the same limits with the GLS beingmore efficient
under dependence. However, those classic results assume a
true linear model whereas for us the true function is nonlin-
ear E(y) = m(X), and is being estimated by a mis-specified
tree estimate. To our knowledge, limits of the global GLS tree
estimates as population-level local node means for that tree
is a new contribution.

2. Equicontinuity of split-criterion: A center-piece in the proof
of consistency of RF in Scornet et al. (2015) was stochastic
equicontinuity of the CART split criterion, such that if two
set of splits are close, their corresponding empirical split-
criterion values are close, irrespective of the location of the
splits. For RF-GLS, the split criterion (GLS loss with plugged
in GLS estimate) is is a complicated matrix-based function of
the designmatrix representing a set of splits.Hence, the scalar
techniques of Scornet et al. (2015) do not apply here. Our
equicontinuity proof is quite involved and is built on viewing
GLSpredictions as oblique projections on the designmatrices
corresponding to the splits and subsequently using results on
perturbations of projection operators. More details about the
technique used can be found in Section 5.2.1.

3. New uniform laws of large number (ULLNs): Controlling the
quadratic form estimation error for RF-GLS under depen-
dence by an ULLN is key to establishing consistency. The

standard technique of first proving an ULLN that replaces
the dependent errors by iid ones fails here as the iid error
sequence does not preserve the distribution of the cross-
product terms of the quadratic form. We use a novel strat-
egy of creating separate bivariate iid error sequences for
each of the off-diagonal bands of cross-product terms in the
quadratic form. We then establish a new ULLN (Proposi-
tion S2.1) for these cross-product terms having the same
concentration bound (in terms of random Lp norm entropy
numbers) as the squared (diagonal) terms.Next, to generalize
the ULLNs from iid to dependent settings, existing results
require Lipschitz continuity or an uniform bound on the
estimators none of which are satisfied by regression-trees.We
established a general ULLN (Proposition 5.3) for β-mixing
processes that uses a weaker (2 + δ)th moment assumption
that is satisfied by regression-trees. Neither of the twoULLNs
were needed in the asymptotic study of RF for iid data as
there was no quadratic form loss or cross-product terms, and
the error process was independent thereby not requiring any
dependent ULLNs.

4. General tools for machine learning for dependent data: Using
theseULLNsdescribed abovewe established a general consis-
tency result (Theorem 5.1) for GLS estimates for a broad class
of functions under dependent error. This result generalizes
Theorem 10.2 of Györfi et al. (2002) (which was for iid
data and OLS estimates) to β-mixing dependent processes
and GLS losses. We believe this general result would be of
widespread interest. Just like the iid result of Györfi et al.
(2002) was used to establish consistency of a wide range of
OLS estimators (including piecewise polynomials, univari-
ate and multivariate splines, data-driven partitioning based
estimators like RFs and trees), our Theorem 5.1 can poten-
tially be used to establish consistency of the analogs of each
of these methods that explicitly accounts for dependence
(spatial/serial correlation) in the data by switching to a GLS
procedure.

5. Consistency for Matérn GPs: We prove consistency of RF-
GLS when the true dependent error process comes from
the Matérn Gaussian family (the staple choice for geospatial
analysis due to interpretability of the parameters in terms
of spatial surface smoothness). The proof combines several
results spread over the fields of time-series, stochastic differ-
ential equations, information theory, and spatial statistics. To
our knowledge, this is the first consistency result for an RF-
type algorithm under Matérn spatial correlation.

While RF-GLS is motivated by the spatial GP-based mixed
model framework, the method and the theory is developed
much more broadly and can be used for regression function
estimation in many other dependent data settings. The method
only relies on knowledge of the residual covariance matrix
and thus can work with any dependent error process with a
valid second moment. The theory is applicable for the large
class of β-mixing processes. We briefly discuss how RF-GLS
can be used for function estimation under serially correlated
errors (time series). In particular, we show that for autore-
gressive errors, one of the mainstays of time-series analysis,
RF-GLS would yield a consistent estimate of the regression
function.
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The rest of the article is organized as follows. In Section 2
we present our methodology. The theory of consistency is
presented in Section 3, including theory for common spatial
and time-series processes in Section 3.3. Results from a variety
of simulation experiments validating our method is presented
in Section 4. While the formal proofs of all the results are
provided in the supplementary materials, an outline of the
proof of the main consistency result is presented in Section 5
that highlights the new technical tools developed in the pro-
cess. We discuss future extension of the presented work in
Section 6.

1.2. Notations

|S| denotes the cardinality of any set S. I(·) is the indicator
function. The null set is {}. For any matrix M, M+ denotes its
generalizedMoore–Penrose inverse, and ‖M‖p, for 1 ≤ p ≤ ∞,
denotes its matrix Lp norm. For any n × n symmetric matrix
M, λmin = λ1 ≤ λ2 ≤ . . . ≤ λn = λmax denotes its
eigenvalues. A sequence of numbers {an}n≥1 isO(bn) (or o(bn))
when the sequence |an/bn| is bounded above (or goes to 0) as
n → ∞. A sequence of random variables is called Ob(1) if it
is uniformly bounded almost surely, Op(1) if it is bounded in
probability, and op(1) if it goes to 0 in probability.X ∼ Y implies
X follows the same distribution as Y . R, Z, and N denote the
set of real numbers, integers, and natural numbers respectively.
For M ∈ R

+, TM is the truncation operator, that is, TM(u) =
max(−M, min(u,M)).

2. Method
2.1. Review of Spatial GP Regression

The standard geospatial data unit is the triplet (Yi,Xi, �i) where
Yi is the univariate response, Xi is a D-dimensional covariate
(feature) vector, and �i is the spatial location (often, geographical
co-ordinates). A spatial linear mixed-model for such data is
specified as Yi = X�

i β + w(�i) + ε∗
i , where X

�
i β is the linear

mean (covariate effect),w(�i)models the spatial structure in the
response not accounted for by the covariates, and ε∗

i
iid∼N(0, τ 2)

is the random noise. The spatial effect w(�i) is often posit to be
a smooth surface across space and is modeled as a centered GP
w(·) ∼ GP(0,C(·, · | θ))with covariance functionC. This essen-
tially means that for any finite collection of locations �1, . . . , �n,
we have w = (w(�1), . . . ,w(�n))� ∼ N(0,C) where C is the
n × nmatrix with entries cov(w(�i),w(�j)) = C(�i, �j | θ).

We canmarginalize over the spatial random effectsw(�i) and
write Y = (Y1, . . . ,Yn)� ∼ N(Xβ ,�0) where �0 = C + τ 2I.
For known �0, maximizing this marginalized likelihood of Y
is equivalent to minimizing the quadratic form minβ

1
n (Y −

Xβ)��−1
0 (Y − Xβ). This expression can be recognized as the

GLS loss which replaces the squared error loss (1/n)
∑n

i=1(Yi−
X�
i β)2 of OLS when the data are correlated.
We focus on estimating a generalmean function in the spatial

nonlinear mixed model

Yi = m(Xi) + w(�i) + ε∗
i ; w(·) ∼ GP(0,C(·, · | θ)). (1)

When m(x) is modeled in terms of a fixed basis expansion,
the marginalized model becomes Y ∼ N(B(X)γ ,�0) where
B(X) are the bases and γ are the coefficients. Hence, the model

remains linear in the unknown coefficients γ which can be once
again estimated using GLS.

As discussed in the introduction, the scope of fixed basis
function expansions are limited due to their inability to model
regression functions with discontinuities, and curse of dimen-
sionality in multi-dimensional covariate domains. RF are par-
ticularly suitable for such general regression function estimation
due to their use of regression trees, and natural accommodation
of higher covariate-dimensionality using random selection.
However, unlike fixed basis expansion models which are linear
in the parameters, RF estimation is a nonlinear greedy algorithm
for which a GLS extension is not straightforward. In the next
sections, we will develop a GLS-style RF algorithm for estimat-
ingm(X) under dependence.

2.2. Revisiting the RF Algorithm

We first review the original RF algorithm. Given data (Yi,Xi) ∈
R × R

D, i = 1, . . . , n, the RF estimate of the mean function
m(x) = E(Y |X = x) is the average of ntree regression tree
estimates ofm. In a regression tree, data are split recursively into
nodes of a tree starting from a root node. To split a node, a set of
Mtry(� D) features are chosen randomly and the best split point
is determinedwith respect to each feature d by searching over all
the “gaps” in that feature of the data as cutoff candidate c := c(d).
Here, “best” is determined as the feature-cutoff combination
(d, c)maximizing the CART (classification and regression trees)
split criterion (Breiman et al. 1984)

vCARTn ((d, c)) = 1
nP

⎡⎣ nP∑
i=1

(YP
i − ȲP)2 −

nR∑
ir=1

(YR
i − ȲR)2

−
nL∑
il=1

(YL
i − ȲL)2

⎤⎦ , (2)

where, YP
i , Y

R
i , and YL

i denote the responses in parent node,
right child, and left child, respectively. ȲP, ȲR, and ȲL denote
the respective node means, nP = nR + nL, nR, and nL are the
respective node cardinalities. The feature and cut-off value com-
bination that minimizes the CART-split criterion (2) is chosen
to create the child nodes. As each split is only based on one
feature, all nodes are hyper-rectangles. Each newly created node
is assigned a node representative—the mean of the responses of
the node members.

The nodes are iteratively partitioned this way till a prespeci-
fied stopping rule is met—we arrive at leaf nodes having single
element (fully grown tree) or the number of data points in each
leaf node is less than a prespecified number or the total number
of nodes reaches a prespecified threshold. The regression tree
estimate for an input feature x ∈ R

D is given by the representa-
tive value of the leaf node containing x. RF is the average of an
ensemble of regression treeswith each tree only using a resample
or subsample of the data.

2.3. Dependency Adjusted Node-Splitting

The RF algorithm of Section 2.2 does not utilize any infor-
mation on the locations �i or the ensuing spatial correlation.

https://doi.org/10.1080/01621459.2021.1950003
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The fundamental unit of the algorithm is splitting of a given
node, and it is inherently local in nature (in the covariate
domain). The split criterion (2) and subsequent assignment
of the node representatives are both based only on members
within the parent node. For iid data, this local approach is
reasonable as members of one node are independent of the
others. However, geo-referenced data units data can be distant
in the covariate-domain while being close in the spatial domain,
and therefore strongly correlated.

The spatial nonlinear mixed model from Section 2.1 can
be written more generally as Yi = m(Xi) + εi where
εi = w(�i) + ε∗

i is not an iid process but a stochastic
(Gaussian) Process capturing the spatial dependence. Hence,
cov(Yi,Yj) = cov(εi, εj) �= 0 for most or all (i, j) pairs
implying that members of the other nodes can be highly cor-
related with those of a node-to-be-split and operating locally
(intra-node) leaves out this information.We now propose a new
global split-criterion using all the correlations in the data, as
is desirable and in line with the common practice in spatial
analysis.

To explore generalizations of RF for dependent settings, we
first recall an equivalent global representation of the CART-
split criterion (2). Consider a regression tree grown up to the
set of leaf nodes {C1, C2, . . . , CK} forming a partition of the
feature space. The node representatives β̂

(0) = (β̂1, . . . , β̂K)�
are the corresponding means. To split the next node, say CK
without loss of generality, the CART-split criterion (2) deter-
mines the best feature-cutoff combination (d∗, c∗) and cre-
ates child nodes C(L)

K = CK ∩ {x ∈ R
D|xd∗ < c∗} and

C(R)
K = CK ∩ {x ∈ R

D|xd∗ ≥ c∗} and the node rep-
resentatives β̂

(L)
K and β̂

(R)
K (simply the means of the left and

right child nodes respectively). We can write the optimal split-
direction (d∗, c∗) and node representatives β̂

(L)
K , β̂(R)

K as the
maximizer

(d∗, c∗, β̂(L)
K , β̂(R)

K ) = argmax
d,c,(β(L),β(R))∈R2

1
|CK |

[∑
Xi∈CK (yi − β̂K)2−(∑

Xi∈CK ,Xid<c
(
yi − β(L))2 +∑

Xi∈CK ,Xid≥c
(
yi − β(R)

)2 )].
(3)

After the split, the new set of nodes is
{C1, C2, . . . , CK−1, C(L)

K , C(R)
K } and the set of representatives

is updated to β̂ = (β̂1, . . . , β̂K−1, β̂(L)
K , β̂(R)

K )�. Let
Z0 = (I(Xi) ∈ Cj) be the n × K membership matrix
before the split, and Z denote the n × (K + 1) membership
matrix for a split of CK using (d, c), that is, Zij = Z(0)

ij
for j < k, ZiK = I({Xi ∈ CK} ∩ {Xid < c}) and
Zi(K+1) = I({Xi ∈ CK} ∩ {Xid ≥ c}). We note but suppress the
dependence of Z on (d, c). Then the optimization in Equation
(3) can be rewritten in the following way.

(d∗, c∗, β̂) = argmax
d,c,β∈RK+1

1
n

(
‖Y − Z(0)β̂

(0)‖22 − ‖Y − Zβ‖22
)
.

(4)

This connection of OLS regression with RF is well-known (see,
e.g., Friedman et al. 2008whereRF rules are used in downstream

Lasso fit). To see why Equations (3) and (4) are equivalent, note
that, for a given (d, c) the β̂ optimizing (4) is simply β̂OLS =
(Z�Z)−1Z�Y, the minimizer of the OLS loss ‖Y− Zβ‖22. Since
the membership matrices have orthogonal columns consisting
of only 1s and 0s, the components of β̂OLS are simply the node
means. Hence, the last two components of β are β̂

(L)
K and β

(R)
K .

Since the first (K− 1) columns of Z are same as that of Z(0), this
implies that the first (K−1) components of β̂ are the same as that
of β̂

(0)
, that is, the means of the first (K− 1) nodes. So although

β̂ in (4) is a global optimizer of a linear regression re-estimating
all the node representatives, in practice, only the representatives
of the child nodes of CK are updated and this is equivalent to the
local optimization (3).

The global formulation of node-splitting offers an avenue for
GLS-style generalization of the split criterion for the spatial GP
regression. Let �0 = cov(Y) = cov(ε) denote the covariance
matrix of the marginalized response, and Q = �−1

0 . Then à la
GLSwe can simply replace the squared error loss ‖Y−Zβ‖22 with
a quadratic loss (Y−Zβ)�Q(Y−Zβ), and propose a GLS-style
split criterion

vDARTn,Q ((d, c)) (5)

= 1
n

[ (
Y − Z(0)β̂GLS(Z(0))

)�
Q
(
Y − Z(0)β̂GLS(Z(0))

)

−
(
Y − Zβ̂GLS(Z)

)�
Q
(
Y − Zβ̂GLS(Z)

) ]
.

We refer to Equation (5) as the dependency-adjusted regression
tree (DART) split criterion. For a split (d∗, c∗) maximizing
(5), the new set of node representatives are given by the GLS
estimate

β̂GLS(Z) = β̂ =
(
Z�QZ

)−1 (
Z�QY

)
. (6)

Both the loss used to choose the optimal split and the node
representatives now depend on data from all nodes, weighted
by the precision (inverse covariance) matrix Q, akin to the
spatial linearmixed-model. Even thoughwe preserve the greedy
recursive partitioning strategy of RF, for each node split our loss
function and node representation are now global in the sense
that they consider all the data points, not just the ones inside
the node to be split.

To demonstrate why the DART loss function and the GLS
node representatives are respectively more appropriate for
dependent data than the CART loss and nodemeans used in the
original RF, we now present a theoretical result and an empirical
example. To split a given parent node B into left and right
child nodesBL andBR, respectively, based on the split direction
(d, c), it is almost immediate that the CART split criterion (2),
being the difference between the sample variance of the parent
node with the those of the children nodes, is an estimator of its
asymptotic limit

Vol(B)
[
V(Y|X ∈ B) − P(X ∈ BR|X ∈ B)V(Y|X ∈ BR)

−P(X ∈ BL|X ∈ B)V(Y|X ∈ BL)
]
, (7)
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that is, the population difference between the variance in the
parent node and the pooled variance in the potential children
nodes. Indeed, if we were privileged to infinite amount of data,
we should use Equation (7) to split a node as it minimizes
the total intra-node variances in the children. Hence, for iid
data, it is reasonable to use the CART criterion (2) which is
the finite sample analogue of Equation (7). Under dependence,
however, it is unclear if Equation (2) is an efficient estimator of
Equation (7).

Our construction of the DART split criterion is guided by the
same principles of GLS used in linear regression for dependent
data. The resulting loss function (5) depends on data from
not only the node B to be split, but on all data, and it is not
immediately clear what its population limit is. Optimization
of Equation (5) for the optimal split (d∗, c∗) relies on the GLS
estimate (6) which is also a function of all data. Hence, we first
provide a result about its asymptotic limit. We use assumptions
on the dependence structure of the error process (Assump-
tion 1) and regularity of the precision matrix (Assumption 2)
discussed in more details later in Section 3 on consistency of
our method. The proofs of these results can be found in Section
S2.1 (supplementary materials).

Assumption 1 (Mixing condition). Yi = m(Xi) + εi where the
error process {εi} is a stationary, absolutely regular ( β-mixing)
process (Bradley 2005) with finite (2 + δ)th moment for some
δ > 0.

Assumption 2 (Regularity of the working precision matrix). The
working precision matrixQ = �−1 admits a regular and sparse
lower-triangular Cholesky factor �− 1

2 such that

�− 1
2 =

⎛⎜⎜⎜⎜⎜⎜⎝

Lq×q 0 0 · · · · · ·
ρ�
1×(q+1) 0 · · · · · ·
0 ρ�

1×(q+1) 0 · · ·
...

. . .
...

· · · 0 0 ρ�
1×(q+1)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where ρ = (ρq, ρq−1, · · · , ρ0)� ∈ R
q+1 for some fixed q ∈ N,

and L is a fixed lower-triangular q × qmatrix .

Lemma 2.1 (Limit of GLS estimate for fixed partition regres-
sion-tree). Under Assumptions 1 and 2, for a regression-tree
based on a fixed (data-independent) partition C1, . . . , CK , the
GLS estimate β̂ = (β̂1, . . . , β̂K)� from Equation (6) has the
following limit.

β̂ l
a.s.→ E(Y|X ∈ Cl) as n → ∞ for l = 1, . . . ,K.

Lemma 2.1 shows that the GLS-estimate for the node repre-
sentatives, although using data from all the nodes, asymptote
to within node population means – the same limit as that of
the sample node means used in RF. This is a new result of
independent importance showing that the GLS estimate for
a fixed-partition regression-tree, is a consistent estimator of

the node-specific conditional means. This in turn leads to the
following result about the DART loss.

Theorem 2.1 (Theoretical DART-split criterion). UnderAssump-
tions 1 and 2, for a tree built with a fixed (data-independent)
set of splits C1, . . . , CK , as n → ∞ the empirical DART-split
criterion (5) to split a nodeB = Cl into left and right child nodes
BL andBR respectively, converges almost surely to the following
for some constant α = α(Q):

v∗
Q((d, c)) = αVol(B)

[
V(Y|X ∈ B)

−P(X ∈ BR|X ∈ B)V(Y|X ∈ BR)

−P(X ∈ BL|X ∈ B)V(Y|X ∈ BL)
]
.

(8)

The aforementioned result shows that remarkably the limit
of the the DART-split criterion converge to the same respec-
tive limit (7) of the CART-split criterion up to a constant
α. This result is intriguing as although the empirical DART
split criterion depends on the entire set of splits and data
from all the nodes, its asymptotic limit is simply the popula-
tion variance difference (7) between the parent node and the
children nodes and does not depend on the other nodes. As
discussed before, the quantity (7) would be the ideal one to
use for splitting a node if one had knowledge of the popula-
tion distribution, and it is reassuring that the DART criterion
asymptotes to it.

These asymptotic results are in line with the conventional
GLS wisdom. GLS estimators are known to have the same
asymptotic limit as the OLS estimators but are more effi-
cient under dependence. To demonstrate how these asymptotic
results translate to finite sample performance, we conduct a
simple experiment using data generated from Yi = m(Xi) +
εi, where εi is an GP with exponential covariance function
on the regularly spaced one-dimensional lattice, and m(x) is
a function of a single covariate supported on [0, 1] such that
m(x) = 1 for x ≤ 0.5, and m(x) = 1.5 for x > 0.5.
If we use a two-node decision tree to estimate m, then it is
obvious that a good loss criterion should be maximized near
the cut-off value of 0.5 where there is a discontinuity in the
true regression function. In Figure 1(a), we plot the average
CART and DART split criterion as a function of the choice of
cutoff, and the point-wise confidence bands. The DART split
criterion was scaled by α to have the same asymptotic limit as
the CART split criterion. For reference we also plot the true
regression function on the secondary y-axis. We see that the
average curves for both the CART and DART criterion are quite
identical, both peaking near the true cutoff of 0.5. However,
the CART criterion using the OLS loss has large uncertainty as
reflected by the much wider confidence bands, than the DART
criterion. This in turn affects the estimates of the cutoff and
the node representatives as reflected in Figure 1(b). While both
losses lead to similar mean estimates of the cutoff, and node
representatives, the variability is substantially higher for theOLS
loss. This large variability is especially evident for the choice of
the cutoff where the CART loss can choose cutoff far away from

https://doi.org/10.1080/01621459.2021.1950003
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Figure 1. Comparison between OLS loss (CART criterion) and our GLS loss (DART criterion) for node-splitting in a regression tree under GP correlated errors. Left Figure (a)
plots the average CART (blue) and DART (brown) criterion and point-wise 95% confidence bands over 100 replicate datasets. The true regression functionm(x) is plotted
in orange in the secondary axis. Right figure (b) plots the densities (violin plots) of the estimates of the cutoff used for node-splitting and the node representatives from
the two loss functions.

0.5with high probabilitywhereas theDART loss chooses a cutoff
near 0.5 almost always. We will show in Section 4 over a wide
range of simulation studies how this leads to poor finite sample
estimation and prediction performance of RF for dependent
data.

2.4. GLS-Style Regression Tree

The DART split criterion (5) and node representation (6) con-
stitute the fundamental node-splitting operation of a GLS-
style regression tree algorithm that incorporates the spatial
information via the correlation matrix. We now introduce
additional notation to formally detail the algorithm of this
GLS-style regression tree. Creation of a forest from the trees will
be discussed in Section 2.5.

For ease of presentation, so far we have talked about the case
of splitting the last node (Kth) at a given level of the tree. More
generally, we can denote the complete set of nodes in level k −
1 by C(k−1) = {C(k−1)

1 , C(k−1)
2 , · · · , C(k−1)

g(k−1) } which is a partition

of the feature space. To split the l1th node C(k−1)
l1 , we consider

the following membership matrices: Z(0), which corresponds to
the nodes in parent level, with the column for the node-to-be-
split pushed to the last column, and Z which corresponds to the
membership of the potential child nodes

C(k)
l(1)1

= C(k−1)
l1 ∩ {x ∈ R

D|xd < c},
C(k)
l(2)1

= C(k−1)
l1 ∩ {x ∈ R

D|xd ≥ c} (9)

based on a split (d, c). Note that Z above is a function of the
previous set of nodes C(k−1), the node to be split l1 and the split
(d, c) all of which is kept implicit. We denote the GLS-style split
criterion (5) as vDARTn,Q (C(k−1), l1, (d, c)) := vDARTn,Q (d, c) for the
node C(k−1)

l1 at (d, c).
Equipped with the notation, the GLS-style regression tree

algorithm is presented below:

Algorithm 1 GLS-style random regression tree
Input: Data Dn = (Y1,X1, . . . ,Yn,Xn), working preci-

sion matrix Q, stopping rules tn (maximum number of nodes)
and tc (minimum number of members per node), number of
features considered for each split Mtry, randomness R� (some
probability distribution to choose a subsample of sizeMtry from
{1. . . . ,D}), output point x0.

Output: Estimatemn(x0;�) of the mean functionm at x0.
1: procedure
2: Initialize k ← 1;C(1) ← {RD}, g(1) ← 1;
3: while g(k) < tn and |C(k)

l | > tc for at least one l ∈
1, 2, . . . , g(k) do

4: Update k ← k + 1;
5: Initialize C(k) ← {}; g(k) ← 0;
6: for l1 ∈ 1 : g(k−1) do
7: if |C(k−1)

l1 | ≤ tc or g(k) ≥ tn then
8: C(k) ← C(k) ∪ C(k−1)

l1 ; g(k) ← g(k) + 1;
9: else
10: R ← i.i.d.∼ R�

11: for d ∈ R, c ∈ gaps({Xid|1 ≤ i ≤ n − 1})1
do

12: vDARTn,Q ((d, c)) ← Equation (5)
13: (d∗, c∗) ← argmin(d,c) vDARTn,Q ((d, c))
14: C(k)

l(1)1
and C(k)

l(2)1
← Equation (9) with (d∗, c∗)

15: C(k) ← C(k) ∪ C(k)
l(1)1

∪ C(k)
l(2)1

;

16: g(k) ← g(k) + 2;
17: Representatives β̂ = (β̂1, . . . , β̂g(k) )� ← Equation (6)

with Zn×g(k) =
(
I(Xi ∈ C(k)

l )
)
;

18: Outputmn(x0;�) = ∑g(k)

l=1 β̂lI(x0 ∈ C(k)
l );

1For any set of real numbers S = {r1 < · · · < rs}, gaps(A) = {(ri + ri+1)/2 :
i = 1, . . . , s − 1}.
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Note that, if the true covariance matrix �0 is unknown, as
in practice,Q will be �−1 where � is some working covariance
matrix (estimate and/or computational approximation of �0).
We discuss estimation of �0 and choice of Q in Section 2.7.
The algorithm works with any choice of the working precision
matrixQ. For example, withQ = I, the algorithm is identical to
the usual regression-tree used in RF.

2.5. RF-GLS

We now focus on growing a RF from ntree number of GLS-style
trees. In RF, each tree is built using a resample or subsample
of the data Dn,t = (Yt ,Xt) where Yt is the resampled (or
subsampled) vector of the responses andXt is the design matrix
using the corresponding rows. For our GLS-style approach,
naive emulation of this is not recommended. To elucidate,
if one resorts to resampling, under dependent settings, this
would mean resampling correlated data units (Yi,Xi) thereby
violating the principle of bootstrap. Also, it is unclear what the
working covariance matrix would be between the resampled
points. If subsampling is used, this is avoided, as one can use
the submatrix �t corresponding to the subsample. However,
each tree will use a different subsample and hence a different
�t . Inverting covariance matrices of dimension O(n) require
O(n3) operations, and this approach would require invert-
ing ntree such matrices, thereby substantially increasing the
computation.

Interestingly, the GLS-loss itself offers a synergistic solution
to resampling of dependent data. To motivate our approach, we
once again revisit RF, and note that the CART-split criterion (4)
for a re(sub)sample can be expressed using the squared error
loss ‖PtY − PtZβ‖22, where Pt is the selection matrix for the
resample. Now GLS loss with Y and Zβ coincides with an OLS
loss with Ỹ = �−1/2Y, Z̃ = �−1/2Z. Hence, the immediate
extension for the resample (subsample) in our setup would be
using the loss

‖PtỸ − PtZ̃β‖22 = ‖Pt�− 1
2Y − Pt�− 1

2Zβ‖22
= (Y − Zβ)��−�/2P�

t Pt�−1/2(Y − Zβ).
(10)

Thus, to use a GLS-loss in RF, we essentially resample the
contrasts Ỹ instead of the outcomesY. This principle of contrast
resampling has been used in parametric bootstrapping of spatial
data (Pardo-Igúzquiza and Olea 2012; Saha and Datta 2018a).
In our algorithm the resampling amounts to simply replacing
the Q in the DART-split criterion (5) and node representative
calculation (6) withQt = �−�/2P�

t Pt�−1/2. Computationally,
our approach has the advantage of only requiring a one-time
evaluation of the Cholesky factor �−1/2 that is used in all trees.
As in RF, subsequent to growing ntree trees corresponding to
each different resample we take the average to get the forest
estimate. This completes the specification of a novel GLS-style
RF for dependent data. We refer to the algorithm as RF-GLS
and summarize it in Algorithm 2. It is clear when Q = I, the
node-split criterion, the node representatives, and the resam-
pling step all become identical to RF. Hence, RF is simply
a sub-case of RF-GLS with an identity working correlation
matrix.

Algorithm 2 RF-GLS
Input:DataDn = (Y1,X1, . . . ,Yn,Xn), working correlation

matrix �, number of trees ntree, stopping rules for the trees:
tn (maximum number of nodes) and tc (minimum number of
members per node), number of features considered for each split
Mtry, randomness R(1)

� (some probability distribution to choose
a resample of size n from {1. . . . , n}), randomness R(2)

� (some
probability distribution to choose a subsample of sizeMtry from
{1. . . . ,D}), output point x0.

Output: Estimatemn(x0;�) of the mean functionm at x0.
1: procedure
2: Calculate �−1/2;
3: Initialize t = 1;
4: for t = 1 : ntree do
5: Generate Rt ← i.i.d.∼ R(1)

�

6: Pt ← (I(i = Rt[j]))
7: Qt = �−�/2P�

t Pt�−1/2

8: mn(x0;�t) ← Algorithm 1 with
Dn,Qt , tn, tc,Mtry,R(2)

� , x0;
9: Output m̂n(x0) = 1

ntree
∑ntree

t=1 mn(x0;�t)

2.6. Kriging Using RF-GLSWith GPs

Subsequent to estimating the regression function m(x) using
RF-GLS in the spatial nonlinear mixed model (1), we can seam-
lessly perform traditional spatial tasks like predictions (krig-
ing) and recovery of the latent spatial random surface w(�).
This is because RF-GLS only estimates the mean part, and the
covariance is still beingmodeled using a GP. This facilitates easy
formulation of the predictive or latent distribution conditional
on the data as standard conditional normal distributions. If L
denotes the training data locations, Y = (Y1, . . . ,Yn)�, and
m = (m̂(X1), . . . , m̂(Xn))� where m̂ is the estimate of m from
RF-GLS, then prediction at a new location �new with covariate
xnew will simply be given by the kriging estimate

ŷnew(xnew, �new) = m̂(xnew) + v��−1(Y − m̂) (11)

where v� = cov(ε(�new), ε(L)),� = cov(ε(L), ε(L)).
The prediction equation (11) possess the advantage of non-
parametrically estimating the mean function of the covariates
while retaining the spatial structure encoded in the GP covari-
ance function which adheres to the philosophy of first law of
geography, that is, proximal things are more correlated than
distant ones. The prediction framework is completely agnostic
to the choice of the covariance function and can work with non-
stationary or multi-resolutional covariance functions if deemed
appropriate. One can also obtain estimates of the latent surface
using the conditional distributionsw(�) |Y,X akin to the spatial
linear model.

Prediction equations of the form of Equation (11) has
been used in applications of RF to spatial settings and has
been termed as random forest residual kriging (RF-RK) (Vis-
carra Rossel, Webster, and Kidd 2014; Fayad et al. 2016). The
estimate m̂ in these applications come from a naive application
of RF without accounting for the dependence. Our empirical
studies in Section 4 will demonstrate how residual kriging using
RF-GLS improves over use of RF in dependent settings.
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RF-GLS also has several advantages over the RFsp of Hengl
et al. (2018), which does not use GP but include pairwise
distances between a location and all other locations, as addi-
tional covariates. For n locations, this adds n covariates. RF-
GLS avoids such unnecessary escalation of the problem to high-
dimensional settings. Direct use of the GP and themixed-model
framework helps model the spatial structure parsimoniously via
the covariance function parameters. Our simulation studies in
Section 4 demonstrates the improved prediction performance
of RF-GLS over RFsp. Most importantly, RF-GLS separates out
the contribution of the covariates and the spatial component,
thereby allowing estimation of the regression function m. Esti-
mate of m is not available from the RFsp of Hengl et al. (2018)
which only offers a prediction given the covariates and the
location.

2.7. Practical Considerations

The development of the RF-GLS method has been presented
using aworking covariancematrix�. In practice, the true corre-
lation�0 will not be known and needs to be estimated assuming
a parametric form � based on the covariance function used. In
Section 3 we present the result that both RF and RF-GLS are
consistent under dependent errors (akin to both OLS and GLS
being consistent for linear models). Hence, for data analysis, we
recommend running the first pass of RF on the data to get a
preliminary estimate of m, use it to obtain the residuals from
which the parameters of � can be estimated using a maximum
likelihood approach. This once again parallels the practice in
linear models where the oracle GLS assuming knowledge of the
true covariance matrix is replaced by a feasible GLS where the
covariancematrix is estimated based on residuals from an initial
OLS estimate.

The second consideration concerns computational scalabil-
ity of the approach. RF-GLS requires computing the Cholesky
factor �−1/2. It is clear from Algorithm 2, that this is only a
one-time cost, unlike the possible alternate approach discussed
in Section 2.5 where subsampling is conducted before decor-
relation, which would lead to computing a different Cholesky
factor for each tree. However, spatial covariance and precision
matrices arising from GP are dense and for large n, evaluating
�−1 even once still incurs the computational cost of O(n3)
and storage cost of O(n2) both of which are taxing on typical
personal computing resources.

Over the last decade, the inventory of approximation tech-
niques attacking the computational weakness of GP has grown
and become increasingly sophisticated (see Heaton et al. 2019,
for a review). NNGP (Datta et al. 2016a; Finley et al. 2019; Datta
et al. 2016b,c) has emerged as one of the leading candidates.
Centered on the principle that a few nearby locations are enough
to capture the spatial dependence at a given location (Vecchia
1988), NNGP replaces the dense graph among spatial locations
with the nearest neighbor graphical model. This was shown
to directly yield a sparse Cholesky factor �̃

−1/2 that offers an
excellent approximation to the original dense �−1/2 (Datta
et al. 2016a). Software packages implementing NNGP are also
publicly available (Finley, Datta, and Banerjee 2021; Saha and
Datta 2018b). Hence, for very large data, we recommend using
this NNGP sparse Cholesky factor �̃

−1/2 instead of�−1/2. This

will reduce both the computation and storage cost from cubic to
linear in sample size.We will show in Proposition 3.1, that using
NNGP for RF-GLS ensures a consistent estimate ofm evenwhen
the true data generation is from a full Matérn GP.

3. Consistency

In this section, we present the main theoretical result on con-
sistency of RF-GLS for a very general class of dependent error
processes. The outline of the proof highlighting the new theoret-
ical challenges addressed are presented in Section 5 along with
some general results of independent importance. The formal
proofs are provided in the supplementary materials.

3.1. Assumptions

We first discuss Assumptions 1 and 2 and make addi-
tional assumptions required for the proof of consistency. In
Assumption 1, we focus on absolutely regular or β-mixing pro-
cesses, since this class of stochastic processes is rich enough to
accommodatemany commonly used dependent error processes
like ARMA (Mokkadem 1988), GARCH (Carrasco and Chen
2002), certain Markov processes (Doukhan 2012) and GPs with
Matérn covariance family. At the same time, uniform lawof large
numbers (ULLN) from independent processes can be extended
to this dependent process under moderate restriction on the
class of functions under consideration. No additional assump-
tion is required on the decay rate of the β-mixing coefficients
(which are often hard to check).

Assumption 2 requires the Cholesky factor of the precision
matrix to be sparse and regular. Such structured Cholesky
factors routinely appear in time series analysis for AR(p)
process. For spatial data, exponential covariance family on a
1-dimensional grid satisfies this. Other covariances like the
Matérn family (except the exponential covariance) do not gener-
ally satisfy this assumption. However, NNGP covariance matri-
ces satisfy this and are now commonly used as an excellent
approximation to the full GP covariance matrices (Datta et al.
2016a). Since this assumption is on the working covariance
matrix and not on the true covariance of the process, we can
always use an approximate working covariance matrix like ones
arising fromNNGP to satisfy this. We discuss these examples in
Section 3.3. Under Assumption 2, for any two vectors x and y,
defining xi = yi = 0 for i ≤ 0, we have

x�Qy = α
∑
i
xiyi +

q∑
j�=j′=0

ρjρj′
∑
i
xi−jyi−j′ +

∑
i∈Ã1

∑
i′∈Ã2

γ̃i,i′xiyi′ ,

(12)

where α = ‖ρ‖22, Ã1, Ã2 ⊂ {1, 2, . . . , n} with |Ã1|, |Ã2| ≤ 2q,
γ̃i,i′ ’s are fixed (independent of n) functions of L and ρ. The
expression of the quadratic form in Equation (12) makes it
evident that λmax(Q) is bounded as n → ∞. As the third term
is a sum of fixed (atmost 4q2) number of terms, it isO(1) as long
as x and y are bounded.

Assumption 3 (Diagonal dominance of the working precision
matrix). Q is diagonally dominant satisfyingQii−∑

j�=i |Qij| >

ξ for all i, for some constant ξ > 0.

https://doi.org/10.1080/01621459.2021.1950003
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Diagonal dominance implies λmin(Q) is bounded away from
zero as n → ∞ which is needed to ensure stability of the GLS
estimate. We will discuss in Section 3.3 how working correla-
tion matrices from popular time series and spatial processes
with regular design satisfy this Assumption. Note that under
Assumption 2, checking that the first (q + 1) rows of Q are
diagonally dominant is enough to verify Assumption 3.

Assumption 4 (Tail behavior of the error distribution).

1. ∃{ζn}n≥1 such that

ζn → ∞, tn(log n)ζ 4n
n → 0, and

E
[(
maxi ε2i

)
I
(
maxi ε2i > ζ 2

n
)] → 0 as n → ∞.

2. ∃ constant Cπ > 0 and n0 ∈ N
∗ such that with probability

1 − π , ∀n > n0,

max
i

|εi| � Cπ

√
log n.

3. Let In ⊆ {1, 2, · · · , n} with |In| = an and an → ∞ as
n → ∞. Then 1

an |
∑

i∈In εi| > δ with probability at most
C exp(−can) and 1

n |∑i ε
2
i | > σ 2

0 with probability at most
C exp(−cn) for any δ > 0, and some constants c,C, σ 2

0 > 0.

We show for Gaussian errors, ζn needs to be O(log n)2
which makes the scaling condition in Assumption 4(a) as
tn(log n)9/n → 0. This is the same scaling used in Scornet
et al. (2015) for Gaussian errors and using the entire sample.
In general, the choice of ζn will be dependent on the error
distribution. Assumption 4(a), (b) and (c) will all be satisfied by
sub-Gaussian errors.

Assumption 5 (Additive model). The true mean function m(x)
is additive on the coordinates xd of x, that is, m(x) =∑D

d=1md(xd), where each componentmd is continuous.

As demonstrated in Scornet et al. (2015), additive models
provide a rich enough environment to address the asymptotic
properties of nonparametric methods like RF sans the addi-
tional complexities in controlling asymptotic variation of m in
leaf nodes. Since RF is invariant to monotone transformations
of covariates (Friedman, Hastie, and Tibshirani 2001; Fried-
man 2006), without loss of generality, the covariates can be
distribution function transformed to be Unif[0, 1] distributed.
Hence we assume that the components (functions)md are sup-
ported on [0, 1], implying m is uniformly bounded by some
constantM0.

3.2. Main Result

For the tth tree, the predicted value from our method at a
new point x0 in covariate space is denoted bymn(x0;�t ,�,Dn)
where Dn = {(xi, yi) | i = 1, . . . , n} denote the data. Note
that the ith data unit corresponds to location �i and that
the covariance matrix � is based on the covariance function
evaluated at pairs of locations �i and �j. But unless other-
wise needed we suppress the locations �i and simply use the
subscript i.

�t indicates the randomness associated with each tree. In
practice, �t will include both the resampling of data-points

used in each tree as well as the choice of random splitting
variable for iterative splitting in the tree. For tractability, Scor-
net et al. (2015) considered subsampling instead of resam-
pling for the theoretical study. In our theoretical study, for
analytical tractability of the GLS weights, we consider trees
that use the entire set of samples and the randomness �t in
each tree is only used to choose the candidate set of features
for each split. The randomness for each tree are iid, that is,
�t

iid∼ �, � ⊥ Dn,∀t ∈ {1, · · · , ntree}. The finite RF-GLS
estimate m̂n,ntree(x0;�1, · · · ,�ntree ,�,Dn) that will be used in
practice is given by the sample average of the individual tree
estimates. Conceptually, ntree can be arbitrarily large; hence
following Scornet et al. (2015), we focus on “infinite” RF-
GLS estimate given by m̄n(x0;�,Dn) = E�mn(x0;�,�,Dn)
where the expectation w.r.t � is conditional on Dn. For nota-
tional convenience, we hide the dependence of mn, m̂n,ntree , m̄n
on � and Dn throughout the rest of this article. Our main
result on L2-consistency is stated next, the proof is deferred to
Section 5.1.

Theorem 3.1. Under Assumptions 1-5 and if for some δ >

0, limn→∞ E
1
n
∑

i |mn(Xi)|2+δ < ∞, then RF-GLS is L2-
consistent, that is, limn→∞ E

∫
(m̄n(X) − m(X))2 dX = 0,.

The uniformly bounded (2 + δ)th moment assumption in
Theorem 3.1 is needed to generalize uniform laws of large
number bounding the GLS estimation error from the iid setting
to the dependent setting.Wediscuss this in details in Section 5.3.
The following corollaries discuss three specific cases where this
assumption is met. Their proofs are deferred to Section S2.3.

Corollary 3.1. Under Assumptions 1-5, RF-GLS isL2 consistent
if either:

1. Case 1: The errors are bounded.
2. Case 2: The working precision matrix Q satisfies miniQii >√

2maxi
∑

j�=i |Qij|.
For bounded errors (part (a)), the (2 + δ)th moment-

bound of Theorem 3.1 is immediately satisfied, and hence
consistency can be established without further assumptions.
For unbounded errors, a stronger form of diagonal dominance
condition is needed in Corollary 3.1 Part (b). This is used
to control the (2 + δ)th moment of the data weights aris-
ing from the gram-matrix (Z�QZ)−1 which in turn ensures
the moment-bound. We discuss examples and specific param-
eter choices ensuring this in Section 3.3. Also note that, the
assumption of diagonal dominance is not on the true corre-
lation matrix of the error process and hence is not a restric-
tion on the data-generation mechanism, but rather on the
working correlation matrix which is chosen by the user. One
can always use parameters in the working correlation matrix
that satisfies this (although enforcing this is not needed in
practice).

RF is RF-GLS with Q = I. Hence the assumption of Corol-
lary 3.1 part (b) is trivially satisfied. This proves consistency of
RF under β-mixing dependence.
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Corollary 3.2. Under Assumptions 1, 4, and 5, RF (Breiman
2001) is L2-consistent.

To our knowledge, Corollary 3.2 is the first result on con-
sistency of RF under a dependent (β-mixing) error process.
Since RF is simply RF-GLS with the working correlation matrix
� = I, Assumptions 2 and 3 are automatically satisfied, and
hence we only need the Assumptions of β-mixing process, tail
bounds, and additivemodel. The consistency result is analogous
to the ordinary least-square estimate being consistent even for
correlated errors. Besides its own importance, Corollary 3.2 also
heuristically justifies the first step used in practical implemen-
tation of RF-GLS. The parameters in the working correlation
matrix is unknown, and as highlighted in Section 2.7, we use
the RF to get a preliminary estimate of m, estimate the spatial
parameters using the residuals, and use these estimated param-
eters in the working correlation matrix for RF-GLS. This is
again, analogous to feasible GLS which estimates the working
correlation matrix using residuals based on OLS. Corollary 3.2
guarantees that the initial estimator used to obtain the residuals
is consistent.

3.3. Examples

In this section, we give examples of two popular dependent
error processes under which a consistent estimate of m can be
obtained using RF-GLS.

3.3.1. Spatial Matérn GPs
Our main example focuses on the spatial nonlinear mixed
model using GPs as described in Section 2.6. While many
candidates exist for the covariance function of GP, the class of
Matérn covariances enjoy hegemonic popularity in the spatial
literature owing to its remarkable property of characterizing
the smoothness of the spatial surface ε(�) (Stein 2012). The
stationary (isotropic)Matérn covariance function is specified by

C(�i, �j | φ) = C(‖�i − �j‖2) = σ 2 2
1−ν

(√
2φ‖�i − �j‖2

)ν
�(ν)

Kν

(√
2φ‖�i − �j‖2

)
, (13)

where φ = (σ 2,φ, ν)� and Kν is the modified Bessel function
of second kind.

We consider a Matérn process sampled on one-dimensional
regular lattice. This regular design is considered both for
tractability of the Matérn GP likelihood but also for ensuring
stationarity of the process in the sense required in Theorem 3.1
as for irregular spaced data cov(ε1, ε2) �= cov(ε2, ε3) whenever
‖�1 − �2‖2 �= ‖�2 − �3‖2. Such assumptions on the dimen-
sionality and/or regularity of design has been widely used for
theoretical studies of spatial processes (Du et al. 2009; Stein
et al. 2002). By keeping the gap in the lattice fixed, we are also
essentially using increasing-domain asymptotics, as parameters
are generally not identifiable in fixed domain asymptotics for
Matérn GPs (Zhang 2004).

The error process arising from the marginalization of (1)
is the sum of a Matérn process and a nugget (random error)
process. We consider half-integer ν ∈ 1.5, 2.5, . . .. This class

of processes are popularly studied and used owing to their
convenient state-space representation (Hartikainen and Särkkä
2010) which in turn leads to efficient computation of these
Matérn GP likelihoods. The state-space representation of half-
integer Matérn GP is equivalent to that of a stable AR(q0)
process on the continuous one-dimensional domain with q0 =
ν + 1/2. However, unlike an AR(q0) time series, the Matérn
GP when sampled on the discrete integer lattice is no longer an
AR(q0) process. Consequently, unlike covariancematrices from
AR processes, covariance matrices � generated from Matérn
GP (expect for exponential GP), do not satisfy the sparsity and
regularity of the working correlation matrix of Assumption 2.

Instead, we consider the working correlation � to come
from the nearest neighbor Gaussian process (NNGP) (Datta
et al. 2016a) based on the Matérn covariance. As discussed
in Section 2.7, NNGP covariance matrices are one of the
most successful surrogates for full GP covariances for large
spatial data, reducing likelihood computations from O(n3) to
O(n). What is important for the theoretical study is that an
NNGP is constructed by sequentially specifying the condi-
tional distributions as εi | ε1:i−1 ∼ εi | εNq(i) where Nq(i) ⊂
{1, . . . , i − 1} is the set of q-nearest neighbors of �i among
�1, . . . , �i−1. When the locations are the integer grid, Nq(i)
becomes {i − 1, . . . , i − q}, and the NNGP construction is akin
to an AR(q) process. Consequently, the Cholesky factor �−1/2

from NNGP on an integer lattice satisfies Assumption 2 with
ρ = (1,−c�C−1)�/

√
1 − c�C−1c and L such that L�L = C−1

where C = cov(ε1:q), c = cov(ε1:q, εq+1) (Finley et al. 2019).
This ensures the following consistency result of RF-GLS fitted
with NNGP for data generated usingMatérn GP. The proof is in
Section S2.6.

Proposition 3.1. Consider a spatial process y(�i) = m(Xi)+ε(�i)
from (1) where m is an additive model as specified in Assump-
tion 5, ε(�i) = w(�i) + ε∗(�i) where ε∗(�) denote iid N(0, τ 20 )

noise, and w(�) be a Matérn GP, sampled on the integer lattice,
with parameters φ0 = (σ 20,φ0, ν0)�, ν0 being a half-integer.
Let � denote a covariance matrix from the nearest neighbor
Gaussian process (NNGP) derived from a Matérn covariance
with parametersφ = (σ 2,φ, ν)� and τ 2. Then there exists some
K > 0 such if φ > K, then RF-GLS using � yields an L2
consistent estimate ofm.

One observation is central to the proof. The half-integer
Matérn GP, which is an AR(q0) process in the continuous
domain, when sampled on a discrete lattice becomes an ARMA
process ((Ihara 1993) Theorem 2.7.1). This will establish abso-
lutely regular mixing of these Matérn processes using the result
of Mokkadem (1988) on ARMA processes, and subsequently
consistency of RF-GLS by Theorem 3.1.

3.3.2. Autoregressive Time Series
Our main focus in this article, is estimation of nonlinear regres-
sion function in the spatialmixedmodel (1). However, the scope
of our RF-GLS algorithm is much broader. It can be used for
functional estimation in the general nonlinear regressionmodel
Yi = m(Xi)+ εi where εi is a dependent stochastic process with
valid second moment. The method only relies on knowledge of
an estimate of the residual covariance matrix � = cov(ε). The
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general consistency result (Theorem 3.1) is also not specific to
the spatial GP setting, and only relies on general assumptions
on the nature of the dependence, tail bounds of the error, and
structure of the working correlation matrix. In this section, we
demonstrate that RF-GLS can be used for consistent function
estimation for time series data, that is, where εi models the serial
(temporal) correlation. In particular, we discuss consistency of
RF-GLS for Autoregressive (AR) error processes, one of the
mainstays of time series studies. AnAR(q)model can be written
as follows:

εi = a1εi−1 + a2εi−2 + · · · + aqεi−q + ηi, (14)
where ηi is a realization of a white-noise process at time i. AR
processes are β-mixing (Mokkadem 1988), they also produce a
banded Cholesky factor of the precision matrix as required in
Assumption 2. Hence, we have the following assertion. Its proof
is in Section S2.6.

Proposition 3.2. Consider a time series Yi = m(Xi) + εi where i
is the time, m satisfies Assumption 5, εi denote a sub-Gaussian
stable AR(q0) process. Let � denote a working correlation
matrix from a stationary AR(q) process. Then RF-GLS using �

produces an L2 consistent estimate ofm if

1. q = 1 and the working autocorrelation parameter ρ used in
� satisfies |ρ| < 1 (for bounded errors) or |ρ| < 1/(2

√
2)

(for unbounded errors).
2. q > 1 and the AR(q) working precision matrix Q = �−1

satisfies Assumption 3 (for bounded error) or miniQii >√
2maxi

∑
j�=i |Qij| (for unbounded error).

We separate the results for q = 1 and q ≥ 2 since unlike
AR(1), for general AR(q) it is challenging to derive closed form
expressions of the constraints on the parameter space needed
to satisfy Assumption 3 or the stronger diagonal dominance
condition in Proposition 3.2 part 2 (for unbounded errors).
However, verifying these conditions for a given AR precision
matrix Q is straightforward due to stationarity and banded
structure. One only needs to check the first q + 1 rows of Q
irrespective of the sample size n. The necessary condition for
row q + 1 is

‖ρ‖2 > 2κ
q∑

j=1
|

q∑
j′=j

ρj′ρj′−j|, (15)

where κ equals 1 for bounded errors and equals
√
2 for

unbounded errors. Additional checks are only needed for the
first q rows ofQ.

In practical implementation of AR processes, the order of the
autoregression is often chosen based on analysis of the auto-
correlation function of the residuals and may not equal the true
order of the autoregression. Proposition 3.2 accommodates this
scenario by not restricting the working autoregressive covari-
ance to be of the same order or have the same coefficients as the
ones generating the data.

4. Illustrations

We conduct simulation experiments to demonstrate the advan-
tages of the RF-GLS over competing methods for both estima-
tion and prediction in finite samples. We simulate data from

the spatial nonlinear mixed model of Equation (1). We consider
the following choices for the true mean function m1(x) =
10 sin(πx) and m2(x) = (10 sin(πx1x2) + 20(x3 − 0.5)2 +
10x4 + 5x5)/6 (Friedman function, Friedman 1991). w(�) is
an exponential GP on a two-dimensional spatial domain with
27 different combinations of covariance parameters spatial vari-
ance σ 2, spatial decay φ and error variance τ 2 as a % of the
spatial variance. For each setting, we perform simulations for
100 replicate datasets. To evaluate prediction performance, we
keep 10% hold-out data. Details of the parameter choices and
hold-out design are in Section S1.1.

For evaluating estimation performance, we consider RF
(which does not use spatial information), RF-GLS (Oracle)
using true covariance parameter values, and RF-GLS which
obtains an estimate of the covariance parameters from RF resid-
uals using the BRISC package (Saha and Datta 2018b) and uses
them in RF-GLS. The estimation performance of the meth-
ods are evaluated based on a discrete Mean Integrated Square
Errors (MISE) for m, evaluated over uniformly generated data
points from the covariate space that provides a good cover-
age of the entire space. MISE for the estimated function m̂ is
given as:

MISE =
∫

(m(x) − m̂(x))2dx ≈ 1
n0

n0∑
i=1

(m(xi) − m̂(xi))2

where x1, . . . , xn0 are a dense set of points in the covariate
domain (See Section S1.1 for details).

We observe that the RF-GLS performs at par with RF-
GLS (Oracle) which assumes knowledge of the true spatial
parameters (supplementarymaterial, Section S1.2). As in reality,
we won’t have knowledge of the true parameters, for the rest
of the article we will be comparing the competing methods
only with RF-GLS, where model parameters are unknown and
estimated from RF residuals. We present the estimation and
prediction results for m = m2. The results for m = m1
are similar, and are provided in the supplementary materials,
Section S1.3.

The median MISE over 100 simulations for all the 27 setups
are shown in Figure 2(a). RF-GLS outperforms RF across all the
scenarios demonstrating that exploiting the spatial information
substantially improves estimation performance over the vanilla
RF. Additionally, we also notice that as the strength of the spatial
variation increases (σ 2 goes from 1 to 10), the ratio of MISE of
RF and RF-GLS increases indicating a greater gain in terms of
MISE.

We consider five candidates for evaluating prediction per-
formance: RF, RF-RK (Fox, Ver Hoef, and Olsen 2020), RF-
GLS, RF-Loc (the 2-D spatial locations of the data are used as
additional covariates in RF to account for the spatial structure),
and RFsp (Hengl et al. 2018). Among these, RF is the only
one that does not use spatial information and only accounts
for the mean. For RFsp, we used unordered pairwise Euclidean
distances as additional covariates in RF to account for the spatial
structure in the data. The prediction performance are evaluated
based on the relative mean squared error (MSE) for the test
data. MSEmeasures the average squared difference between the
estimated values and the actual value of the response. Relative
MSE helps compare MSE across different simulation setups,

https://doi.org/10.1080/01621459.2021.1950003
https://doi.org/10.1080/01621459.2021.1950003
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Figure 2. Comparison between competing methods on (a) estimation and (b) spatial prediction when the mean function ism = m2.

while standardizing by the variance of the response.

MSE = 1
ntest

ntest∑
i=1

(yi − ŷi)2;

Relative MSE = MSE
1

ntest
∑ntest

i=1 (yi − ȳtest)2

Figure 2(b) shows the median relative MSE over 100 simu-
lations for all the 27 setups. Expectedly, all methods performed
better than RF, as unlike the other methods, RF does not use
any spatial information. RF-GLS performs best or at par with
the best across all settings.

RF-Loc and RFsp belong to the class of approaches that add
extra spatial covariates to RF. RF-Loc always performed worse
than RFsp and RF-GLS. However, when the spatial variance
(σ 2) is high, RFsp performs comparably to that of RF-GLS,
both of which outperform the others. For lower σ 2, RF-GLS
significantly outperforms all the other methods. In this case,
RFsp performs worse than RF-RK which is now the second best
method.

We conducted an in-depth study in Section S1.4 to under-
stand the performance of RFsp. We summarize the findings
here.Mentch andZhou (2020) showed that for iid errors, adding
additional noise covariates can improve prediction performance
of RF for low (covariate-)signal-to-(random-)noise ratio (SNR).
For high SNR, the trend was reversed and using extra noise
covariates (when uncorrelated with the true covariates) did not
help. For our setting of spatially correlated errors, akin to how
noise covariates can be added toRF to explain randomvariation,
RFsp adds distance-based covariates to explain spatial varia-
tion. The appropriate quantity to understand the performance
of RFsp would be the (covariate-)signal-to-(spatial-)noise ratio
SNR = var(m(X))/var(w(�)) = var(m(X))/σ 2. This SNR is
low when σ 2 is large and vice versa (Figure S3(a)).

RFsp adds n pairwise distance-based covariates to RF to
explain the spatial variation. If D denotes the number of true
covariates, then RFsp uses a total of n + D covariates in RF
and the probability to include a true covariate in the Mtry set
of candidates for splitting a node becomes vanishingly small
when n � D. When σ 2 is small (high SNR), the true covari-
ates predominantly dictates the variation in the outcome but
is rarely selected in RFsp (Figure S3(b)) resulting in its poor
performance. In fact for high SNR, RFsp performs even worse
than RF-RKwhich can estimatem reasonably well in this setting
despite ignoring the spatial dependence as the covariate signal
dominates. For low SNR (σ 2 = 10), as the spatial contribution
increases, RFsp (being naturally equipped to capture the spa-
tial correlation in the data) performs comparably to RF-GLS
(Figure 3). For low SNR, RF-RK, ignoring the dominant spatial
variationwhen estimatingm, performsworse than bothRF-GLS
and RFsp.

RF-RK and RFsp outperforms each other in two ends of the
SNR spectrum. RF-GLS combines the strengths of both, using
RF to estimate a nonlinear covariate effect while parsimoniously
modeling the spatial effect using a GP specified by only 2 or 3
parameters thereby avoiding introduction of a large number of
spatial covariates. Consequently, RF-GLS produce comparable
or better results to both RF-RK and RFsp across the SNR spec-
trum (Figure 3).

Section S1 of the supplementary materials file contains a
number of additional simulation studies. These include results
for larger sample size (Section S1.5, supplementary mate-
rial), mean function with more covariates (Section S1.6, sup-
plementary material), misspecified GP smoothness (Section
S1.7, supplementary material), and misspecified entire spatial
effect (not generated from a GP, Section S1.8, supplementary
material). For each study, and all choices of data-generation
parameters, RF-GLS performed as the best or comparably with

https://doi.org/10.1080/01621459.2021.1950003
https://doi.org/10.1080/01621459.2021.1950003
https://doi.org/10.1080/01621459.2021.1950003
https://doi.org/10.1080/01621459.2021.1950003
https://doi.org/10.1080/01621459.2021.1950003
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Figure 3. MSE ratio for RF-RK & RF-GLS ( MSE(RF-RK)MSE(RF-GLS) ) and RFsp & RF-GLS ( MSE(RFsp)
MSE(RF-GLS) ) for τ

2 = 10%σ 2 when the mean function ism = m2.

the best method across all scenarios for both estimation and
prediction.

5. Proof of Consistency

For studying RF-GLS with dependent data, we adopt the frame-
work of consistency analysis of nonparametric regression (intro-
duced in Nobel et al. 1996, generalized in Györfi et al. 2002). In
Scornet et al. (2015), the authors also adopted this framework
to prove consistency of RF for iid errors. After presenting an
informal outline of the consistency argument in Györfi et al.
(2002), we provide a road map of how we extend different
pieces of this argument for RF-GLS with dependent data, and
highlight additional technical challenges that we resolved in
this work. All formal proofs are provided in the supplementary
materials.

Györfi et al. (2002) considered a least-square estimator of the
form

mn(,�) ∈ arg min
f∈Fn

1
n
∑
i

[
f (Xi) − Yi

]2
where Fn is a carefully chosen, data-dependent function class
which is large enough to control approximation error (i.e., how
well the true function is estimated by the function class), and
small enough to control estimation error (i.e., how far the esti-
mate mn is from the representative of Fn closest to m) in the
sense that a Uniform Law of Large Number (ULLN) holds on
this class.mn is consistent if both errors vanish asymptotically.

In order to use powerful exponential inequalities which hold
for classes of bounded functions, the proof of L2-consistency
in Györfi et al. (2002) uses a standard truncation argument
in probability theory with a diverging sequence of truncation
thresholds {ζn}. They first show that if uniformly over the class
TζnFn of truncated functions in Fn,

1. Approximation Error ofm by a data-driven class Fn contain-
ingmn is small, that is,

E

[
inf

f∈TζnFn
EX

[
f (X) − m(X)

]2] → 0;

2. Estimation Error is small so that a ULLN holds over Fn for
squared error loss, that is,
E

[
supf∈TζnFn

∣∣ 1
n
∑

i(f (Xi) − Yi))2 − E[f (X) − Y]2∣∣] → 0;

then the truncated estimator Tζnmn is L2-consistent for f . Then
they extended the consistency guarantee from truncated to the
original estimators by showing that the truncation error vanishes
under suitable tail decay assumptions on the error distribution.

In the analysis of RF-GLS, there are twomain challenges. The
error process εi is no longer an iid process but a stochastic pro-
cess capturing the dependence. Also, we work with a quadratic
loss (Y − f (X))�Q(Y − f (X)) instead of ‖Y − f (X)‖2 where,
f (X) − Y = (

f (X1) − Y1, f (X2) − Y2, . . . , f (Xn) − Yn
)�.

Addressing these require nontrivial generalizations of each of
the above pieces.

5.1. Consistency of Quadratic Loss Optimizers in
Data-Driven Function Classes Under Dependent
Errors

Our main technical statement (Theorem 5.1) is a generalization
of (Györfi et al. 2002, Theorem 10.2) to the setting of depen-
dent error processes and quadratic loss functions. Let Dn ={
(X1,Y1), . . . , (Xn,Yn)

}
be the data where Yi = m(Xi) + εi.

With randomness parameter �, let Fn = Fn(Dn,�) be a
data-dependent class of functions. We will consider an optimal
estimatormn ∈ Fn with respect to quadratic loss:

mn ∈ arg min
f∈Fn

1
n
(f (X) − Y)�Q(f (X) − Y). (16)

This simply states thatmn is the GLS estimate with respect to the
working precision matrix Q in the class Fn. This is analogous
to the OLS assumption used in Györfi et al. (2002). When Fn
is the class of piecewise constant functions on the partitions

https://doi.org/10.1080/01621459.2021.1950003
https://doi.org/10.1080/01621459.2021.1950003


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

generated by a regression tree, mn is our GLS-style regression-
tree estimate. Hence studying estimators of the form (16) more
generally suffices to prove consistency of GLS-style regression
tree and henceforth of RF-GLS.

We now state a general technical result establishing L2-
consistency of such GLS estimators mn under β-mixing (abso-
lutely regular) error processes. This is a sufficiently large class
of processes that includes spatial Matérn GP and autoregressive
time series as discussed in Sections 3.3.1 and 3.3.2. The result
is applicable beyond RF to more general nonparametric GLS
estimators from dependent data using other suitable function
classes.

Theorem 5.1. Let {εi} be a stationary β-mixing process satisfy-
ing Assumption 1, and thematrixQ satisfies Assumptions 2 and
3. Let mn(.,�) : RD → R denote a quadratic-loss optimizer
(with respect to Q) of the form (16) in a data-dependent func-
tion class Fn. Ifmn and Fn satisfies the following conditions:
(C.1) (Truncation error) ∃ {ζn} such that limn→∞ ζn = ∞ and
ζ 2
n/n → 0, such that we have,

lim
n→∞Emax

i

[
mn(Xi) − Tζnmn(Xi)

]2 = 0

(C.2) (Approximation error) limn→∞ E�

[
inf f∈TζnFn EX|f (X)

−m(X)|2] = 0
(C.3) (Estimation error) Let Ẋi, ε̇i and Ẏi = m(Ẋi) + ε̇i be such
that Ḋn = {(Ẋi, Ẏi)|i = 1, . . . , n} be identically distributed as
Dn but independent of Dn. Define f (Ẋ) and Ẏ similar to f (X)

and Y. Then, we have for all arbitrary L > 0

lim
n→∞E

[
sup

f∈TζnFn

| 1
n
(f (X) − Y)�Q(f (X) − Y)

− E
1
n
(f (Ẋ) − Ẏ)�Q(f (Ẋ) − Ẏ)|

]
= 0.

Then we have

limn→∞ E
[
EX(mn(X,�) − m(X))2)

]= 0, and
limn→∞ EX(m̄n(X) − m(X))2 = 0;

where m̄n(X) = E�mn(X,�) and X is a new sample indepen-
dent of the data.

The proof is deferred to Section S2.3. Theorem 5.1 is a result
of independent importance as it is a general statement on L2
consistency of a wide class of GLS estimates under β-mixing
dependent errors. Besides data-driven-partitioning-based esti-
mates like RF or RF-GLS, it can be used to study properties
of histograms, kernel-density estimates, local polynomials, etc.,
underβ-mixing error processes. The second part of the theorem
states that the consistency also holds for an ensemble estimator
m̄n that averages many such estimates mn each specified with
random parameters �. This will be used to show consistency of
the RF-GLS forest estimate subsequent to showing consistency
of each RF-GLS tree estimate.

5.2. Approximation Error

The condition C.2 of asymptotically vanishing approximation
error ensures that as sample size increases, the growing class of

approximating functions (e.g., piece-wise constant functions in
the case of regression trees) is rich enough to approximate the
target function. In earlier works on consistency of RF, approx-
imation error was controlled under a stringent assumption of
vanishing diameter of leaf nodes. Scornet et al. (2015) replaced
this by a condition that the variance of Y (or equivalently,
variation of m) within a leaf node of a regression-tree vanishes
asymptotically, and verified this condition for RF. There are two
steps to show this.
(i) Establish a theoretical or population-level split-criterion—an
asymptotic limit of the empirical split-criterion used in practice,
such that variation of m in the leaf-nodes of a hypothetical
regression tree generated using the theoretical criterion is small.
(ii) Establish stochastic equicontinuity of the empirical split-
criterion, such that if two set of qualifying splits Z(1) and Z(2)

are close, their corresponding empirical split-criterion values
are close, irrespective of the location of the splits.

For our RF-GLS trees, the partitioning is driven by theDART
criterion (5) and is different from the CART (2) criterion used
in the RF trees. Since the GLS loss and estimator involves the
matrix Q, they are not available in simple scalar expressions
unlike the OLS loss (sum of squares) and estimator (mean
response within a node). So we address a number of technical
challenges for steps (i) and (ii) that do not appear in the analysis
of RF.

For (i), Lemma 2.1 and Theorem 2.1, establishes that the
DART split-criterion remarkably has the same limit of as that for
the CART criterion. Hence, variation ofm in trees generated by
this theoretical criterion is controlled in the same way as for RF.

For (ii), we require an entirely new and involved proof of
equicontinuity for the DART-split criterion of RF-GLS as the
previous arguments of Scornet et al. (2015) do not immediately
generalize for RF-GLS loss function (5). We discuss the new
contributions in Section 5.2.1.

5.2.1. Equicontinuity of the Split Criterion
Equicontinuity of the CART-split criterion 1

nP [∑nP
i=1(Y

P
i −

ȲP)2 −∑nR
ir=1(Y

R
i − ȲR)2 −∑nL

il=1(Y
L
i − ȲL)2] was the center-

piece of the theory in Scornet et al. (2015), requiring involved
but elegant arguments on the geometry of splits. Since theCART
criterion only concerns the parent node to be split and its poten-
tial two child nodes, the equicontinuity essentially boiled down
to showing closeness of the respective means and variances of
these three nodes for the two sets of splits. These three scalar
mean and variance differences are functions of the difference in
volumes of the respective nodes which goes to zero uniformly
as the splits come closer.

For RF-GLS, to update each node, the entire set of node
representatives get updated via the GLS-estimate (6) which is
analytically intractable due to the matrix inversion. Also, the
DART-split criterion (5)

1
n

[ (
Y − Z(0)β̂GLS(Z(0))

)�
Q
(
Y − Z(0)β̂GLS(Z(0))

)
− 1

n

(
Y − Zβ̂GLS(Z)

)�
Q
(
Y − Zβ̂GLS(Z)

) ]
is a quadratic form of the plugged-in GLS-estimate and thus a
function of the representatives of all nodes and not just the 3
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nodes as in RF. Our equicontinuity proof is built on viewing
GLS predictions as oblique projections on the design matrices
corresponding to the splits.

We consider two scenarios: R1—where for at least one set of
split, both potential child nodes have substantial volumes, and
R2—where for each set of split, one potential child node have
ignorable volume. Under R1, all nodes for at least one set of split
have substantial representation ensuring that the gram matrix
has norm bounded away from zero and equicontinuity can be
established using perturbation bounds on orthogonal projection
operators (Chen, Chen, and Li 2016). Under R2, this will not be
the case as for both set of splits one child node will have small
volume. Instead, we first show that difference of the DART-split
criterion at the previous level of (parent) splits is small using
the same perturbation argument as the parent node volumes
are bounded away from zero. Subsequently we argue that the
creation of the children nodes do not change the split criterion
substantially as one of the child nodes is essentially empty. This
newmatrix-based proof for equicontinuity also circumvents the
need to invoke mathematical induction as required in Scornet
et al. (2015).

Proposition 5.1 (Equicontinuity of empirical DART-split cri-
terion). Under Assumptions 2–4(b) and (c), the DART split
criterion (5) is stochastically equicontinuous with respect to the
set of splits.

The proof is involved, and is deferred to Section S2.1 where
the Proposition is more technically phrased using additional
notation on splits. Subsequent to proving equicontinuity, we can
prove the following result of approximation error

Proposition 5.2. Let Fn = Fn(�) is the set of all functions f :
[0, 1]D → R, piecewise constant on each cell of the partition
obtained by an RF-GLS tree. Then, under Assumptions 1–5, the
class TζnFn satisfies the approximation error condition (C.2).

5.3. Estimation Error

Theorem 5.1 shows that for GLS estimators like Equation (16),
one needs to control the quadratic form estimation error (ULLN
C.3). A common technique for proving ULLNs under depen-
dence is

(i) to prove an analogous ULLN for iid error processes, and
then

(ii) usemixing conditions to generalize the result for the depen-
dent process of interest.

Both steps require addressing new challenges for RF-GLS
which we discuss in the next two subsections.

5.3.1. Cross-Product Function Classes
For step (i), it is difficult to directly state an iid analogue of the
ULLN C.3 as it is not possible to have an error process {ε∗

i }
which is simultaneously iid, satisfies ε∗

i ∼ εi and E(y�Qy) =
E(y∗�Qy∗). To see this, simply note that as cov(ε∗

i , ε
∗
i−j) = 0 �=

cov(εi, εi−j), with y∗
i = m(Xi)+ε∗

i wewill have E(qi,i−jyiyi−j) �=
E(qi,i−jy∗

i y
∗
i−j) where Q = (qii′). Instead, we create separate

iid analogues of ULLN for each term in the expansion of the

quadratic form, that is, both the squared error and the cross-
product terms. TheseULLNare stated as conditionC.3.iid in the
supplementary materials. Condition C.3.iid(a) for the squared
(diagonal) terms is the standard squared error ULLN using the
iid error processes, and has been proved in Györfi et al. (2002)
Theorem10.2 generally, and in Scornet et al. (2015) in particular
for RF.

For the cross-product (off-diagonal) terms, the ULLN is
stated in Condition C.3.iid(b) of the supplementary material,
and is to our knowledge a novel strategy. The analysis of RF
under iid settings in Scornet et al. (2015) only used a squared
error loss which does not involve any cross-product terms
and hence did not need to prove any ULLN for cross-product
terms.We construct separate ULLN for the cross-product terms∑

i qi,i−jεiεi−j for each lag j = 1, . . . , q. As mentioned earlier,
use of the univariate copy {ε∗

i }will not allow to generalize to the
corresponding term in C.3. This is because ε∗

i ⊥ ε∗
i−j but εi and

εi−j are correlated. Instead, for each lag j = 1, . . . , q, we create
bivariate iid sequences (ε̃i, ε̈i−j) that are identically distributed
as the joint (bivariate) distribution of the pairs (εi, εi−j), but
are independent over i. We thus exploit the banded nature of
the working precision matrix Q to prove iid ULLNs for cross-
product terms at each of the q lags. Combining these with the
ULLN for the squared terms gives us an ULLN for the entire
quadratic form.

Formulation and establishing this cross-productULLNusing
lag-specific bivariate iid copies is a new contribution and is
of independent importance for establishing vanishing limits of
any estimation error that involves interaction terms. We prove
this ULLN in Proposition S2.1 of the supplementary material
by showing that cross-product function classes has the same
concentration rate as that for squared-error function classes
with respect to the random Lp norm entropy number.

5.3.2. ULLN for β-Mixing Processes
For step (ii), we need to go from Conditions (C.3.iid)(a) and
(C.3.iid)(b) for iid processes to their analogs for dependent error
processes, which would then immediately establish C.3. It has
been shown that the mixing condition of the stochastic process
determines the assumptions required on the class Fn (Dehling
and Philipp 2002). If we look at the “hierarchy” of dependence
structures, strong-mixing or α-mixing (Bradley 2005), is one
of the broadest family of dependent processes accommodating
dependent structures “furthest” from independence. However,
existingULLN results forα-mixing processes require the class of
functions inFn to be Lipschitz continuous (Dehling and Philipp
2002). As regression-tree estimates are inherently discontinuous
due to nature of discrete partitioning, this will not be satisfied
here.

Hence, we focus on absolutely regular or β-mixing process.
This class of mixing processes is rich enough to include a
number of commonly used spatial or time-series structures as
discussed in the examples of Section 3.3. Our main challenge
here is that no existing ULLN for β-mixing processes apply to
the class of functions on partitions of the RF-GLS trees. ULLN
for Glivenko-Cantelli classes under β-mixing was established in
Nobel and Dembo (1993). Similar results have been established
for a class of φ̃-mixing processes in Peligrad (2001). Both results,

https://doi.org/10.1080/01621459.2021.1950003
https://doi.org/10.1080/01621459.2021.1950003
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do not need any convergence rate on the mixing coefficients,
but require the class Fn to have an envelope (dominator) F
(free of n). For data-driven partitioning based estimates like RF
or RF-GLS trees such uniform envelopes are not available (as
the envelop is the truncation threshold ζn → ∞). Instead, we
propose an ULLN for dependent processes that uses a weaker
assumption of a n-varying envelop with a moment-bound. The
proof is deferred to Section S2.2 (supplementary material).

Proposition 5.3. (A general ULLN for β-mixing processes)
Let {Ui} be an R

d-valued stationary β-mixing process. Let
Gn({Ui}n−1

i=0 ) be a class of functions Rd → R with envelope
Gn ≥ supg∈Gn |g|, such that Gn is “uniformly mean integrable”,
that is,

lim
C→∞ lim

n→∞E
1
n
∑
i

|Gn(Ui)|I(|Gn(Ui)| > C) = 0. (17)

Let {U∗
i } be such thatU∗

i is identically distributed asUi, ∀ i and
U∗
i ⊥ U∗

j ; ∀i �= j. Then, supg∈Gn

∣∣∣ 1n ∑i(g(U∗
i ) − Eg(U∗

i ))

∣∣∣ L1→
0 �⇒ supg∈Gn

∣∣∣ 1n ∑i(g(Ui) − Eg(Ui))
∣∣∣ L1→ 0.

Proposition 5.3 ensures that ULLN for iid errors is enough to
generalize to β-mixing error processes as long as the function
classes are contained within a sequence of mean uniform inte-
grable envelopes in the sense of Equation (17). Next, we show
that theULLNholds for RF-GLS trees under a (2+δ)thmoment
assumption that is sufficient for mean uniform integrability.

Proposition 5.4 (Estimation error for RF-GLS). LetFn = Fn(�)

is the set of all functions f : [0, 1]D → R, piecewise constant
on each cell of the partition obtained by an RF-GLS tree. If any
subset F̃n ⊆ Fn satisfies the following condition:
(C.4) (Moment bound:) ∃ an envelope Fn � supf∈F̃n

|f |, such
that limn→∞ E

1
n
∑

i |Fn(Xi)|2+δ < ∞ for some δ > 0,
then TζnF̃n satisfies the ULLN (C3) for β-mixing error pro-
cesses, and under Assumption 2.

The proof is in Section S2.2. The (2+δ)thmoment condition
C.4 is easier to verify for RF or RF-GLS as discussed in Corol-
laries 3.1 and 3.2.

5.4. Proof of Theorem 3.1

Equipped with Theorem 5.1, we can prove Theorem 3.1 by
showing that RF-GLS meets the conditions C.1–C.3. Proposi-
tion S2.3 in the supplementary material) shows that the trunca-
tion error condition C.1 is met for any ζn satisfying the scalings
of Assumption 4(a) required for proving the approximation and
estimation error conditions.

We have already shown conditions C.2 (Proposition 5.2)
and C.3 (Proposition 5.4) for two separate choices of function
classes. The last step of the proof is choosing the function class
that satisfies both conditions. Let Fn = Fn(�) be the set of all
functions f : [0, 1]D → R piece-wise constant on each cell of
the partitionPn(�) created by an RF-GLS tree with dataDn and
randomization �. We have already shown in in Proposition 5.2
that Fn satisfies C.2. To apply Proposition 5.4, Fn also needs to

satisfy the moment condition of C.4. As TζnFn is only bounded
by ζn which goes to ∞, clearly Fn will not satisfy C.4 .

We carefully carve out a subclass F̃n ⊆ Fn which is still wide
enough to satisfy the approximation error condition (C.2), while
satisfying the additional restriction (C.4). For a given partition
Pn(�), we define F̃n as follows:

F̃n= F̃n(�) = {mn} ∪
{

∪xB∈B∈Pn(�)

∑
B∈Pn(�)

m(xB)I(x ∈ B)

}
⊆ Fn(�). (18)

Since by construction of RF-GLS, mn is the optimizer over
a much larger set Fn(�), trivially mn is also the optimizer
in F̃n. The first step of the proof of Proposition 5.2 makes
it evident why Condition C.2 will also hold for this smaller
class F̃n. To apply Proposition 5.4 and show Condition C.3,
the final piece is to show that the condition (C.4) is satisfied
by Fn. Since apart from mn, Fn consists of functions that are
bounded by M0, we can have the envelope to be Fn = |mn| +
M0. Hence, for Condition (C.4) to hold, it is enough to show
limn→∞ 1

n
∑

i E|mn(Xi)|2+δ < ∞ which is an assumption of
the Theorem.

6. Discussion

We considered nonlinear regression function estimation in the
spatial mixed model and developed a random forest method
(RF-GLS) for estimating the nonlinear covariate effect, while
still modeling the spatial effect using GPs, as is conventional.
Retaining the GP framework facilitates parsimonious encoding
of structured spatial dependence, and conducting all traditional
spatial tasks like kriging (prediction at a new location), and
recovery of the latent spatial random effect surface. We show in
Section 4 how these advantages of RF-GLS manifest into supe-
rior estimation performance over naive RF that does not use any
spatial information, and superior predictive performance over
many existing RFsp methods.

Our method RF-GLS, more generally, can be used for func-
tional estimation under many types of dependence. RF-GLS
uses the same fundamental principle that generalizes OLS to
GLS.We show how adapting the concept of GLS in RF synergis-
tically mitigates all the issues encountered in naive application
of RF to dependent settings. While simple in principle, RF-GLS
algorithm differs inherently from RF, by optimizing globally
(across all nodes) for each split, to account for dependence
across all data points. We show RF is a special case of RF-GLS
with an identity working correlationmatrix, and is substantially
outperformed by RF-GLS for both estimation and prediction
under dependence.

We present a thorough theoretical study establishing con-
sistency of RF-GLS under a general assumption of β-mixing
dependence. In particular, we establish consistency of function
estimation by RF-GLS for the spatial nonlinear mixed-model
using the ubiquitousMatérnGP.We also establish consistency of
RF-GLS for functional estimation under auto-regressive time-
series errors. Finally, as a byproduct of the theory, we also
establish consistency of RF for dependent settings, which to our
knowledge, is the first such result.

The theoretical results required involved proofs to address
the challenges of accommodating dependent error processes

https://doi.org/10.1080/01621459.2021.1950003
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and use of a quadratic form loss for node-splitting. In the
process, we developed a number of tools of independent impor-
tance. The general result (Theorem 5.1) on L2 consistency of
data-driven partitioning-based GLS estimates under β-mixing
dependence extends the analogous result in Györfi et al. (2002)
Theorem 10.2 which was for iid settings and OLS estimates.
This will be useful for studying other function estimators like
local polynomials under dependence. Proposition S2.2 estab-
lishes random-norm entropy number concentration bounds for
general cross-product function classes, which can find its use in
establishing ULLN for any class of functions containing interac-
tion terms. Finally, Proposition 5.3 proposes a general ULLN for
β-mixing processes requiring less restrictive assumptions than
existing results.

For future work, extension to multivariate outcomes is
an important direction. The spatial community is increasing
shifting toward multivariate analysis, as GIS systems are
empowered to collect data on many variables. Multivariate
extension of RF-GLS can leverage the rich literature of multi-
variate cross-covariance functions for GP (Genton and Kleiber
see 2015, for a review).When working with a very large number
of variables p, a potential computational roadblock for RF-GLS
will be evaluation of the np× np Cholesky factor. Strategies like
graphicalmodelsmay need to be adopted to enforce sparsity and
effectuate computational speedup.

Supplementary Materials

An online supplementary materials file contains additional data analyses,
and proofs of all the theoretical results.
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