A Resource-Efficient Smart Contract for Privacy **Preserving Smart Home Systems**

Nazmus SaquibFatih Bakir, Chandra Krintz, Rich Wolski Department of Computer Science University of California, Santa Barbara {nazmus,bakir,ckrintz,rich}@cs.ucsb.edu

Abstract—Due to the proliferation of IoT and the popularity of smart contracts mediated by blockchain, smart home systems have become capable of providing privacy and security to their occupants. In blockchain-based home automation systems, business logic is handled by smart contracts securely. However, a blockchain-based solution is inherently resource-intensivemaking it unsuitable for resource-constrained IoT devices. Moreover, time-sensitive actions are complex to perform in a blockchainbased solution due to the time required to mine a block. this work, we propose a blockchain-independent smart contract infrastructure suitable for resource-constrained IoT devices. Our proposed method is also capable of executing time-sensitive business logic. As an example of an end-to-end application, we describe a smart camera system using our proposed method, compare this system with an existing blockchain-based solution, and present an empirical evaluation of their performance.

Index Terms—IoT, smart contract, smart home, ethereum, blockchain

I. INTRODUCTION

In recent years, the advancements and pervasive applicationes. Third, time-sensitive actions are difficult to perform in of the Internet of Things (IoT) have influenced home ausystems. In a smart home, low-cost, resource-constrained IoT devices control domestic appliances depending on the change in a physical property (e.g., temperature light, etc.) or the occurrence of an event (e.g., opening a door). The massive amount f data collected by these IoT devices can be personaland sensitive and are often transmitted over an insecure network to untrusted service providers fofurther analysis [1]-[3]. This raises concerns about data security and privacy, as data can be used and altered by service providers, such as the cloud, where it is stored. Therefore, a decentralized system where the end-user and any untrusted As a result, many blockchain-based smaltome systems party can share immutable sensitive information is desirable use a private blockchain that has a faster mining rate to

A blockchain, which is an emergent peer-to-peer,immutable digital ledger technology is such a systemUnsurprisingly, the application of blockchain in smart home has garnered interesfrom the research community for addressing security and privacy concerns recently [4]-[11]. Some executable programs stored on a blockchain thatin when some predetermined condition ismet. This enablessmart business logic in the blockchain that contingentupon that data.

Although blockchain can be an effective tool to ensure data privacy and security, its application in an IoT environment has its own challenges[13]. First, most blockchain algorithms require significant computational power and as such are not suitable for direct use on resource-constrained IoT devices. Typically, such devices must communicate with highend (resource-rich) devices thatsentially actas proxies to leverage the featuresprovided by a blockchain. However, this proxy architecture introduces new challenges in terms of reliable network connectivity to the proxy and the complexity associated with securing the channel between the devices and their proxies. Reliable and fast network connecting the devices to their blockchain contactpoints can be power intensive to implement. Further, a separate protocofor securing the connection to the blockchain proxy musbe correctly integrated with the blockchain protocols further adding to the heterogeneity and interoperability complexities that "simple" IoT devices must support using resource-constrained architec-

a blockchain due to the time required to mine a block using tomation, resulting in the increased popularity of smart homeblockchain algorithms. For example, at the time of writing this paper, the public Ethereum mainnet on average mines a block approximately every 13 seconds [14], meaning we can expect this much delay on average for a transaction to be recorded in the ledger. Historical values higher than 30 seconds have also been observed in the past ther blockchains such as bitcoin which mines a block every 10 minutes [15] can be more time-consumingFurther,typically there is no guarantee that a transaction will be included in the next mined block, so the wait time can be much greater than the average time to mine a block.

minimize this delay [5], [6], [8], [11]. However, this optimization introduces a new trust relationship between the devices and the entity that operates the private blockchain that public blockchains do notreguire. That is, in a private blockchain, who ever is maintaining the blockchain has ultiblockchains such as Ethereum [12] support smart contracts mate authority over the data. Such data sharing is undesirable in a smart home system, especially in sharing economy in which a property owner rents rooms/apartments the home systems to record data on the blockchain and embed tenants, or the "traditional" economy where real estate agents require temporary access to a property that for sale, thus sharing controlover the home's intelligentelectronics (e.g.

surveillance cameraselectronic doorlocks, alarm systems, etc.). These challenges ultimately accrue to the inability of resource-constrained devices to directly implement security guarantees and tamper resistance offered by blockchainsised to solve these problems are called minersThere are and smart contracts.

In this work, we describe the design and implementation peer network. of a blockchain-independent mart contract that is suitable for direct implementation on resource-constrained IoT devices. Our proposed design is independent any particular limitations. However, it is still able to provide shared security and privacy desired in a smart home system, with the possibility of its application in other fields as well. The tokens [16]. Unlike traditional tokens, our token system can contain bytecodesthat are executable in virtual machines that are lightweightenough for implementation on resourcerestricted devices and secure enough to implement smart contracts. This capability-based approach isdevice local, resulting in a more time-efficient system than its blockchainbased counterpartThe key to our approach is thatany user in possession of a token originally generated by some device . can create derivations of it, which are tokens with constrained privileges relative to that of the current token that the user possessesAdditionally, any device can cryptographically verify a token that it generated originally along with any derivation of this token, transitive or immediate. To implement this verification feature a token carries a "chain" of derivations (each modifying the one before it) and the device traverses a chain of derivations and compares computed and stored hash values. This is similar in concept to the way in which blockchains implement verification: the protocols compare the Types of Blockchain stored and computed hash values of the transactions in the latest block and iteratively perform this operation up to the first block by following reference to the parent block. We present the details of our proposed approach in Section IV.

As an example end-to-end smarthome application, we ing economy using our proposed method we then compare our system against an existing blockchain-based solution [4]private blockchainstypically implement faster mining and and present an empirical evaluation of the two systems. We find that our system can operate in resource-constrained aprivate blockchain requires trustamong the participants. devices, be used in time-sensitive operations, and has 5 orders of magnitude better userperceived latency than the blockchain-based solutionand is thus suitable for on-device implementation.

II. BACKGROUND

In this section, we give a brief overview of blockchain, types of blockchain, and smart contracts. We also explain how each of these is related to smart home systems.

A. Blockchain

A blockchain is a distributed, peer-to-peer,immutable digital ledger consisting of a chain of blocks. Each block contains one or more transactionsalong with a hash of

these transactions. hese blocks are mined (i.eadded to the chain) by solving cryptographically hard problems requiring significant computational power. High-end devices that are generally multiple miners in a blockchain forming a peer-to-

The ordering of blocks in a blockchain is achieved using a consensus algorithmEach block contains a hash of the previous one which means the entire chain can be traversed blockchain technology and does not share the aforemention end validated starting from any block up to the first one (called genesis). The cryptographic algorithms are designed in such a way that for an adversarialentity to tamper with a block and still get validated would require an impractical amount of proposed method is based on access control using capability omputational power. A blockchain provides multiple features that are desirable to ensure privacy and security in a smart home system:

- · Decentralization: As a blockchain is a peer-to-peer system, users need notely on an untrusted third party to store their data. Moreover, the same system can be used to allow tenants to maintain their data separately from that of homeowners.
- Immutability: A blockchain can ensure the integrity of transactions through its immutable ledge Fransactions can be performed between a homeowneamd a tenant using the blockchainwhich cannot be disputed.
- Transparency: A transaction mined in one node is propagated to multiple nodes in the blockchainMoreover, these transactions are validated by the receiving nodes. This adds to the confidence of the involved parties regarding the correctness of the transactions.

There are primarily two types of blockchain: (i) public and (ii) private. Any user can join a public blockchain network and add and verify data. On the other hand, only certain "permissioned" entities can take part in a private blockchain network. As a result, the consensus algorithms and validation present a detailed implementation of a smart camera in sharprocess used in a public blockchain tend to be more resourceintensive than that of a private blockchail Most specifically, validation rates than their public counterparts [1] owever, Moreover, it is considered to be less secure than its public counterpart, as in a public network the number of nodes involved is high, resulting in a low probability of a majority attack being successful. Therefore, a public blockchain provides better security and privacy features compared to a private one [18]. Although the use of private blockchains in smart home systems has been extensively researched in the literature [5], [6], [8], [11], relatively few focus on the use of public blockchains [4],[19].

C. Smart Contract

A smart contract is an executable code that is triggered when predefined conditions are medespite smart contracts not being new to the research community [20], they have

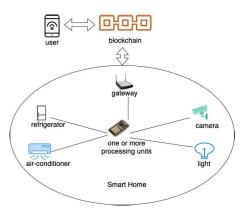


Fig. 1. A high-level architecture of existing blockchain-based smantume systems. Domestic appliances are controlled by one or more low-cost, resource-constrained processing units can connect the blockchain network using light clients through a gateway or proxy. Users ca interact with the blockchain network to read/record differe parameters reintensity, etc. Processing units can receive directives from the blockchain. e.g., whether to turn a light on/off,etc.

have been introduced — Ethereurh being the most significant. Functions in a smart contract are executed when a transaction calling thatfunction is successfully added to a mined block. In this way blockchains allow business logic to greater security) and embeds businesslogic in the smart

III. BLOCKCHAIN -BASED SMART HOME SYSTEMS

processing units that control home appliances[2]. These processing units are often low-cost and resource-constrained implementation using our approach (vi&ection V). e.g., microcontrollers or single-board compute is there are multiple processing units, they usually communicate wirelessly. The processing units are connected to the Internet through a gateway. In addition, systems that use a private blockchain often include high-end devices acting as miners while streaming video. Ideally, only the owner should be within the home network [5], [6], [8], [11]. The homeowner deploys smartcontracts in the blockchain through a blockchain transaction and receives the address of the smartapability for the duration of the rental. In [4], the authors contract.

The basic architecture of a blockchain-based smantyme system shown in Figure 1 has been adopted in multiple previous efforts. In [5], the authors use a single machine private Ethereum blockchain to implement an air-conditioning blockchain has an address within a smart contract (Possystem. In this work, the authors use a smart contract to storsessionContract) and deploys to a public blockchain. This a threshold temperature value and do not provide any exper-contract is responsible for tenancy transfersand tenancy imental results. In [6], the authors use a private Ethereum blockchain with two miners to create an alert system that old. Their results reveal that setting the threshold values takeontract during deployment. 18.55 seconds on average. In [8], the authors create a private PossessionContractonsists primarily of two functions: Ethereum blockchain with two machines and use the smart transferTenancy and pollTenandmansferTenancy is used to contract to store threshold values like the previous works. Although the authors do not present the execution time,

¹https://ethereum.org/en/



Fig. 2. Role of different users in the blockchain-based smartcamera system [4].

they compare CPU usage between two well-known consensus algorithms. In [21], the authors propose a blockchain-enabled, capability-based access contrellat uses smartcontracts to convey rights from client to service provider. The authors create a private Ethereum blockchain with six high-end miners quired by smart-home applications, e.g., threshold values of temperature, ligand report that a client observes a delay of 243 milliseconds on average before receiving a responsefrom the server, including the time required by the serverto read from the gained renewed attention after blockchains supporting them smart contract. However, they do not report the time required to store token data. In [4], the authors propose a privacypreserving smartcamera system forsharing economysuch as Airbnb². This work uses a public blockchain (to obtain be executed based on data stored securely in the blockchaircontract (e.g., checking conditions to transfer tenancy) instead of using it simply for storage. However, the authors do not provide any experimental evaluation of their proposed system. The traditional smart home system consists of one or more our work presents a detailed explanation and an implementation of the system described in [4] as well as a comparative

A. Smart Camera System

We consider a scenario where a homeowner rents a room to a tenant. The room has a camerathat encrypts data able to decrypt this data when the room is unrented but a tenantshould be able to take over this exclusive decryption provide a blockchain-based solution to this problem using smart contracts as described next.

The manufacturerof the camera recordsthe addressof the homeowner(every user account and smart contract in polling. The manufacturer embeds the address of the smart contract in the camera, along with the private key of the lights LEDs if the temperature/humidity rises above a thresh-camera. The public key of the camera is recorded in the smart

> update tenant'sinformation such as the public key of the tenant, tenancy period, cost, etc. This function performs a

²https://www.airbnb.com

check at the beginning to make sure the entity calling the function is indeed the ownerA malicious actor (including a malicious owner)may call the function at any time during the valid tenancy period, and this function will return without tion. To enable this, we have designed and implemented a affecting any value, thus respecting the original agreement between the owner and the tenant.

pollTenancy is used by the camera to find the public key of the current tenantA camera polls the tenant's public key on a daily basis according to the proposed method in [4]. As both the camera and the tenant know each other's publicauthority. The holder of a token is entitled to the privileges key, they can establish a symmetric key using the Diffie-Hellman protocol. It is at this moment that the tenancy (with respect to the camera) begins as the camera encrypts its viderbich allow the tokens to be passed around freely overa Once the camera detects tenancy change through a call to this function, a new key is established. Figure 2 shows the interaction among the different users and the functions ofties are protected through cryptographic meanten in the PossessionContraats proposed in [4].

blockchain for this system. We highlight a few caveats of us-objects with a signature field. The contents are applicationing the public blockchain that we explored while investigating defined, but when the server receives a tokerit, can ensure this approachFirst, functions that update or store data (data that it is a token it generated before and the token has not stored in a smart contract comprise its state) in the smart contract can be executed only as a result of a blockchain transaction getting mined [22]As described in Section I,a block in Ethereum public network is mined every 13 seconds that they are entitled to perform a request/entethe venue. on average but practically, this delay can be much longer. This like physical tickets it is impossible to forge a new token delay might preventeven a well-intended execution of his function. For example, consider a scenario where an owner sets the wrong information first (cost, e.g.) and then attempted not allow any modification to the token by clientswhile to do it correctly just before the tenancy begins by calling theothers [27], [28] allow controlled reduction of privileges transferTenancy functionAs the transaction containing this function call might get mined after the tenancy period starts, Macaroons [28] allow attaching richer constraints (e.g.bethe function will return without making any change.

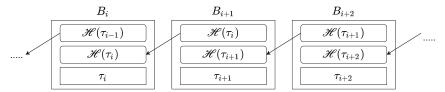
Second, Ether (ETH) is the currency of Ethereumwhich can be boughtusing real money or mined by solving cryptographically hard problems. Every transaction costssome amount of ETH. Therefore, executing the transferTenancy function requires some amount money, however smallit might be. Note that the pollTenancy function does notost any ETH, as it is reading a value ratherthan updating the state [23]. Functions thatonly read the state are known as view functions.

Third, in the version of the application described in [4a smartcontractfunction can notrun on its own - it must be called explicitly (through a transaction if it updates state). Therefore, the tenancy will not revert automatically back to the owner after an agreed-upon tenancy period is over. Moreover, the owner has to make sure he/she transfers tenasery ices. Another set of application-dependent constraints after the end of the old tenancy.

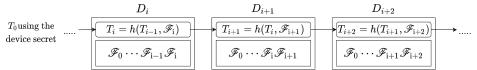
IV. CAPABILITY -BASED SMART HOME SYSTEMS

In this section, we describe an alternative approach to building smart home applications where access control is enforced through very computationally efficient apabilities.

Our goal is to achieve feature parity with blockchain-based systemswhile reducing power consumption and operation latency sufficiently to permit direct on-device implementadistributed capability framework for heterogeneous distributed systems like those used in IoT and smart homes. The complete approach called CAPLETS is described comprehensively in [24] and overviewed here.


A capability is a communicable unforgeable token of

held in that token. While capabilities have many potential implementations, we are interested in network capabilities. stream data using this key which only the tenant can decryptnetwork, as opposed to local capabilities such as those found in [25]. While local capabilities are protected from tampering and forging by kernel-user space separation, network capabilform of a digital signature, signed by the origin of the token. The authors in [4] suggest the use of Ethereum as a public or example, the tokens defined in [26] are simply JSON been tampered in any way. The best analogy is they work like a truly secure concert ticketClients receive/buy a token at some point, and at a later point, they present as proof or tamper with it to gain access to a more expensive area.


> Some implementations of network capabilities (e. §26]) in varying levels of expressiveness. The tokens defined by yond simple downgrades from read/write to read) to tokens. This derivation operation occurs without the knowledge or participation of the server, which forms the basis of the distributed authorization framework capabilities enable.

Alongside the use of capabilities for authorization, the most important difference from the blockchain-based system is that this version is completely device localFor instance, for the smart camera application the entire state needed for operation, the stream encryption keythe tenantpublic key, etc. are maintained by the camera itselfthus removing the costs of externalactivities, mainly blockchain mining, from the end-to-end system.

We construct CAPLETS application as a group of RPC services running on a device An application-dependent et of capabilities carried within tokens grant accessto these to a new tenant before the camera performs its daily poll but limit the use of the capabilities in different ways. An example of a capability is the privilege to call a specific function of a service. An example of a constraints limiting this function call to be made only from a specific network endpoint. Unlike Access Control Lists, Role-Based AccessControl [29], or Attribute-Based Access Control [30] models, this information is not stored on the device as part a database but rather

 $B_i = i$ th block, $\mathcal{H} = \text{hash function}$ (KECCAC-256 for Ethereum), $\tau_i = \text{set of transactions}$ added in the ith block

 $D_i = i$ th derivation, h = hash function (HMAC-SHA256), $\mathscr{F} = s$ et of frames added in the ith derivation, $T_i = i$ th derivation's tag

Fig. 3. Chain structures of blockchain and CAPETS.

carried in cryptographically secure tokens and stored by the In other words, a token carries an immutable log of derivations clients themselves.lts cryptographic construction prevents malicious clients from forging tokens.

Constraints of CAPLETS are implemented through programs for an application-specific byte code virtuahachine or native code. This allows for absolutely flexible policy implementations, similar to smart contracts. Unlike smart contracts, the programs are efficient enough to be executed securely by resource-restricted devices.

Capabilities and constraints in CAPLETS are strongly typed objects. They have agreed upon structures and they maintain type information across the network. They can carryoken using a secret that it alone possesses the network. arbitrary information for use in authorization. CAPES also defines a mechanism to encode RPC invocations as part of instact and checks if all derivations are valid hen, it checks capability encoding.

We provide a distributed and secure method forsharing privileges in CAPLETS, called a derivation. Capabilities and constraints are carried in blocks called frames to support derivations A client can append a new frame to an existing token while maintaining verifiable cryptographic proofthat it indeed held the token to which it is appending the new frame. The capabilities in a frame can only be reduced and constraints can only be increased, so it is impossible to gain new privileges through derivations. inally, derivations are irreversible, so a client holding a token with reduced privileges cannot recover the original, more privileged token.

We tag tokens with a computationally inexpensive HMAC-SHA256 [31] rather than signing with asymmetric digital signature functions. The first token of a device is tagged with 5) A tenancy can be canceled early only by the tenant. device owner, but the secret never leaves the device. Changingstrainton all tenanttokens. A timeout constraintcarries the internal secret renders all existing tokens invalid.

byte HMAC-SHA256 tag. The initial tag is computed using the secreton the device and the content the first frame. therefore the device must create any token with a single frameenstraintrequires the clientto sign tokens they send with the secret given the tag and the contentages of derivations (i.e. tokens with multiple frames) can be computed by any entity holding a valid token using the existing tag as the secr@APLETS without smart contracts the last two need the to the same MAC operation with the content of the next framentroduction of a new ability. The core design of CAPLETS

where each link protects the next one. Once a device receives a token, it can verify it by replaying the MAC functions as described above over the log of derivations and comparing the computed tag value with the tag stored in the token. Figure 3 shows that while not identical, the chain of derivations is analogous to the chain of transactions in a blockchain and is thus verifiable in a similar way.

For every device, there is a root token (similar to the genesis in a blockchain) that authorizes every operation and is held by the device's ownerOnly the device can generate its root receives a token over the network, verifies the signature is that all constraints are met. If any of the checks fail, the token is discarded. If all checks pass, the entire token is considered well-formed and any requests in the token will be served. Finally, CAPLETS defines an efficient key exchange protocol for in-transit encryption.

For the camera tenancy application, we identify the following requirements:

- 1) A tenant must lose any access once their tenancy period
- 2) Each secure operation needed by the application must finish under a second,
- 3) A tenant is authenticated by their public key,
- 4) Once tenancy is transferred the owner cannot access the device until the tenancy ends.

a secret generated by the device. The token is shared with theWe fulfill the first requirement through the use of a timeout a UTC time after which the server will reject any token To summarize, a token is a chain of frames and a single 32 arrying it. The second one we demonstrate in the evaluation (Section V). We meet the third one by introducing a public key constraint to the tenant token. The public key MAC construction guarantees that it is impossible to recoverthe corresponding private key of the public key carried in the constraint.

While the first three requirements are supported by

implies that every client is essentially acting on behalf of the owner. In other words, any operation that any client can perform, the owner can also perform (since the owner holds the root token for the device). This design goes against requirements 4 and 5. Our solution is to add an ownership transfer protocolto CAPL ETS. This is implemented by the following service interface:

```
service caplets_host {
     transfer_ownership(
           until: Time,
          key: array<u8>
     ) -> Token;
     early_cancel() -> bool;
     get_root_token() -> Token;
```

The transfer_ownership function is called by the owner to temporarily relinquish ownership rights carried in the original root token. This call immediately changes the server's internal signing key. The function returns a new root from X. E stands for the agreed-upon move-outime. The token signed with the new key which, for this application, must be the public key of the tenant. Thus the owner gets back a temporary root capability (that invalidate the previous token, $R_T = \text{ExpiresAt}$ $E = \text{IM ustSign}_{K_T} \cdot [R]_{S_2}$. Here, the root) that only the tenantcan use. To implement this rights transfer, the device places a public key constraint on the returned token with the tenant's public key (which the tenant Figure 5. supplied when occupying the rentameeting requirement 4. It also places a timeout constraint to meet requirement 1. The hey have the private key for K_T. For instance, they can owner then passes this token to the tenardince the tenant can sign tokens, only the tenant has accessto the device until the timeout expires. Further, because the tenanholds the temporary rootit can call early_cancel to revert its ownership and end its tenancy early.

As described in the next section, performing public key operationscan incur between 2 to 3 orders of magnitude overhead to processoand poweruse. Since the root token held by the tenant has a public key constraint, this cost is applied to every single request made by the tenant. It is possible to amortize this overhead, however. Once the tenant has their constrained token, they can perform a request derived from R_C instead of R_T . This scenario is shown to get_root_token (essentially a session key for the duration of the rental) to obtain a root token that is only timeout constrained After that point, the tenantcan use the more efficient root token for the duration of the rental.

With these primitives in mind, we describe a CAPLETSbased smart camera scenario. We begin with the provisioning one tary cost to execute, has no computationally expensive of the smart camera. When the camera is first enabled, it generates a secret 1 St uses this secret to tag the root token tional operations at the end of a tenancy. and transmitit to the owner. We refer to the contents of the root token as R, and the tagged token as [R], . The [X] Y notation is used to denote X is tagged with the secret Y . This step is shown in Figure 4.

Once the owner has the root capabilithey can now execute any of the functions served by the camelade now describe the transfer ownership scenario. Here, the tenant makes a move-in request MI = (K_T) where K_T is the public key of the tenant. The owner in turn makes a transfer ownership requestT O = $[R]_{S_1}$! transf erOwnership(K $_T$, E) to the

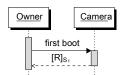


Fig. 4. Device provisioning in the CAPLETS approach.

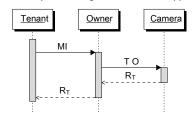


Fig. 5. Ownership transfer in the CAPETS approach.

camera. Here, the X! Y notation means that Y is derived camera in turn generates a new secreS2 and switches to it and responds with the public key constrained tenarbot X!Y denotes that Y is constrained on X. At this point, the owner loses access to the camera. This operation is shown in

Now, the tenant can exercise their root token since make a set stream encryption key requestSK = $\{R \mid T \}$ setStreamEncryptionKey(key)} K_T . Here $\{X\}_Y$ means that X is digitally signed with the corresponding private key of Y. This is shown in Figure 6. However, using Rdirectly like this incurs considerable overhead if a request is expected to be made frequently. In such cases, the tenant makes a requestGR to the get_root_token function to acquire a cheaperto exercise token and uses itin the future. The cheaper root token, $\mathbb{R} = \text{ExpiresAt}_{\mathbb{E}} ! [\mathbb{R}]_{\mathbb{S}_2}$, is identical to R_T except that it does not have the public key constraint. The cheap setkey requestSK! is identical to SK except that it in Figure 7. While the use of this operation is optional,we have observed performance improvements up to a factor of 500 after introducing and using it.

This approach does not suffer from any of the blockchainrelated caveats mentioned in Section III. Specifically, it has no operations thatincrease latencyand does not require addi-

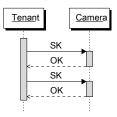


Fig. 6. Encryption key setting in the CAPLETS approach.

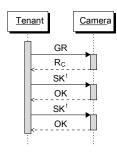


Fig. 7. Encryption key setting in the optimized CAPETS approach.

V. EVALUATION

In this section, we empirically evaluate the performance of free of cost. two smart camera systems - one Ethereum-based as discussed in Section III-A, and another one based on our proposed method as discussed in Section IVF.or the Ethereum-based system, we deploy our smart contract in Rops[a2], which is one of Ethereum's public test networks (testnets) that uses the same algorithm as the main network (mainneRopsten thus closely replicates the mainnet environment.

We invoke the smart contract functions using a Truffle [33] client from a Eucalyptus [34] private cloud instance containing two 2GHz CPU and 4GB memory and measure the time between invocation and returnWe perform capability experiments on both the same instance as we use forthe blockchain experiments and an STM32L475 microcontroller However, whether the request token includes a public key with an 80MHz ARM Cortex M4 processor with 64KB of RAM. We take 100 readings for each of the two functions (transferTenancy and pollTenancy) nd present the average and standard deviation.

A. Performance of a Blockchain-Based System

As transferTenancy has to update the state, a corresponding the token. transaction must be mined in the blockchain for it to execute. On the other handpollTenancy is a view function and does not require a transaction. Table II shows the average time taken to transfer tenancy and to poll tenancy.

The average execution time of the former is 20.267 seconds ations respectively compared to the blockchain. Even the whereas thatof the latter is 0.992 seconds. That is, transferTenancy is more than 20x slowerthan pollTenancy. The high standard deviation of 10.796 seconds in transferTenancy OPERATIONS FOR BOTH BLOCKCHAIN -BASED AND CAPABILITY -BASED is expected, as the function gets executed only when the transaction containing the function invocation getsmined. which can be the immediate nexblock that is mined or an arbitrary number of blocks after that. The observed minimum and maximum execution times for this function are 5.685 seconds and 60.302 seconds respectively.

B. Ether (ETH) Expenditure

In Ethereum,gas is a measure of the amount of computational effort required to execute an operation [35]. At the time of smart contract deployment, the deployer has to specify how much ETH he/she is willing to spend per unit of gas, i.e., gas

price. If the gas price is higher, miners have a greater incentive to mine, resulting in a transaction getting mined faster.

In our experiment, we used the default gas price in Ropsten, which was 0.00000002 ETH atthe time of deployment. In general, the cost of a transaction is the amount f gas used times the gas price. Table I shows the cost of contract creation and function execution according to the markealue at the time of the deployment of the contract (20 April 2021). As we can see, apart from incurring an initial cost of USD 27.21, we also require USD 1.90 every time we call the transferTenancy function. As no mining effort is required for the execution of a view function, the pollTenancy function can be executed

TABLE I EXECUTION COST WITH A GAS PRICE P=0.00000002 ETH, 1 ETH=USD 2328.54.

action/function	gas (G)	Ether (GxP)	USD
contract creation	584216	0.01168432	27.21
transferTenancy	40731	0.00081462	1.90
pollTenancy	-	-	-

C. Performance of a CAPLETS-based System

Unlike the blockchain version, the capability-based implementation has no externadependenciesso read-only vs update requestatency does not hange in a significantway. constraint or not affects the latency considerably, so we report two sets of results. The public key constrained version is called only once per tenant.

We implement the public key constraint using ECDSA (Elliptic Curve Digital Signature Algorithm) on the secp256r1 curve. The constraint consists of the public key that has to

Table II shows the average time it takes to execute a requeston a particular host. Note that both implementations have the same security guaranteesOur experimentsshow that the capability-based approach is 5 and 6 orders of As expected,transferTenancy is slower than pollTenancy. magnitude fasteron transferTenancy and pollTenancy oper-

TABLE II LATENCY RESULTS OF transferTenancyND pollTenancy OR setKey) IMPLEMENTATION

	Mean latency (stddev) in microseconds on virtual machine	Mean latency (stddev) in microseconds on microcontroller
Blockchain transfer	20,267,000 (10,796,000)	N/A
Blockchain poll_tenancy	992,000 (50,000)	N/A
Caplets transfer with pubkey	652 (32)	156,230 (167)
Caplets transfer without pubkey	7 (2)	922 (26)
Caplets setkey with pubkey	584 (34)	150,931 (527)
Caplets setkey without pubkey	3 (1)	457 (25)

³relevant transactions can be explored at https://bit.ly/3sQT61z

of magnitude faster than the blockchain implementation on a fully provisioned, resource-rich server.

Due to the very expensive elliptic curve operation, the tokens with the public key constraint take more than 2 orders [12] "Home — ethereum.org," https://ethereum.org/en[Online; accessed of magnitude more time to use. However, since it doesn't incur any overhead on tokens that do not use at we can drop the constraintafter the first request, we believe it is a good trade-off for the benefits public key cryptography bring\$14] in this application.

VI. CONCLUSION

Smart contracts have received revitalized attention due to the emergenceof blockchains. Smart home systems, and IoT applications in general, can now embed business logic in smart contracts while providing the security and privacy commonly associated with blockchains. However, blockchain is inherently a resource-intensive technology and hence its application in systems with resource-constrained IoT devices is [19] challenging. Moreover, applications performing time-sensitive operations are complex to implement using blockchains. Hence, we propose a new blockchain-independeant proach to smart contracts thatis resource-efficientand suitable for IoT applications. Our results show that the proposed method [21] R. Xu, Y. Chen, E. Blasch, and G. Chen, "Blendcac: A blockchaincan outperform existing blockchain-based solutionswhile providing security and privacy. In the future, we plan to explore the use of our proposed method in different IoT applications beyond those of smart home systems.

REFERENCES

- [1] H. Lin and N. W. Bergmann, "lot privacy and security challenges for smart home environments," Informationol. 7, no. 3, p. 44, 2016.
- D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fovino, G. Steri, and G. Baldini, "Security and privacy issues for an iot based smart home," in 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPROFEE, 2017, pp. 1292-1297.
- [3] W. Ali, G. Dustgeer, M. Awais, and M. A. Shah, "lot based smart home: Security challenges, security requirements and solutions," in 2017 23rd International Conference on Automation and Computing (ICAC). IEEE, 2017, pp. 1-6.
- [4] M. N. Islam and S. Kundu, "Preserving iot privacy in sharing economy via smart contract," in 2018 IEEE/ACM Third International Conference [28] on Internet-of-Things Design and Implementation (IoTDI). 2018, pp. 296–297.
- [5] A. Qashlan, P. Nanda, and X. He, "Automated ethereum smart contract for block chain based smart home security," in Smart Systems and IoT.

 D. Ferraiolo, D. R. Kuhn, and R. Chandramouli,Role-based access Innovations in Computing. Springer, 2020, pp. 313-326.
- [6] Q. Xu, Z. He, Z. Li, and M. Xiao, "Building an ethereum-based decentralized smarhome system," in 2018 IEEE 24th International Conference on Paralleland Distributed Systems (ICPADS). IEEE, 2018, pp. 1004-1009.
- [7] T. L. N. Dang and M. S. Nguyen, "An approach to data privacy in smart home using blockchain technology," in 2018 International Conference [32] on Advanced Computing and Applications (ACOMP). IEEE, 2018, pp. 58-64.
- [8] P. K. Singh, R. Singh, S. K. Nandi, and S. Nandi, "Managing smart home appliances with proof of authority and blockchain," in International Conference on Innovations for Community Service Springer, 2019, pp. 221-232.
- [9] M. AbuNaser and A. A. Alkhatib, "Advanced survey of blockchain for the internet of things smart home," in 2019 IEEE Jordan international joint conference on electricængineering and information technology (JEEIT). IEEE, 2019, pp. 58-62.

- microcontroller version of capabilities performs 2 to 4 orders[10] M. Moniruzzaman, S. Khezr, A. Yassine, and R. Benlamri, "Blockchain for smart homes: Review of current trends and research challenges," Computers & Electrical Engineeringvol. 83, p. 106585,2020.
 - [11] Y. N. Aung and T. Tantidham, "Review of ethereum: Smart home case study," in 2017 2nd International Conference on Information
 - 22-Apr-2021].
 - [13] M. A. Uddin, A. Stranieri, I. Gondal, and V. Balasubramanian, A survey on the adoption of blockchain in iot: Challenges and solutions," Blockchain: Research and Applications, 100006,2021. "Ethereum Average Block Time Chart — Etherscan," https://etherscan. io/chart/blocktime [Online; accessed 22-Apr-2021].
 - [15] "Bitcoin Block Time Chart," https://bitinfocharts.com/comparison/ bitcoin-confirmationtime.html [Online; accessed 23-Apr-2021].
 - [16] J. B. Dennis and E. C. Van Horn, "Programming semantics for multiprogrammed computations," Communications of the ACM, vol. 9, no. 3, pp. 143-155,1966.
 - "Enterprise on Ethereum mainnet- ethereum.org," https://ethereum. org/en/enterprise/#private-vs-public [Online; accessed 30-Apr-2021].
 - [18] R. Yang, R. Wakefield, S. Lyu, S. Jayasuriya F. Han, X. Yi, X. Yang, G. Amarasinghe, and S. Chen, "Public and private blockchain in construction business process and information integration," Automation in Construction, vol. 118, p. 103276, 2020.
 - A. Pouraghily, M. N. Islam, S. Kundu, and T. Wolf, "Privacy in blockchain-enabled iot devices," in 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI). IEEE, 2018, pp. 292-293.
 - [20] N. Szabo, "Smart contracts: building blocks for digital markets," EXTROPY: The Journal of Transhumanist Thought, (16), vol. 18, no. 2,
 - enabled decentralized capability-based access control for iots," in 2018 IEEE International Conference on Internetof Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber Physical and Social Computing (CPSCom)and IEEE Smart Data (SmartData). IEEE, 2018, pp. 1027-1034.
 - "Transactions— ethereum.org," https://ethereum.org/en/developers/ docs/transactions/ [Online; accessed 26-Apr-2021].
 - [23] "Anatomy of smart contracts ethereum.org," https://ethereum.org/ en/developers/docs/smart-contracts/anatomy/ [Online; accessed 26-Apr-
 - [24] F. Bakir, R. Wolski, and C. Krintz, "Caplets: Resource aware, capability-based access control for iot," in 2021 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2021.
 - [25] R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway, "Capsicum: Practical capabilities for unix." in USENIX Security Symposium, vol. 46, 2010. p. 2.
 - [26] "Json web token (jwt)." [Online]. Available: https://tools.ietf.org/html/ rfc7519
 - [27] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesseand H. van Staveren, Amoeba - A distributed Operating System for the 1990's," IEEE Computeryol. 23, no. 5, May 1990.
 - A. Birgisson, J. G. Politz, U. Erlingsson, A. Taly, M. Vrable, and M. Lentczner, "Macaroons: Cookies with contextual caveats for decentralized authorization in the cloud," in Network and Distributed System
 - control. Artech House,2003.
 - [30] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, "Attribute-based access control," Computevol. 48, no. 2, pp. 85-88, 2015.
 - [31] H. Krawczyk, R. Canetti, and M. Bellare, "Hmac: Keyed-hashing for message authentication," 199[Online; accessed 26-Apr-2019] https: //tools.ietf.org/html/rfc2104.
 - "TESTNET Ropsten (ETH) Blockchain Explorer," https://ropsten. etherscan.io/ [Online; accessed 26-Apr-2021].
 - "Sweet Tools for Smart Contracts Truffle Suite," https://www. trufflesuite.com/ [Online; accessed 26-Apr-2021].
 - "Eucalyptus Documentation," https://docs.eucalyptus.com/eucalyptus/ 4.3.0/ [Online; accessed 12-Sep-2017].
 - "Gas and Fees ethereum.org," https://ethereum.org/en/developers/ docs/gas/ [Online; accessed 25-Apr-2021].