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Abstract—The past decade has seen the rise of highly
successful cache replacement policies that are based on binary
prediction. For example, the Hawkeye policy learns whether
lines loaded by a given PC are Cache Friendly (likely to remain
in the cache if Belady’s MIN policy had been used) or Cache
Averse (likely to be evicted by Belady’s MIN policy). In this
paper, we instead present a cache replacement policy that is
based on multiclass prediction, which allows it to directly mimic
Belady’s MIN policy in a surprisingly simple and effective way.
Our policy uses a PC-based predictor to learn each cache line’s
reuse distance; it then evicts lines based on their predicted time
of reuse. We show that our use of multiclass prediction is more
effective than binary prediction because it allows for a finer-
grained ordering of cache lines during eviction and because it
is more robust to prediction errors.

Our empirical results show that our new policy, which we
refer to as Mockingjay, outperforms the previous state-of-the-
art on both single-core and multi-core platforms and both with
and without a prefetcher. For example, with no prefetcher, on
a mix of 100 multi-core workloads from the SPEC 2006, SPEC
2017, and GAP benchmark suites, Mockingjay sees an average
improvement over LRU of 15.2%, compared to 7.6% for SHiP
and 12.9% for Hawkeye. On a single-core platform, Mocking-
jay’s improvement over LRU is 5.7%, which approaches the
6.0% improvement of Belady MIN’s unrealizable policy. On
a single-core platform (with a prefetcher) running the high-
MPKI CVP workloads, Mockingjay’s improvement over LRU
is 20.1%, compared to 13.4% for Hawkeye.

I. INTRODUCTION

Cache replacement is an important and well-studied

problem that has grown in sophistication over the years.

Early solutions used variants of simple heuristics, such as

LRU (Least Recently Used) and MRU (Most Recently Used).

In 2007, Qureshi et al. [30] ushered in the era of adaptive

solutions by introducing a policy that used efficient sampling

to choose from among two different heuristics. The past

decade has seen a movement to prediction-based policies that

phrase the cache replacement problem as a binary prediction

problem. For example, SDBP [20] predicts whether lines

loaded by a given PC will be dead or alive, SHiP [41] predicts

whether lines loaded by a PC will have a long or intermediate

reuse distance, and Hawkeye [13] predicts whether a line

loaded by a PC would tend to be cached or not cached

if Belady’s MIN policy had been used. These prediction-

based solutions work well because they learn from historical

∗This work was done before the author joined Google.

behavior, which allows them to proactively evict lines that

are unlikely to receive cache hits.
However, the coarse granularity of binary classification

leads to two shortfalls: First, a small prediction error will

flip a prediction from one class to the other. Second, there

can be many ties among lines in the same class, which are

typically broken by falling back on the same LRU heuristic

that these polices attempt to improve upon.
An alternative to binary classification is multiclass pre-

diction, where the different classes represent different reuse

distances [3], [7], [10], [38]. One particularly elegant idea,

first proposed by Keramidas et al. [19] and later improved

upon by Petoumenos et al. [29], attempts to mimic Belady’s

MIN policy [6] more directly: The stated goal is to have a

predictor learn each cache line’s reuse distance and to always

evict the line that is predicted to be reused furthest in the

future. Conceptually, each reuse distance is translated into

the line’s predicted time of reuse, which is known as its

ETA (Estimated Time of Arrival), and lines are ordered by

ETA [19], [29].
Unfortunately, there are two reasons why these previous

ETA-based solutions do not in fact closely mimic Belady’s

MIN. First, their eviction policies deviate from their stated

goal by using a combination of a line’s predicted ETA and

the line’s age in the cache. Section II explains this flaw

conceptually; empirically, we find that 93% of the decisions

in Keramidas et al.’s solution and 36.2% of the decisions in

Petoumenos et al.’s solution use an age-based LRU ordering.

Second, even when these solutions use ETA-based ordering,

their predicted ETA values are often incorrect due to the low

accuracy of their reuse distance predictions, as we explain

in Section II. As a result, neither solution performs well,

with Petoumenos et al.’s solution improving IPC over LRU

by just 2.6% on a set of SPEC and GAP benchmarks. Thus,

the research community has apparently moved away from

the idea of ETA-based replacement, as none of the published

entries in the 2nd Cache Replacement Championship used

ETA-based solutions.
In this paper, we present Mockingjay,2 an ETA-based

policy that faithfully adheres to the stated goal of ETA-

based replacement. We show that Mockingjay outperforms

1Belady’s MIN is not well defined for multicore systems.
2A mockingjay is a fictional bird from the Hunger Games trilogy that

can remarkably memorize and mimic human melodies and songs.
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Improvement Over LRU Year

SHiP 3.4% 2011
Hawkeye 4.5% 2016
Mockingjay 5.7% 2021
Belady’s MIN 6.0% 1966

Table I: IPC improvement over LRU for our benchmarks (on

a single core1with no prefetcher).

the previous state-of-the-art policies and approaches the

performance of Belady’s impractical MIN policy (see Table I).

Moreover, Mockingjay represents an interesting milestone,

as it is the first replacement policy that can obtain better

performance than an LRU cache that is twice as large. In

particular, in a single-core setting with no prefetcher, a 1MB

cache using Mockingjay outperforms a 2MB cache using the

LRU policy, similarly for 2MB/4MB and 4MB/8MB.

Our solution is effective because (1) it produces accurate

reuse distance predictions by using a long history of past

accesses and by using per-set reuse distances, and (2) it

considers age information only in the few cases where reuse

distance information is unavailable. As a result, Mockingjay

is able to use ETA information—and thus mimic MIN—for

92% of its evictions.

Compared to the recent state-of-the-art solutions that

use binary classification, there are three benefits of our

solution. First, multiclass prediction is more resilient to

prediction errors than binary classification because a single

misprediction has a smaller impact on the predicted ordering

of cache lines. Second, as we demonstrate empirically

in Section V, errors in the prediction of ETAs translate

to smaller errors in the prediction of the relative order
of ETAs. Third, while most recent policies [13], [20],

[34], [41] predict a line’s eviction priority at the time of

insertion, our solution computes ETAs at insertion time

but defers its interpretation as an eviction priority—i.e., its

comparison against other ETAs—until eviction time, when

more information is available.

This paper makes three main contributions.

• We demonstrate that it is possible to effectively emulate

Belady’s MIN policy where knowledge of the future is

replaced with reuse distance prediction.

• We provide insights (see Section V) that explain why

Mockingjay’s multiclass prediction approach is superior

to recent policies that rely on binary classification.

• We demonstrate that Mockingjay comes extremely

close to the performance of Belady’s MIN policy

(see Table I) and outperforms the previous state-of-

the-art policies. For memory-intensive programs from

the CVP workloads running on a single core with a

prefetcher, Mockingjay improves performance by 20.1%

(vs. 13.4% for Harmony3). For a mix of SPEC and

3Harmony is an extension of Hawkeye that is superior in the presence of
prefetching. In the absence of prefetching, they behave identically.

GAP benchmarks running on a four-core system, the

improvements are 13.3% for Mockingjay and 11.1% for

Harmony. The Mockingjay source code can be found

at https://github.com/ishanashah/Mockingjay.

This paper also makes the following secondary contribu-

tions:

• We show that on a single core with prefetching, Mock-

ingjay reduces uncore (LLC+DRAM) energy consump-

tion by 9.1% compared to Harmony.

• We present an ablation study that shows the relative

importance of different components of ETA-based

policies [19], [29] (see Figure 6), and we find that

both accurate ETA prediction and accurate ETA-based

eviction are essential for mimicking MIN.

• We show the performance impact of using four different

prefetchers: We find that Mockingjay performs best

regardless of the prefetcher, and we show evidence that

Mockingjay performs better as the prediction accuracy

of the prefetcher improves.

The remainder of this paper is organized as follows. We

describe Related Work in Section II, and we describe our

solution in Section III. We then present our experimental

evaluation in Section IV, followed in Section V by a

discussion of the sources of Mockingjay’s performance

advantage. We conclude in Section VI.

II. RELATED WORK

In 1966, Belady proposed the clairvoyant MIN cache

replacement policy [6], which is optimal but impractical.

Since then, numerous cache replacement policies have been

devised that to varying degrees aim to emulate Belady’s

policy without looking into the future. We now discuss prior

work by relating them to Belady’s MIN, dividing previous

work into two categories: (1) memoryless policies that do

not use historical information to distinguish among lines

when they are inserted in the cache, and (2) prediction-based

policies that learn from historical behavior to predict future

caching behavior of incoming lines.

A. Memoryless Policies

Early solutions modulate replacement priority by observing

the reuse behavior of cache-resident lines. These solutions

typically emulate Belady’s MIN under strong assumptions.

For example, if we assume that lines have temporal locality,

then the line that is reused furthest in the future will be the

oldest line in the cache, yielding the LRU (Least Recently

Used) policy. However the LRU policy is susceptible to

thrashing when the working set size exceeds the cache

capacity. Therefore, other solutions [9], [17], [23], [27], [35],

[40] preferentially evict newer lines, because for a thrashing

access pattern, the newest line is likely to be reused furthest

in the future [30], [32].

Jaleel et al. recognize that a spectrum of policies exist

between LRU and MRU, and they accommodate scanning
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accesses4 using their RRIP policy [15]. To adapt to changes

in access patterns over time, adaptive cache replacement

solutions [30], [36] dynamically change the replacement

policy over time. All of these policies have a key limitation:

They are customized to a few specific access patterns and

do not mimic MIN for more complex cache access patterns.

Shepherd Cache is the memoryless policy that most

closely emulates Belady’s MIN policy [31]. Shepherd Cache

repurposes some ways from the cache to extend the main

cache’s window into the future. Therefore, the fundamental

tradeoff is that that for a fixed-sized cache, the longer the

lookahead, the smaller the main cache. Previous studies [13]

have shown that Belady’s MIN requires a long window into

the future that is about 8× the size of the cache, which

suggests that for the Shepherd Cache to approach MIN’s

behavior, it would need to shrink the main cache to 1
8 its

size.

B. Prediction-Based Policies

Mockingjay is the latest in a recent trend that takes a

predictive approach to the cache replacement problem, where

past behavior is observed at a fine granularity (typically at

the granularity of load instructions) to guide future caching

decisions. These policies use past behavior to predict either

binary caching priorities or multiclass reuse distances.

Binary-Classification-Based Policies: Dead block pre-

dictors [18], [20], [22] and many recent state-of-the-art

replacement policies [13], [16], [39], [41] phrase cache

replacement as a binary prediction problem, where the goal

is to predict whether an incoming line should be cached or

not cached. For example, SDBP [20] and SHiP [41] learn

whether loads by some instructions are more likely to result

in cache hits than others, and both policies preferentially

evict lines inserted by load instructions that are predicted

to be cache-averse (SDBP correlates reuse with the load

instruction that first loaded the line, whereas SHiP correlates

reuse with the load instruction that caused the reuse). The

perceptron predictor [39] and MPPPB [16] use richer features

and more sophisticated prediction mechanisms to improve

prediction accuracy. Instead of learning from the hit and

eviction behaviors of the LRU policy, the Hawkeye cache

replacement policy [13], [14] learns the caching behavior of

the optimal solution for past accesses. The optimal solution is

produced by applying a variant of Belady’s MIN algorithm

on a long history of past cache accesses (8× the size of

the cache), and the optimal solution is learned using a PC-

based predictor. Glider [34] improves upon Hawkeye in two

ways: (1) it uses better features that were identified using

deep learning and (2) it uses a more sophisticated predictor

to perform its binary classification. Section V explains the

drawbacks of these binary classification-based policies.

4Scans refer to accesses that are never reused.

Reuse-Distance Prediction Policies: Many cache re-

placement policies [3], [7], [8], [10], [19], [21], [25], [38]

perform reuse distance prediction but differ fundamentally

from Mockingjay in three respects. First, instead of mimick-

ing MIN, these solutions [3], [7], [10], [38] protect lines until

their age exceeds their predicted reuse distance, even if those

reuse distances are long. Thus, these policies protect lines

that are reused furthest in the future, instead of evicting lines

that are reused furthest in the future. Second, the effectiveness

of such protection-based policies is exposed to even small

errors in reuse distance predictions. By contrast, Mockingjay

is exposed to errors in the relative ordering of ETAs, which

we show in Section V occur less frequently than errors

in reuse distance prediction. Leeway [8] introduces novel

prediction techniques to adapt to variability in reuse distances,

but Leeway continues to rely on line protection, which is

wasteful when the line will be eventually evicted anyway.

Third, none of these policies learn long reuse distances (8×
the size of the cache), which limits their prediction accuracy.

The EVA policy [5] differs from other reuse distance

prediction based policies as it computes a line’s priority

based on the statistical distribution of age values for which

cache hits are observed. Mockingjay enjoys two benefits

over EVA. First, Mockingjay estimates reuse distances at a

fine granularity by estimating a different reuse distance for

each PC, whereas EVA estimates reuse distances for just two

classes of lines, those that have been reused at least once

and those that have not. Second, Mockingjay uses a simpler

hardware solution, whereas EVA uses a software routine to

update eviction priorities.

Figure 1: KPK and IbRDP use max(ETR, age) to make

eviction decisions, so they erroneously evict A, while MIN

would evict B, whose ETA is further in the future. Here,

[20,0] represents an ETR of 20 and an age of 0, and the

bold lettering highlights the max of the two values.

Two prior solutions, KPK [19] and IbRDP [29], share

Mockingjay’s goal: Evict lines based on their ETA. However,

both solutions suffer from the fundamental flaw that instead

of evicting lines based on their ETA, they take the larger

of the line’s ETR (Estimate Time Remaining) and its age

in the cache, where ETR is a counter, initialized to a line’s

reuse distance, that counts down as it ages. But this scheme
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Figure 2: Overview of the Mockingjay cache replacement policy.

does not order lines based on ETA. Figure 1 shows an

example where A will be reused earlier than line B, so at

the point where a new line is inserted, line B should be

evicted. However, both KPK and IbRDP would instead evict

A because max(ETR,age) for A is max(15,5) = 15, which

is greater than max(ETR,age) for B, which is max(10,0)

= 10. In general, once a line’s age reaches half of its
reuse distance, KPK and IbRDP ignore the line’s ETA
and instead use the line’s age to make eviction decisions,
which means that a line is most likely to be evicted just as
it reaches its ETA. By contrast, under Belady’s MIN policy,

lines that approach their ETA are the last to be evicted.

Even when KPK and IbRDP use ETA-based eviction, they

are limited because of their low reuse distance prediction

accuracy, as we now explain.

KPK observes low reuse distance prediction accuracy

because it does not use a long history of the past and instead

predicts reuse distances based only on the contents of the

cache—prior results show that Belady’s MIN performs worse

than LRU if given a window into the future that is equal to

the size of the cache [13].

IbRDP improves upon KPK by using a long history, but it

measures reuse distances and ETRs in terms of global cache

accesses, and we find empirically that global reuse distances

have extremely high variability. As a result, IbRDP has a

prediction accuracy of just 43%. Mockingjay is much more

accurate than both KPK and IbRDP, achieving a prediction

accuracy of 85%. Mockingjay’s superior accuracy can be

attributed to its use of long history and its use of per-set

reuse distances.

Finally, Liu et al. present a machine learning model

to directly imitate Belady’s MIN policy for the past to

predict future eviction decisions [24], but their solution is

too expensive to deploy in hardware.

III. OUR SOLUTION

Our Mockingjay solution, which we apply to the last-level

cache (LLC) is designed to evict the line that is predicted to

be reused furthest in the future. Conceptually, for each cache

insertion, the line’s estimated time of arrival (ETA) is the

sum of the current timestamp and the line’s predicted reuse

distance; at each insertion, the line with the largest ETA is

evicted. To predict reuse distances, a PC-based predictor is

used to estimate each cache line’s reuse distance.

A. Key Components
We now describe the three components of our solution,

which are the Sampled Cache, the Reuse Distance Predictor

(RDP), and the ETA Counters that reside in the LLC

(see Figure 2). We defer the discussion of their hardware

implementation to Section III-B.
Sampled Cache: The goal of the Sampled Cache is to

track past reuse distances to train the RDP, which predicts

future reuse distances. To track reuse distances, the Sampled

Cache maintains a long history of past cache accesses for a

few sampled cache sets. In keeping with previous claims that

Belady’s MIN policy requires a long view of the future [13],

Mockingjay maintains a history length that is 8× the size

of each sampled set. Thus, the Sampled Cache enables

Mockingjay to learn both short and long reuse distances.
The Sampled Cache is organized as a set-associative cache

and is indexed using the cache line address. Each entry in

the Sampled Cache maps block addresses to their last access

timestamp and their last PC signature. Since the Sampled

Cache only stores unique lines in the 8× history, the required

space is much smaller than 8× the total capacity of the

sampled sets.
Reuse Distance Predictor (RDP): The RDP is a PC-

based predictor that learns reuse distances for loads initiated

by a given program counter (PC). The RDP is organized

as a direct-mapped cache and is indexed by a PC signature.

Mockingjay uses separate predictor entries—and therefore

learns separate reuse distances—for loads by a PC that hit

in the cache and for loads by that same PC that miss in the

cache. In Section III-B, we describe how we combine the

PC and the hit/miss information into a hashed PC signature
for indexing the RDP.

Each entry in the RDP is initialized to 0, and as lines are

reused in the Sampled Cache, the RDP entry corresponding

to the PC that last accessed the line is updated with the

observed reuse distance. Section III-B explains how we use

coarse-grained timestamps in the Sampled Cache to efficiently

produce reuse distance observations.
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Since reuse distances for a PC can oscillate, we use

temporal difference learning [37] to train the RDP gracefully

in the presence of outliers. Temporal difference learning

updates predicted values as a linear function of the difference

between the predicted and observed values. Thus, to limit the

effect of outliers, the counter update is biased to maintain the

old value but is still influenced by the new reuse distance.

More concretely, RDP entries are trained as follows: If

the new reuse distance is larger than the previous RDP entry,

then the entry value is incremented by w, where w is defined

to be min(1, diff
16 ) and diff is the absolute difference between

the previous entry and the new reuse distance. If however the

new reuse distance is smaller than the previous RDP entry,

then the entry value is decremented by w. If the signature

does not exist in the RDP, its entry is set to be the sampled

reuse distance.

ETA Counters: Finally, the cache itself maintains the

ETA for each line. Upon insertion into the cache, a line’s

predicted reuse distance is converted to an ETA, and these

ETA values are used to make eviction decisions for future

cache misses. Cache insertions that are predicted to have

ETA values larger than any existing line in the set are

bypassed, which means that they are not inserted in the

cache. Promotions are treated the same as insertions, so

Mockingjay produces an ETA prediction on both cache hits

and misses.

To reduce the expense of maintaining precise ETA times-

tamps for each cache line, we use a smaller but logically

equivalent value, known as the Estimated Time Remaining
(ETR). The ETR value is initialized to the line’s predicted

reuse distance and is decremented each time some other line

in the set is accessed. As the difference between the present

time and the predicted ETA of a cache line decreases, the

ETR of that line also decreases. Thus, the relative ordering

of ETRs is exactly the same as the relative ordering of ETAs.

At times, our solution will underestimate a line’s reuse

distance, and its ETR counter value will reach 0 without

seeing a reuse. If our policy were to let the counter value

saturate at 0, this line would always retain the highest caching

priority, which is undesirable. If on the other hand, such lines

were given an infinite ETR value, then lines whose ETA were

underestimated by just a small amount would immediately

be evicted, which is also undesirable.

To handle these imprecise predictions, our solution contin-

ues to decrement ETR counters after they reach a value of 0.

The negative ETR value indicates the time that has elapsed

since the line’s expected ETA. For example, an ETR counter

value of −4 indicates that the line has exceeded its ETA by

4 set accesses. Upon eviction, our policy evicts the line with

the largest absolute ETR value, which is the line furthest

from its ETA. Thus, the evicted line is either predicted to be

reused furthest in the future or it was predicted to be reused

furthest in the past. Ties are broken by evicting lines with a

negative ETR in favor of lines with a positive ETR.

B. Implementation Details
We now provide additional details for Mockingjay’s three

components.
Sampled Cache: The Sampled Cache maintains a long

history of cache accesses for 32 sampled sets (the Sampled

Cache maintains only tags, not data). For a 16-way cache,

this history includes the past 128 cache accesses for each

sampled set. We implement the Sampled Cache as a 5-way

set-associative cache with 512 sets. Conceptually, we can

view the 512 sets in the Sampled Cache as a collection of 32

smaller sub-caches, where each sub-cache has 16 sets and

maintains the history of cache accesses for one of the 32

sampled sets. Thus, the Sampled Cache is indexed using a

concatenation of the 5 set id bits that identify the 32 sampled

sets and the bits [3:0] of the block address tag. Sampled

Cache lines are tagged with bits [13:4] of the block address

tag.
The Sampled Cache is managed using an LRU replacement

policy. Each Sampled Cache entry maps block addresses to

their last access timestamp and their last PC signature. In

particular, each entry includes a valid bit, a 10-bit block

address hash, an 11-bit PC signature, and an 8-bit timestamp

indicating the time of last access.
For every access to a sampled LLC set, the Sampled Cache

is searched. On a Sampled Cache hit, the last timestamp of

the block is used to train the RDP with the observed reuse

distance. On a Sampled Cache miss, the least recently used

line is evicted from the Sample Cache, and the PC signature

corresponding to the evicted line is trained to learn that it

was not reused and was thus a scan. We associate scanning

accesses with an infinite reuse distance and represent them by

the maximum possible reuse distance value INF RD, which

in our case is 127. In either case, the Sampled Cache is

updated with the current timestamp and the PC signature

of the new access. The current timestamp is maintained as

an 8-bit running counter for each sampled LLC set and is

incremented on every set access. Timestamps wrap around

on overflow, but since the current timestamp must occur later

than the last access timestamp, we can detect overflow when

the current timestamp has a smaller value than the last access

timestamp. In this case, we add 1 << TIMESTAMP BITS

to the current timestamp before computing the difference.

It is possible that the current timestamp’s wrapped around

value can exceed the last access timestamp, but since we

evict cache lines that are observed to be more than 128 set

accesses old, this case is rare.
Reuse Distance Predictor: The RDP is a direct-mapped

array that is indexed by the PC signature, and it stores the

predicted reuse distance for the blocks corresponding to

this signature. The PC signature is a hash of the 11 least-

significant bits of the program counter with a bit indicating

whether the cache access was a hit or a miss. Each entry in

the RDP is a 7-bit saturating counter representing the number

of set accesses before a cache line is predicted to be reused.
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ETR Counters: On insertion and promotion, a line’s

ETR is initialized with its predicted reuse distance obtained

from the RDP. As explained earlier, scans are associated

with an infinite reuse distance, INF RD, which in our case is

127. To ensure that scanning lines retain the highest eviction

priority, lines with a predicted reuse distance of INF RD are

never aged.

Since reuse distance predictions are not perfect, there is

uncertainty about lines with a large reuse distance: Should

they be considered to be a part of a scan, or should they be

given the opportunity to be cached? We find that the former

is preferred, because the latter ties up valuable cache space,

so we define a threshold, MAX RD, whose value is close

to INF RD, and any line whose ETR value is greater than

this threshold is treated as a scan. In our evaluation, we use

MAX RD = 104, but we find that it can be set to any value

that is slightly smaller than INF RD.

For space efficiency, Mockingjay tracks coarse-grained

reuse distances (and corresponding ETRs), which are obtained

by dividing the precise value by a constant factor f , where

f is set to 8 in our evaluation. To age a line’s ETR value, its

counter is decremented by an average of 1 on every set access.

Thus, the ETR counters for all non-scanning lines in a set

are aged every f set accesses. To support this aging scheme,

we use a 3-bit clock for every set; the clock is initialized to

zero and is incremented on every set access. Every eight set

accesses, the set’s clock is reset to 0, and every line in the

set is aged. As mentioned earlier, a line that has exceeded

its ETA—i.e., its ETR counter has reached 0—is still aged

by decrementing its ETR. The absolute ETR value in this

case indicates the extent to which the line has exceeded its

predicted ETA. These aging operations are similar to those

of the RRIP policy [15] and are off the critical path.

The insertion and promotion operations also lie off the

critical path because they do not interfere with the cache

controller’s ability to determine whether the line hits or

misses. The complexity of Mockingjay’s insertion and

promotion operations is similar to those of prior prediction-

based solutions [13], [41].

Finally, on a cache miss, the line with the largest absolute

ETR value is evicted. The use of the max function makes

eviction in Mockingjay more expensive than in prior solutions,

but these operations can be performed while the cache miss

is being serviced from main memory, so they do not affect

Mockingjay’s hit or miss latencies.

C. Multicore Implementation

Mockingjay’s multicore implementation does not signifi-

cantly differ from its single-core implementation, but a few

parameters are scaled to accommodate the increased pressure

from multiple cores. First, we increase the signature size to

10 + log(number of cores), and the load address is hashed

with the core identifier to produce the RDP signature. Second,

the RDP is scaled with the number of cores. Finally, the

Table II: Baseline configuration.

Out-of-order 352-entry ROB, 128-entry LQ,
Core 72-entry SQ, FetchWidth=6,

ExecWidth=4, RetireWidth=4
L1 I-Cache 32 KB, 8-way

4-cycle latency, 8 MSHRs
L1 D-Cache 32 KB, 8-way

4-cycle latency, 16 MSHRs
L2 Cache 256 KB, 8-way

8-cycle latency, 32 MSHRs
LLC per core 2 MB, 16-way

20-cycle latency, 64 MSHRs
DRAM tRP,tRCD,tCAS=12.5ns

800 MHz, 25.6 GB/s

number of sampled sets is scaled with each core, so a 4-core

application uses 128 sampled sets.

D. Prefetching Implementation

Since MIN is not optimal in the presence of a

prefetcher [14], Mockingjay emulates Flex-MIN [14] in the

presence of a prefetcher. The key idea behind Flex-MIN is to

preferentially evict lines that will be prefetched in the future.

To identify such lines, Jain and Lin describe the concept

of a cache usage interval, which refers to the time interval

between consecutive accesses to the same line. Since the

endpoints of usage intervals can be caused by either a demand

access or a prefetch, there are four kinds of usage intervals,

namely, D-D, D-P, P-D, and P-P intervals, where a D-D

interval represents a demand reuse, while a P-D interval

represents a useful prefetch, and a *-P interval represents a

line that will be prefetched.

Except for possibly improved timeliness, *-P intervals do

not need to be cached because the subsequent prefetch will

bring the data back into the cache. However, the eviction of

*-P intervals can result in extra prefetcher traffic, since every

prefetch request will miss in the cache and will be sent to

memory. Thus, Flex-MIN gives *-P intervals low priority

only when they are long enough to allow other cache lines

to use the freed up cache space.

Mockingjay emulates Flex-MIN by increasing the reuse

distance prediction of all *-P lines by a constant factor,

thereby discouraging the Mockingjay policy from caching

*-P lines. In single core applications, Mockingjay penalizes

*-P lines by a factor of 2. In particular, for *-P intervals, the

RDP receives a sample reuse distance that is equal to the

observed reuse distance times 2. In case the inflated reuse

distance is larger than INF RD, it is saturated at INF RD.

In multicore applications, traffic to main memory is generally

higher, so our solution inflates reuse distances by a factor of

1.5. In Section IV, we show Mockingjay’s sensitivity to this

penalty parameter.

Finally, to distinguish demand requests and prefetch

requests, the RDP signature is hashed with the prefetch bit,
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where the prefetch bit corresponds to the program counter

of the load instruction that triggered the prefetch.

E. Hardware Budget

Our solution requires a hardware budget of 31.91 kilobytes

on one core and 127.62 kilobytes on 4 cores. The introduction

of a prefetcher does not affect the hardware budget.

Sampled Cache History: The total hardware budget for

the Sampled Cache is 9.41KB in a single-core setting and

37.63KB in a 4-core setting. In the 4-core version, we scale

the Sampled Cache size by a factor of 4 as we sample 4×
more sets. We use 8-bit block address hashes and 13-bit

signature hashes per entry.

Reuse Distance Predictor: The reuse distance predictor

(RDP) maps an 11-bit signature to a 7-bit reuse distance

prediction. The total hardware cost for the RDP is 1.75KB.

The total 4-core hardware cost for the RDP is 7KB, since

signatures are instead 13 bits.

ETR Counters: We use a 5-bit ETR counter, such that

counter values can range from −15 to 15 for each line

(INF ETR is set to 15). Each cache set also requires a 3-

bit clock to age the cache lines correctly. Thus, the total

hardware cost to maintain the ETRs is 20.75KB on a 2MB

single-core cache and 83KB on a 8MB 4-core cache.

IV. EVALUATION

This section presents our empirical evaluation of Mock-

ingjay.

A. Methodology

Simulator: We evaluate our solution using the most

recent version of the ChampSim simulator [2], which was

originally released by the 2nd JILP Cache Replacement Cham-

pionship. Table II shows the parameters for our simulated

core and memory hierarchy.

Benchmarks: To evaluate Mockingjay, we use the 33

memory-sensitive applications of the SPEC CPU2006, SPEC
CPU2017, and GAP [4] benchmark suites, where we define

memory-sensitive applications to be those that have an LLC

miss per kilo instructions (MPKI) greater than 1. For the

SPEC CPU2006 and SPEC CPU2017 benchmark suites, we

run the benchmarks using the reference input set, and for

GAP benchmarks, we use graphs of size 217 nodes. For each

benchmark, we use the SimPoint tool [33] to generate a

single sample of 1 billion instructions. We warm the cache

for 200 million instructions and measure the behavior of the

next 1 billion instructions.

We also evaluate Mockingjay on benchmarks provided

by Qualcomm for the CVP1 Championship [1]. Since this

suite includes over 1300 benchmarks, we choose the 25

benchmarks that have the highest LLC MPKI with the LRU

policy.

Multi-Core Workloads: Our multi-core simulation

methodology is similar to that of the 2nd Cache Replacement

Championship [2]. We simulate four benchmarks running on

4 cores, choosing a random set of 100 mixes from all possible

workload mixes that could be created by combining our 33

SPEC CPU2006, SPEC CPU2017, and GAP benchmarks.

For each mix, we simulate the simultaneous execution of

SimPoint samples of the constituent benchmarks until each

benchmark has executed at least 1 billion instructions. If a

benchmark finishes early, it is rewound until every other appli-

cation in the mix has finished running 1 billion instructions;

each application is warmed up for 200M instructions. Thus,

all the benchmarks in the mix run simultaneously throughout

the sampled execution.

To evaluate performance, we report the weighted speedup

normalized to LRU for each benchmark mix. This metric

is commonly used to evaluate shared caches [2], [13], [16]

because it measures the overall performance of the mix and

avoids domination by benchmarks that have high IPC. The

metric is computed as follows. For each program sharing

the cache, we compute its IPC in a shared environment

(IPCshared) and its IPC when executing in isolation on the

same cache (IPCsingle). We then compute the weighted IPC of

the mix as the sum of IPCshared /IPCsingle for all benchmarks

in the mix, and we normalize this weighted IPC with the

weighted IPC using the LRU replacement policy.

Baseline Replacement Policies: We compare Mocking-

jay with two state-of-the-art replacement policies, namely,

SHiP [41], and Hawkeye [13]. For configurations that include

a prefetcher, we replace Hawkeye with Harmony [14] since

Harmony is an extension of Hawkeye that performs better in

the presence of prefetching, and in the absence of prefetching,

Harmony defaults to Hawkeye. For a fair comparison, all

policies are given a 32 KB hardware budget. The baseline

policies all use binary classification, while Mockingjay, of

course, predicts reuse times.

We also compare against KPK [19] and IbRDP [29],5

which are closest to Mockingjay in terms of ETA-based

eviction, as both KPK and IbRDP predict reuse distances

and evict lines based on a combination of their ETAs and

age.

Metrics: To evaluate performance in a single-core

setting, we report IPC speedup over LRU; for multi-core

settings, we report the weighted speedup over LRU. The

weighted speedup metric is commonly used to evaluate

shared caches [2], [13], [16] because it measures the

overall performance of the mix and avoids domination by

benchmarks of high IPC. The metric is computed as follows.

For each program sharing the cache, we compute its IPC in a

shared environment (IPCshared) and its IPC when executing in

isolation on the same cache (IPCsingle). We then compute the

5We present results for the best version of IbRDP, which is referred to
as IbRDP+SC in the original paper.
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(a) Single-core (no prefetching). (b) Single-core with prefetching. (c) Multi-core (no prefetching). (d) Multi-core with prefetching.

Figure 3: Summary of results on all evaluated configurations.

weighted IPC of the mix as the sum of IPCshared /IPCsingle for

all benchmarks in the mix, and we normalize this weighted

IPC with the weighted IPC using the LRU replacement policy.

We also report Mockingjay’s impact on uncore energy

consumption. To estimate energy consumption, we assume

1 unit of energy for each LLC access and an average of 25

units of energy for each DRAM access [11], [42].

B. Summary of Results

Figure 3 shows that Mockingjay outperforms the baselines

on all evaluated configurations. On a single-core system

without prefetching, Mockingjay improves performance

over LRU by 5.7%, while SHiP and Hawkeye improve

performance by 3.4% and 4.4%, respectively. Mockingjay’s

improvement over the baselines improves in the presence of

a prefetcher, as Mockingjay improves performance by 3.6%,

whereas Harmony improves performance by 2.0%.

Mockingjay also works well in multi-core configura-

tions. In the absence of prefetching, Mockingjay improves

performance on a 4-core system by 15.2%, while SHiP

and Hawkeye improve performance by 7.6% and 12.9%,

respectively. In the presence of prefetching, Mockingjay

improves performance on a 4-core system by 13.3%, while

SHiP and Harmony improve performance by 6.7% and 11.1%,

respectively.

(a) Single-core (no prefetching) (b) Single-core with prefetching

Figure 4: Mockingjay sees larger benefits for the CVP

workloads.

Figure 4 shows that for the CVP workloads, which

have much higher MPKI than SPEC, Mockingjay’s benefits

over the baselines improve. With a prefetcher, Mockingjay

improves performance by 20.1%, compared to 13.4% for

Harmony. When there is no prefetcher, Mockingjay improves

performance by 16.4%, compared to 12.9% for Hawkeye.

Figure 5: Mockingjay reduces uncore energy consumption.

Figure 5 shows that Mockingjay reduces uncore energy

consumption by 9.1% compared to Hawkeye. Mockingjay’s

energy reduction can be attributed to its 9.8% lower DRAM

traffic. Since uncore energy is a large proportion of total

system energy, we expect Mockingjay to have a visible impact

on overall system energy consumption.

Figure 6: Understanding the difference between KPK, IbRDP,

and Mockingjay.

Figure 6 shows that Mockingjay significantly outperforms

both KPK and IbRDP. To better understand Mockingjay’s

improvement over IbRDP, we also show results for two

modified versions of IbRDP. The first version uses Mocking-

565

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 21,2022 at 20:38:59 UTC from IEEE Xplore.  Restrictions apply. 



jay’s ETA-based eviction policy instead of combining ETA

and age-based decay, and we see that despite mimicking

MIN more faithfully, this version provides a marginal

performance improvement because its ETA predictions are

only 43% accurate. The second version of IbRDP uses per-

set reuse distances, and we find empirically that this change

improves reuse distance prediction accuracy from 43% to

85%. However, since this version continues to use IbRDP’s

original eviction policy that combines ETA with age-based

decay, it underperforms Mockingjay (4.8% for IbRDP with

per-set reuse distance prediction vs. 5.7% for Mockingjay).

These ablation studies show that Mockingjay’s benefit comes

both from using an accurate per-set reuse distance predictor

and from using an ETA-based eviction scheme that mimics

MIN more faithfully.
Figure 7 confirms that long histories are essential for

Mockingjay. In particular, we see that in the absence of

prefetching, Mockingjay’s performance suffers when it tracks

reuse distances that are smaller than 4× the size of the cache.

Increasing the history length to 8× the size of the cache

provides a marginal benefit in the presence of prefetching

and incurs no additional storage cost, so Mockingjay uses a

history length of 8× the size of the cache.

Figure 7: Mockingjay benefits from a long history.

C. Results: Without Prefetching
Figure 8 presents detailed results on the single-core

configuration without prefetching. We see that Mockingjay

outperforms SHiP and Hawkeye on all benchmarks except

libquantum and milc. Mockingjay is not the best solution

for such streaming workloads because streaming workloads

benefit from a less aggressive bypassing policy. If Mockingjay

were to use a less aggressive bypassing policy, its perfor-

mance on libquantum would improve from 2.5% to 8.3%,

but its average performance improvement would decrease

from 5.7% to 5.2%.
While Figure 8 shows results for just the memory-intensive

benchmarks, Mockingjay works well for the entire SPEC

2006, SPEC 2017, and GAP benchmark suites. In particular,

for the entire suites, Mockingjay improves performance by

3.9% in the absence of prefetching (vs. 3.2% for Hawkeye).

A key difference between Hawkeye and Mockingjay

is the way that they handle mispredictions. Hawkeye’s

mispredictions result in the eviction of the least-recently used

cache-friendly line, whereas Mockingjay’s mispredictions

result in the eviction of a line whose ETA has elapsed. We

refer to both of these cases as an LRU eviction for the

respective policies. Figure 9 shows that Mockingjay defaults

to LRU for only 7.8% of the total evictions, whereas Hawkeye

defaults to LRU for 13.8% of its evictions.

Figure 11 shows that Mockingjay’s reuse distance

predictions—the initial ETR values—are quite diverse and

that Mockingjay can learn both short and long reuse distance.

The x-axis shows the initial ETR values that are quantized

from 0 to 15, and the y-axis shows the percentage of

insertions for the given ETR value. We see that across all

of our evaluated benchmarks, 20% of reuse distances are

infinite, 40% are short (within a 2× history), and 40% are

long (2×-8× history). These results highlight Mockingjay’s

ability to cache lines with diverse reuse distances.

D. Results: With Prefetching

Figures 10 and 12 show results in the presence of a

prefetcher for the single-core and multi-core configurations,

respectively.

As we discussed in Section III, Mockingjay penalizes *-

P intervals to improve demand hit rate. Figure 13 shows

the sensitivity to this penalty; we see that Mockingjay’s

performance improvement levels out once the *-P penalty is

greater than or equal to two.

Figure 14 shows that Mockingjay works well for a variety

of prefetchers, including regular prefetchers, such as, IP-

Stride, Best Offset Prefetcher [26], and IPCP [28], and for

irregular prefetchers, such as, ISB [12]. In particular, we

observe that Mockingjay’s gap over the baselines improves

for accurate prefetchers, such as IPCP and ISB.

E. Results: Neural Cache Replacement

Our results so far have compared replacement policies that

use the same 32KB hardware budget, but a recently proposed

solution called Glider [34] uses neural learning to improve

upon Hawkeye’s predictor accuracy. The resulting solution,

which essentially uses perceptrons, uses a 64KB budget.

Figures 15 and 16 compare two versions of Mockingjay,

one with a 32KB hardware budget, another with a 43KB

budget, against Glider. We see that even at half of Glider’s

hardware budget, Mockingjay still outperforms Glider on

all four configurations. We also see that Mockingjay sees

marginal improvements beyond a 32KB hardware budget.

The larger picture is that Mockingjay and Glider represent

two different ways to improve upon Hawkeye. Mockingjay

asks the question, “What should we predict?” By predicting
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Figure 8: Comparison on single-core system (no prefetching).

Figure 9: Mockingjay results in fewer LRU evictions than

Hawkeye.

ETAs, Mockingjay gets an accuracy benefit and can make

decisions at eviction time, when more information is available

(see Section V). Glider instead retains Hawkeye’s prediction

problem and asks the question, “How can we improve

predictor accuracy?” These graphs show that the change

in prediction problem yields a greater benefit at lower cost—

in terms of hardware budget—than the attempt to improve

predictor accuracy through the use of neural learning.

V. DISCUSSION

Hawkeye and Mockingjay would both behave identically to

Belady’s MIN if their predictions were completely accurate.

In particular, with a perfect predictor, Hawkeye would classify

as Cache Friendly any line that would be retained until its

next access by the MIN policy, and it would classify as Cache

Averse any line that MIN would evict before its next reuse.

Thus, with a perfect predictor, Hawkeye would make the

same eviction decisions as MIN. Of course, if Mockingjay

had a perfect predictor, then its ETA ordering would be

equivalent to MIN’s ordering.

Of course, we don’t have perfect predictors, so this section

provides insights that explain why Mockingjay performs

better than policies that use binary classification, such as

Hawkeye and its variants [13], [14], [34], which predict

whether lines will be Cache Friendly or Cache Averse. We

will use Hawkeye as a point of comparison, but our discussion

applies broadly to any policy that uses binary classification.

We first describe our three insights, followed by empirical

evidence that supports the first two insights.

A. Resilience to Prediction Inaccuracy

First, Mockingjay’s reuse distance predictions are used to

order lines in terms of predicted reuse, so errors in reuse

distance prediction only have an impact if they are large

enough to change the ordering of the lines. For example, if

lines A and B have predicted reuse times (ETAs) that differ

by 100, then any reuse prediction error for line A that is

smaller than 100 will not affect the order of the two lines.

By contrast, any inaccuracy in a binary prediction will

incorrectly place the mispredicted line either at the top of

the priority queue or at the bottom of the priority queue.

B. Local Impact of Classification Errors

Second, when a prediction error does change the relative

order of Mockingjay’s predicted ETAs, these errors are more

localized, so they are less costly than Hawkeye’s errors.

To understand this point, consider a false positive predic-

tion for Hawkeye, in which a Cache Averse line is incorrectly

predicted to be Cache Friendly. As shown in Figure 17, this
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Figure 10: Comparison on single-core systems with prefetching.

Figure 11: Predicted ETR values are distributed among short,

long, and infinite reuse.

Figure 12: Multi-core comparison with prefetching.

misprediction causes the line to be inserted with the highest

priority, since it is prioritized over all Cache Averse lines and

since ties among Cache Friendly lines are broken in LRU

order. Thus, all existing cache lines in the set—including

Figure 13: Mockingjay benefits from not caching lines that

will be prefetched. In particular, penalizing *-P intervals by

2× is the most performant configuration.

other correctly predicted Cache Friendly lines—need to be

evicted before this mispredicted line can be evicted. Moreover,

the mispredicted line will occupy the cache for a long period

of time only to be evicted without a cache hit. As a result,

false positives are expensive for Hawkeye because their

impact is not isolated; in the worst case, they can result

in lost cache hits even for lines that are correctly predicted.

Mockingjay does not suffer from this same pathology for

false positive predictions. Instead, prediction errors have only

local impact. For example, as shown in Figure 18, if line A’s

reuse distance is incorrectly predicted to be shorter by 50,

the relative order of A and B will change, but this error will

not affect the caching priorities of C or D; C will continue

to have the highest priority while D will continue to have
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Figure 14: Mockingjay works well with different prefetchers,

and its benefit increases for more accurate prefetchers.

Figure 15: On a single-core single-core system, Mockingjay

with a lower hardware budget outperforms Glider.

the lowest priority in the cache. Mockingjay’s reuse distance

prediction error would have to be significant ly larger for it

to give line A the highest priority.

Prediction errors in the other direction—false negatives for

Hawkeye (in which a Cache Friendly line is predicted to be

Cache Averse) and pessimistic predictions for Mockingjay (in

which reuse distances are over-estimated), are less expensive

because their impact is isolated to the mispredicted line.

For example, for Hawkeye, the line with the false negative

prediction will itself not receive a cache hit, but this error

does not consume cache resources and does not prevent other

correctly predicted Cache Friendly lines to receive cache hits.

C. Late Interpretation of Priorities

The final benefit of Mockingjay is that it interprets

priorities at the time of eviction, when reuse information

about other lines is available, whereas previous solutions

based on binary prediction assign priorities at the time of

insertion. In particular, the ETA that Mockingjay predicts at

the time of insertion does not represent the line’s priority;

the line’s priority is determined at the time of eviction when

its ETA is compared to the ETAs of other candidates.

Figure 16: On a multi-core system, Mockingjay with a lower

hardware budget outperforms Glider.

Figure 17: A costly binary classification error in Hawkeye.

This difference is significant because it allows subsequent

lines to impact a line’s priority. For example, a line A that is

inserted with a predicted reuse distance of 100 could have

the highest priority if subsequent insertions had predicted

reuse distances that were greater than 100, since A would

then have the earliest ETA (Figure 19). At some other point

in time, line A with the same predicted reuse distance of

100 could have the lowest priority if subsequent lines were

inserted with sufficiently short predicted reuse distances that

A would have the latest ETA (Figure 20). Thus, Mockingjay

is more resilient to variability in how other lines use the

cache.

D. Empirical Confirmation

Figure 21 quantitatively confirms these first two benefits

for SPEC benchmarks: We see that large errors in ETA

(x-axis), correspond to much smaller ordering errors (y-

axis); we define the ordering error to be the error between

the victim’s ideal predicted position—the victim’s position

as chosen by MIN—and its actual position in the order.

Each dot in the figure represents one benchmark; the value

on x-axis represents Mockingjay’s error in predicting reuse

distances; and the value on y-axis represents Mockingjay’s

error in predicting the ordering of eviction candidates. Across

all benchmarks, Mockingjay’s ordering error is just 3.2,

whereas LRU and Hawkeye see ordering errors of 8.2 and

4.1, respectively.
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Figure 18: Mockingjay is resilient to error in reuse distance

predictions.

Figure 19: Line A has the highest caching priority because

subsequent insertions have larger reuse distances.

VI. CONCLUSIONS

In this paper, we have introduced the Mockingjay cache

replacement policy, which mimics Belady’s 1966 MIN policy

but replaces MIN’s knowledge of future reuse times with

predicted reuse times. There are several keys to Mockingjay’s

success:

• It uses a long history of the past, which enables Mock-

ingjay to perform accurate reuse distance prediction.

• It performs multiclass prediction, which is more resilient

to prediction errors than binary prediction.

• It bases priorities on the relative order of predicted

reuse times, rather than on predicted reuse times, which

inoculates Mockingjay against prediction errors that are

too small to change the relative order of reuse times.

• It infers priorities at the time of eviction—when addi-

tional information is available—rather than at the time

of insertion.

We have evaluated Mockingjay’s performance in systems

that use various state-of-the-art data prefetchers, and we

find that Mockingjay retains its superiority for all cases. We

also observe that Mockingjay’s performance gap over the

baseline solutions appears to increase with the accuracy of

the prefetcher.

Finally, we have shown that Mockingjay compares fa-

vorably to the recent Glider cache replacement policy [34],

which uses a perceptron to combine an unordered history of

past PCs. At a bit more than half the hardware budget, the

32KB Mockingjay outperforms the 64KB Glider.

Figure 20: Line A has the lowest caching priority because

subsequent insertions have shorter reuse distances.

Figure 21: Mockingjay’s error in predicting relative ordering

of eviction candidates is low despite high errors in precise

reuse distance prediction.
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